1
|
Yang L, Wang Y, Ye X, Liu Q, Qu D, Chen Y. Traditional Chinese medicine-based drug delivery systems for anti-tumor therapies. Chin J Nat Med 2024; 22:1177-1192. [PMID: 39725515 DOI: 10.1016/s1875-5364(24)60746-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Indexed: 12/28/2024]
Abstract
The treatment of tumors continues to be significantly challenging. The presence of multiple modalities, including surgery, radiation, chemotherapy and immunotherapy, the therapeutic outcomes remain limited and are often associated with adverse effects and inconsistent efficacy across cancer types. Recent studies have highlighted the potential of active components from traditional Chinese medicine (TCM) for their anti-cancer properties, which are attributable to multi-targeted mechanisms and broad pharmacological actions. Despite this potential, TCM-derived compounds are commonly limited by poor water solubility, low bioavailability, and suboptimal targeting. Currently, it is believed that advances in nanotechnology could address these limitations. Nanoparticles (NPs), which possess properties such as enhanced bioavailability, controlled release and precise targeting, have been used to improve the therapeutic efficacy of TCM components in cancer therapy. This review discusses the use of NPs for the delivery of active TCM compounds via organic-inorganic nanocarriers, highlighting innovative strategies that enhance the effectiveness of TCM-based anti-tumor components to provide insights into improving clinical outcomes while advancing the modernization and global application of TCM in oncology.
Collapse
Affiliation(s)
- Ling Yang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Multi-component of Traditional Chinese Medicine and Microecology Research Center, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China.
| | - Yani Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Multi-component of Traditional Chinese Medicine and Microecology Research Center, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Xietao Ye
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Multi-component of Traditional Chinese Medicine and Microecology Research Center, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Qiaoming Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Multi-component of Traditional Chinese Medicine and Microecology Research Center, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Ding Qu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Multi-component of Traditional Chinese Medicine and Microecology Research Center, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China.
| | - Yan Chen
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Multi-component of Traditional Chinese Medicine and Microecology Research Center, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China; Jiangsu Clinical Innovation Center of Digestive Cancer of Traditional Chinese Medicine, Nanjing 210028, China.
| |
Collapse
|
2
|
Xing L, Chen Y, Zheng T. Research progress of nanoparticles in diagnosis and treatment of hepatocellular carcinoma. Open Life Sci 2024; 19:20220932. [PMID: 39220591 PMCID: PMC11365471 DOI: 10.1515/biol-2022-0932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 09/04/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is among the most common malignant liver tumors. Despite progress in anticancer drugs and surgical approaches, early detection of HCC remains challenging, often leading to late-stage diagnosis where rapid disease progression precludes surgical intervention, leaving chemotherapy as the only option. However, the systemic toxicity, low bioavailability, and significant adverse effects of chemotherapy drugs often lead to resistance, rendering treatments ineffective for many patients. This article outlines how nanoparticles, following functional modification, offer high sensitivity, reduced drug toxicity, and extended duration of action, enabling precise targeting of drugs to HCC tissues. Combined with other therapeutic modalities and imaging techniques, this significantly enhances the diagnosis, treatment, and long-term prognosis of HCC. The advent of nanomedicine provides new methodologies and strategies for the precise diagnosis and integrated treatment of HCC.
