1
|
Molina Inzunza DO, Martín González JE, Segura Navarro MJ, Barrero AF, Quílez del Moral JF. Natural Occurring Terpene Cyclic Anhydrides: Biosynthetic Origin and Biological Activities. Biomolecules 2024; 14:955. [PMID: 39199343 PMCID: PMC11352521 DOI: 10.3390/biom14080955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 09/01/2024] Open
Abstract
Cyclic acid anhydride is a not very widespread structure in nature, but with a determining role in natural products possessing this functionality in their skeleton. To the best of our knowledge, no revision of terpenes containing cyclic anhydrides has been previously reported. The result was that more than 100 terpenic cyclic anhydrides and related compounds were found to be in need of being reported. This review has been systematically organized by terpene skeletons, from the smallest to largest, describing their sources and bioactivities. In addition, different biosynthetic pathways for their final oxidations, namely, routes A, B and C, leading to the formation of these heterocyclic natural products, have been proposed. We have also included the most plausible precursors of these natural products, which mostly happened to be present in the same natural source. Some molecules derived from terpene cyclic anhydrides, such as their natural imide derivatives, have also been described due to their significant biological activity. In this sense, special attention has been paid to cantharidin because of its historical relevance and its broad bioactivity. A plausible biosynthesis of cantharidin has been proposed for the first time. Finally, cyclic anhydride structures that were firstly assigned as anhydrides and later corrected have been also described.
Collapse
Affiliation(s)
| | | | | | - Alejandro F. Barrero
- Department of Organic Chemistry, Institute of Biotechnology, University of Granada, 18071 Granada, Spain; (D.O.M.I.); (J.E.M.G.); (M.J.S.N.)
| | - José F. Quílez del Moral
- Department of Organic Chemistry, Institute of Biotechnology, University of Granada, 18071 Granada, Spain; (D.O.M.I.); (J.E.M.G.); (M.J.S.N.)
| |
Collapse
|
2
|
Li S, Duan X, Zhang Y, Zhao C, Yu M, Li X, Li X, Zhang J. Lipidomics reveals serum lipid metabolism disorders in CTD-induced liver injury. BMC Pharmacol Toxicol 2024; 25:10. [PMID: 38225635 PMCID: PMC10790540 DOI: 10.1186/s40360-024-00732-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/03/2024] [Indexed: 01/17/2024] Open
Abstract
BACKGROUND Cantharidin (CTD), the main toxic component of Mylabris, has been extensively used for tumor treatment in recent years. CTD-induced liver toxicity has attracted significant interest in clinic. METHODS In this study, biochemical parameters and liver pathological changes were analyzed after CTD was administered to mice by gavage. Subsequently, a lipidomic approach was used to investigate serum lipid metabolism disorders, and the mechanism underlying CTD-induced liver injury in mice was explored. RESULTS The results showed that the levels of TC and LDL-C were significantly increased after CTD intervention. Besides, pathological results showed inflammatory cell infiltration and hepatocyte necrosis in the liver. Furthermore, lipidomics found that a total of 18 lipid metabolites were increased and 40 were decreased, including LPC(20:4), LPC(20:3), PC(22:6e/2:0), PE(14:0e/21:2), PC(18:2e/22:6), glycerophospholipids, CE(16:0), CE(18:0) Cholesterol esters and TAG(12:0/12:0/22:3), TAG(16:1/16:2/20:4), TAG(18:1/18:1/20:0), TAG(16:2/18:2/18:2), TAG(18:0/18:0/20:0), TAG(13:1/19:0/19:0) glycerolipids. Metabolic pathway analysis found that glycerophospholipid, glycerol ester and glycosylphosphatidylinositol (GPI)-anchored biosynthetic metabolic pathways were dysregulated and the increase in PE caused by glycophoric metabololism and GPI may be the source of lipid metabolism disorders caused by CTD. Overall, the present study provided new insights into the mechanism of CTD-induced liver injury and increased drug safety during clinical application.
