1
|
Wen F, Han Y, Zhang H, Zhao Z, Wang W, Chen F, Qin W, Ju J, An L, Meng Y, Yang J, Tang Y, Zhao Y, Zhang H, Li F, Bai W, Xu Y, Zhou Z, Jiao S. Epstein-Barr virus infection upregulates extracellular OLFM4 to activate YAP signaling during gastric cancer progression. Nat Commun 2024; 15:10543. [PMID: 39627192 PMCID: PMC11615309 DOI: 10.1038/s41467-024-54850-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/24/2024] [Indexed: 12/06/2024] Open
Abstract
Extracellular vesicles (EVs) are known to mediate cell communications and shape tumor microenvironment. Compared to the well-studied small EVs, the function of large microvesicles (MVs) during tumorigenesis is poorly understood. Here we show the proteome of MVs in Epstein-Barr virus (EBV)-associated gastric cancer (EBVaGC), and identify olfactomedin 4 (OLFM4) is induced by EBV infection and secreted via MVs to promote tumor progression through Hippo signaling. Specifically, OLFM4 is a target gene of the cGAS-STING pathway, and EBV infection activates cGAS-STING pathway and increases OLFM4 expression. Moreover, MV-carried OLFM4 binds with the extracellular cadherin domain of FAT1, thereby impairing its intracellular interaction with MST1 and leading to YAP activation in recipient cells. Together, our study not only reveals a regulatory mechanism though which viral infection is coupled via MVs with intercellular control of the Hippo signaling, but also highlights the OLFM4-Hippo axis as a therapeutic target for EBV-associated cancers.
Collapse
Affiliation(s)
- Fuping Wen
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, 200072, China
| | - Yi Han
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, 200072, China
| | - Hui Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China
| | - Zhangting Zhao
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, 200072, China
| | - Wenjia Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China
| | - Fan Chen
- CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Weimin Qin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China
| | - Junyi Ju
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, 200072, China
| | - Liwei An
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, 200072, China
| | - Yan Meng
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, 200072, China
| | - Jie Yang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China
| | - Yang Tang
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, 200072, China
| | - Yun Zhao
- CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Huanhu Zhang
- Department of Digestive Sciences, Shanxi Cancer Hospital, Taiyuan, 030001, China
| | - Feng Li
- Department of Digestive Sciences, Shanxi Cancer Hospital, Taiyuan, 030001, China
| | - Wenqi Bai
- Department of Digestive Sciences, Shanxi Cancer Hospital, Taiyuan, 030001, China.
| | - Yuanzhi Xu
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, 200072, China.
| | - Zhaocai Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China.
- Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Shi Jiao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
2
|
Wu Y, Wang X, Zeng Y, Liu X. Exosomes are the mediators between the tumor microenvironment and prostate cancer (Review). Exp Ther Med 2024; 28:439. [PMID: 39355518 PMCID: PMC11443591 DOI: 10.3892/etm.2024.12728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/23/2024] [Indexed: 10/03/2024] Open
Abstract
Prostate cancer poses a serious threat to the well-being of men worldwide, with the leading cause of mortality being primarily through metastasis. Prostate cancer metastasis is dependent on cell communication, which is an essential component of this process; yet its exact mechanism remains obscure. Nonetheless, cell-to-cell communication plays a critical part in prostate cancer metastasis. Exosomes play an indispensable role in the development of metastatic growth by promoting intercellular communication. They are pivotal regulatory agents for both prostate cancer cells as well as their microenvironment. The present study investigated the makeup and function of exosomes in the tumor microenvironment, highlighting their significance to prostate cancer metastasis.
Collapse
Affiliation(s)
- Yiqi Wu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xiao Wang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yan Zeng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xiuheng Liu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
3
|
Moghassemi S, Dadashzadeh A, Sousa MJ, Vlieghe H, Yang J, León-Félix CM, Amorim CA. Extracellular vesicles in nanomedicine and regenerative medicine: A review over the last decade. Bioact Mater 2024; 36:126-156. [PMID: 38450204 PMCID: PMC10915394 DOI: 10.1016/j.bioactmat.2024.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 03/08/2024] Open
Abstract
Small extracellular vesicles (sEVs) are known to be secreted by a vast majority of cells. These sEVs, specifically exosomes, induce specific cell-to-cell interactions and can activate signaling pathways in recipient cells through fusion or interaction. These nanovesicles possess several desirable properties, making them ideal for regenerative medicine and nanomedicine applications. These properties include exceptional stability, biocompatibility, wide biodistribution, and minimal immunogenicity. However, the practical utilization of sEVs, particularly in clinical settings and at a large scale, is hindered by the expensive procedures required for their isolation, limited circulation lifetime, and suboptimal targeting capacity. Despite these challenges, sEVs have demonstrated a remarkable ability to accommodate various cargoes and have found extensive applications in the biomedical sciences. To overcome the limitations of sEVs and broaden their potential applications, researchers should strive to deepen their understanding of current isolation, loading, and characterization techniques. Additionally, acquiring fundamental knowledge about sEVs origins and employing state-of-the-art methodologies in nanomedicine and regenerative medicine can expand the sEVs research scope. This review provides a comprehensive overview of state-of-the-art exosome-based strategies in diverse nanomedicine domains, encompassing cancer therapy, immunotherapy, and biomarker applications. Furthermore, we emphasize the immense potential of exosomes in regenerative medicine.
Collapse
Affiliation(s)
- Saeid Moghassemi
- Pôle de Recherche en Physiopathologie de La Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Arezoo Dadashzadeh
- Pôle de Recherche en Physiopathologie de La Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Maria João Sousa
- Pôle de Recherche en Physiopathologie de La Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Hanne Vlieghe
- Pôle de Recherche en Physiopathologie de La Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Jie Yang
- Pôle de Recherche en Physiopathologie de La Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Cecibel María León-Félix
- Pôle de Recherche en Physiopathologie de La Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Christiani A. Amorim
- Pôle de Recherche en Physiopathologie de La Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
4
|
Kim SY, Park S, Kim S, Ko J. CD133-containing microvesicles promote cancer progression by inducing M2-like tumor-associated macrophage polarization in the tumor microenvironment of colorectal cancer. Carcinogenesis 2024; 45:300-310. [PMID: 38085813 DOI: 10.1093/carcin/bgad093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 11/21/2023] [Accepted: 12/11/2023] [Indexed: 05/20/2024] Open
Abstract
Tumor-associated macrophages (TAMs) are among the most abundant cell types in the tumor microenvironment (TME). The immunosuppressive TME formed by TAMs is an essential prerequisite for cancer progression. Tumor-derived microvesicles (MVs), a subtype of extracellular vesicle shed directly from the plasma membrane, are important regulators of intercellular communication and TME modulation during tumorigenesis. However, the exact mechanism by which tumor-derived MVs induce the generation of the immunosuppressive TME and polarization of TAMs remains unclear. Here, we investigated the role of CD133-containing MVs derived from colorectal cancer (CRC) cells in macrophage polarization and cancer progression. CD133-containing MVs from CRC cells were incorporated into macrophages, and M0 macrophages were morphologically transformed into M2-like TAMs. CD133-containing MVs were found to increase the mRNA expression of M2 macrophage markers. Additionally, cytokine array analysis revealed that M2-like TAMs induced by CD133-containing MVs increased the secretion of interleukin 6, which activated the STAT3 pathway in CRC cells. Furthermore, the conditioned medium of M2-like TAMs promoted cell motility, epithelial-mesenchymal transition, and cell proliferation. However, MVs from CD133-knockdown cells had little effect on TAM polarization and CRC progression. These results demonstrate that CD133-containing MVs induce M2-like TAM polarization and contribute to cancer progression by mediating crosstalk between tumor cells and TAMs in the TME of CRC.
Collapse
Affiliation(s)
- Sang Yun Kim
- Division of Life Sciences, Korea University, Seoul 02841, South Korea
| | - Sungyeon Park
- Division of Life Sciences, Korea University, Seoul 02841, South Korea
| | - Suhyun Kim
- Division of Life Sciences, Korea University, Seoul 02841, South Korea
| | - Jesang Ko
- Division of Life Sciences, Korea University, Seoul 02841, South Korea
| |
Collapse
|
5
|
Whiteside TL. Effects of Tumor-derived Small Extracellular Vesicles on T cell Survival in Patients with Cancer; A Commentary. JOURNAL OF CANCER IMMUNOLOGY 2024; 6:162-168. [PMID: 39634254 PMCID: PMC11616454 DOI: 10.33696/cancerimmunol.6.097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Affiliation(s)
- Theresa L. Whiteside
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
6
|
Jiang C, Jiang Z, Sha G, Wang D, Tang D. Small extracellular vesicle-mediated metabolic reprogramming: from tumors to pre-metastatic niche formation. Cell Commun Signal 2023; 21:116. [PMID: 37208722 DOI: 10.1186/s12964-023-01136-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/22/2023] [Indexed: 05/21/2023] Open
Abstract
Metastasis, the spread of a tumor or cancer from the primary site of the body to a secondary site, is a multi-step process in cancer progression, accounting for various obstacles in cancer treatment and most cancer-related deaths. Metabolic reprogramming refers to adaptive metabolic changes that occur in cancer cells in the tumor microenvironment (TME) to enhance their survival ability and metastatic potential. Stromal cell metabolism also changes to stimulate tumor proliferation and metastasis. Metabolic adaptations of tumor and non-tumor cells exist not only in the TME but also in the pre-metastatic niche (PMN), a remote TME conducive for tumor metastasis. As a novel mediator in cell-to-cell communication, small extracellular vesicles (sEVs), which have a diameter of 30-150 nm, reprogram metabolism in stromal and cancer cells within the TME by transferring bioactive substances including proteins, mRNAs and miRNAs (microRNAs). sEVs can be delivered from the primary TME to PMN, affecting PMN formation in stroma rewriting, angiogenesis, immunological suppression and matrix cell metabolism by mediating metabolic reprogramming. Herein, we review the functions of sEVs in cancer cells and the TME, how sEVs facilitate PMN establishment to trigger metastasis via metabolic reprogramming, and the prospective applications of sEVs in tumor diagnosis and treatment. Video Abstract.
Collapse
Affiliation(s)
- Chuwen Jiang
- Clinical Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu Province, China
| | - Zhengting Jiang
- Clinical Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu Province, China
| | - Gengyu Sha
- Clinical Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu Province, China
| | - Daorong Wang
- Department of General Surgery, Institute of General Surgery, Clinical Medical College, Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, 225001, China
| | - Dong Tang
- Department of General Surgery, Institute of General Surgery, Clinical Medical College, Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, 225001, China.
| |
Collapse
|
7
|
Hashemi M, Hajimazdarany S, Mohan CD, Mohammadi M, Rezaei S, Olyaee Y, Goldoost Y, Ghorbani A, Mirmazloomi SR, Gholinia N, Kakavand A, Salimimoghadam S, Ertas YN, Rangappa KS, Taheriazam A, Entezari M. Long non-coding RNA/epithelial-mesenchymal transition axis in human cancers: Tumorigenesis, chemoresistance, and radioresistance. Pharmacol Res 2022; 186:106535. [DOI: 10.1016/j.phrs.2022.106535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/22/2022] [Accepted: 10/30/2022] [Indexed: 11/07/2022]
|
8
|
Shao X, Hua S, Feng T, Ocansey DKW, Yin L. Hypoxia-Regulated Tumor-Derived Exosomes and Tumor Progression: A Focus on Immune Evasion. Int J Mol Sci 2022; 23:ijms231911789. [PMID: 36233088 PMCID: PMC9570495 DOI: 10.3390/ijms231911789] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/24/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
Tumor cells express a high quantity of exosomes packaged with unique cargos under hypoxia, an important characteristic feature in solid tumors. These hypoxic tumor-derived exosomes are, crucially, involved in the interaction of cancer cells with their microenvironment, facilitating not only immune evasion, but increased cell growth and survival, enhanced angiogenesis, epithelial–mesenchymal transition (EMT), therapeutic resistance, autophagy, pre-metastasis, and metastasis. This paper explores the tumor microenvironment (TME) remodeling effects of hypoxic tumor-derived exosome towards facilitating the tumor progression process, particularly, the modulatory role of these factors on tumor cell immune evasion through suppression of immune cells, expression of surface recognition molecules, and secretion of antitumor soluble factor. Tumor-expressed exosomes educate immune effector cells, including macrophages, monocytes, T cells, natural killer (NK) cells, dendritic cells (DCs), γδ T lymphocytes, regulatory T cells (Tregs), myeloid-derived suppressor cells (MDSCs), mast cells, and B cells, within the hypoxic TME through the release of factors that regulate their recruitment, phenotype, and function. Thus, both hypoxia and tumor-derived exosomes modulate immune cells, growth factors, cytokines, receptor molecules, and other soluble factors, which, together, collaborate to form the immune-suppressive milieu of the tumor environment. Exploring the contribution of exosomal cargos, such as RNAs and proteins, as indispensable players in the cross-talk within the hypoxic tumor microenvironmental provides a potential target for antitumor immunity or subverting immune evasion and enhancing tumor therapies.
