1
|
Zhu H, Feng R, Li D, Shi M, Wang N, Wang Y, Guo Y, Li X, Gong T, Guo R. A multifunctional graphene oxide-based nanodrug delivery system for tumor targeted diagnosis and treatment under chemotherapy-photothermal-photodynamic synergy. Colloids Surf B Biointerfaces 2024; 248:114479. [PMID: 39740485 DOI: 10.1016/j.colsurfb.2024.114479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/23/2024] [Accepted: 12/25/2024] [Indexed: 01/02/2025]
Abstract
Traditional cancer therapies, such as chemotherapy, often lack specificity, resulting in severe toxic side effects and limited therapeutic efficacy. There is an urgent need to develop innovative multifunctional nanomedicine carriers that integrate precise diagnosis, targeted therapy, real-time monitoring, and the synergistic effects of multiple therapeutic approaches. In this study, a composite nanodrug delivery system (GO-HA-Ce6-GNRs) based on graphene oxide (GO) was innovatively prepared, which was functionalized with the targeting molecule hyaluronic acid (HA), the photosensitizer chlorin e6 (Ce6), and the photothermal material gold nanorods (GNRs). In vitro and in vivo experiments demonstrated that GO-HA-Ce6-GNRs exhibited excellent biocompatibility, remarkable photothermal and photodynamic properties, high drug-loading capacity for the anticancer drug doxorubicin hydrochloride (DOX), and a dual pH/near-infrared (NIR) light-responsive drug release profile. Additionally, GO-HA-Ce6-GNRs displayed enhanced tumor targeting and efficient fluorescence imaging capabilities. Notably, GO-HA-Ce6-GNRs@DOX manifested highly effective chemotherapy-photothermal-photodynamic synergistic anti-tumor effects in both MCF-7 and HeLa cancer cells as well as U14 tumor-bearing mice. Therefore, GO-HA-Ce6-GNRs@DOX represents a promising nanoplatform for tumor diagnosis and therapy, significantly improving the safety and efficacy of chemotherapy. This work provides a solid foundation and theoretical basis for the development of new targeted nano drug delivery systems that integrate both diagnosis and treatment.
Collapse
Affiliation(s)
- Huirui Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Shanxi Medical University, Taiyuan 030001, China
| | - Ruolan Feng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Shanxi Medical University, Taiyuan 030001, China
| | - Dongkun Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Shanxi Medical University, Taiyuan 030001, China
| | - Meijuan Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Shanxi Medical University, Taiyuan 030001, China
| | - Nan Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Shanxi Medical University, Taiyuan 030001, China
| | - Yijie Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Shanxi Medical University, Taiyuan 030001, China
| | - Yumeng Guo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Shanxi Medical University, Taiyuan 030001, China
| | - Xiaoning Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Shanxi Medical University, Taiyuan 030001, China.
| | - Tao Gong
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Shanxi Medical University, Taiyuan 030001, China.
| | - Rui Guo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Shanxi Medical University, Taiyuan 030001, China.
| |
Collapse
|
2
|
Perini HF, Matos BS, de Oliveira CJF, da Silva MV. Biomimetic nanocarriers: integrating natural functions for advanced therapeutic applications. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:1619-1626. [PMID: 39717696 PMCID: PMC11665443 DOI: 10.3762/bjnano.15.127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/28/2024] [Indexed: 12/25/2024]
Abstract
Biomimetic nanocarriers, engineered to mimic the characteristics of native cells, offer a revolutionary approach in the treatment of various complex human diseases. This strategy enhances drug delivery by leveraging the innate properties of cellular components, thereby improving biocompatibility and targeting specificity. Biomimetic nanocarriers demonstrate significant advancements in drug delivery systems against cancer therapy, Alzheimer's disease, autoimmune diseases, and viral infections such as COVID-19. Here, we address the therapeutic applications of biomimetic nanocarriers and their promising strategy for personalized medicine.
Collapse
Affiliation(s)
- Hugo Felix Perini
- Department of Immunology, Microbiology and Parasitology. Biological and Natural Sciences Institute. Federal University of Triângulo Mineiro. Uberaba, Minas Gerais, Brazil
| | - Beatriz Sodré Matos
- Department of Immunology, Microbiology and Parasitology. Biological and Natural Sciences Institute. Federal University of Triângulo Mineiro. Uberaba, Minas Gerais, Brazil
| | - Carlo José Freire de Oliveira
- Department of Immunology, Microbiology and Parasitology. Biological and Natural Sciences Institute. Federal University of Triângulo Mineiro. Uberaba, Minas Gerais, Brazil
| | - Marcos Vinicius da Silva
- Department of Immunology, Microbiology and Parasitology. Biological and Natural Sciences Institute. Federal University of Triângulo Mineiro. Uberaba, Minas Gerais, Brazil
| |
Collapse
|
3
|
Su M, Bastiaens L, Verspreet J, Hayes M. Applications of Microalgae in Foods, Pharma and Feeds and Their Use as Fertilizers and Biostimulants: Legislation and Regulatory Aspects for Consideration. Foods 2023; 12:3878. [PMID: 37893770 PMCID: PMC10606004 DOI: 10.3390/foods12203878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/24/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Microalgae are a rich resource of lipids, proteins, carbohydrates and pigments with nutritional and health benefits. They increasingly find use as ingredients in functional foods and feeds as well as in cosmetics and agricultural products including biostimulants. One of their distinct advantages is their ability to grow on wastewaters and other waste streams, and they are considered an environmentally friendly and cheap method to recover nutrients and remove pollutants from the environment. However, there are limits concerning their applications if grown on certain waste streams. Within, we collate an overview of existing algal applications and current market scenarios for microalgal products as foods and feeds along with relevant legislative requirements concerning their use in Europe and the United States. Microalgal compounds of interest and their extraction and processing methodologies are summarized, and the benefits and caveats of microalgae cultivated in various waste streams and their applications are discussed.