Collapse
Affiliation(s)
- Shan Li
- School of Basic Medicine, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Xiaotong Duan
- School of Basic Medicine, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Yixin Zhang
- School of Basic Medicine, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Cancan Zhao
- School of Basic Medicine, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Ming Yu
- School of Pharmacy and Key Laboratory of Basic Pharmacology Ministry Education and Joint International Research Laboratory of Ethnomedicine Ministry of Education, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Xiaofei Li
- School of Basic Medicine, Zunyi Medical University, Zunyi, 563000, Guizhou, China.
| | - Xiaomei Li
- Cancer Research Laboratory, The Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou, China.
| | - Jianyong Zhang
- School of Pharmacy and Key Laboratory of Basic Pharmacology Ministry Education and Joint International Research Laboratory of Ethnomedicine Ministry of Education, Zunyi Medical University, Zunyi, 563000, Guizhou, China.
| |
Collapse
|
3
|
Yousef EH, El-Magd NFA, El Gayar AM. Norcantharidin potentiates sorafenib antitumor activity in hepatocellular carcinoma rat model through inhibiting IL-6/STAT3 pathway. Transl Res 2023; 260:69-82. [PMID: 37257560 DOI: 10.1016/j.trsl.2023.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/02/2023]
Abstract
In hepatocellular carcinoma (HCC), sorafenib (Sora) efficacy is limited by primary and/or acquired resistance. Emerging evidence shows that the inflammatory factor interleukin 6 (IL-6) plays a role in Sora resistance. Norcantharidin (NCTD), a derivative of cantharidine, was identified as a potent IL-6 inhibitor. Thus, in this study, we evaluated NCTD ability to improve the Sora efficacy in HCC and its underlying molecular mechanisms. Male Sprague Dawely rats were administered NCTD (0.1 mg/kg/day; orally) or Sora (10 mg/kg day; orally) or combination for 6 weeks after HCC induction using thioacetamide (200 mg/kg; ip; 2 times/wk) for 16 weeks. Our results showed that NCTD greatly enhanced Sora activity against HCC and potentiated Sora-induced oxidative stress. NCTD enhanced Sora-induced tumor immunity reactivation by decreasing both fibrinogen-like protein 1 level and increasing both tumor necrosis factor-α gene expression along with CD8+ T cells number. Also, NCTD augmented Sora attenuation activity against TAA-induced angiogenesis and metastasis by decreasing VEGFA, HIF-1α, serum lactate dehydrogenase enzyme, and vimentin levels. The combined use of NCTD/Sora suppressed drug resistance and stemness by downregulating ATP-binding cassette subfamily G member 2, neurogenic locus notch homolog protein, spalt-like transcription factor 4, and CD133. NCTD boosted Sora antiproliferative and apoptotic activities by decreasing Ccnd1 and BCL2 expressions along with increasing BAX and caspase-3 expressions. To our knowledge, this study represents the first study providing evidence for the potential novel therapeutic use of NCTD/Sora combination for HCC. Moreover, no previous studies have reported the effect of NCTD on FGL1.
Collapse
Affiliation(s)
- Eman H Yousef
- Biochemistry department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt; Biochemistry department, Faculty of Pharmacy, Horus University-Egypt, Damietta, Egypt.
| | - Nada F Abo El-Magd
- Biochemistry department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Amal M El Gayar
- Biochemistry department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.
| |
Collapse
|
4
|
Jin D, Huang NN, Wei JX. Hepatotoxic mechanism of cantharidin: insights and strategies for therapeutic intervention. Front Pharmacol 2023; 14:1201404. [PMID: 37383714 PMCID: PMC10293652 DOI: 10.3389/fphar.2023.1201404] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/01/2023] [Indexed: 06/30/2023] Open
Abstract
Cantharidin (CTD), a natural compound derived from Mylabris, is widely used in traditional Oriental medicine for its potent anticancer properties. However, its clinical application is restricted due to its high toxicity, particularly towards the liver. This review provides a concise understanding of the hepatotoxic mechanisms of CTD and highlights novel therapeutic strategies to mitigate its toxicity while enhancing its anticancer efficacy. We systematically explore the molecular mechanisms underlying CTD-induced hepatotoxicity, focusing on the involvement of apoptotic and autophagic processes in hepatocyte injury. We further discuss the endogenous and exogenous pathways implicated in CTD-induced liver damage and potential therapeutic targets. This review also summarizes the structural modifications of CTD derivatives and their impact on anticancer activity. Additionally, we delve into the advancements in nanoparticle-based drug delivery systems that hold promise in overcoming the limitations of CTD derivatives. By offering valuable insights into the hepatotoxic mechanisms of CTD and outlining potential avenues for future research, this review contributes to the ongoing efforts to develop safer and more effective CTD-based therapies.