Collapse
|
9
|
Talaat IM, Kim B. A brief glimpse of a tangled web in a small world: Tumor microenvironment. Front Med (Lausanne) 2022; 9:1002715. [PMID: 36045917 PMCID: PMC9421133 DOI: 10.3389/fmed.2022.1002715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 12/20/2022] Open
Abstract
A tumor is a result of stepwise accumulation of genetic and epigenetic alterations. This notion has deepened the understanding of cancer biology and has introduced the era of targeted therapies. On the other hand, there have been a series of attempts of using the immune system to treat tumors, dating back to ancient history, to sporadic reports of inflamed tumors undergoing spontaneous regression. This was succeeded by modern immunotherapies and immune checkpoint inhibitors. The recent breakthrough has broadened the sight to other players within tumor tissue. Tumor microenvironment is a niche or a system orchestrating reciprocal and dynamic interaction of various types of cells including tumor cells and non-cellular components. The output of this complex communication dictates the functions of the constituent elements present within it. More complicated factors are biochemical and biophysical settings unique to TME. This mini review provides a brief guide on a range of factors to consider in the TME research.
Collapse
Affiliation(s)
- Iman M. Talaat
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Byoungkwon Kim
- Department of Pathology, H.H. Sheikh Khalifa Specialty Hospital, Ras Al Khaimah, United Arab Emirates
| |
Collapse
|
10
|
Effects of Exosomal Viral Components on the Tumor Microenvironment. Cancers (Basel) 2022; 14:cancers14143552. [PMID: 35884611 PMCID: PMC9317196 DOI: 10.3390/cancers14143552] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/13/2022] [Accepted: 07/19/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Oncogenic viral infection may lead to cancers, such as nasopharyngeal carcinoma, hepatocellular carcinoma, and cervical cancer. In addition to the tumor cells themselves, the tumor microenvironment also plays a decisive role in tumor evolution. Oncogenic viruses can affect the tumor microenvironment via exosomes influencing the occurrence and development of tumors by encapsulating and transporting viral components. This review focuses on the effects of virus-infected cancer exosomes on tumor microenvironment and tumor progression. Abstract Exosomes are extracellular membrane vesicles with a diameter of 30–100 nm, produced by different eukaryotic cells that contain multitudinous lipids, nucleic acids, and proteins. They transfer membrane components and nucleic acids between cells, thereby performing an information exchange between cells. Many studies have shown that a variety of tumor-associated viruses can exert their biological functions through exosomes. The tumor microenvironment (TME) is very important in the occurrence, development, and chemoresistance of tumors. It is composed of tumor cells, fibroblasts, endothelial cells, immune cells, stromal cells, and acellular components, such as exosomes and cytokines. This review focuses on the effects of virus-related components secreted by tumor cells over the TME in several virus-associated cancers.
Collapse
|
11
|
Mitchell MI, Ma J, Carter CL, Loudig O. Circulating Exosome Cargoes Contain Functionally Diverse Cancer Biomarkers: From Biogenesis and Function to Purification and Potential Translational Utility. Cancers (Basel) 2022; 14:3350. [PMID: 35884411 PMCID: PMC9318395 DOI: 10.3390/cancers14143350] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/01/2022] [Accepted: 07/07/2022] [Indexed: 12/12/2022] Open
Abstract
Although diagnostic and therapeutic treatments of cancer have tremendously improved over the past two decades, the indolent nature of its symptoms has made early detection challenging. Thus, inter-disciplinary (genomic, transcriptomic, proteomic, and lipidomic) research efforts have been focused on the non-invasive identification of unique "silver bullet" cancer biomarkers for the design of ultra-sensitive molecular diagnostic assays. Circulating tumor biomarkers, such as CTCs and ctDNAs, which are released by tumors in the circulation, have already demonstrated their clinical utility for the non-invasive detection of certain solid tumors. Considering that exosomes are actively produced by all cells, including tumor cells, and can be found in the circulation, they have been extensively assessed for their potential as a source of circulating cell-specific biomarkers. Exosomes are particularly appealing because they represent a stable and encapsulated reservoir of active biological compounds that may be useful for the non-invasive detection of cancer. T biogenesis of these extracellular vesicles is profoundly altered during carcinogenesis, but because they harbor unique or uniquely combined surface proteins, cancer biomarker studies have been focused on their purification from biofluids, for the analysis of their RNA, DNA, protein, and lipid cargoes. In this review, we evaluate the biogenesis of normal and cancer exosomes, provide extensive information on the state of the art, the current purification methods, and the technologies employed for genomic, transcriptomic, proteomic, and lipidomic evaluation of their cargoes. Our thorough examination of the literature highlights the current limitations and promising future of exosomes as a liquid biopsy for the identification of circulating tumor biomarkers.
Collapse
Affiliation(s)
- Megan I Mitchell
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Junfeng Ma
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Claire L Carter
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Olivier Loudig
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| |
Collapse
|
12
|
Chen W, Zhang F, Xu H, Hou X, Tang D. Prospective Analysis of Proteins Carried in Extracellular Vesicles with Clinical Outcome in Hepatocellular Carcinoma. Curr Genomics 2022; 23:109-117. [PMID: 36778976 PMCID: PMC9878836 DOI: 10.2174/1389202923666220304125458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/26/2021] [Accepted: 01/30/2022] [Indexed: 11/22/2022] Open
Abstract
Background: Extracellular vehicles (EVs) contain different proteins that relay information between tumor cells, thus promoting tumorigenesis. Therefore, EVs can serve as an ideal marker for tumor pathogenesis and clinical application. Objective: Here, we characterised EV-specific proteins in hepatocellular carcinoma (HCC) samples and established their potential protein-protein interaction (PPI) networks. Materials and Methods: We used multi-dimensional bioinformatics methods to mine a network module to use as a prognostic signature and validated the model's prediction using additional datasets. The relationship between the prognostic model and tumor immune cells or the tumor microenvironment status was also examined. Results: 1134 proteins from 316 HCC samples were mapped to the exoRBase database. HCC-specific EVs specifically expressed a total of 437 proteins. The PPI network revealed 321 proteins and 938 interaction pathways, which were mined to identify a three network module (3NM) with significant prognostic prediction ability. Validation of the 3NM in two more datasets demonstrated that the model outperformed the other signatures in prognostic prediction ability. Functional analysis revealed that the network proteins were involved in various tumor-related pathways. Additionally, these findings demonstrated a favorable association between the 3NM signature and macrophages, dendritic, and mast cells. Besides, the 3NM revealed the tumor microenvironment status, including hypoxia and inflammation. Conclusion: These findings demonstrate that the 3NM signature reliably predicts HCC pathogenesis. Therefore, the model may be used as an effective prognostic biomarker in managing patients with HCC.
Collapse
Affiliation(s)
- Wenbiao Chen
- Central Molecular Laboratory, People's Hospital of Longhua, The Affiliated Hospital of Southern Medical University, Shenzhen, 518109, China; ,Department of Respiratory Medicine, People's Hospital of Longhua, The Affiliated Hospital of Southern Medical University, Shenzhen, 518109, China; ,Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen, 518020, China;,These authors contributed equally to this work
| | - Feng Zhang
- Intensive Care Unit, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China,These authors contributed equally to this work
| | - Huixuan Xu
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen, 518020, China
| | - Xianliang Hou
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen, 518020, China
| | - Donge Tang
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen, 518020, China;,Address correspondence to this author at the Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen, 518020, China; Tel: +86 0755-25533018; Fax: +86 0755-25533018; E-mail:
| |
Collapse
|
13
|
Characteristics of Extracellular Vesicles and Preclinical Testing Considerations Prior to Clinical Applications. Biomedicines 2022; 10:biomedicines10040869. [PMID: 35453619 PMCID: PMC9030546 DOI: 10.3390/biomedicines10040869] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 02/04/2023] Open
Abstract
Cell therapy products have significant limitations, such as storage instability, difficulties with transportation, and toxicity issues such as tumorigenicity and immunogenicity. Extracellular vesicles (EVs) secreted from cells show potential for therapeutic agent development. EVs have not been widely examined as investigational drugs, and non-clinical studies for the clinical approval of EV therapeutic agents are challenging. EVs contain various materials, such as DNA, cellular RNA, cytokines, chemokines, and microRNAs, but do not proliferate or divide like cells, thus avoiding safety concerns related to tumorigenicity. However, the constituents of EVs may induce the proliferation of normal cells; therefore, the suitability of vesicles should be verified through non-clinical safety evaluations. In this review, the findings of non-clinical studies on EVs are summarized. We describe non-clinical toxicity studies of EVs, which should be useful for researchers who aim to develop these vesicles into therapeutic agents. A new method for evaluating the immunotoxicity and tumorigenicity of EVs should also be developed.
Collapse
|
14
|
Luo L, Ma Y, Zheng Y, Su J, Huang G. Application Progress of Organoids in Colorectal Cancer. Front Cell Dev Biol 2022; 10:815067. [PMID: 35273961 PMCID: PMC8902504 DOI: 10.3389/fcell.2022.815067] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/31/2022] [Indexed: 12/24/2022] Open
Abstract
Currently, colorectal cancer is still the third leading cause of cancer-related mortality, and the incidence is rising. It is a long time since the researchers used cancer cell lines and animals as the study subject. However, these models possess various limitations to reflect the cancer progression in the human body. Organoids have more clinical significance than cell lines, and they also bridge the gap between animal models and humans. Patient-derived organoids are three-dimensional cultures that simulate the tumor characteristics in vivo and recapitulate tumor cell heterogeneity. Therefore, the emergence of colorectal cancer organoids provides an unprecedented opportunity for colorectal cancer research. It retains the molecular and cellular composition of the original tumor and has a high degree of homology and complexity with patient tissues. Patient-derived colorectal cancer organoids, as personalized tumor organoids, can more accurately simulate colorectal cancer patients’ occurrence, development, metastasis, and predict drug response in colorectal cancer patients. Colorectal cancer organoids show great potential for application, especially preclinical drug screening and prediction of patient response to selected treatment options. Here, we reviewed the application of colorectal cancer organoids in disease model construction, basic biological research, organoid biobank construction, drug screening and personalized medicine, drug development, drug toxicity and safety, and regenerative medicine. In addition, we also displayed the current limitations and challenges of organoids and discussed the future development direction of organoids in combination with other technologies. Finally, we summarized and analyzed the current clinical trial research of organoids, especially the clinical trials of colorectal cancer organoids. We hoped to lay a solid foundation for organoids used in colorectal cancer research.
Collapse
Affiliation(s)
- Lianxiang Luo
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China.,The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
| | - Yucui Ma
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
| | - Yilin Zheng
- Clinical Research Center, Shantou Central Hospital, Shantou, China
| | - Jiating Su
- The First Clinical College, Guangdong Medical University, Zhanjiang, China
| | - Guoxin Huang
- Clinical Research Center, Shantou Central Hospital, Shantou, China
| |
Collapse
|
15
|
Ma F, Vayalil J, Lee G, Wang Y, Peng G. Emerging role of tumor-derived extracellular vesicles in T cell suppression and dysfunction in the tumor microenvironment. J Immunother Cancer 2021; 9:jitc-2021-003217. [PMID: 34642246 PMCID: PMC8513270 DOI: 10.1136/jitc-2021-003217] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2021] [Indexed: 02/07/2023] Open
Abstract
Immunotherapeutic drugs including immune checkpoint blockade antibodies have been approved to treat patients in many types of cancers. However, some patients have little or no reaction to the immunotherapy drugs. The mechanisms underlying resistance to tumor immunotherapy are complicated and involve multiple aspects, including tumor-intrinsic factors, formation of immunosuppressive microenvironment, and alteration of tumor and stromal cell metabolism in the tumor microenvironment. T cell is critical and participates in every aspect of antitumor response, and T cell dysfunction is a severe barrier for effective immunotherapy for cancer. Emerging evidence indicates that extracellular vesicles (EVs) secreted by tumor is one of the major factors that can induce T cell dysfunction. Tumor-derived EVs are widely distributed in serum, tissues, and the tumor microenvironment of patients with cancer, which serve as important communication vehicles for cancer cells. In addition, tumor-derived EVs can carry a variety of immune suppressive signals driving T cell dysfunction for tumor immunity. In this review, we explore the potential mechanisms employed by tumor-derived EVs to control T cell development and effector function within the tumor microenvironment. Especially, we focus on current understanding of how tumor-derived EVs molecularly and metabolically reprogram T cell fates and functions for tumor immunity. In addition, we discuss potential translations of targeting tumor-derived EVs to reconstitute suppressive tumor microenvironment or to develop antigen-based vaccines and drug delivery systems for cancer immunotherapy.