Collapse
Affiliation(s)
- Min Su
- The Food BioSciences Department Ashtown, Teagasc Food Research Centre, 15D05 Dublin, Ireland;
| | - Leen Bastiaens
- Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
| | - Joran Verspreet
- Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
| | - Maria Hayes
- The Food BioSciences Department Ashtown, Teagasc Food Research Centre, 15D05 Dublin, Ireland;
| |
Collapse
|
4
|
Tounsi L, Ben Hlima H, Hentati F, Hentati O, Derbel H, Michaud P, Abdelkafi S. Microalgae: A Promising Source of Bioactive Phycobiliproteins. Mar Drugs 2023; 21:440. [PMID: 37623721 PMCID: PMC10456337 DOI: 10.3390/md21080440] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/26/2023] Open
Abstract
Phycobiliproteins are photosynthetic light-harvesting pigments isolated from microalgae with fluorescent, colorimetric and biological properties, making them a potential commodity in the pharmaceutical, cosmetic and food industries. Hence, improving their metabolic yield is of great interest. In this regard, the present review aimed, first, to provide a detailed and thorough overview of the optimization of culture media elements, as well as various physical parameters, to improve the large-scale manufacturing of such bioactive molecules. The second section of the review offers systematic, deep and detailed data about the current main features of phycobiliproteins. In the ultimate section, the health and nutritional claims related to these bioactive pigments, explaining their noticeable potential for biotechnological uses in various fields, are examined.
Collapse
Affiliation(s)
- Latifa Tounsi
- Enzymatic Engineering and Microbiology Laboratory, Algae Biotechnology Team, Biological Engineering Department, National School of Engineers of Sfax, University of Sfax, Sfax 3038, Tunisia; (L.T.); (H.B.H.); (O.H.); (H.D.); (S.A.)
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000 Clermont-Ferrand, France
| | - Hajer Ben Hlima
- Enzymatic Engineering and Microbiology Laboratory, Algae Biotechnology Team, Biological Engineering Department, National School of Engineers of Sfax, University of Sfax, Sfax 3038, Tunisia; (L.T.); (H.B.H.); (O.H.); (H.D.); (S.A.)
| | - Faiez Hentati
- INRAE, Animal Research Unit and Functionalities of Animal Products (UR AFPA), University of Lorraine, USC 340, F-54000 Nancy, France;
| | - Ons Hentati
- Enzymatic Engineering and Microbiology Laboratory, Algae Biotechnology Team, Biological Engineering Department, National School of Engineers of Sfax, University of Sfax, Sfax 3038, Tunisia; (L.T.); (H.B.H.); (O.H.); (H.D.); (S.A.)
| | - Hana Derbel
- Enzymatic Engineering and Microbiology Laboratory, Algae Biotechnology Team, Biological Engineering Department, National School of Engineers of Sfax, University of Sfax, Sfax 3038, Tunisia; (L.T.); (H.B.H.); (O.H.); (H.D.); (S.A.)
| | - Philippe Michaud
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000 Clermont-Ferrand, France
| | - Slim Abdelkafi
- Enzymatic Engineering and Microbiology Laboratory, Algae Biotechnology Team, Biological Engineering Department, National School of Engineers of Sfax, University of Sfax, Sfax 3038, Tunisia; (L.T.); (H.B.H.); (O.H.); (H.D.); (S.A.)
| |
Collapse
|
5
|
Nour A, Hamida RS, El-Dissouky A, Soliman HMA, Refaat HM. One-pot facile synthesis of hexagonal Bi 2Te 3 nanosheets and its novel nanocomposites: Characterization, anticancer, antibacterial, and antioxidant activities. Colloids Surf B Biointerfaces 2023; 225:113230. [PMID: 36907134 DOI: 10.1016/j.colsurfb.2023.113230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 01/30/2023] [Accepted: 02/26/2023] [Indexed: 03/02/2023]
Abstract
Bismuth Telluride (Bi2Te3) layered structure results in extraordinary features in diagnostic and therapeutic applications. However, Bi2Te3 synthesis with reliable stability and biocompatibility in biological systems was the major challenge that limited its biological application. Herein, reduced graphene oxide (RGO) or graphitic carbon nitride (CN) nanosheets were incorporated into Bi2Te3 matrix to improve exfoliation. Bi2Te3 nanoparticles (NPs) and its novel nanocomposites (NCs): CN@Bi2Te3 and CN-RGO@Bi2Te3 were solvothermally synthesized, physiochemically characterized and assessed for their anticancer, antioxidant, and antibacterial activities. X-ray diffraction depicted Bi2Te3 rhombohedral lattice structure. Fourier-transform infrared and Raman spectra confirmed NC formation. Scanning and transmission electron microscopy revealed 13 nm thickness and 400-600 nm diameter of hexagonal, binary, and ternary nanosheets of Bi2Te3-NPs/NCs. Energy dispersive X-ray Spectroscopy revealed the presence of Bi, Te, and carbon atoms in the tested NPs with negatively charged surfaces as depicted by zeta sizer. CN-RGO@Bi2Te3-NC displayed the smallest nanodiameter (359.7 nm) with the highest Brunauer-Emmett-Teller surface area and antiproliferative activity against MCF-7, HepG2 and Caco-2. Bi2Te3-NPs had the greatest scavenging activity (96.13 ± 0.4%) compared to the NCs. The NPs inhibitory activity was greater against Gram-negative bacteria than that of Gram-positive bacteria. Integration of RGO and CN with Bi2Te3-NPs enhanced their physicochemical properties and therapeutic activities giving rise to their promising capacity for future biomedical applications.