Collapse
Affiliation(s)
- Dian Jin
- Department of Pharmacy, Sixth People’s Hospital of Chengdu, Chengdu, China
| | - Na-Na Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing-Xia Wei
- Department of Pharmacy, Sixth People’s Hospital of Chengdu, Chengdu, China
| |
Collapse
|
5
|
Na-Bangchang K, Plengsuriyakarn T, Karbwang J. The Role of Herbal Medicine in Cholangiocarcinoma Control: A Systematic Review. PLANTA MEDICA 2023; 89:3-18. [PMID: 35468650 DOI: 10.1055/a-1676-9678] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The growing incidence of cholangiocarcinoma (bile duct cancer) and limited treatment options stimulate a pressing demand for research and the development of new chemotherapeutics against cholangiocarcinoma. This study aimed to systematically review herbs and herb-derived compounds or herbal formulations that have been investigated for their anti-cholangiocarcinoma potential. Systematic literature searches were conducted in three electronic databases: PubMed, ScienceDirect, and Scopus. One hundred and twenty-three research articles fulfilled the eligibility critera and were included in the analysis (68 herbs, isolated compounds and/or synthetic analogs, 9 herbal formulations, and 119 compounds that are commonly found in several plant species). The most investigated herbs were Atractylodes lancea (Thunb.) DC. (Compositae) and Curcuma longa L. (Zingiberaceae). Only A. lancea (Thunb.) DC. (Compositae) has undergone the full process of nonclinical and clinical development to deliver the final product for clinical use. The extracts of A. lancea (Thunb.) DC. (Compositae), Garcinia hanburyi Hook.f. (Clusiaceae), and Piper nigrum L. (Piperaceae) exhibit antiproliferative activities against human cholangiocarcinoma cells (IC50 < 15 µg/mL). Cucurbitacin B and triptolide are herbal isolated compounds that exhibit the most promising activities (IC50 < 1 µM). A series of experimental studies (in vitro, in vivo, and humans) confirmed the anti-cholangiocarcinoma potential and safety profile of A. lancea (Thunb.) DC. (Compositae) and its active compounds atractylodin and β-eudesmol, including the capsule pharmaceutical of the standardized A. lancea (Thunb.) DC. (Compositae) extract. Future research should be focused on the full development of the candidate herbs to deliver products that are safe and effective for cholangiocarcinoma control.
Collapse
Affiliation(s)
- Kesara Na-Bangchang
- Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Chulabhorn International College of Medicine, Thammasat University (Rangsit Campus), Klongneung, Klongluang District, Pathumthani, Thailand
- Drug Discovery and Development Center, Office of Advanced Science and Technology, Thammasat University (Rangsit Campus), Klongneung, Klongluang District, Pathumthani, Thailand
| | - Tullayakorn Plengsuriyakarn
- Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Chulabhorn International College of Medicine, Thammasat University (Rangsit Campus), Klongneung, Klongluang District, Pathumthani, Thailand
| | - Juntra Karbwang
- Drug Discovery and Development Center, Office of Advanced Science and Technology, Thammasat University (Rangsit Campus), Klongneung, Klongluang District, Pathumthani, Thailand
| |
Collapse
|
6
|
Illuminating the hepatotoxic mechanism of norcantharidin in rats using metabolomics analysis. Mol Cell Toxicol 2022. [DOI: 10.1007/s13273-022-00285-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Abstract
Background
Norcantharidin (NCTD) has multiple antitumor effects. However, NCTD can induce significant hepatotoxicity and the mechanism of hepatotoxicity is not clear for now.
Objective
This study aimed to explore the hepatotoxicity of NCTD in rat by ultra-performance liquid chromatography (UPLC) quadrupole time-of-flight (Q-TOF)-MS (UPLC/Q-TOF-MS) metabolomics.
Results
Serum biochemical indices including alanine aminotransferase (ALT) and total bilirubin (T-BIL) were significantly increased. Histopathological and ultrastructure results revealed that hepatocytes were damaged. Furthermore, the metabolomics results showed that 11 metabolites in serum and 8 metabolites in liver were differential metabolites for NCTD hepatotoxicity. Four metabolic pathways including the sphingolipid metabolism, purine metabolism, arachidonic acid metabolism, and glycerophospholipid metabolism were the key metabolic pathways related to NCTD hepatotoxicity.