Collapse
Affiliation(s)
- Feiya Ma
- Biology, Saint Louis University, Saint Louis, Missouri, USA
| | - Jensen Vayalil
- Biology, Saint Louis University, Saint Louis, Missouri, USA
| | - Grace Lee
- Biology, Saint Louis University, Saint Louis, Missouri, USA
| | - Yuqi Wang
- Biology, Saint Louis University, Saint Louis, Missouri, USA
| | - Guangyong Peng
- Internal Medicine, Saint Louis University, Saint Louis, Missouri, USA
| |
Collapse
|
16
|
Xiao Y, Zhang L, Zhu J, Zhang Y, Yang R, Yan J, Huang R, Zheng C, Xiao W, Huang C, Wang Y. Predicting the herbal medicine triggering innate anti-tumor immunity from a system pharmacology perspective. Biomed Pharmacother 2021; 143:112105. [PMID: 34560533 DOI: 10.1016/j.biopha.2021.112105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 08/17/2021] [Accepted: 08/23/2021] [Indexed: 01/22/2023] Open
Abstract
Although the main focus of immuno-oncology has been manipulating the adaptive immune system, tumor associated macrophages (TAMs) are the main infiltrating component in the tumor microenvironment (TME) and play a critical role in cancer progression. TAMs are mainly divided into two different subtypes: macrophages with antitumor or killing activity are called M1 while tumor-promoting or healing macrophages are named M2. Therefore, controlling the polarization of TAMs is an important strategy for cancer treatment, but there is no particularly effective means to regulate the polarization process. Here, combined systems pharmacology targets and pathways analysis strategy, we uncovered Scutellariae Radix (SR) has the potential to regulate TAMs polarization to inhibit the growth of non-small cell lung cancer (NSCLC). Firstly, systems pharmacology approach was used to reveal the active components of SR targeting macrophages in TME through compound target prediction and target-microenvironment phenotypic association analysis. Secondly, in vitro experiment verified that WBB (wogonin, baicalein and baicalin), major active ingredients of SR are significantly related to macrophages and survival, initiated macrophages programming to M1-like macrophages to promoted the apoptosis of tumor cells. Finally, we evidenced that WBB effectively inhibited tumor growth in LLC (Lewis lung carcinoma) tumor-bearing mice and increased the infiltration of M1-type macrophages in TME. Overall, the systems pharmacology strategy offers a paradigm to understand the mechanism of polypharmacology of natural products targeting TME.
Collapse
Affiliation(s)
- Yue Xiao
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China.
| | - Lulu Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China.
| | - Jinglin Zhu
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China.
| | - Yuru Zhang
- Pharmacology Department, School of Pharmacy, Shihezi University, Shihezi, China.
| | - Ruijie Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China.
| | - Jiangna Yan
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China.
| | - Ruifei Huang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China.
| | - Chunli Zheng
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China.
| | - Wei Xiao
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Parmaceutical Co. Ltd., Lianyungang, China.
| | - Chao Huang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China; Lab of Systems Pharmacology, Center of Bioinformatics, College of Life Science, Northwest A&F University, Yangling, China.
| | - Yonghua Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China; Lab of Systems Pharmacology, Center of Bioinformatics, College of Life Science, Northwest A&F University, Yangling, China.
| |
Collapse
|
17
|
Prieto-Vila M, Yoshioka Y, Ochiya T. Biological Functions Driven by mRNAs Carried by Extracellular Vesicles in Cancer. Front Cell Dev Biol 2021; 9:620498. [PMID: 34527665 PMCID: PMC8435577 DOI: 10.3389/fcell.2021.620498] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 07/30/2021] [Indexed: 12/15/2022] Open
Abstract
Extracellular vesicles (EVs), including exosomes and microvesicles, are extracellular nanovesicles released by most cells. EVs play essential roles in intercellular communication via the transport of a large variety of lipids, proteins, and nucleic acids to recipient cells. Nucleic acids are the most commonly found molecules inside EVs, and due to their small size, microRNAs and other small RNAs are the most abundant nucleic acids. However, longer molecules, such as messenger RNAs (mRNAs), have also been found. mRNAs encapsulated within EVs have been shown to be transferred to recipient cells and translated into proteins, altering the behavior of the cells. Secretion of EVs is maintained not only through multiple normal physiological conditions but also during aberrant pathological conditions, including cancer. Recently, the mRNAs carried by EVs in cancer have attracted great interest due to their broad roles in tumor progression and microenvironmental remodeling. This review focuses on the biological functions driven by mRNAs carried in EVs in cancer, which include supporting tumor progression by activating cancer cell growth, migration, and invasion; inducing microenvironmental remodeling via hypoxia, angiogenesis, and immunosuppression; and promoting modulation of the microenvironment at distant sites for the generation of a premetastatic niche, collectively inducing metastasis. Furthermore, we describe the potential use of mRNAs carried by EVs as a noninvasive diagnostic tool and novel therapeutic approach.
Collapse
Affiliation(s)
| | | | - Takahiro Ochiya
- Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
18
|
Extracellular Vesicles under Oxidative Stress Conditions: Biological Properties and Physiological Roles. Cells 2021; 10:cells10071763. [PMID: 34359933 PMCID: PMC8306565 DOI: 10.3390/cells10071763] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/04/2021] [Accepted: 07/09/2021] [Indexed: 12/14/2022] Open
Abstract
Under physio-pathological conditions, cells release membrane-surrounded structures named Extracellular Vesicles (EVs), which convey their molecular cargo to neighboring or distant cells influencing their metabolism. Besides their involvement in the intercellular communication, EVs might represent a tool used by cells to eliminate unnecessary/toxic material. Here, we revised the literature exploring the link between EVs and redox biology. The first proof of this link derives from evidence demonstrating that EVs from healthy cells protect target cells from oxidative insults through the transfer of antioxidants. Oxidative stress conditions influence the release and the molecular cargo of EVs that, in turn, modulate the redox status of target cells. Oxidative stress-related EVs exert both beneficial or harmful effects, as they can carry antioxidants or ROS-generating enzymes and oxidized molecules. As mediators of cell-to-cell communication, EVs are also implicated in the pathophysiology of oxidative stress-related diseases. The review found evidence that numerous studies speculated on the role of EVs in redox signaling and oxidative stress-related pathologies, but few of them unraveled molecular mechanisms behind this complex link. Thus, the purpose of this review is to report and discuss this evidence, highlighting that the analysis of the molecular content of oxidative stress-released EVs (reminiscent of the redox status of originating cells), is a starting point for the use of EVs as diagnostic and therapeutic tools in oxidative stress-related diseases.
Collapse
|
19
|
Interplay between Hypoxia and Extracellular Vesicles in Cancer and Inflammation. BIOLOGY 2021; 10:biology10070606. [PMID: 34209290 PMCID: PMC8301089 DOI: 10.3390/biology10070606] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/24/2021] [Accepted: 06/24/2021] [Indexed: 12/13/2022]
Abstract
Simple Summary Mounting evidence suggests a role for extracellular vesicles in cell-to-cell communication, in both physiological and pathological conditions. Moreover, the molecular content of vesicles can be exploited for diagnostic and therapeutic purposes. Inflamed tissues and tumors are often characterized by hypoxic areas, where oxygen levels drop dramatically. Several studies demonstrated that hypoxic stress affects the release of vesicles and their content. This review is intended to provide an exhaustive overview on the relationship between hypoxia and vesicles in inflammatory diseases and cancer. Abstract Hypoxia is a severe stress condition often observed in cancer and chronically inflamed cells and tissues. Extracellular vesicles play pivotal roles in these pathological processes and carry biomolecules that can be detected in many biofluids and may be exploited for diagnostic purposes. Several studies report the effects of hypoxia on extracellular vesicles’ release, molecular content, and biological functions in disease. This review summarizes the most recent findings in this field, highlighting the areas that warrant further investigation.
Collapse
|
20
|
Zhang X, Zhu M, Hong Z, Chen C. Co-culturing polarized M2 Thp-1-derived macrophages enhance stemness of lung adenocarcinoma A549 cells. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:709. [PMID: 33987407 PMCID: PMC8106048 DOI: 10.21037/atm-21-1256] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Background The tumor microenvironment (TME) is highly associated with cancer stem cells, and affects tumor initiation, progression, and metastasis. This study aimed to explore the underlying molecular mechanism of induction of A549 cancer cell stemness by THP-1-derived macrophages. Method The Hedgehog inhibitor (Vismodegib), Notch inhibitor Gamma Secretase Inhibitor (GSI), and Signal Transducer and Activator of Transcription 3 (STAT3) inhibitor Cucurbitacin I (JSI-124) were added separately into the co-culture system of A549 cancer cell with THP-1-derived macrophages. Cell Counting Kit-8 (CCK-8) assay and the Cell-IQ continuous surveillance system were used to examine the cell growth and morphological changes of A549 cells. The messenger ribonucleic acid (mRNA) and protein expression levels of stem cell markers were respectively analyzed by quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting, and the activity of Acetaldehyde dehydrogenase (ALDH) enzyme was assessed by flow cytometry analysis. Enzyme-linked immunosorbent assay (ELISA) and qRT-PCR assays were performed to evaluate the activation and differentiation of macrophages. Results Results showed that the proliferation and stemness of A549 cells were significantly enhanced by co-culturing with THP-1-derived macrophages. The expression levels of Transforming growth factor-β (TGF-β) and Interleukin-6 (IL-6) in macrophages were notably increased after co-culturing with A549 cells. Meanwhile, co-culturing with A549 cells induced the polarization of macrophages towards the M2 phenotype. Moreover, the inhibitors could reduce the proliferation and stemness of the co-culture system, and decrease the expression of TGF-β and IL-6. Conclusions These results suggested that co-culturing A549 cells with THP-1-derived macrophages could induce the stemness of A549 cells via multiple pro-tumorigenic pathways. Thus, inhibition of the interaction between macrophages and lung cancer stem cells may be a viable target for lung cancer treatment in the future.
Collapse
Affiliation(s)
- Xiaocheng Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Mingyang Zhu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zipu Hong
- Department of Traumatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chengshui Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
21
|
Ghaemimanesh F, Mehravar M, Milani S, Poursani EM, Saliminejad K. The multifaceted role of sortilin/neurotensin receptor 3 in human cancer development. J Cell Physiol 2021; 236:6271-6281. [PMID: 33634506 DOI: 10.1002/jcp.30344] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/20/2021] [Accepted: 02/12/2021] [Indexed: 12/16/2022]
Abstract
Sortilin (also known as neurotensin receptor 3) is a multitasking protein implicated in numerous pathophysiological processes, including cancer development, cardiovascular impairment, Alzheimer-type dementia, and depression. Although the definitive role of sortilin in human solid and hematological malignancies has been evidenced, few articles reviewed the task. The aim of the current review is to unravel the mechanisms by which sortilin controls oncogenicity and cancer progression; and also to summarize and discuss the original data obtained from international research laboratories on this topic. Questions on how sortilin is involving in the impairment of cell junctions, in exosomes composition and release, as well as in the regulation of epidermal growth factor receptor trafficking are also responded. In addition, we provide a special focus on the regulatory role of sortilin in signal transduction by either neurotrophins or neurotensin in normal and malignant cells. The relevance of sortilin with normal and cancer stem cells is also discussed. The last section provides a general overview of sortilin applications as a diagnostic and prognostic biomarker in the context of cancer detection. Finally, we comment on the future research aspects in which the field of cancer diagnosis, prognosis, and therapy might be developed.