Collapse
Affiliation(s)
- Asmaa Nour
- Composites and Nano-Structured Materials Research Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications, P.O. Box 21934, New Borg El-Arab, Alexandria, Egypt; Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 21568, Alexandria, Egypt.
| | - Reham Samir Hamida
- Molecular Biology Unit, Department of Zoology, Faculty of Science, Alexandria University, Egypt
| | - A El-Dissouky
- Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 21568, Alexandria, Egypt
| | - Hesham M A Soliman
- Composites and Nano-Structured Materials Research Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications, P.O. Box 21934, New Borg El-Arab, Alexandria, Egypt
| | - Heba M Refaat
- Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 21568, Alexandria, Egypt
| |
Collapse
|
6
|
Chen H, Qi H, Xiong P. Phycobiliproteins-A Family of Algae-Derived Biliproteins: Productions, Characterization and Pharmaceutical Potentials. Mar Drugs 2022; 20:md20070450. [PMID: 35877743 PMCID: PMC9318637 DOI: 10.3390/md20070450] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 12/04/2022] Open
Abstract
Phycobiliproteins (PBPs) are colored and water-soluble biliproteins found in cyanobacteria, rhodophytes, cryptomonads and cyanelles. They are divided into three main types: allophycocyanin, phycocyanin and phycoerythrin, according to their spectral properties. There are two methods for PBPs preparation. One is the extraction and purification of native PBPs from Cyanobacteria, Cryptophyta and Rhodophyta, and the other way is the production of recombinant PBPs by heterologous hosts. Apart from their function as light-harvesting antenna in photosynthesis, PBPs can be used as food colorants, nutraceuticals and fluorescent probes in immunofluorescence analysis. An increasing number of reports have revealed their pharmaceutical potentials such as antioxidant, anti-tumor, anti-inflammatory and antidiabetic effects. The advances in PBP biogenesis make it feasible to construct novel PBPs with various activities and produce recombinant PBPs by heterologous hosts at low cost. In this review, we present a critical overview on the productions, characterization and pharmaceutical potentials of PBPs, and discuss the key issues and future perspectives on the exploration of these valuable proteins.
Collapse
Affiliation(s)
- Huaxin Chen
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China;
- Correspondence:
| | - Hongtao Qi
- School of Life Sciences, Qingdao University, Qingdao 266000, China;
| | - Peng Xiong
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China;
| |
Collapse
|
7
|
Dong X, Yang F, Xu X, Zhu F, Liu G, Xu F, Chen G, Cao C, Teng L, Li X, Wang L, Li B. Protective effect of C-phycocyanin and apo-phycocyanin subunit on programmed necrosis of GC-1 spg cells induced by H 2 O 2. ENVIRONMENTAL TOXICOLOGY 2022; 37:1275-1287. [PMID: 35112789 DOI: 10.1002/tox.23482] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 01/08/2022] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
C-phycocyanin (C-PC) is an effective antioxidant and has an important value in medical research. Oxidative stress is considered to be one of the main underlying mechanisms of cell death, and reducing oxidative stress is one of the strategies to enhance germ cell viability. Herein, we investigated the protective effect and the mechanism of C-PC and apo-phycocyanin subunit on oxidative stress damage induced by H2 O2 in GC-1 spg cells. C-PC genes were cloned into the pGEX-4T-1 vectorand transformed into Escherichia coli BL21 to achieve the efficient expression of C-PC subunit. GC-1 spg cells were treated with 600 μM H2 O2 for 24 h to establish the oxidative stress damage model. Cell viability was detected by CCK-8. The degree of oxidative stress was detected by testing Superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities and glutathione (GSH) and Malondialdehyde (MDA) levels. Reactive oxygen species (ROS) was evaluated utilizingby 2', 7'-dichlorofluorescent-diacetate (DCFH-DA). Mitochondrial membrane potential was determined by JC-1. Cell necrosis rate was detected by Annexin V-FITC/PI. Expression of protein was detected by western blot. We found that C-PC and GST-CPC β significantly inhibited H2 O2 -induced oxidative damage of GC-1 spg cells, improved the ability of antioxidation, reduced ROS overproduction, and mitochondrial membrane potential loss, and inhibited the RIP-1/RIP-3/ p-MLKL signaling pathway to reduce the necrosis rate. The results demonstrated that C-PC played a protective role against H2 O2 -induced cell damage, especially its β subunit. This study provides a theoretical basis for C-PC as a potential protective agent of reproductive system.