Collapse
Affiliation(s)
- Lijun Xing
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Hubei University of Medicine, Institute of Ultrasonic Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, P. R. China
| | - Yun Chen
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Institute of Ultrasonic Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, P. R. China
| | - Tingting Zheng
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Department of Ultrasound, Institute of Ultrasonic Medicine, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, P. R. China
| |
Collapse
|
3
|
Chauhan A, Pathak VM, Yadav M, Chauhan R, Babu N, Chowdhary M, Ranjan A, Mathkor DM, Haque S, Tuli HS, Ramniwas S, Yadav V. Role of ursolic acid in preventing gastrointestinal cancer: recent trends and future perspectives. Front Pharmacol 2024; 15:1405497. [PMID: 39114347 PMCID: PMC11303223 DOI: 10.3389/fphar.2024.1405497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 06/03/2024] [Indexed: 08/10/2024] Open
Abstract
Gastrointestinal malignancies are one of the major worldwide health concerns. In the present review, we have assessed the plausible therapeutic implication of Ursolic Acid (UA) against gastrointestinal cancer. By modulating several signaling pathways critical in cancer development, UA could offer anti-inflammatory, anti-proliferative, and anti-metastatic properties. However, being of low oral bioavailability and poor permeability, its clinical value is restricted. To deliver and protect the drug, liposomes and polymer micelles are two UA nanoformulations that can effectively increase medicine stability. The use of UA for treating cancers is safe and appropriate with low toxicity characteristics and a predictable pharmacokinetic profile. Although the bioavailability of UA is limited, its nanoformulations could emerge as an alternative to enhance its efficacy in treating GI cancers. Further optimization and validation in the clinical trials are necessary. The combination of molecular profiling with nanoparticle-based drug delivery technologies holds the potential for bringing UA to maximum efficacy, looking for good prospects with GI cancer treatment.
Collapse
Affiliation(s)
- Abhishek Chauhan
- Amity Institute of Environmental Toxicology Safety and Management, Amity University, Noida, Uttar Pradesh, India
| | | | - Monika Yadav
- Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Ritu Chauhan
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, Uttarakhand, India
| | - Neelesh Babu
- Department of Microbiology, Baba Farid Institute of Technology, Dehradun, Uttarakhand, India
| | - Manish Chowdhary
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Anuj Ranjan
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Darin Mansor Mathkor
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
| | - Hardeep Singh Tuli
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Ambala, India
| | - Seema Ramniwas
- University Centre for Research and Development, University Institute of Pharmaceutical Sciences, Chandigarh University, Mohali, India
| | - Vikas Yadav
- Department of Translational Medicine, Clinical Research Centre, Skåne University Hospital, Lund University, Malmö, Sweden
| |
Collapse
|
4
|
Zhang M, Ying N, Chen J, Wu L, Liu H, Luo S, Zeng D. Engineering a pH-responsive polymeric micelle co-loaded with paclitaxel and triptolide for breast cancer therapy. Cell Prolif 2024; 57:e13603. [PMID: 38228366 DOI: 10.1111/cpr.13603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/29/2023] [Accepted: 01/05/2024] [Indexed: 01/18/2024] Open
Abstract
Breast cancer has overtaken lung cancer as the number one cancer worldwide. Paclitaxel (PTX) is a widely used first-line anti-cancer drug, but it is not very effective in clinical breast cancer therapy. It has been reported that triptolide (TPL) can enhance the anticancer effect of paclitaxel, and better synergistic therapeutic effects are seen with concomitant administration of PTX and TPL. In this study, we developed pH-responsive polymeric micelles for co-delivery of PTX and TPL, which disassembling in acidic tumour microenvironments to target drug release and effectively kill breast cancer cells. Firstly, we synthesized amphiphilic copolymer mPEG2000-PBAE through Michael addition reaction, confirmed by various characterizations. Polymer micelles loaded with TPL and PTX (TPL/PTX-PMs) were prepared by the thin film dispersion method. The average particle size of TPL/PTX-PMs was 97.29 ± 1.63 nm, with PDI of 0.237 ± 0.003 and Zeta potential of 9.57 ± 0.80 mV, LC% was 6.19 ± 0.21%, EE% was 88.67 ± 3.06%. Carrier material biocompatibility and loaded micelle cytotoxicity were assessed using the CCK-8 method, demonstrating excellent biocompatibility. Under the same drug concentration, TPL/PTX-PMs were the most toxic to tumour cells and had the strongest proliferation inhibitory effect. Cellular uptake assays revealed that TPL/PTX-PMs significantly increased intracellular drug concentration and enhanced antitumor activity. Overall, pH-responsive micellar co-delivery of TPL and PTX is a promising approach for breast cancer therapy.