Collapse
Affiliation(s)
- Fatemeh Ghaemimanesh
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Majid Mehravar
- Department of Anatomy and Developmental Biology, Development and Stem Cells Program, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Saeideh Milani
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Ensieh M Poursani
- Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Kioomars Saliminejad
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| |
Collapse
|
22
|
Matejovič A, Wakao S, Kitada M, Kushida Y, Dezawa M. Comparison of separation methods for tissue-derived extracellular vesicles in the liver, heart, and skeletal muscle. FEBS Open Bio 2021; 11:482-493. [PMID: 33410274 PMCID: PMC7876503 DOI: 10.1002/2211-5463.13075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 12/15/2020] [Accepted: 12/20/2020] [Indexed: 12/31/2022] Open
Abstract
Extracellular vesicles (EVs), which are nanosized vesicles released by cells as intracellular messengers, have high potential as biomarkers. EVs are usually collected from in vitro sources, such as cell culture media or biofluids, and not from tissues. Techniques enabling direct collection of EVs from tissues will extend the applications of EVs. We compared methods for separating EVs from solid liver, heart, and skeletal muscle. Compared with a precipitation method, an ultracentrifugation-based method for collection of EVs from solid tissues yielded a higher proportion of EVs positive for EV-related markers, with minimum levels of intracellular organelle-related markers. Some tissue-specific modifications, such as a sucrose cushion step, may improve the yield and purity of the collected EVs.
Collapse
Affiliation(s)
- Adam Matejovič
- Department of Stem Cell Biology and HistologyTohoku University Graduate School of MedicineSendaiJapan
- Department of VirologyTohoku University Graduate School of MedicineSendaiJapan
| | - Shohei Wakao
- Department of Stem Cell Biology and HistologyTohoku University Graduate School of MedicineSendaiJapan
| | - Masaaki Kitada
- Department of Stem Cell Biology and HistologyTohoku University Graduate School of MedicineSendaiJapan
- Department of AnatomyKansai Medical UniversityOsakaJapan
| | - Yoshihiro Kushida
- Department of Stem Cell Biology and HistologyTohoku University Graduate School of MedicineSendaiJapan
| | - Mari Dezawa
- Department of Stem Cell Biology and HistologyTohoku University Graduate School of MedicineSendaiJapan
| |
Collapse
|
23
|
Wang S, Dong Y, Gong A, Kong H, Gao J, Hao X, Liu Y, Wang Z, Fan Y, Liu C, Xu W. Exosomal circRNAs as novel cancer biomarkers: Challenges and opportunities. Int J Biol Sci 2021; 17:562-573. [PMID: 33613113 PMCID: PMC7893596 DOI: 10.7150/ijbs.48782] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 12/19/2020] [Indexed: 12/14/2022] Open
Abstract
Identifying high specificity and sensitivity biomarkers has always been the focus of research in the field of non-invasive cancer diagnosis. Exosomes are extracellular vesicles with a lipid bilayer membrane that can be released by all types of cells, which contain a variety of proteins, lipids, and a variety of non-coding RNAs. Increasing research has shown that the lipid bilayer can effectively protect the nucleic acid in exosomes. In cancers, tumor cell-derived exosomal circRNAs can act on target cells or organs through the transport of exosomes, and then participate in the regulation of tumor development and metastasis. Since exosomes exist in various body fluids and circRNAs in exosomes exhibit high stability, exosomal circRNAs have the potential as biomarkers for early and minimally invasive cancer diagnosis and prognosis judgment. In this review, we summarized circRNAs and their biological roles in cancers, with the emerging value biomarkers in cancer diagnosis, disease judgment, and prognosis observation. In addition, we briefly compared the advantages of exosomal circRNAs as biomarkers and the current obstacles in the exosome isolation technology, shed light to the future development of this technology.
Collapse
Affiliation(s)
- Shuai Wang
- Department of Inspection, The medical faculty of Qingdao University, Qingdao 266003, China
| | - Yanhan Dong
- Institute of Translational Medicine, Qingdao University, Qingdao, 266003, China
| | - Anjing Gong
- Department of Neurosurgery, The affiliated hospital of Qingdao University, Qingdao 266003, China
| | - Huimin Kong
- School Hospital, Shandong University of Science and Technology, Qingdao 266003, China
| | - Jinning Gao
- Institute of Translational Medicine, Qingdao University, Qingdao, 266003, China
| | - Xiaodan Hao
- Institute of Translational Medicine, Qingdao University, Qingdao, 266003, China
| | - Yongmei Liu
- Department of Inspection, The medical faculty of Qingdao University, Qingdao 266003, China
| | - Zibo Wang
- Department of Inspection, The medical faculty of Qingdao University, Qingdao 266003, China
| | - Yuqiao Fan
- Department of Inspection, The medical faculty of Qingdao University, Qingdao 266003, China
| | - Chengyu Liu
- Department of Inspection, The medical faculty of Qingdao University, Qingdao 266003, China
| | - Wenhua Xu
- Department of Inspection, The medical faculty of Qingdao University, Qingdao 266003, China
| |
Collapse
|
24
|
Hu Z, Chen H, Long Y, Li P, Gu Y. The main sources of circulating cell-free DNA: Apoptosis, necrosis and active secretion. Crit Rev Oncol Hematol 2021; 157:103166. [DOI: 10.1016/j.critrevonc.2020.103166] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/18/2020] [Accepted: 11/05/2020] [Indexed: 01/05/2023] Open
|
25
|
Li X, Li X, Li D, Zhao M, Wu H, Shen B, Liu P, Ding S. Electrochemical biosensor for ultrasensitive exosomal miRNA analysis by cascade primer exchange reaction and MOF@Pt@MOF nanozyme. Biosens Bioelectron 2020; 168:112554. [DOI: 10.1016/j.bios.2020.112554] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/19/2020] [Accepted: 08/23/2020] [Indexed: 02/07/2023]
|
26
|
Kim K, Sohn YJ, Lee R, Yoo HJ, Kang JY, Choi N, Na D, Yeon JH. Cancer-Associated Fibroblasts Differentiated by Exosomes Isolated from Cancer Cells Promote Cancer Cell Invasion. Int J Mol Sci 2020; 21:ijms21218153. [PMID: 33142759 PMCID: PMC7662577 DOI: 10.3390/ijms21218153] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/20/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
Cancer-associated fibroblasts (CAFs) in the cancer microenvironment play an essential role in metastasis. Differentiation of endothelial cells into CAFs is induced by cancer cell-derived exosomes secreted from cancer cells that transfer molecular signals to surrounding cells. Differentiated CAFs facilitate migration of cancer cells to different regions through promoting extracellular matrix (ECM) modifications. However, in vitro models in which endothelial cells exposed to cancer cell-derived exosomes secreted from various cancer cell types differentiate into CAFs or a microenvironmentally controlled model for investigating cancer cell invasion by CAFs have not yet been studied. In this study, we propose a three-dimensional in vitro cancer cell invasion model for real-time monitoring of the process of forming a cancer invasion site through CAFs induced by exosomes isolated from three types of cancer cell lines. The invasiveness of cancer cells with CAFs induced by cancer cell-derived exosomes (eCAFs) was significantly higher than that of CAFs induced by cancer cells (cCAFs) through physiological and genetic manner. In addition, different genetic tendencies of the invasion process were observed in the process of invading cancer cells according to CAFs. Our 3D microfluidic platform helps to identify specific interactions among multiple factors within the cancer microenvironment and provides a model for cancer drug development.
Collapse
Affiliation(s)
- Kimin Kim
- Department of Integrative Biosciences, University of Brain Education (UBE), Cheonan 31228, Korea; (K.K.); (Y.J.S.); (R.L.); (H.J.Y.)
| | - Yeh Joo Sohn
- Department of Integrative Biosciences, University of Brain Education (UBE), Cheonan 31228, Korea; (K.K.); (Y.J.S.); (R.L.); (H.J.Y.)
| | - Ruri Lee
- Department of Integrative Biosciences, University of Brain Education (UBE), Cheonan 31228, Korea; (K.K.); (Y.J.S.); (R.L.); (H.J.Y.)
| | - Hye Ju Yoo
- Department of Integrative Biosciences, University of Brain Education (UBE), Cheonan 31228, Korea; (K.K.); (Y.J.S.); (R.L.); (H.J.Y.)
| | - Ji Yoon Kang
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (J.Y.K.); (N.C.)
- Division of Bio-Medical Science & Technology (Biomedical Engineering), KIST School, Korea University of Science and Technology (UST), Seoul 02792, Korea
| | - Nakwon Choi
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (J.Y.K.); (N.C.)
- Division of Bio-Medical Science & Technology (Biomedical Engineering), KIST School, Korea University of Science and Technology (UST), Seoul 02792, Korea
| | - Dokyun Na
- Department of Biomedical Engineering, Chung-Ang University, Seoul 06974, Korea
- Correspondence: (D.N.); (J.H.Y.); Tel.: +82-2-820-5690 (D.N.); +82-41-529-2621 (J.H.Y.); Fax: +82-2-814-2651 (D.N.); +82-41-529-2674 (J.H.Y.)
| | - Ju Hun Yeon
- Department of Integrative Biosciences, University of Brain Education (UBE), Cheonan 31228, Korea; (K.K.); (Y.J.S.); (R.L.); (H.J.Y.)
- Correspondence: (D.N.); (J.H.Y.); Tel.: +82-2-820-5690 (D.N.); +82-41-529-2621 (J.H.Y.); Fax: +82-2-814-2651 (D.N.); +82-41-529-2674 (J.H.Y.)
| |
Collapse
|
27
|
Guo J, Duan Z, Zhang C, Wang W, He H, Liu Y, Wu P, Wang S, Song M, Chen H, Chen C, Si Q, Xiang R, Luo Y. Mouse 4T1 Breast Cancer Cell-Derived Exosomes Induce Proinflammatory Cytokine Production in Macrophages via miR-183. THE JOURNAL OF IMMUNOLOGY 2020; 205:2916-2925. [PMID: 32989094 DOI: 10.4049/jimmunol.1901104] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 09/04/2020] [Indexed: 12/11/2022]
Abstract
Tumor-associated macrophages (TAMs) play a critical role in the tumor inflammatory microenvironment and facilitate tumor growth and metastasis. Most types of tumors aberrantly express microRNAs (miRNAs), which can be transferred between cells by exosomes and can regulate gene expression in recipient cells, but it remains unclear whether tumor-derived miRNAs are transferred by exosomes and regulate the TAM phenotype. We report that mouse 4T1 breast cancer cell-derived exosomes enhanced TAM expression of IL-1β, IL-6, and TNF-α and that inhibition of 4T1-cell exosome secretion through short hairpin RNA-mediated Rab27a/b depletion repressed tumor growth and metastasis and markedly downregulated IL-1β, IL-6, and TNF-α in a 4T1 breast tumor model. Furthermore, miRNA expression profiling revealed that three miRNAs (miR-100-5p, miR-183-5p, and miR-125b-1-3p) were considerably more abundant in 4T1 cell exosomes than in mouse bone marrow-derived macrophages, indicating potential exosome-mediated transfer of the miRNAs, and, notably, miR-183-5p was found to be transferred from 4T1 cells to macrophages through exosomes. Moreover, PPP2CA was verified as an miR-183-5p target gene, and PPP2CA downregulation enhanced NF-κB signaling and promoted macrophage expression of IL-1β, IL-6, and TNF-α. Lastly, when miR-183-5p was downregulated in exosomes through miR-183-5p sponge expression in 4T1 cells, these 4T1-derived exosomes triggered diminished p65 phosphorylation and IL-1β, IL-6, and TNF-α secretion, and the miRNA downregulation also led to repression of tumor growth and metastasis in the 4T1 breast tumor model in vivo. Thus, miR-183-5p expressed in tumor cells was transferred to macrophages by exosomes and promoted the secretion of proinflammatory cytokines by inhibiting PPP2CA expression, which contributed to tumor progression in a breast cancer model.