Collapse
Affiliation(s)
- Xiaolei Dong
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Fanghao Yang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Xiaohui Xu
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Feng Zhu
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Guoxiang Liu
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Fenghua Xu
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Guang Chen
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Can Cao
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Lei Teng
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Xiaoxia Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Lin Wang
- Department of Reproduction, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Bing Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| |
Collapse
|
8
|
Dranseikienė D, Balčiūnaitė-Murzienė G, Karosienė J, Morudov D, Juodžiukynienė N, Hudz N, Gerbutavičienė RJ, Savickienė N. Cyano-Phycocyanin: Mechanisms of Action on Human Skin and Future Perspectives in Medicine. PLANTS (BASEL, SWITZERLAND) 2022; 11:1249. [PMID: 35567250 PMCID: PMC9101960 DOI: 10.3390/plants11091249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/29/2022] [Accepted: 04/30/2022] [Indexed: 12/03/2022]
Abstract
Cyano-phycocyanin is one of the active pigments of the blue-green algae and is usually isolated from the filamentous cyanobacteria Arthrospira platensis Gomont (Spirulina). Due to its multiple physiological functions and non-toxicity, cyano-phycocyanin may be a potential substance for the topical treatment of various skin diseases. Considering that the conventional medicine faces drug resistance, insufficient efficacy and side effects, the plant origin compounds can act as an alternative option. Thus, the aim of this paper was to review the wound healing, antimicrobial, antioxidative, anti-inflammatory, antimelanogenic and anticancer properties and mechanisms of cyano-phycocyanin topical activities on human skin. Moreover, possible applications and biotechnological requirements for pharmaceutical forms of cyano-phycocyanin for the treatment of various skin diseases are discussed in this review.
Collapse
Affiliation(s)
- Daiva Dranseikienė
- Department of Pharmacognosy, Faculty of Pharmacy, Academy of Medicine, Lithuanian University of Health Sciences, Sukileliu av. 13, 50162 Kaunas, Lithuania;
| | - Gabrielė Balčiūnaitė-Murzienė
- Faculty of Pharmacy, Institute of Pharmaceutical Technologies, Academy of Medicine, Lithuanian University of Health Sciences, Sukileliu av. 13, 50162 Kaunas, Lithuania;
| | - Jūratė Karosienė
- Laboratory of Algology and Microbial Ecology, Nature Research Centre, Akademijos St. 2, 08412 Vilnius, Lithuania; (J.K.); (D.M.)
| | - Dmitrij Morudov
- Laboratory of Algology and Microbial Ecology, Nature Research Centre, Akademijos St. 2, 08412 Vilnius, Lithuania; (J.K.); (D.M.)
| | - Nomeda Juodžiukynienė
- Department of Veterinary Pathobiology, Faculty of Veterinary, Academy of Veterinary, Lithuanian University of Health Sciences, Tilzes St. 18, 47181 Kaunas, Lithuania;
| | - Nataliia Hudz
- Department of Drug Technology and Biopharmaceutics, Danylo Halytsky Lviv National Medical University, Pekarska St, 69, 79000 Lviv, Ukraine;
- Department of Pharmacy and Ecological Chemistry, University of Opole, Kopernika pl. 11a, 45-040 Opole, Poland
| | - Rima Jūratė Gerbutavičienė
- Department of Drug Technology and Social Pharmacy, Faculty of Pharmacy, Academy of Medicine, Lithuanian University of Health Sciences, Sukileliu av. 13, 50162 Kaunas, Lithuania;
| | - Nijolė Savickienė
- Department of Pharmacognosy, Faculty of Pharmacy, Academy of Medicine, Lithuanian University of Health Sciences, Sukileliu av. 13, 50162 Kaunas, Lithuania;
| |
Collapse
|
9
|
Li W, Li F, Zhang Y, Ren H, Bao X, Wang Z, Wang Y. X-Linked Inhibitor of Apoptosis Protein (XIAP)-Loaded Magnetic Mesoporous Silica Nanoparticles Incorporated with miR-233 to Improve Radio Sensitization of Cervical Cancer Cells and Promote Apoptosis. J Biomed Nanotechnol 2022; 18:747-753. [PMID: 35715921 DOI: 10.1166/jbn.2022.3281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This study investigated the impact of magnetic mesoporous silica nanoparticles (MMSN)-encapsulated X-linked inhibitor of apoptosis protein (XIAP) and miR-233 on tumor microenvironment in cervical cancer, to provide targeted treatment and strategy, to improve radio sensitization of cancer cells. Cervical cancer cells were treated with normal saline (control group), XIAP-loaded metallic mesoporous silica nanoparticles (MMSNs), and miR-233-targeted material (XIAP group, XIAP+miR-233 group). Proliferation, apoptosis and colony forming ability of cancer cells were assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) method, flow cytometry and colony formation experiments. In vivo experiments were established to observe the impact of XIAP-loaded MMSNs and miR-233 on tumor growth. Administration of XIAP-loaded MMSNs suppressed tumor growth of cervical cancer, and presence of miR-233 targeted material further decreased tumor volume, increasing radio sensitization of cancer cells. In vitro experiments confirmed that, combined treatment of XIAP and miR-233 suppressed cancer cell proliferation and invasion when inducing apoptosis. XIAP MMSNs characterized by large unit surface area, high dispersion and adhesion, and prolonged circulation time, improving drug delivery and treatment selectivity of chemotherapeutic drugs. This study suggests that XIAP MMSNs with miR-233 material suppress cervical cancer cell progression and tumor growth when augmenting radiosensitization of cancer cells, providing evidence for targeted therapy for the disease.