Collapse
Affiliation(s)
- Mengmeng Zhang
- Shanghai University of Medicine & Health Sciences, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Na Ying
- Shanghai University of Medicine & Health Sciences, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jie Chen
- Tongji University, Shanghai, China
| | - Liwen Wu
- Shanghai University of Medicine & Health Sciences, Shanghai, China
| | | | - Shihua Luo
- Department of Traumatology, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Dongdong Zeng
- Shanghai University of Medicine & Health Sciences, Shanghai, China
| |
Collapse
|
5
|
Qian J, Guo Y, Xu Y, Wang X, Chen J, Wu X. Combination of micelles and liposomes as a promising drug delivery system: a review. Drug Deliv Transl Res 2023; 13:2767-2789. [PMID: 37278964 DOI: 10.1007/s13346-023-01368-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2023] [Indexed: 06/07/2023]
Abstract
Among various nanocarriers, liposomes, and micelles are relatively mature drug delivery systems with the advantages of prolonging drug half-life, reducing toxicity, and improving efficacy. However, both have problems, such as poor stability and insufficient targeting. To further exploit the excellent properties of micelles and liposomes and avoid their shortcomings, researchers have developed new drug delivery systems by combining the two and making use of their respective advantages to achieve the goals of increasing the drug loading capacity, multiple targeting, and multiple drug delivery. The results have demonstrated that this new combination approach is a very promising delivery platform. In this paper, we review the combination strategies, preparation methods, and applications of micelles and liposomes to introduce the research progress, advantages, and challenges of composite carriers.
Collapse
Affiliation(s)
- Jiecheng Qian
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yankun Guo
- Department of Pharmacy, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Pharmacy, Organization Department, Shanghai General Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Youfa Xu
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Shanghai Wei Er Lab, Shanghai, China
| | - Xinyu Wang
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jianming Chen
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China.
- Shanghai Wei Er Lab, Shanghai, China.
| | - Xin Wu
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China.
- Shanghai Wei Er Lab, Shanghai, China.
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai, China.
| |
Collapse
|
6
|
Kaps L, Limeres MJ, Schneider P, Svensson M, Zeyn Y, Fraude S, Cacicedo ML, Galle PR, Gehring S, Bros M. Liver Cell Type-Specific Targeting by Nanoformulations for Therapeutic Applications. Int J Mol Sci 2023; 24:11869. [PMID: 37511628 PMCID: PMC10380755 DOI: 10.3390/ijms241411869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/21/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Hepatocytes exert pivotal roles in metabolism, protein synthesis and detoxification. Non-parenchymal liver cells (NPCs), largely comprising macrophages, dendritic cells, hepatic stellate cells and liver sinusoidal cells (LSECs), serve to induce immunological tolerance. Therefore, the liver is an important target for therapeutic approaches, in case of both (inflammatory) metabolic diseases and immunological disorders. This review aims to summarize current preclinical nanodrug-based approaches for the treatment of liver disorders. So far, nano-vaccines that aim to induce hepatitis virus-specific immune responses and nanoformulated adjuvants to overcome the default tolerogenic state of liver NPCs for the treatment of chronic hepatitis have been tested. Moreover, liver cancer may be treated using nanodrugs which specifically target and kill tumor cells. Alternatively, nanodrugs may target and reprogram or deplete immunosuppressive cells of the tumor microenvironment, such as tumor-associated macrophages. Here, combination therapies have been demonstrated to yield synergistic effects. In the case of autoimmune hepatitis and other inflammatory liver diseases, anti-inflammatory agents can be encapsulated into nanoparticles to dampen inflammatory processes specifically in the liver. Finally, the tolerance-promoting activity especially of LSECs has been exploited to induce antigen-specific tolerance for the treatment of allergic and autoimmune diseases.