Collapse
Affiliation(s)
- Jian Guo
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing 100005, China.,Collaborative Innovation Center for Biotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing 100005, China; and
| | - Zhaojun Duan
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing 100005, China.,Collaborative Innovation Center for Biotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing 100005, China; and
| | - Chen Zhang
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing 100005, China.,Collaborative Innovation Center for Biotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing 100005, China; and
| | - Wei Wang
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing 100005, China.,Collaborative Innovation Center for Biotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing 100005, China; and
| | - Huiwen He
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing 100005, China.,Collaborative Innovation Center for Biotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing 100005, China; and
| | - Yan Liu
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing 100005, China.,Collaborative Innovation Center for Biotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing 100005, China; and
| | - Peng Wu
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing 100005, China.,Collaborative Innovation Center for Biotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing 100005, China; and
| | - Shengnan Wang
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing 100005, China.,Collaborative Innovation Center for Biotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing 100005, China; and
| | - Mingcheng Song
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing 100005, China.,Collaborative Innovation Center for Biotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing 100005, China; and
| | - Huilin Chen
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing 100005, China.,Collaborative Innovation Center for Biotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing 100005, China; and
| | - Chong Chen
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing 100005, China.,Collaborative Innovation Center for Biotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing 100005, China; and
| | - Qin Si
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing 100005, China.,Collaborative Innovation Center for Biotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing 100005, China; and
| | - Rong Xiang
- Department of Immunology, Nankai University, Tianjin 300071, China
| | - Yunping Luo
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing 100005, China; .,Collaborative Innovation Center for Biotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences; School of Basic Medicine, Peking Union Medical College, Beijing 100005, China; and
| |
Collapse
|
28
|
Cavallari C, Camussi G, Brizzi MF. Extracellular Vesicles in the Tumour Microenvironment: Eclectic Supervisors. Int J Mol Sci 2020; 21:E6768. [PMID: 32942702 PMCID: PMC7555174 DOI: 10.3390/ijms21186768] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 12/12/2022] Open
Abstract
The tumour microenvironment (TME) plays a crucial role in the regulation of cell survival and growth by providing inhibitory or stimulatory signals. Extracellular vesicles (EV) represent one of the most relevant cell-to-cell communication mechanism among cells within the TME. Moreover, EV contribute to the crosstalk among cancerous, immune, endothelial, and stromal cells to establish TME diversity. EV contain proteins, mRNAs and miRNAs, which can be locally delivered in the TME and/or transferred to remote sites to dictate tumour behaviour. EV in the TME impact on cancer cell proliferation, invasion, metastasis, immune-escape, pre-metastatic niche formation and the stimulation of angiogenesis. Moreover, EV can boost or inhibit tumours depending on the TME conditions and their cell of origin. Therefore, to move towards the identification of new targets and the development of a novel generation of EV-based targeting approaches to gain insight into EV mechanism of action in the TME would be of particular relevance. The aim here is to provide an overview of the current knowledge of EV released from different TME cellular components and their role in driving TME diversity. Moreover, recent proposed engineering approaches to targeting cells in the TME via EV are discussed.
Collapse
Affiliation(s)
| | - Giovanni Camussi
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy;
| | | |
Collapse
|
29
|
An update on T-2 toxin and its modified forms: metabolism, immunotoxicity mechanism, and human exposure assessment. Arch Toxicol 2020; 94:3645-3669. [PMID: 32910237 DOI: 10.1007/s00204-020-02899-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 09/01/2020] [Indexed: 12/18/2022]
Abstract
T-2 toxin is the most toxic trichothecene mycotoxin, and it exerts potent toxic effects, including immunotoxicity, neurotoxicity, and reproductive toxicity. Recently, several novel metabolites, including 3',4'-dihydroxy-T-2 toxin and 4',4'-dihydroxy-T-2 toxin, have been uncovered. The enzymes CYP3A4 and carboxylesterase contribute to T-2 toxin metabolism, with 3'-hydroxy-T-2 toxin and HT-2 toxin as the corresponding primary products. Modified forms of T-2 toxin, including T-2-3-glucoside, exert their immunotoxic effects by signaling through JAK/STAT but not MAPK. T-2-3-glucoside results from hydrolyzation of the corresponding parent mycotoxin and other metabolites by the intestinal microbiota, which leads to enhanced toxicity. Increasing evidence has shown that autophagy, hypoxia-inducible factors, and exosomes are involved in T-2 toxin-induced immunotoxicity. Autophagy promotes the immunosuppression induced by T-2 toxin, and a complex crosstalk between apoptosis and autophagy exists. Very recently, "immune evasion" activity was reported to be associated with this toxin; this activity is initiated inside cells and allows pathogens to escape the host immune response. Moreover, T-2 toxin has the potential to trigger hypoxia in cells, which is related to activation of hypoxia-inducible factor and the release of exosomes, leading to immunotoxicity. Based on the data from a series of human exposure studies, free T-2 toxin, HT-2 toxin, and HT-2-4-glucuronide should be considered human T-2 toxin biomarkers in the urine. The present review focuses on novel findings related to the metabolism, immunotoxicity, and human exposure assessment of T-2 toxin and its modified forms. In particular, the immunotoxicity mechanisms of T-2 toxin and the toxicity mechanism of its modified form, as well as human T-2 toxin biomarkers, are discussed. This work will contribute to an improved understanding of the immunotoxicity mechanism of T-2 toxin and its modified forms.
Collapse
|
30
|
Multiple Myeloma-Derived Extracellular Vesicles Induce Osteoclastogenesis through the Activation of the XBP1/IRE1α Axis. Cancers (Basel) 2020; 12:cancers12082167. [PMID: 32759820 PMCID: PMC7465175 DOI: 10.3390/cancers12082167] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 07/30/2020] [Accepted: 08/01/2020] [Indexed: 02/07/2023] Open
Abstract
Bone disease severely affects the quality of life of over 70% of multiple myeloma (MM) patients, which daily experience pain, pathological fractures, mobility issues and an increased mortality. Recent data have highlighted the crucial role of the endoplasmic reticulum-associated unfolded protein response (UPR) in malignant transformation and tumor progression; therefore, targeting of UPR-related molecules may open novel therapeutic avenues. Endoplasmic reticulum (ER) stress and UPR pathways are constitutively activated in MM cells, which are characterized by an increased protein turnover as a consequence of high production of immunoglobulins and high rates of protein synthesis. A great deal of scientific data also evidenced that a mild activation of UPR pathway can regulate cellular differentiation. Our previous studies revealed that MM cell-derived small extracellular vesicle (MM-EV) modulated osteoclasts (OCs) function and induced OCs differentiation. Here, we investigated the role of the UPR pathway, and in particular of the IRE1α/XBP1 axis, in osteoclastogenesis induced by MM-EVs. By proteomic analysis, we identified UPR signaling molecules as novel MM-EV cargo, prompting us to evaluate the effects of the MM-EVs on osteoclastogenesis through UPR pathway. MM-EVs administration in a murine macrophage cell line rapidly induced activation of IRE1α by phosphorylation in S724; accordingly, Xbp1 mRNA splicing was increased and the transcription of NFATc1, a master transcription factor for OCs differentiation, was activated. Some of these results were also validated using both human primary OC cultures and MM-EVs from MM patients. Notably, a chemical inhibitor of IRE1α (GSK2850163) counteracted MM-EV-triggered OC differentiation, hampering the terminal stages of OCs differentiation and reducing bone resorption.
Collapse
|
31
|
He C, Jaffar Ali D, Li Y, Zhu Y, Sun B, Xiao Z. Engineering of HN3 increases the tumor targeting specificity of exosomes and upgrade the anti-tumor effect of sorafenib on HuH-7 cells. PeerJ 2020; 8:e9524. [PMID: 33062407 PMCID: PMC7527773 DOI: 10.7717/peerj.9524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 06/20/2020] [Indexed: 12/14/2022] Open
Abstract
Safe, efficient and cancer cell targeted delivery of CRISPR/Cas9 is important to increase the effectiveness of available cancer treatments. Although cancer derived exosomes offer significant advantages, the fact that it carries cancer related/inducing signaling molecules impedes them from being used as a reliable drug delivery vehicle. In this study, we report that normal epithelial cell-derived exosomes engineered to have HN3 (HN3LC9-293exo), target tumor cells as efficiently as that of the cancer cell-derived exosomes (C9HuH-7exo). HN3LC9-293exo were quickly absorbed by the recipient cancer cell in vitro. Anchoring HN3 to the membrane of the exosomes using LAMP2, made HN3LC9-293exo to specifically enter the GPC3+ HuH-7 cancer cells than the GPC3− LO2 cells in a co-culture model. Further, sgIQ 1.1 plasmids were loaded to exosomes and surprisingly, in combination with sorafenib, synergistic anti-proliferative and apoptotic effect of loaded HN3LC9-293exo was more than the loaded C9HuH-7exo. While cancer-derived exosomes might induce the drug resistance and tumor progression, normal HEK-293 cells-derived exosomes with modifications for precise cancer cell targeting like HN3LC9-293exo can act as better, safe and natural delivery systems to improve the efficacy of the cancer treatments.
Collapse
Affiliation(s)
- Cong He
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, China
| | - Doulathunnisa Jaffar Ali
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, China.,Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, Jiangsu, China
| | - Yumin Li
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, China
| | - Yanliang Zhu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, China
| | - Bo Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, China
| | - Zhongdang Xiao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, China
| |
Collapse
|
32
|
Narayanan D, Ma S, Özcelik D. Targeting the Redox Landscape in Cancer Therapy. Cancers (Basel) 2020; 12:cancers12071706. [PMID: 32605023 PMCID: PMC7407119 DOI: 10.3390/cancers12071706] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/22/2020] [Accepted: 06/25/2020] [Indexed: 12/18/2022] Open
Abstract
Reactive oxygen species (ROS) are produced predominantly by the mitochondrial electron transport chain and by NADPH oxidases in peroxisomes and in the endoplasmic reticulum. The antioxidative defense counters overproduction of ROS with detoxifying enzymes and molecular scavengers, for instance, superoxide dismutase and glutathione, in order to restore redox homeostasis. Mutations in the redox landscape can induce carcinogenesis, whereas increased ROS production can perpetuate cancer development. Moreover, cancer cells can increase production of antioxidants, leading to resistance against chemo- or radiotherapy. Research has been developing pharmaceuticals to target the redox landscape in cancer. For instance, inhibition of key players in the redox landscape aims to modulate ROS production in order to prevent tumor development or to sensitize cancer cells in radiotherapy. Besides the redox landscape of a single cell, alternative strategies take aim at the multi-cellular level. Extracellular vesicles, such as exosomes, are crucial for the development of the hypoxic tumor microenvironment, and hence are explored as target and as drug delivery systems in cancer therapy. This review summarizes the current pharmaceutical and experimental interventions of the cancer redox landscape.
Collapse
Affiliation(s)
- Dilip Narayanan
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; (D.N.); (S.M.)
| | - Sana Ma
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; (D.N.); (S.M.)
| | - Dennis Özcelik
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; (D.N.); (S.M.)
- current address: Chemistry | Biology | Pharmacy Information Center, ETH Zürich, Vladimir-Prelog-Weg 10, 8093 Zürich, Switzerland
- Correspondence:
| |
Collapse
|
33
|
Aramini B, Masciale V, Haider KH. Defining lung cancer stem cells exosomal payload of miRNAs in clinical perspective. World J Stem Cells 2020; 12:406-421. [PMID: 32742559 PMCID: PMC7360993 DOI: 10.4252/wjsc.v12.i6.406] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/29/2020] [Accepted: 05/27/2020] [Indexed: 02/06/2023] Open
Abstract
Since the first publication regarding the existence of stem cells in cancer [cancer stem cells (CSCs)] in 1994, many studies have been published providing in-depth information about their biology and function. This research has paved the way in terms of appreciating the role of CSCs in tumour aggressiveness, progression, recurrence and resistance to cancer therapy. Targeting CSCs for cancer therapy has still not progressed to a sufficient degree, particularly in terms of exploring the mechanism of dynamic interconversion between CSCs and non-CSCs. Besides the CSC scenario, the problem of cancer dissemination has been analyzed in-depth with the identification and isolation of microRNAs (miRs), which are now considered to be compelling molecular markers in the diagnosis and prognosis of tumours in general and specifically in patients with non-small cell lung cancer. Paracrine release of miRs via “exosomes” (small membrane vesicles (30-100 nm), the derivation of which lies in the luminal membranes of multi-vesicular bodies) released by fusion with the cell membrane is gaining popularity. Whether exosomes play a significant role in maintaining a dynamic equilibrium state between CSCs and non-CSCs and their mechanism of activity is as yet unknown. Future studies on CSC-related exosomes will provide new perspectives for precision-targeted treatment strategies.