Conclusion
The metabolomics analysis in this study reveal new clues on the hepatotoxicity mechanism of NCTD in rats. These findings have potential applications in the toxicity study of NCTD.
Collapse
|
7
|
Rivas M, Johnston ME, Gulati R, Kumbaji M, Margues Aguiar TF, Timchenko L, Krepischi A, Shin S, Bondoc A, Tiao G, Geller J, Timchenko N. HDAC1-Dependent Repression of Markers of Hepatocytes and P21 Is Involved in Development of Pediatric Liver Cancer. Cell Mol Gastroenterol Hepatol 2021; 12:1669-1682. [PMID: 34245919 PMCID: PMC8536541 DOI: 10.1016/j.jcmgh.2021.06.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Epigenetic regulation of gene expression plays a critical role in the development of liver cancer; however, the molecular mechanisms of epigenetic-driven liver cancers are not well understood. The aims of this study were to examine molecular mechanisms that cause the dedifferentiation of hepatocytes into cancer cells in aggressive hepatoblastoma and test if the inhibition of these mechanisms inhibits tumor growth. METHODS We have analyzed CCAAT/Enhancer Binding Protein alpha (C/EBPα), Transcription factor Sp5, and histone deacetylase (HDAC)1 pathways from a large biobank of fresh hepatoblastoma (HBL) samples using high-pressure liquid chromatography-based examination of protein-protein complexes and have examined chromatin remodeling on the promoters of markers of hepatocytes and p21. The HDAC1 activity was inhibited in patient-derived xenograft models of HBL and in cultured hepatoblastoma cells and expression of HDAC1-dependent markers of hepatocytes was examined. RESULTS Analyses of a biobank showed that a significant portion of HBL patients have increased levels of an oncogenic de-phosphorylated-S190-C/EBPα, Sp5, and HDAC1 compared with amounts of these proteins in adjacent regions. We found that the oncogenic de-phosphorylated-S190-C/EBPα is created in aggressive HBL by protein phosphatase 2A, which is increased within the nucleus and dephosphorylates C/EBPα at Ser190. C/EBPα-HDAC1 and Sp5-HDAC1 complexes are abundant in hepatocytes, which dedifferentiate into cancer cells. Studies in HBL cells have shown that C/EBPα-HDAC1 and Sp5-HDAC1 complexes reduce markers of hepatocytes and p21 via repression of their promoters. Pharmacologic inhibition of C/EBPα-HDAC1 and Sp5-HDAC1 complexes by Suberoylanilide hydroxamic acid (SAHA) and small interfering RNA-mediated inhibition of HDAC1 increase expression of hepatocyte markers, p21, and inhibit proliferation of cancer cells. CONCLUSIONS HDAC1-mediated repression of markers of hepatocytes is an essential step for the development of HBL, providing background for generation of therapies for aggressive HBL by targeting HDAC1 activities.
Collapse
Affiliation(s)
- Maria Rivas
- Division of General and Thoracic Surgery, Cincinnati, Ohio,Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Michael E. Johnston
- Division of General and Thoracic Surgery, Cincinnati, Ohio,Department of Surgery, University of Cincinnati College of Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Ruhi Gulati
- Division of General and Thoracic Surgery, Cincinnati, Ohio
| | | | | | | | - Ana Krepischi
- Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Soona Shin
- Division of General and Thoracic Surgery, Cincinnati, Ohio,Department of Surgery, University of Cincinnati College of Medicine, University of Cincinnati, Cincinnati, Ohio
| | | | - Gregory Tiao
- Division of General and Thoracic Surgery, Cincinnati, Ohio,Department of Surgery, University of Cincinnati College of Medicine, University of Cincinnati, Cincinnati, Ohio
| | - James Geller
- Department of Oncology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Nikolai Timchenko
- Division of General and Thoracic Surgery, Cincinnati, Ohio,Department of Surgery, University of Cincinnati College of Medicine, University of Cincinnati, Cincinnati, Ohio,Correspondence Address correspondence to: Nikolai Timchenko, PhD, Liver Tumor Program, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, Ohio 45229. fax: (513) 636-4200.