Collapse
Affiliation(s)
- Leonard Kaps
- I. Department of Medicine, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - María José Limeres
- Children's Hospital, University Medical Center, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Paul Schneider
- I. Department of Medicine, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Malin Svensson
- Children's Hospital, University Medical Center, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Yanira Zeyn
- Department of Dermatology, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Silvia Fraude
- Children's Hospital, University Medical Center, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Maximiliano L Cacicedo
- Children's Hospital, University Medical Center, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Peter R Galle
- I. Department of Medicine, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Stephan Gehring
- Children's Hospital, University Medical Center, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Matthias Bros
- Department of Dermatology, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| |
Collapse
|
7
|
Basu A, Namporn T, Ruenraroengsak P. Critical Review in Designing Plant-Based Anticancer Nanoparticles against Hepatocellular Carcinoma. Pharmaceutics 2023; 15:1611. [PMID: 37376061 DOI: 10.3390/pharmaceutics15061611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Hepatocellular carcinoma (HCC), accounting for 85% of liver cancer cases, continues to be the third leading cause of cancer-related deaths worldwide. Although various forms of chemotherapy and immunotherapy have been investigated in clinics, patients continue to suffer from high toxicity and undesirable side effects. Medicinal plants contain novel critical bioactives that can target multimodal oncogenic pathways; however, their clinical translation is often challenged due to poor aqueous solubility, low cellular uptake, and poor bioavailability. Nanoparticle-based drug delivery presents great opportunities in HCC therapy by increasing selectivity and transferring sufficient doses of bioactives to tumor areas with minimal damage to adjacent healthy cells. In fact, many phytochemicals encapsulated in FDA-approved nanocarriers have demonstrated the ability to modulate the tumor microenvironment. In this review, information about the mechanisms of promising plant bioactives against HCC is discussed and compared. Their benefits and risks as future nanotherapeutics are underscored. Nanocarriers that have been employed to encapsulate both pure bioactives and crude extracts for application in various HCC models are examined and compared. Finally, the current limitations in nanocarrier design, challenges related to the HCC microenvironment, and future opportunities are also discussed for the clinical translation of plant-based nanomedicines from bench to bedside.
Collapse
Affiliation(s)
- Aalok Basu
- Department of Pharmacy, Faculty of Pharmacy, Mahidol University, 447 Sri-Ayutthaya Rd., Rajathevi, Bangkok 10400, Thailand
| | - Thanaphon Namporn
- Department of Pharmacy, Faculty of Pharmacy, Mahidol University, 447 Sri-Ayutthaya Rd., Rajathevi, Bangkok 10400, Thailand
| | - Pakatip Ruenraroengsak
- Department of Pharmacy, Faculty of Pharmacy, Mahidol University, 447 Sri-Ayutthaya Rd., Rajathevi, Bangkok 10400, Thailand
| |
Collapse
|
8
|
Enhancement of stability and dermal delivery of Carissa carandas Linn. leaf extract by liquid crystals. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
9
|
Design and Characterization of Lipid-Surfactant-Based Systems for Enhancing Topical Anti-Inflammatory Activity of Ursolic Acid. Pharmaceutics 2023; 15:pharmaceutics15020366. [PMID: 36839688 PMCID: PMC9960079 DOI: 10.3390/pharmaceutics15020366] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
Skin inflammation is a symptom of many skin diseases, such as eczema, psoriasis, and dermatitis, which cause rashes, redness, heat, or blistering. The use of natural products with anti-inflammatory properties has gained importance in treating these symptoms. Ursolic acid (UA), a promising natural compound that is used to treat skin diseases, exhibits low aqueous solubility, resulting in poor absorption and low bioavailability. Designing topical formulations focuses on providing adequate delivery via application to the skin surface. The aim of this study was to formulate and characterize lipid-surfactant-based systems for the delivery of UA. Microemulsions and liquid crystalline systems (LCs) were characterized by polarized light microscopy (PLM), rheology techniques, and textural and bioadhesive assays. PLM supported the self-assembly of these systems and elucidated their formation. Rheologic examination revealed pseudoplastic and thixotropic behavior appropriate, and assays confirmed the ability of these formulations to adhere to the skin. In vivo studies were performed, and inflammation induced by croton oil was assessed for response to microemulsions and LCs. UA anti-inflammatory activities of ~60% and 50% were demonstrated by two microemulsions and 40% and 35% by two LCs, respectively. These data support the continued development of colloidal systems to deliver UA to ameliorate skin inflammation.