Collapse
Affiliation(s)
- Beatrice Aramini
- Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena 41124, Italy
| | - Valentina Masciale
- Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena 41124, Italy
| | | |
Collapse
|
34
|
He C, Hua W, Liu J, Fan L, Wang H, Sun G. Exosomes derived from endoplasmic reticulum-stressed liver cancer cells enhance the expression of cytokines in macrophages via the STAT3 signaling pathway. Oncol Lett 2020; 20:589-600. [PMID: 32565984 PMCID: PMC7285763 DOI: 10.3892/ol.2020.11609] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 04/01/2020] [Indexed: 12/18/2022] Open
Abstract
Previous studies have shown that endoplasmic reticulum (ER) stress serves an important role in shaping the immunosuppressive microenvironment by modulating resident immune cells. However, the communication between ER-stressed tumor cells and immune cells is not fully understood. Exosomes have been reported to play a vital role in intercellular communication. Therefore, in order to investigate the role of ER stress-related exosomes in liver cancer cells mediated macrophage function remodeling, immunohistochemical analysis, western-blotting immunofluorescence and cytokine bead array analyses were performed. The results demonstrated that glucose-regulated protein 78 (GRP78) expression was upregulated in human liver cancer tissue. Moreover, 69.09% of GRP78-positive liver cancer tissues possessed macrophages expressing CD68+ (r=0.55; P<0.001). In addition to these CD68+ macrophages, interleukin (IL)-10 and IL-6 expression levels were increased in liver cancer tissues. It was also demonstrated that exosomes released by ER-stressed HepG2 cells significantly enhanced the expression levels of several cytokines, including IL-6, monocyte chemotactic protein-1, IL-10 and tumor necrosis factor-α in macrophages. Furthermore, incubation of cells with ER stress-associated exosomes resulted inactivation of the Janus kinase 2/STAT3 pathway, and inhibition of STAT3 using S3I-201 in RAW264.7 cells significantly reduced cytokine production. Collectively, the present study identified a novel function of ER stress-associated exosomes in mediating macrophage cytokine secretion in the liver cancer microenvironment, and also indicated the potential of treating liver cancer via an ER stress-exosomal-STAT3 pathway.
Collapse
Affiliation(s)
- Chengqun He
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China.,Department of Gynecological Oncology, Anhui Province Hospital, Hefei, Anhui 230032, P.R. China
| | - Wei Hua
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Jiatao Liu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China.,Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Lulu Fan
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China.,Department of Liver Cancer, Institute for Liver Diseases of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Guoping Sun
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| |
Collapse
|
35
|
Wang S, Ma F, Feng Y, Liu T, He S. Role of exosomal miR‑21 in the tumor microenvironment and osteosarcoma tumorigenesis and progression (Review). Int J Oncol 2020; 56:1055-1063. [PMID: 32319566 DOI: 10.3892/ijo.2020.4992] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 02/07/2020] [Indexed: 11/06/2022] Open
Abstract
Osteosarcoma is the most common bone tumor affecting both adolescents and children. Early detection is critical for the effective treatment of the disease. Derived from cancer cells, miR‑21 contained within exosomes in the tumor microenvironment may act on both cancer cells and the surrounding tumor microenvironment (TME), including immune cells, endothelial cells and fibroblasts. In human serum and plasm, the level of exosomal miR‑21 between osteosarcoma patients and healthy controls differs, supporting the role of miR‑21 as a biomarker for osteosarcoma. The involvement of a number of miR‑21 target genes in tumor progression suggests that miR‑21 may significantly affect the plasticity of cancer cells, leading to tumor progression, metastasis, angiogenesis and immune escape in osteosarcoma. Understanding the biogenesis and functions of exosomal miR‑21 is of great value for the diagnosis and therapy of cancer, including osteosarcoma. The present review discusses the role of miR‑21 in the tumor microenvironment, and in the development and progression of osteosarcoma, with an aim to summarize the functions of this miRNA in cancer.
Collapse
Affiliation(s)
- Shoufeng Wang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, P.R. China
| | - Fang Ma
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, P.R. China
| | - Yi Feng
- Ovarian Cancer Research, Perelman School of Medicine, University of Pennsylvania, Philadephia, PA 19104, USA
| | - Tang Liu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, P.R. China
| | - Shasha He
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, P.R. China
| |
Collapse
|
36
|
Jurj A, Pasca S, Teodorescu P, Tomuleasa C, Berindan-Neagoe I. Basic knowledge on BCR-ABL1-positive extracellular vesicles. Biomark Med 2020; 14:451-458. [PMID: 32270699 DOI: 10.2217/bmm-2019-0510] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Chronic myelogenous leukemia (CML) is a hematological malignancy characterized by the excessive proliferation of myeloid progenitors. In the case of CML, these extracellular vesicles (EVs) were shown to communicate with hematopoietic stem cells, mesenchymal stem cells, myeloid derived suppressor cells and endothelial cells determining a beneficial microenvironment for the CML clone. Moreover, as these EVs are marked through BCR-ABL1, they were shown to be useful in clinical research in determining the grade of molecular remission with further studies being needed to determine if they are better or worse at predicting CML relapse. More than this, we consider BCR-ABL1-positive EVs to represent only a stepping-stone for other malignancies that also present fusion genes that are loaded in EVs.
Collapse
Affiliation(s)
- Ancuta Jurj
- Research Center for Functional Genomics, Biomedicine & Translational Medicine, Iuliu Hatieganu University of Medicine & Pharmacy, 23 Marinescu Street, 400337, Cluj-Napoca, Romania
| | - Sergiu Pasca
- Department of Hematology, Iuliu Hatieganu University of Medicine & Pharmacy, 21 December Boulevard, 400124, Cluj-Napoca, Romania
| | - Patric Teodorescu
- Department of Hematology, Iuliu Hatieganu University of Medicine & Pharmacy, 21 December Boulevard, 400124, Cluj-Napoca, Romania.,Department of Hematology, Ion Chiricuta Clinical Cancer Center, Republicii Street 34-36, 400015, Cluj-Napoca, Romania
| | - Ciprian Tomuleasa
- Research Center for Functional Genomics, Biomedicine & Translational Medicine, Iuliu Hatieganu University of Medicine & Pharmacy, 23 Marinescu Street, 400337, Cluj-Napoca, Romania.,Department of Hematology, Iuliu Hatieganu University of Medicine & Pharmacy, 21 December Boulevard, 400124, Cluj-Napoca, Romania.,Department of Hematology, Ion Chiricuta Clinical Cancer Center, Republicii Street 34-36, 400015, Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- Department of Hematology, Iuliu Hatieganu University of Medicine & Pharmacy, 21 December Boulevard, 400124, Cluj-Napoca, Romania
| |
Collapse
|
37
|
Zou SL, Chen YL, Ge ZZ, Qu YY, Cao Y, Kang ZX. Downregulation of serum exosomal miR-150-5p is associated with poor prognosis in patients with colorectal cancer. Cancer Biomark 2020; 26:69-77. [PMID: 31306108 DOI: 10.3233/cbm-190156] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Growing evidence have revealed the serum exosomal miRNAs emerged as biomarkers for various cancer types, including colorectal cancer (CRC). Here, we sought to explore the potential clinical significance of serum exosomal miR-150-5p in CRC. A total of 133 CRC patients and 60 healthy volunteers as control group were recruited in this study. Exosomes were isolated from the serum of all the participants. The total RNA was isolated from the exosomes and the serum exosomal miR-150-5p levels were measured by quantitative reverse transcription-polymerase chain reaction. The findings showed that the serum exosomal miR-150-5p levels were significantly reduced in CRC cases compared with those in the control group. Serum exosomal miR-150-5p levels in post-operative blood samples were greatly upregulated one month after surgical treatment. In addition, decreased serum exosomal miR-150-5p expression was closely correlated with poorly differentiation, positive lymph node metastasis and advanced TNM stage. Moreover, receiver operating characteristic (ROC) curve analysis showed serum exosomal miR-150-5p level had good performance to identify CRC cases from healthy volunteers, and a combination of serum exosomal miR-150-5p and carcinoembryonic antigen (CEA) could improve the diagnostic accuracy with an increased the area under the ROC curve (AUC) value. Furthermore, the survival time of patients with higher serum exosomal miR-150-5p expression was significantly longer than those with lower expression. Serum exosomal miR-150-5p was confirmed as an independent prognostic indicator in CRC. Mechanistically, ZEB1 was identified as a direct downstream target of miR-150-5p. Collectively, serum exosomal miR-150-5p might be a novel noninvasive biomarker for CRC diagnosis and prognosis.
Collapse
|
38
|
Geng X, Lin X, Zhang Y, Li Q, Guo Y, Fang C, Wang H. Exosomal circular RNA sorting mechanisms and their function in promoting or inhibiting cancer. Oncol Lett 2020; 19:3369-3380. [PMID: 32269609 PMCID: PMC7114721 DOI: 10.3892/ol.2020.11449] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 02/13/2020] [Indexed: 02/06/2023] Open
Abstract
Exosomes are nanoscale phospholipid bilayer vesicles that can be artificially engineered into vectors for the treatment of cancer. Circular RNA (circRNA), a type of non-coding RNA, has crucial regulatory functions in various aspects of cancer, such as tumorigenesis, apoptosis, proliferation, invasion, metastasis and chemo- and radiotherapeutic resistance, as well as in cancer prognosis. Notably, the exosomal transfer of circRNAs may function to both promote and inhibit cancer. Numerous studies have addressed the importance of circRNAs in cancer and non-coding RNAs (such as microRNAs and long non-coding RNAs) in exosomes. However, little research has focussed on a class of RNAs called exosomal circRNAs. The present review discusses current studies regarding exosomal circRNAs, including their biogenesis and biological functions, their abundance in exosomes and possible sorting mechanisms and their potential roles in both promoting and inhibiting cancer. It is predicted that in the next five years there will be increasing research exploring the functional mechanisms of exosomal circRNA in various diseases, in particular their roles in cancer genesis and progression.
Collapse
Affiliation(s)
- Xiuchao Geng
- Faculty of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050091, P.R. China
| | - Xiaomeng Lin
- Department of Breast Surgery, Affiliated Hospital of Hebei University, Baoding, Hebei 071000, P.R. China
| | - Yuhao Zhang
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, Hebei 071000, P.R. China
| | - Qiang Li
- Faculty of Acupuncture-Moxibustion and Tuina, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, P.R. China
| | - Yajing Guo
- Scientific Research Center, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050091, P.R. China
| | - Chuan Fang
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, Hebei 071000, P.R. China
| | - Hong Wang
- Faculty of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050091, P.R. China
| |
Collapse
|
39
|
Logozzi M, Spugnini E, Mizzoni D, Di Raimo R, Fais S. Extracellular acidity and increased exosome release as key phenotypes of malignant tumors. Cancer Metastasis Rev 2020; 38:93-101. [PMID: 30715644 DOI: 10.1007/s10555-019-09783-8] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The tumor milieu is characteristically acidic as a consequence of the fermentative metabolism of glucose that results in massive accumulation of lactic acid within the cytoplasm. Tumor cells get rid of excessive protons through exchangers that are responsible for the extracellular acidification that selects cellular clones that are more apt at surviving in this challenging and culling environment. Extracellular vesicles (EVs) are vesicles with diameters ranging from nm to μm that are released from the cells to deliver nucleic acids, proteins, and lipids to adjacent or distant cells. EVs are involved in a plethora of biological events that promote tumor progression including unrestricted proliferation, angiogenesis, migration, local invasion, preparation of the metastatic niche, metastasis, downregulation or hijacking of the immune system, and drug resistance. There is evidence that the release of specific exosomes is increased many folds in cancer patients, as shown by many techniques aimed at evaluating "liquid biopsies". The quality of the exosomal contents has been shown to vary at the different moments of tumor life such as local invasion or metastasis. In vitro studies have recently pointed out that cancer acidity is a major determinant in inducing increased exosome release by human cancer cells, by showing that exosomal release was increased as the pH moved from 7.4 pH to the typical pH of cancer that is 6.5. In this review, we emphasize the recent evidence that tumor acidity and exosomes levels are strictly related and strongly contribute to the malignant tumor phenotypes.
Collapse
Affiliation(s)
- Mariantonia Logozzi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Enrico Spugnini
- SAFU Department, Regina Elena Cancer Institute, Via Elio Chianesi 51, 00144, Rome, Italy
| | - Davide Mizzoni
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Rossella Di Raimo
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Stefano Fais
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| |
Collapse
|
40
|
Jurj A, Zanoaga O, Braicu C, Lazar V, Tomuleasa C, Irimie A, Berindan-Neagoe I. A Comprehensive Picture of Extracellular Vesicles and Their Contents. Molecular Transfer to Cancer Cells. Cancers (Basel) 2020; 12:cancers12020298. [PMID: 32012717 PMCID: PMC7072213 DOI: 10.3390/cancers12020298] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/09/2020] [Accepted: 01/15/2020] [Indexed: 12/11/2022] Open
Abstract
Critical processes such as growth, invasion, and metastasis of cancer cells are sustained via bidirectional cell-to-cell communication in tissue complex environments. Such communication involves the secretion of soluble factors by stromal cells and/or cancer cells within the tumor microenvironment (TME). Both stromal and cancer cells have been shown to export bilayer nanoparticles: encapsulated regulatory molecules that contribute to cell-to-cell communication. These nanoparticles are known as extracellular vesicles (EVs) being classified into exosomes, microvesicles, and apoptotic bodies. EVs carry a vast repertoire of molecules such as oncoproteins and oncopeptides, DNA fragments from parental to target cells, RNA species (mRNAs, microRNAs, and long non-coding RNA), and lipids, initiating phenotypic changes in TME. According to their specific cargo, EVs have crucial roles in several early and late processes associated with tumor development and metastasis. Emerging evidence suggests that EVs are being investigated for their implication in early cancer detection, monitoring cancer progression and chemotherapeutic response, and more relevant, the development of novel targeted therapeutics. In this study, we provide a comprehensive understanding of the biophysical properties and physiological functions of EVs, their implications in TME, and highlight the applicability of EVs for the development of cancer diagnostics and therapeutics.