Collapse
Affiliation(s)
- Wen Li
- Department of Radiation Oncology, The Second Affiliated Hospital of Xian Jiaotong University, Xi'an City, Shanxi Province, 710003, China
| | - Fang Li
- Department of Radiation Oncology, The Second Affiliated Hospital of Xian Jiaotong University, Xi'an City, Shanxi Province, 710003, China
| | - Yang Zhang
- Department of Radiation Oncology, The Second Affiliated Hospital of Xian Jiaotong University, Xi'an City, Shanxi Province, 710003, China
| | - Hongtao Ren
- Department of Radiation Oncology, The Second Affiliated Hospital of Xian Jiaotong University, Xi'an City, Shanxi Province, 710003, China
| | - Xing Bao
- Department of Radiation Oncology, The Second Affiliated Hospital of Xian Jiaotong University, Xi'an City, Shanxi Province, 710003, China
| | - Zhongwei Wang
- Department of Radiation Oncology, The Second Affiliated Hospital of Xian Jiaotong University, Xi'an City, Shanxi Province, 710003, China
| | - Yali Wang
- Department of Radiation Oncology, The Second Affiliated Hospital of Xian Jiaotong University, Xi'an City, Shanxi Province, 710003, China
| |
Collapse
|
10
|
Dagnino-Leone J, Figueroa CP, Castañeda ML, Youlton AD, Vallejos-Almirall A, Agurto-Muñoz A, Pavón Pérez J, Agurto-Muñoz C. Phycobiliproteins: Structural aspects, functional characteristics, and biotechnological perspectives. Comput Struct Biotechnol J 2022; 20:1506-1527. [PMID: 35422968 PMCID: PMC8983314 DOI: 10.1016/j.csbj.2022.02.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 02/18/2022] [Accepted: 02/19/2022] [Indexed: 12/13/2022] Open
Abstract
Phycobiliproteins (PBPs) are fluorescent proteins of various colors, including fuchsia, purple-blue and cyan, that allow the capture of light energy in auxiliary photosynthetic complexes called phycobilisomes (PBS). PBPs have several highly preserved structural and physicochemical characteristics. In the PBS context, PBPs function is capture luminous energy in the 450-650 nm range and delivers it to photosystems allowing photosynthesis take place. Besides the energy harvesting function, PBPs also have shown to have multiple biological activities, including antioxidant, antibacterial and antitumours, making them an interesting focus for different biotechnological applications in areas like biomedicine, bioenergy and scientific research. Nowadays, the main sources of PBPs are cyanobacteria and micro and macro algae from the phylum Rhodophyta. Due to the diverse biological activities of PBPs, they have attracted the attention of different industries, such as food, biomedical and cosmetics. This is why a large number of patents related to the production, extraction, purification of PBPs and their application as cosmetics, biopharmaceuticals or diagnostic applications have been generated, looking less ecological impact in the natural prairies of macroalgae and less culture time or higher productivity in cyanobacteria to satisfy the markets and applications that require high amounts of these molecules. In this review, we summarize the main structural characteristics of PBPs, their biosynthesys and biotechnological applications. We also address current trends and future perspectives of the PBPs market.
Collapse
Affiliation(s)
- Jorge Dagnino-Leone
- Grupo Interdisciplinario de Biotecnología Marina (GIBMAR), Centro de Biotecnología, Universidad de Concepción, Concepción 4030000, Chile
| | - Cristina Pinto Figueroa
- Grupo Interdisciplinario de Biotecnología Marina (GIBMAR), Centro de Biotecnología, Universidad de Concepción, Concepción 4030000, Chile
| | - Mónica Latorre Castañeda
- Grupo Interdisciplinario de Biotecnología Marina (GIBMAR), Centro de Biotecnología, Universidad de Concepción, Concepción 4030000, Chile
| | - Andrea Donoso Youlton
- Grupo Interdisciplinario de Biotecnología Marina (GIBMAR), Centro de Biotecnología, Universidad de Concepción, Concepción 4030000, Chile
| | - Alejandro Vallejos-Almirall
- Grupo Interdisciplinario de Biotecnología Marina (GIBMAR), Centro de Biotecnología, Universidad de Concepción, Concepción 4030000, Chile
| | - Andrés Agurto-Muñoz
- Grupo Interdisciplinario de Biotecnología Marina (GIBMAR), Centro de Biotecnología, Universidad de Concepción, Concepción 4030000, Chile
| | - Jessy Pavón Pérez
- Grupo Interdisciplinario de Biotecnología Marina (GIBMAR), Centro de Biotecnología, Universidad de Concepción, Concepción 4030000, Chile
- Departamento de Ciencia y Tecnología de los Alimentos (CyTA), Facultad de Farmacia, Universidad de Concepción, Concepción 4030000 Chile
| | - Cristian Agurto-Muñoz
- Grupo Interdisciplinario de Biotecnología Marina (GIBMAR), Centro de Biotecnología, Universidad de Concepción, Concepción 4030000, Chile
- Departamento de Ciencia y Tecnología de los Alimentos (CyTA), Facultad de Farmacia, Universidad de Concepción, Concepción 4030000 Chile
| |
Collapse
|
11
|
Jin SE, Lee SJ, Park CY. Mass-produced Spirulina-mediated altered responses in ARPE-19 and HaCaT cells for biomedical applications. FOOD AND BIOPRODUCTS PROCESSING 2022. [DOI: 10.1016/j.fbp.2021.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
McNamee MJ, Michod D, Niklison-Chirou MV. Can small molecular inhibitors that stop de novo serine synthesis be used in cancer treatment? Cell Death Discov 2021; 7:87. [PMID: 33931592 PMCID: PMC8087698 DOI: 10.1038/s41420-021-00474-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/18/2021] [Accepted: 04/02/2021] [Indexed: 11/22/2022] Open
Abstract
To sustain their malignancy, tumour cells acquire several metabolic adaptations such as increased oxygen, glucose, glutamine, and lipids uptake. Other metabolic processes are also enhanced as part of tumour metabolic reprogramming, for example, increased serine metabolism. Serine is a non-essential amino acid that supports several metabolic processes that are crucial for the growth and survival of proliferating cells, including protein, DNA, and glutathione synthesis. Indeed, increased activity of D-3-phosphoglycerate dehydrogenase (PHGDH), the enzyme rate-limiting de novo serine synthesis, has been extensively reported in several tumours. Therefore, selective inhibition of PHGDH may represent a new therapeutic strategy for over-expressing PHGDH tumours, owing to its downstream inhibition of essential biomass production such as one-carbon units and nucleotides. This perspective article will discuss the current status of research into small molecular inhibitors against PHGDH in colorectal cancer, breast cancer, and Ewing's sarcoma. We will summarise recent studies on the development of PHGDH-inhibitors, highlighting their clinical potential as new therapeutics. It also wants to shed a light on some of the key limitations of the use of PHGDH-inhibitors in cancer treatment which are worth taking into account.