Collapse
|
10
|
Gupta DS, Kaur G, Bhushan S, Sak K, Garg VK, Aggarwal D, Joshi H, Kumar P, Yerer MB, Tuli HS. Phyto nanomedicine for cancer therapy. NANOTECHNOLOGY IN HERBAL MEDICINE 2023:313-347. [DOI: 10.1016/b978-0-323-99527-6.00007-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
|
11
|
Yang B, Zhu Q, Wang X, Mao J, Zhou S. Using network pharmacology and molecular docking verification to explore the mechanism of ursolic acid in the treatment of osteoporosis. Medicine (Baltimore) 2022; 101:e32222. [PMID: 36626454 PMCID: PMC9750584 DOI: 10.1097/md.0000000000032222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Whether ursolic acid is an effective drug in treatment of osteoporosis (OP) and how it exhibit activity effect on OP is unclear. To investigated the potential molecular mechanism of ursolic acid in the treatment of OP and figured out its possible mechanism is necessary. The target genes of ursolic acid were screened by using the database of traditional chinese medicine systems pharmacology, PubMed database and UniProt database. OP-related target genes were searched by GeneCards database, and utilized online mapping tool to obtain common target genes of component-disease. String database was used to construct a protein-protein interaction (PPI) network of component-disease common target genes and perform topological analysis to screen core target genes. DAVID database was performed gene ontology (GO) functional annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis for component-disease shared target genes. Using the core target protein as the receptor and ursolic acid as the ligand, the molecular docking was performed using AutoDockVina 1.1.2 software. A total of 52 ursolic acid-related target genes and 4657 OP-related target genes were excavated, with a total of collective 43 target genes. The above-mentioned PPI network with shared target genes contains 43 nodes and 510 edges, with an average node degree value of 23.32. A total of 24 core target genes were obtained, mainly including tumor protein p53 (TP53), vascular endothelial growth factor A (VEGFA), interleukin-6 (IL6), tumor necrosis factor (TNF), caspase3 (CASP3), matrix metallo protein (MMP9), transcription factor AP-1 (JUN), activator of transcription 3 (STAT3), mitogen-activated protein kinase 8 (MAPK8), and prostaglandin endoperoxidase 2 (PTGS2), respectively. According to KEGG enrichment analysis, there are 126 treatment of OP signaling pathway were enriched. GO enrichment analysis revealed that 313 biological processes were identified. The molecular docking result showed that the binding energies were all lower than -5 kcal/mol, indicating strong binding activity to the protein by the 6 core target gene. The therapeutic effect of ursolic acid on OP may be achieved by regulating TP53, JUN, IL6, VEGFA, CASP3, and MAPK8 genes, respectively. It exhibits possible biological function in the treatment of OP mainly involve positive regulation of apoptotic process, response to drug, incytoplasm, cytosol, protein binding, identical protein binding. Its mechanism may related to multiple therapeutic targets and signaling pathways such as cancer pathway, hepatitis B, and TNF signaling pathway.