| |
Collapse
|
8
|
Lan HY, An P, Liu QP, Chen YY, Yu YY, Luan X, Tang JY, Zhang H. Aidi injection induces apoptosis of hepatocellular carcinoma cells through the mitochondrial pathway. JOURNAL OF ETHNOPHARMACOLOGY 2021; 274:114073. [PMID: 33794335 DOI: 10.1016/j.jep.2021.114073] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/04/2021] [Accepted: 03/23/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The incidence and mortality rates of hepatocellular carcinoma are very high all over the world, which seriously threatens human life and health. Aidi injection as a Chinese medicine preparation has a positive curative effect on hepatocellular carcinoma, but its mechanism remains unclear. AIM OF THE STUDY The purpose of this study is to evaluate the anti-hepatocellular carcinoma effects of Aidi injection and explore its mechanism of action vitro and vivo. MATERIALS AND METHODS The main components of Aidi injection were determined by LC-MS/MS. The effects of Aidi injection on the viability of HepG2 and PLC/PRF/5 cells were detected via CCK-8 analysis and Calcein AM/PI staining. DAPI staining and flow cytometry were applied to analyze the apoptosis-induced effects of Aidi injection on hepatocellular carcinoma cells (HCCs). The growth inhibition of Aidi injection on hepatocellular carcinoma was observed in nude mice bearing PLC/PRF/5 cells. The related signal transduction and apoptosis pathways were investigated through assays for JC-1 mitochondrial membrane potential (MMP), RNA-seq, KEGG, PPI and WB. RESULTS There were 12 main chemical components contained in Aidi injection, viz. cantharidin, syringin, calycosin-7-o-β-Dglucoside, isozinpidine, ginsenosides Rd, Rc, Rb1, Re, and Rg1, astragalosides II and IV, and eleutheroside E. Aidi injection significantly inhibited the proliferation of HepG2 and PLC/PLF/5 cells with IC50 of 20.66 mg/ml and 27.5 mg/ml at 48h, respectively, increased the proportion of dead cells, induced cell apoptosis, suppressed the tumor growth of nude mice bearing PLC/PLF/5 cells, reduced MMP, activated PI3K/Akt and MAPK signal transduction pathways, down-regulated the expression of p-PI3K and Bcl-xL, and up-regulated the expression of p-JNK, p-p38 and Bim. CONCLUSION Aidi injection inhibits the growth of liver cancer probably through regulating PI3K/Akt and MAPK signal transduction pathways, inducing MMP collapse to activate the mitochondrial apoptosis pathway, and then eliciting apoptosis of HCCs.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents, Phytogenic/chemistry
- Antineoplastic Agents, Phytogenic/pharmacology
- Antineoplastic Agents, Phytogenic/therapeutic use
- Apoptosis/drug effects
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Cell Line, Tumor
- Cell Survival/drug effects
- Drugs, Chinese Herbal/chemistry
- Drugs, Chinese Herbal/pharmacology
- Drugs, Chinese Herbal/therapeutic use
- Gene Expression Profiling
- Humans
- Injections
- Liver Neoplasms/drug therapy
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Male
- Membrane Potential, Mitochondrial/drug effects
- Mice, Inbred BALB C
- Mice, Nude
- Mitochondria/drug effects
- Mitochondria/physiology
- Mitogen-Activated Protein Kinases/metabolism
- Phosphatidylinositol 3-Kinases/metabolism
- Phytochemicals/analysis
- Phytochemicals/pharmacology
- Phytochemicals/therapeutic use
- Protein Interaction Maps
- Proto-Oncogene Proteins c-akt/metabolism
- Signal Transduction/drug effects
- Mice
Collapse
Affiliation(s)
- Hai-Yue Lan
- Institute of Interdisciplinary Integrative Medicine Research, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Pei An
- Institute of Interdisciplinary Integrative Medicine Research, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Qiu-Ping Liu
- Institute of Interdisciplinary Integrative Medicine Research, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yu-Ying Chen
- Institute of Interdisciplinary Integrative Medicine Research, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yuan-Yuan Yu
- Institute of Interdisciplinary Integrative Medicine Research, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xin Luan
- Institute of Interdisciplinary Integrative Medicine Research, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Jian-Yuan Tang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| | - Hong Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
9
|
Antitumor potential of the protein phosphatase inhibitor, cantharidin, and selected derivatives. Bioorg Med Chem 2021; 32:116012. [PMID: 33454654 DOI: 10.1016/j.bmc.2021.116012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/31/2020] [Accepted: 01/04/2021] [Indexed: 12/21/2022]
Abstract
Cantharidin is a potent natural protein phosphatase monoterpene anhydride inhibitor secreted by several species of blister beetle, with its demethylated anhydride analogue, (S)-palasonin, occurring as a constituent of the higher plant Butea frondosa. Cantharidin shows both potent protein phosphatase inhibitory and cancer cell cytotoxic activities, but possible preclinical development of this anhydride has been limited thus far by its toxicity. Thus, several synthetic derivatives of cantharidin have been prepared, of which some compounds exhibit improved antitumor potential and may have use as lead compounds. In the present review, the potential antitumor activity, structure-activity relationships, and development of cantharidin-based anticancer drug conjugates are summarized, with protein phosphatase-related and other types of mechanisms of action discussed. Protein phosphatases play a key role in the tumor microenvironment, and thus described herein is also the potential for developing new tumor microenvironment-targeted cancer chemotherapeutic agents, based on cantharidin and its naturally occurring analogues and synthetic derivatives.