Collapse
Affiliation(s)
- Ancuta Jurj
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; (A.J.); (O.Z.); (C.B.); (C.T.)
| | - Oana Zanoaga
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; (A.J.); (O.Z.); (C.B.); (C.T.)
| | - Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; (A.J.); (O.Z.); (C.B.); (C.T.)
| | - Vladimir Lazar
- Worldwide Innovative Network for Personalized Cancer Therapy, 94800 Villejuif, France;
| | - Ciprian Tomuleasa
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; (A.J.); (O.Z.); (C.B.); (C.T.)
- Department of Hematology, The Oncology Institute Prof. Dr. Ion Chiricuta, 34-36 Republicii Street, 400015 Cluj-Napoca, Romania
| | - Alexandru Irimie
- 11th Department of Surgical Oncology and Gynaecological Oncology, Iuliu Hatieganu University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania
- Department of Surgery, The Oncology Institute Prof. Dr. Ion Chiricuta, 34-36 Republicii Street, 400015 Cluj-Napoca, Romania
- Correspondence: (A.I.); (I.B.-N.)
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; (A.J.); (O.Z.); (C.B.); (C.T.)
- MEDFUTURE—Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania
- Department of Functional Genomics and Experimental Pathology, The Oncology Institute Prof. Dr. Ion Chiricuta, 34-36 Republicii Street, 400015 Cluj-Napoca, Romania
- Correspondence: (A.I.); (I.B.-N.)
| |
Collapse
|
41
|
Chicón-Bosch M, Tirado OM. Exosomes in Bone Sarcomas: Key Players in Metastasis. Cells 2020; 9:cells9010241. [PMID: 31963599 PMCID: PMC7016778 DOI: 10.3390/cells9010241] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/11/2020] [Accepted: 01/15/2020] [Indexed: 12/12/2022] Open
Abstract
Bone sarcomas are rare cancers which often present with metastatic disease and are still associated with poor survival rates. Studies in the last decade have identified that exosomes, a type of extracellular vesicle released by cells, play an important role in tumour progression and dissemination. Through the transfer of their cargo (RNAs, proteins, and lipids) across cells, they are involved in cellular cross-talk and can induce changes in cellular behaviour. Exosomes have been shown to be important in metastasis organotropism, induction of angiogenesis and vascular permeability, the education of cells towards a pro-metastatic phenotype or the interaction between stromal and tumour cells. Due to the importance exosomes have in disease progression and the high incidence of metastasis in bone sarcomas, recent studies have evaluated the implications of these extracellular vesicles in bone sarcomas. In this review, we discuss the studies that evaluate the role of exosomes in osteosarcoma, Ewing sarcoma, and preliminary data on chondrosarcoma.
Collapse
Affiliation(s)
- Mariona Chicón-Bosch
- Sarcoma Research Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, 08908 Barcelona, Spain
- Correspondence: (M.C.-B.); (O.M.T.); Tel.: +34-9326-0742 (M.C.-B.); +34-932-603-823 (O.M.T.)
| | - Oscar M. Tirado
- Sarcoma Research Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, 08908 Barcelona, Spain
- CIBERONC, Carlos III Institute of Health (ISCIII), 28029 Madrid, Spain
- Institut Català d’Oncologia (ICO), L’Hospitalet de Llobregat, 08908 Barcelona, Spain
- Correspondence: (M.C.-B.); (O.M.T.); Tel.: +34-9326-0742 (M.C.-B.); +34-932-603-823 (O.M.T.)
| |
Collapse
|
42
|
Exosomes for Diagnosis and Therapy in Gastrointestinal Cancers. Int J Mol Sci 2020; 21:ijms21010367. [PMID: 31935918 PMCID: PMC6981923 DOI: 10.3390/ijms21010367] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 12/29/2019] [Accepted: 12/31/2019] [Indexed: 02/07/2023] Open
Abstract
Exosomes are membrane-bound extracellular vesicles (EVs) released by most cells, having a size ranging from 30 to 150 nm, and are involved in mechanisms of cell-cell communication in physiological and pathological tissues. Exosomes are engaged in the transport of biomolecules, such as lipids, proteins, messenger RNAs, and microRNA, and in signal transmission through the intercellular transfer of components. In the context of proteins and nucleic acids transported from exosomes, our interest is focused on the Frizzled proteins family and related messenger RNA. Exosomes can regenerate stem cell phenotypes and convert them into cancer stem cells by regulating the Wnt pathway receptor family, namely Frizzled proteins. In particular, for gastrointestinal cancers, the Frizzled protein involved in those mechanisms is Frizzled-10 (FZD-10). Currently, increasing attention is being devoted to the protein and lipid composition of exosomes interior and membranes, representing profound knowledge of specific exosomes composition fundamental for their application as new delivering drug tools for cancer therapy. This review intends to cover the most recent literature on the use of exosome vesicles for early diagnosis, follow-up, and the use of these physiological nanovectors as drug delivery systems for gastrointestinal cancer therapy.
Collapse
|
43
|
Zhang Z, Shuai Y, Zhou F, Yin J, Hu J, Guo S, Wang Y, Liu W. PDLSCs Regulate Angiogenesis of Periodontal Ligaments via VEGF Transferred by Exosomes in Periodontitis. Int J Med Sci 2020; 17:558-567. [PMID: 32210705 PMCID: PMC7085218 DOI: 10.7150/ijms.40918] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 01/08/2020] [Indexed: 02/06/2023] Open
Abstract
Abnormal angiogenesis is one of the significant features in periodontitis leading to progressive inflammation, but angiogenic changes of periodontal ligaments under inflammatory condition were rarely reported. Periodontal ligament stem cells (PDLSCs) were a kind of dental stem cells associated with vascularization. Here we investigated the alteration of angiogenesis of periodontal ligament in periodontitis, and revealed an exosome-mediated pathway to support the effect of PDLSCs on angiogenic improvement. Vascular specific marker CD31 and VEGFA were found to be highly expressed in periodontal ligaments of periodontitis. The VEGFA expression was up-regulated in inflamed PDLSCs compared to control, meanwhile the tube formation of HUVECs was improved when co-cultured with inflamed PDLSCs. Exosomes secretion of PDSLCs was augmented by inflammation, and promoted angiogenesis of HUVECs, whereas blocking secretion of exosomes led to degenerated angiogenesis of HUVECs. Exosome-trasferred VEGFA was proven to be the crucial communicator between PDLSCs and HUVECs. Inflammation inhibited miR-17-5p expression of PDLSCs and relieved its target VEGFA. However, overexpression of miR-17-5p blocked the pro-angiogenic ability of inflamed PDLSCs. In conclusion, the findings indicated that vascularization of periodontal ligaments was enhanced, and inflammatory micro-environment of periodontitis facilitated pro-angiogenesis of PDLSCs through regulating exosome-mediated transfer of VEGFA, which was targeted by miR-17-5p.
Collapse
Affiliation(s)
- Zhang Zhang
- Department of General Surgery, Tang Du Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, People's Republic of China
| | - Yi Shuai
- Department of Stomatology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, People's Republic of China.,Department of Stomatology, General Hospital of Eastern Theater Command, PLA, Nanjing, Jiangsu 210002, People's Republic of China
| | - Feng Zhou
- Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, Shaanxi 710032, People's Republic of China
| | - Jikai Yin
- Department of General Surgery, Tang Du Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, People's Republic of China
| | - Jiachen Hu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi 710032, People's Republic of China.,Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, Shaanxi 710032, People's Republic of China
| | - Songlin Guo
- Department of General Surgery, Tang Du Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, People's Republic of China
| | - Yan Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710032, People's Republic of China
| | - Wenjia Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi 710032, People's Republic of China.,Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, Shaanxi 710032, People's Republic of China
| |
Collapse
|
44
|
Kim H, Kim DW, Cho JY. Exploring the key communicator role of exosomes in cancer microenvironment through proteomics. Proteome Sci 2019; 17:5. [PMID: 31686989 PMCID: PMC6820930 DOI: 10.1186/s12953-019-0154-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 10/15/2019] [Indexed: 12/25/2022] Open
Abstract
There have been many attempts to fully understand the mechanism of cancer behavior. Yet, how cancers develop and metastasize still remain elusive. Emerging concepts of cancer biology in recent years have focused on the communication of cancer with its microenvironment, since cancer cannot grow and live alone. Cancer needs to communicate with other cells for survival, and thus they secrete various messengers, including exosomes that contain many proteins, miRNAs, mRNAs, etc., for construction of the tumor microenvironment. Moreover, these intercellular communications between cancer and its microenvironment, including stromal cells or distant cells, can promote tumor growth, metastasis, and escape from immune surveillance. In this review, we summarized the role of proteins in the exosome as communicators between cancer and its microenvironment. Consequently, we present cancer specific exosome proteins and their unique roles in the interaction between cancer and its microenvironment. Clinically, these exosomes might provide useful biomarkers for cancer diagnosis and therapeutic tools for cancer treatment.
Collapse
Affiliation(s)
- HuiSu Kim
- 1Department of Biochemistry, BK21 Plus and Research Institute for Veterinary Science, School of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Dong Wook Kim
- 1Department of Biochemistry, BK21 Plus and Research Institute for Veterinary Science, School of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Je-Yoel Cho
- 1Department of Biochemistry, BK21 Plus and Research Institute for Veterinary Science, School of Veterinary Medicine, Seoul National University, Seoul, South Korea.,2Department of Biochemistry, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 Korea
| |
Collapse
|
45
|
Xiao H, He M, Xie G, Liu Y, Zhao Y, Ye X, Li X, Zhang M. The release of tryptase from mast cells promote tumor cell metastasis via exosomes. BMC Cancer 2019; 19:1015. [PMID: 31664930 PMCID: PMC6819443 DOI: 10.1186/s12885-019-6203-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 09/24/2019] [Indexed: 01/02/2023] Open
Abstract
Background Cancer cells release exosomes and can be taken up by mast cells (MCs), but the potential functional effects of MCs on tumor metastasis remain unknown. Method Exosomes were isolated from the lung adenocarcinoma cell line A549, and the uptake of PKH26-labeled exosomes by bone marrow MCs was examined via flow cytometry and fluorescence microscopy. Cytokines and tryptase in MC supernatant were analyzed using an ELISA kit, and the presence of tryptase was evaluated by Western blotting. Cell proliferation and migration were determined through CCK-8 and transwell assays. Proteins in the tryptase-JAK-STAT signaling pathway were detected by Western blotting. Results In this study, we show that exosomes from A549 cells can be taken up by MCs. Moreover, A549 exosomes contain stem cell factor (SCF) to MCs and subsequently induce the activation of MCs through SCF-KIT signal transduction, which leads to MC degranulation and the release of tryptase. Tryptase accelerates the proliferation and migration of human umbilical vein endothelial cells (HUVECs) through the JAK-STAT signaling pathway. Conclusions Our results reveal a mechanism for metastasis in which exosomes can transfer SCF to and activate MCs, which can affect the release of tryptase and the angiogenesis of HUVECs.
Collapse
Affiliation(s)
- Hui Xiao
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiaotong University, 85 Wujin Road, Shanghai, 200080, China
| | - Mudan He
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital of Baoshan Branch, Shanghai, China
| | - Guogang Xie
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiaotong University, 85 Wujin Road, Shanghai, 200080, China
| | - Yanan Liu
- Department of Clinical Laboratory, Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Yuxia Zhao
- College of Clinical Medicine, Shanghai University of Medicine & Health Science, Shanghai, China
| | - Xiong Ye
- College of Clinical Medicine, Shanghai University of Medicine & Health Science, Shanghai, China.
| | - Xingjing Li
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital of Baoshan Branch, Shanghai, China.
| | - Min Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiaotong University, 85 Wujin Road, Shanghai, 200080, China.
| |
Collapse
|
46
|
Cao SQ, Zheng H, Sun BC, Wang ZL, Liu T, Guo DH, Shen ZY. Long non-coding RNA highly up-regulated in liver cancer promotes exosome secretion. World J Gastroenterol 2019; 25:5283-5299. [PMID: 31558873 PMCID: PMC6761235 DOI: 10.3748/wjg.v25.i35.5283] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/07/2019] [Accepted: 07/19/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Highly upregulated in liver cancer (HULC) is a long non-coding RNA (lncRNA) which has recently been identified as a key regulator in hepatocellular carcinoma (HCC) progression. However, its role in the secretion of exosomes from HCC cells remains unknown.