Collapse
Affiliation(s)
- Megan Jessica McNamee
- Centre for Therapeutic Innovation (CTI-Bath), Department of Pharmacy and Pharmacology, University of Bath, Bath, BA2 7AY, United Kingdom
| | - David Michod
- University College London, Institute of Child Health, London, WC1N 1EH, United Kingdom
| | - Maria Victoria Niklison-Chirou
- Centre for Therapeutic Innovation (CTI-Bath), Department of Pharmacy and Pharmacology, University of Bath, Bath, BA2 7AY, United Kingdom.
| |
Collapse
|
13
|
Phycocyanin from Arthrospira platensis as Potential Anti-Cancer Drug: Review of In Vitro and In Vivo Studies. Life (Basel) 2021; 11:life11020091. [PMID: 33513794 PMCID: PMC7911896 DOI: 10.3390/life11020091] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 12/18/2022] Open
Abstract
The application of cytostatic drugs or natural substances to inhibit cancer growth and progression is an important and evolving subject of cancer research. There has been a surge of interest in marine bioresources, particularly algae, as well as cyanobacteria and their bioactive ingredients. Dried biomass products of Arthrospira and Chlorella have been categorized as “generally recognized as safe” (GRAS) by the US Food and Drug Administration (FDA). Of particular importance is an ingredient of Arthrospira: phycocyanin, a blue-red fluorescent, water-soluble and non-toxic biliprotein pigment. It is reported to be the main active ingredient of Arthrospira and was shown to have therapeutic properties, including anti-oxidant, anti-inflammatory, immune-modulatory and anti-cancer activities. In the present review, in vitro and in vivo data on the effects of phycocyanin on various tumor cells and on cells from healthy tissues are summarized. The existing knowledge of underlying molecular mechanisms, and strategies to improve the efficiency of potential phycocyanin-based anti-cancer therapies are discussed.
Collapse
|
14
|
Ji H, Liu G, Han J, Zhu F, Dong X, Li B. C-phycocyanin inhibits epithelial-to-mesenchymal transition in Caski cells. Cancer Cell Int 2020; 20:292. [PMID: 32655324 PMCID: PMC7339474 DOI: 10.1186/s12935-020-01384-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 06/26/2020] [Indexed: 12/12/2022] Open
Abstract
Background In cervical cancer, most patients die of metastasis. The epithelial-to-mesenchymal transition (EMT) is a pivotal and intricate process that increases the metastatic potential of cervical cancer. C-phycocyanin (C-PC) is a natural marine product isolated and purified from Spirulina platensis, has been investigated that has anti-cancer function. The aim of this study was to explore the inhibitory effect of C-phycocyanin on the migration and invasion of cervical cancer cells induced by transforming growth factor-β1 (TGF-β1), so as to provide a new idea for the treatment and prognosis of cervical cancer. Methods A wound-healing assay, an invasion assay, immunofluorescence assay, western blot, flow cytometry and real-time reverse transcriptione polymerase chain reaction were explored in cervical cancer Caski cell lines. TGF-β/smad signaling pathway was evaluated of in Caski cell lines. Results Our study indicated that TGF-β1 induced EMT in cervical cancer cells. C-phycocyanin inhibited EMT in Caski cells by down-regulating N-cadherin and up-regulating E-cadherin protein expression. Furthermore, C-phycocyanin could inhibit the expression and proteins Twist, Snail and Zeb1 transcription factors related to EMT. In addition, C-phycocyanin could inhibit the migration and invasion of Caski cells induced by TGF-β1. Besides, C-phycocyanin inhibited EMT through TGF-β/smads signaling pathway. We also found C-phycocyanin induced cell cycle G0/G1 arrest by decreasing protein expression levels of Cyclin D1 and p27. Conclusions C-phycocyanin reversed TGF-β1-induced epithelial-to-mesenchymal transition in cervical cancer cells and down-regulated the TGF-β/samd signaling pathway induced G0/G1 arrest of tumor cell cycle.