Collapse
|
10
|
Naz F, Wu Y, Zhang N, Yang Z, Yu C. Anticancer Attributes of Cantharidin: Involved Molecular Mechanisms and Pathways. Molecules 2020; 25:E3279. [PMID: 32707651 PMCID: PMC7397086 DOI: 10.3390/molecules25143279] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 12/12/2022] Open
Abstract
Cancer is a preeminent threat to the human race, causing millions of deaths each year on the Earth. Traditionally, natural compounds are deemed promising agents for cancer treatment. Cantharidin (CTD)-a terpenoid isolated from blister beetles-has been used extensively in traditional Chinese medicines for healing various maladies and cancer. CTD has been proven to be protein phosphatase 2A (PP2A) and heat shock transcription factor 1 (HSF-1) inhibitor, which can be potential targets for its anticancer activity. Albeit, it harbors some toxicities, its immense anticancer potential cannot be overlooked, as the cancer-specific delivery of CTD could help to rescue its lethal effects. Furthermore, several derivatives have been designed to weaken its toxicity. In light of extensive research, the antitumor activity of CTD is evident in both in vitro as well as in vivo cancer models. CTD has also proven efficacious in combination with chemotherapy and radiotherapy and it can also target some drug-resistant cancer cells. This mini-review endeavors to interpret and summarize recent information about CTD anticancer potential and underlying molecular mechanisms. The pertinent anticancer strength of CTD could be employed to develop an effective anticarcinogenic drug.
Collapse
Affiliation(s)
| | | | | | - Zhao Yang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; (F.N.); (Y.W.); (N.Z.)
| | - Changyuan Yu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; (F.N.); (Y.W.); (N.Z.)
| |
Collapse
|
11
|
Pan MS, Cao J, Fan YZ. Insight into norcantharidin, a small-molecule synthetic compound with potential multi-target anticancer activities. Chin Med 2020; 15:55. [PMID: 32514288 PMCID: PMC7260769 DOI: 10.1186/s13020-020-00338-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 05/25/2020] [Indexed: 02/07/2023] Open
Abstract
Norcantharidin (NCTD) is a demethylated derivative of cantharidin, which is an anticancer active ingredient of traditional Chinese medicine, and is currently used clinically as a routine anti-cancer drug in China. Clarifying the anticancer effect and molecular mechanism of NCTD is critical for its clinical application. Here, we summarized the physiological, chemical, pharmacokinetic characteristics and clinical applications of NCTD. Besides, we mainly focus on its potential multi-target anticancer activities and underlying mechanisms, and discuss the problems existing in clinical application and scientific research of NCTD, so as to provide a potential anticancer therapeutic agent for human malignant tumors.
Collapse
Affiliation(s)
- Mu-Su Pan
- Department of Surgery, Tongji Hospital, Tongji University School of Medicine, Tongji University, 389 Xincun Road, Shanghai, 200065 People’s Republic of China
| | - Jin Cao
- Department of Surgery, Tongji Hospital, Tongji University School of Medicine, Tongji University, 389 Xincun Road, Shanghai, 200065 People’s Republic of China
| | - Yue-Zu Fan
- Department of Surgery, Tongji Hospital, Tongji University School of Medicine, Tongji University, 389 Xincun Road, Shanghai, 200065 People’s Republic of China
| |
Collapse
|