AIM To explore the mechanism by which HULC promotes the secretion of exosomes from HCC cells.
METHODS Serum and liver tissue samples were collected from 30 patients with HCC who had not received chemotherapy, radiotherapy, or immunotherapy before surgery. HULC expression in serum exosomes and liver cancer tissues of patients was measured, and compared with the data obtained from healthy controls and tumor adjacent tissues. The effect of HULC upregulation in HCC cell lines and the relationship between HULC and other RNAs were studied using qPCR and dual-luciferase reporter assays. Nanoparticle tracking analysis was performed to detect the quantity of exosomes.
RESULTS HULC expression in serum exosomes of patients with HCC was higher than that in serum exosomes of healthy controls, and HULC levels were higher in liver cancer tissues than in tumor adjacent tissues. The expression of HULC in serum exosomes and liver cancer tissues correlated with the tumor-node-metastasis (TNM) classification, and HULC expression in tissues correlated with that in serum exosomes. Upregulation of HULC promoted HCC cell growth and invasion and repressed apoptosis. Notably, it also facilitated the secretion of exosomes from HCC cells. Moreover, qPCR assays showed that HULC repressed microRNA-372-3p (miR-372-3p) expression. We also identified Rab11a as a downstream target of miR-372-3p. Dual-luciferase reporter assays suggested that miR-372-3p could directly bind both HULC and Rab11a.
CONCLUSION Our findings illustrate the importance of the HULC/miR-372-3p/Rab11a axis in HCC and provide new insights into the molecular mechanism regulating the secretion of exosomes from HCC cells.
Collapse
Affiliation(s)
- Shun-Qi Cao
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin 300070, China
| | - Hong Zheng
- Department of Organ Transplantation, Tianjin First Central Hospital, Tianjin 300192, China
| | - Bao-Cun Sun
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China
| | - Zheng-Lu Wang
- Department of Pathology, Tianjin First Central Hospital, Tianjin 300192, China
| | - Tao Liu
- NHC Key Laboratory of Critical Care Medicine, Tianjin First Central Hospital, Tianjin 300192, China
| | - Dong-Hui Guo
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin 300070, China
| | - Zhong-Yang Shen
- Department of Organ Transplantation, Tianjin First Central Hospital, Tianjin 300192, China
| |
Collapse
|
47
|
The Role of Exo-miRNAs in Cancer: A Focus on Therapeutic and Diagnostic Applications. Int J Mol Sci 2019; 20:ijms20194687. [PMID: 31546654 PMCID: PMC6801421 DOI: 10.3390/ijms20194687] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/12/2019] [Accepted: 09/19/2019] [Indexed: 12/16/2022] Open
Abstract
Exosomes are extracellular vesicles released into biological fluids where they act as carriers of various molecules, including proteins, lipids, and RNAs, between cells, modulating or perturbing specific physiological processes. Recently, it has been suggested that tumoral cells release excessive amounts of exosomes that, through their cargo, promote tumor progression, stimulating growth, angiogenesis, metastasis, insensitivity to chemotherapy, and immune evasion. Increasing evidence highlights exosomal microRNAs (exo-miRNAs) as important players in tumorigenesis. MicroRNA (miRNA) are a class of small non-coding RNA able to regulate gene expression, targeting multiple mRNAs and inducing translational repression and/or mRNA degradation. Exo-miRNAs are highly stable and easily detectable in biological fluids, and for these reasons, miRNAs are potential cancer biomarkers useful diagnostically and prognostically. Furthermore, since exosomes are natural delivery systems between cells, they can be appropriately modified to carry therapeutic miRNAs to specific recipient cells. Here we summarize the main functions of exo-miRNAs and their possible role for diagnostic and therapeutic applications.
Collapse
|
48
|
Tian X, Shen H, Li Z, Wang T, Wang S. Tumor-derived exosomes, myeloid-derived suppressor cells, and tumor microenvironment. J Hematol Oncol 2019; 12:84. [PMID: 31438991 PMCID: PMC6704713 DOI: 10.1186/s13045-019-0772-z] [Citation(s) in RCA: 170] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 08/14/2019] [Indexed: 12/13/2022] Open
Abstract
Plenty of immune cells infiltrate into the tumor microenvironment (TME) during tumor progression, in which myeloid-derived suppressor cells (MDSCs) represent a heterogeneous population of immature myeloid cells with immunosuppressive activity. Tumor cells and stromal cells facilitate the activation and expansion of MDSCs in TME via intercellular communication, and expanded MDSCs suppress anti-tumor immune responses through direct and indirect mechanisms. Currently, exosomes, which are a kind of extracellular vesicles (EVs) that can convey functional components, are demonstrated to participate in the local and distal intercellular communication between cells. Numerous studies have supposed that tumor-derived exosomes (TEXs), whose assembly and release can be modulated by TME, are capable of modulating the cell biology of MDSCs, including facilitating their activation, promoting the expansion, and enhancing the immunosuppressive function. Therefore, in this review, we mainly focus on the role of TEXs in the cell-cell communication between tumor cells and MDSCs, and discuss their clinical applications.
Collapse
Affiliation(s)
- Xinyu Tian
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Han Shen
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Zhiyang Li
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China.
| | - Tingting Wang
- Department of Laboratory Medicine, Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Children's Hospital, Wuxi, China.
| | - Shengjun Wang
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China.
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China.
| |
Collapse
|
49
|
Kołat D, Hammouz R, Bednarek AK, Płuciennik E. Exosomes as carriers transporting long non‑coding RNAs: Molecular characteristics and their function in cancer (Review). Mol Med Rep 2019; 20:851-862. [PMID: 31173220 PMCID: PMC6625196 DOI: 10.3892/mmr.2019.10340] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 05/09/2019] [Indexed: 02/07/2023] Open
Abstract
Long non‑coding RNAs (lncRNAs) comprise a sizeable class of non‑coding RNAs with a length of over 200 base pairs. Little is known about their biological function, although over 20,000 lncRNAs have been annotated in the human genome. Through a diverse range of mechanisms, their primary function is in the regulation of the transcription of protein‑coding genes. lncRNA transcriptional activation can result from a group of nucleus‑retained and chromatin‑associated lncRNAs, which function as scaffolds in the cis/trans recruitment of transcription factors, co‑activators or chromatin remodelers, and/or promoter enhancers. Exosomes are released as extracellular vesicles and they are produced by endocytic pathways. Their synthesis is initiated by various processes including ceramide synthesis, release of intracellular Ca2+ or acid‑base balance disorders. Prior to vesicle creation, selective cargo loading occurs in the Endosomal Sorting Complex Required for Transport. Participation of endosomal sorting proteins such as tetraspanins or specific sumoylated proteins required for transport has been indicated in research. The endosomal‑sorting complex consists of four components, these induce the formation of multivesicular bodies and the induction of membrane deformation to form exosomes. Nanovesicles could be formed inside multivesicular bodies to allow transport outside the cell or digestion in lysosomes. The molecular content of exosomes is more heterogenic than its synthesis process, with different cargoes being examined inside vesicles with regard to the type or stage of cancers. This paper will review the importance of lncRNAs as crucial molecular content of exosomes, indicating its involvement in tumour suppression, pro‑tumorigenic events and the development of novel therapeutic approaches in the near future. Further studies of their mechanisms of function are essential, as well as overcoming several challenges to gain a clearer insight to the approaches for the best clinical application.
Collapse
Affiliation(s)
- Damian Kołat
- Faculty of Biomedical Sciences and Postgraduate Education, Medical University of Łódź, 90-752 Łódź, Poland
| | - Raneem Hammouz
- Department of Molecular Carcinogenesis, Medical University of Łódź, 90-752 Łódź, Poland
| | - Andrzej K. Bednarek
- Department of Molecular Carcinogenesis, Medical University of Łódź, 90-752 Łódź, Poland
| | - Elżbieta Płuciennik
- Department of Molecular Carcinogenesis, Medical University of Łódź, 90-752 Łódź, Poland
- Correspondence to: Dr Elżbieta Płuciennik, Department of Molecular Carcinogenesis, Medical University of Łódź, Zeligowskiego 7/9, 90-752 Łódź, Poland, E-mail:
| |
Collapse
|
50
|
Sanada T, Islam A, Kaminota T, Kirino Y, Tanimoto R, Yoshimitsu H, Yano H, Mizuno Y, Okada M, Mitani S, Ugumori T, Tanaka J, Hato N. Elevated exosomal lysyl oxidase like 2 is a potential biomarker for head and neck squamous cell carcinoma. Laryngoscope 2019; 130:E327-E334. [PMID: 31219623 DOI: 10.1002/lary.28142] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 04/23/2019] [Accepted: 05/29/2019] [Indexed: 12/22/2022]
Abstract
OBJECTIVES The secretory enzyme lysyl oxidase like 2 (LOXL2) is speculated to contribute to tumor progression through its functions in the remodeling of extracellular matrix and epithelial-mesenchymal transition. We previously identified elevated expression of LOXL2 in metastatic human head and neck squamous cell carcinoma (HNSCC) cells in a mouse lymph node metastases model. Here we performed a case series study examining LOXL2 expression levels in human serum from HNSCC patients to evaluate whether LOXL2 is worth evaluation in a large cohort study. METHODS LOXL2 protein levels in three serum samples from HNSCC patients were assessed by immunoblotting and LOXL2 tissue expression was examined in one human tongue squamous cell carcinoma (SCC) tissue by immunohistochemistry as a representative of HNSCC tissue. Serum samples were further fractionated in exosomes and supernatants by ultracentrifugation, which were then subjected to immunoblot and in vitro LOX activity analyses. Exosomal LOXL2 levels of 36 serum samples from HNSCC patients and seven healthy volunteers were measured using polymer sedimentation exosome preparation followed by ELISA measurement and subjected to statistical analyses. RESULTS Immunoblot analyses revealed that LOXL2 was present in serum exosomal fractions from three HNSCC patients, and we observed approximately threefold higher levels of LOXL2 in HNSCC patients compared with three healthy volunteers. Immunohistochemical LOXL2 staining was detected in HNSCC cells in addition to non-cancerous lipid tissues and some muscles in human tongue HNSCC tissue. Further measurements of exosomal LOXL2 by ELISA showed over ninefold higher mean LOXL2 levels in patients compared with controls. Statistical analysis revealed a correlation between elevated serum exosomal LOXL2 levels and low-grade, but not high-grade, HNSCC. CONCLUSIONS Our case series study that elevated serum exosomal LOXL2 levels exhibited a correlation with low-grade HNSCCs. A follow-up large cohort clinical study will be required to determine the potential clinical utility of LOXL2 as a new biomarker and/or therapy target for HNSCCs. LEVEL OF EVIDENCE 4 Laryngoscope, 130:E327-E334, 2020.
Collapse
Affiliation(s)
- Tomoyoshi Sanada
- Department of Otorhinolaryngology-Head and Neck Surgery, Ehime University, Ehime, Japan
| | - Afsana Islam
- Department of Molecular and Cellular Physiology, Ehime University, Ehime, Japan
| | - Teppei Kaminota
- Department of Otorhinolaryngology-Head and Neck Surgery, Ehime University, Ehime, Japan
| | - Yui Kirino
- School of Medicine, Ehime University, Ehime, Japan
| | | | | | - Hajime Yano
- Department of Molecular and Cellular Physiology, Ehime University, Ehime, Japan
| | - Yosuke Mizuno
- Department of Pathological Diagnosis, Matsuyama Red Cross Hospital, Ehime, Japan
| | - Masahiro Okada
- Department of Otorhinolaryngology-Head and Neck Surgery, Ehime University, Ehime, Japan
| | - Souhei Mitani
- Department of Otorhinolaryngology-Head and Neck Surgery, Ehime University, Ehime, Japan
| | - Tohru Ugumori
- Department of Otorhinolaryngology-Head and Neck Surgery, Ehime University, Ehime, Japan
| | - Junya Tanaka
- Department of Molecular and Cellular Physiology, Ehime University, Ehime, Japan
| | - Naohito Hato
- Department of Otorhinolaryngology-Head and Neck Surgery, Ehime University, Ehime, Japan
| |
Collapse
|