Collapse
Affiliation(s)
- Huanhuan Ji
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, 308 Ningxia Road, Qingdao, 266071 People's Republic of China
| | - Guoxiang Liu
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, 308 Ningxia Road, Qingdao, 266071 People's Republic of China
| | - Jingjing Han
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, 308 Ningxia Road, Qingdao, 266071 People's Republic of China
| | - Feng Zhu
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, 308 Ningxia Road, Qingdao, 266071 People's Republic of China
| | - Xiaolei Dong
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, 308 Ningxia Road, Qingdao, 266071 People's Republic of China
| | - Bing Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, 308 Ningxia Road, Qingdao, 266071 People's Republic of China
| |
Collapse
|
15
|
Li G, Zheng YH, Xu L, Feng J, Tang HL, Luo C, Song YP, Chen XQ. BRD4 inhibitor nitroxoline enhances the sensitivity of multiple myeloma cells to bortezomib in vitro and in vivo by promoting mitochondrial pathway-mediated cell apoptosis. Ther Adv Hematol 2020; 11:2040620720932686. [PMID: 32551032 PMCID: PMC7281877 DOI: 10.1177/2040620720932686] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 05/15/2020] [Indexed: 12/19/2022] Open
Abstract
Background Multiple myeloma (MM) is the second most common hematological neoplasm. Wide administration of bortezomib significantly improves the survival of MM patients compared with conventional chemotherapy. Bromodomain-containing protein 4 (BRD4) inhibitors also have been demonstrated to retard cell proliferation and induce cellular apoptosis in various cancers. However, it is unclear whether the BRD4 inhibitor nitroxoline plus bortezomib has a synergistic anti-tumor effect on MM. Methods Cell viability was determined via 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Cell cycle and cell apoptosis were assessed via flow cytometry. Protein expression levels were determined via western blotting. The expression of apoptosis-related proteins in xenograft tissue were detected by means of immunohistochemistry. Results Treatment with nitroxoline or bortezomib suppressed cell proliferation, and caused G0/G1 phase arrest and apoptosis in H929 and RPMI8226 cells. Furthermore, nitroxoline intensified the retardation of cell proliferation, as well as further enhanced the G0/G1 phase arrest and apoptosis induced by bortezomib in H929 and RPMI8226 cells. The western blot analysis revealed that nitroxoline or bortezomib treatment markedly diminished the levels of Bcl-2 and cyclin D1, and increased the levels of p21, Bax, cleaved PARP and cleaved caspase-3. Combination of these two agents was observed to result in further marked changes on these levels compared with nitroxoline or bortezomib treatment alone. What is more, in the xenograft tumor model, combinative treatment markedly inhibited tumor growth compared with the single drug treatment. Conclusion Combination of bortezomib with nitroxoline has a synergistic anti-tumor activity in MM cells and may be a novel treatment method for MM.
Collapse
Affiliation(s)
- Guang Li
- Department of Hematology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yan-Hua Zheng
- Department of Hematology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Li Xu
- Department of Hematology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Juan Feng
- Department of Hematology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Hai-Long Tang
- Department of Hematology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Cheng Luo
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, China
| | - Yan-Ping Song
- Institute of Hematology, Xi'an Central Hospital, 161 Xiwu Road, Xi'an, Shaanxi 710003, P.R. China
| | - Xie-Qun Chen
- Department of Hematology, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
16
|
Bannu SM, Lomada D, Gulla S, Chandrasekhar T, Reddanna P, Reddy MC. Potential Therapeutic Applications of C-Phycocyanin. Curr Drug Metab 2020; 20:967-976. [PMID: 31775595 DOI: 10.2174/1389200220666191127110857] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/10/2019] [Accepted: 10/25/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Cancer and other disorders such as inflammation, autoimmune diseases and diabetes are the major health problems observed all over the world. Therefore, identifying a therapeutic target molecule for the treatment of these diseases is urgently needed to benefit public health. C-Phycocyanin (C-PC) is an important light yielding pigment intermittently systematized in the cyanobacterial species along with other algal species. It has numerous applications in the field of biotechnology and drug industry and also possesses antioxidant, anticancer, antiinflammatory, enhanced immune function, including liver and kidney protection properties. The molecular mechanism of action of C-PC for its anticancer activity could be the blockage of cell cycle progression, inducing apoptosis and autophagy in cancer cells. OBJECTIVES The current review summarizes an update on therapeutic applications of C-PC, its mechanism of action and mainly focuses on the recent development in the field of C-PC as a drug that exhibits beneficial effects against various human diseases including cancer and inflammation. CONCLUSION The data from various studies suggest the therapeutic applications of C-PC such as anti-cancer activity, anti-inflammation, anti-angiogenic activity and healing capacity of certain autoimmune disorders. Mechanism of action of C-PC for its anticancer activity is the blockage of cell cycle progression, inducing apoptosis and autophagy in cancer cells. The future perspective of C-PC is to identify and define the molecular mechanism of its anti-cancer, anti-inflammatory and antioxidant activities, which would shed light on our knowledge on therapeutic applications of C-PC and may contribute significant benefits to global public health.
Collapse
Affiliation(s)
- Saira M Bannu
- Department of Biotechnology and Bioinformatics, Yogi Vemana University, Kadapa, Andhra Pradesh 516 005, India
| | - Dakshayani Lomada
- Department of Genetics and Genomics, Yogi Vemana University, Kadapa, Andhra Pradesh 516 005, India
| | - Surendra Gulla
- Department of Biotechnology and Bioinformatics, Yogi Vemana University, Kadapa, Andhra Pradesh 516 005, India
| | - Thummala Chandrasekhar
- Department of Environmental Science, Yogi Vemana University, Kadapa, Andhra Pradesh 516005, India
| | - Pallu Reddanna
- Department of Animal Sciences, University of Hyderabad, Hyderabad, Telangana 500 046, India
| | - Madhava C Reddy
- Department of Biotechnology and Bioinformatics, Yogi Vemana University, Kadapa, Andhra Pradesh 516 005, India
| |
Collapse
|
17
|
Zhang J, Zhu S, Tan Q, Cheng D, Dai Q, Yang Z, Zhang L, Li F, Zuo Y, Dai W, Chen L, Gu E, Xu G, Wei Z, Cao Y, Liu X. Combination therapy with ropivacaine-loaded liposomes and nutrient deprivation for simultaneous cancer therapy and cancer pain relief. Am J Cancer Res 2020; 10:4885-4899. [PMID: 32308756 PMCID: PMC7163441 DOI: 10.7150/thno.43932] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/13/2020] [Indexed: 01/02/2023] Open
Abstract
Autophagy allows cancer cells to respond changes in nutrient status by degrading and recycling non-essential intracellular contents. Inhibition of autophagy combined with nutrient deprivation is an effective strategy to treat cancer. Pain is a primary determinant of poor quality of life in advanced cancer patients, but there is currently no satisfactory treatment. In addition, effective treatment of cancer does not efficiently relieve cancer pain, but may increase pain in many cases. Hence, few studies focus on simultaneous cancer therapy and pain relief, and made this situation even worse. Method: Ropivacaine was loaded into tumor-active targeted liposomes. The cytotoxicity of ropivacaine-based combination therapy in B16 and HeLa cells were tested. Moreover, a mice model of cancer pain which was induced by inoculation of melanoma near the sciatic nerve was constructed to assess the cancer suppression and pain relief effects of ropivacaine-based combination therapy. Results: Ropivacaine and ropivacaine-loaded liposomes (Rop-DPRL) were novelly found to damage autophagic degradation. Replicated administration of Rop-DPRL and calorie restriction (CR) could efficiently repress the development of tumor. In addition, administration of Rop-DPRL could relieve cancer pain with its own analgestic ability in a short duration, while repeated administration of Rop-DPRL and CR resulted in continuous alleviation of cancer pain through reduction of VEGF-A levels in advanced cancer mice. Further, dual inhibition of phosphorylation of STAT3 at Tyr705 and Ser727 by Rop-DPRL and CR contribute to the reduction of VEGF-A. Conclusion: Combination therapy with Rop-DPRL and nutrient deprivation simultaneously suppresses cancer growth and relieves cancer pain.
Collapse
|
18
|
Cheng Z, Zhang W, Hou X, Wang B, Zhu Y, Zhang P, Zhao F, Chen D. Synthesis, Characterization, and Evaluation of Redox-Sensitive Chitosan Oligosaccharide Nanoparticles Coated with Phycocyanin for Drug Delivery. NANOSCALE RESEARCH LETTERS 2019; 14:389. [PMID: 31865462 PMCID: PMC6925613 DOI: 10.1186/s11671-019-3207-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 11/12/2019] [Indexed: 06/10/2023]
Abstract
In this paper, a type of phycocyanin (PC)-functionalized and curcumin (CUR)-loaded biotin-chitosan oligosaccharide-dithiodipropionic acid-curcumin (BCSC) nanoparticles, called CUR-BCSC@PCs, were designed to enhance the biocompatibility of CUR. The structure of BCSC was confirmed using 1H-NMR. In CUR-BCSC@PCs with an average hydrodynamic diameter of 160.3 ± 9.0 nm, the biomimetic protein corona gave the nanoparticles excellent stability and the potential to avoid protein adsorption in blood circulation. The in vitro release experiment verified that CUR-BCSC@PCs with redox responsive shells were sensitive to high concentrations of glutathione. In addition, CUR-BCSC@PCs were effective at increasing the inhibitory activity on the proliferation of A549 cells by enhancing the intracellular uptake of CUR. These results indicated that CUR-BCSC@PCs have great application prospects in cancer therapy as effective drug delivery carriers.
Collapse
Affiliation(s)
- Ziting Cheng
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, Universities of Shandong, Yantai University, Yantai, People's Republic of China
| | - Wei Zhang
- Department of Radiotherapy, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, People's Republic of China
| | - Xiaoya Hou
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, Universities of Shandong, Yantai University, Yantai, People's Republic of China
| | - Bingjie Wang
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, Universities of Shandong, Yantai University, Yantai, People's Republic of China
| | - Yanping Zhu
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, Universities of Shandong, Yantai University, Yantai, People's Republic of China
| | - Peng Zhang
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, Universities of Shandong, Yantai University, Yantai, People's Republic of China
| | - Feng Zhao
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, Universities of Shandong, Yantai University, Yantai, People's Republic of China
| | - Daquan Chen
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, Universities of Shandong, Yantai University, Yantai, People's Republic of China.
| |
Collapse
|