Collapse
Affiliation(s)
- Bowen Yang
- Department of Orthopedics, Jiangjin Central Hospital of Chongqing, Chongqing, China
| | - Qiuwen Zhu
- Department of Nephrology, Jiangjin Central Hospital of Chongqing, Chongqing, China
| | - Xiaodong Wang
- Department of Pharmacology, Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Jingxin Mao
- Department of Pharmacology, Chongqing Medical and Pharmaceutical College, Chongqing, China
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
- * Correspondence: Shuqing Zhou, Department of Orthopedics, Jiangjin Central Hospital of Chongqing, NO.725, Jiangzhou Avenue, Jiangjin District, Chongqing 402260, ChinaJingxin Mao, Chongqing Medical and Pharmaceutical College, Chongqing 400030, China (e-mail: and or )
| | - Shuqing Zhou
- Department of Orthopedics, Jiangjin Central Hospital of Chongqing, Chongqing, China
- * Correspondence: Shuqing Zhou, Department of Orthopedics, Jiangjin Central Hospital of Chongqing, NO.725, Jiangzhou Avenue, Jiangjin District, Chongqing 402260, ChinaJingxin Mao, Chongqing Medical and Pharmaceutical College, Chongqing 400030, China (e-mail: and or )
| |
Collapse
|
12
|
Li Y, Nie J, Dai J, Yin J, Huang B, Liu J, Chen G, Ren L. pH/Redox Dual-Responsive Drug Delivery System with on-Demand RGD Exposure for Photochemotherapy of Tumors. Int J Nanomedicine 2022; 17:5621-5639. [DOI: 10.2147/ijn.s388342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/15/2022] [Indexed: 11/24/2022] Open
|
13
|
Jia W, Han Y, Mao X, Xu W, Zhang Y. Nanotechnology strategies for hepatocellular carcinoma diagnosis and treatment. RSC Adv 2022; 12:31068-31082. [PMID: 36349046 PMCID: PMC9621307 DOI: 10.1039/d2ra05127c] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/20/2022] [Indexed: 10/10/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a common malignancy threatening human health, and existing diagnostic and therapeutic techniques are facing great challenges. In the last decade or so, nanotechnology has been developed and improved for tumor diagnosis and treatment. For example, nano-intravenous injections have been approved for malignant perivascular epithelioid cell tumors. This article provides a comprehensive review of the applications of nanotechnology in HCC in recent years: (I) in radiological imaging, magnetic resonance imaging (MRI), fluorescence imaging (FMI) and multimodality imaging. (II) For diagnostic applications in HCC serum markers. (III) As embolic agents in transarterial chemoembolization (TACE) or directly as therapeutic drugs. (IV) For application in photothermal therapy and photodynamic therapy. (V) As carriers of chemotherapeutic drugs, targeted drugs, and natural plant drugs. (VI) For application in gene and immunotherapy. Compared with the traditional methods for diagnosis and treatment of HCC, nanoparticles have high sensitivity, reduce drug toxicity and have a long duration of action, and can also be combined with photothermal and photodynamic multimodal combination therapy. These summaries provide insights for the further development of nanotechnology applications in HCC.
Collapse
Affiliation(s)
- WeiLu Jia
- Medical School, Southeast University Nanjing 210009 China
| | - YingHui Han
- Outpatient Department, The Second Affiliated Hospital of Nanjing Medical University Nanjing 210009 China
| | - XinYu Mao
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University Nanjing 210009 China
| | - WenJing Xu
- Medical School, Southeast University Nanjing 210009 China
| | - YeWei Zhang
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University Nanjing 210009 China
| |
Collapse
|
14
|
Mohapatra P, Singh P, Singh D, Sahoo S, Sahoo SK. Phytochemical based nanomedicine: a panacea for cancer treatment, present status and future prospective. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
15
|
Graur F, Puia A, Mois EI, Moldovan S, Pusta A, Cristea C, Cavalu S, Puia C, Al Hajjar N. Nanotechnology in the Diagnostic and Therapy of Hepatocellular Carcinoma. MATERIALS (BASEL, SWITZERLAND) 2022; 15:3893. [PMID: 35683190 PMCID: PMC9182427 DOI: 10.3390/ma15113893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma is the most common liver malignancy and is among the top five most common cancers. Despite the progress of surgery and chemotherapy, the results are often disappointing, in part due to chemoresistance. This type of tumor has special characteristics that allow the improvement of diagnostic and treatment techniques used in clinical practice, by combining nanotechnology. This article presents a brief review of the literature focused on nano-conditioned diagnostic methods, targeted therapy, and therapeutic implications for the pathology of hepatocellular carcinoma. Within each subdomain, several modern technologies with significant impact were highlighted: serological, imaging, or histopathological diagnosis; intraoperative detection; carrier-type nano-conditioned therapy, thermal ablation, and gene therapy. The prospects offered by nanomedicine will strengthen the hope of more efficient diagnoses and therapies in the future.
Collapse
Affiliation(s)
- Florin Graur
- Department of Surgery, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400012 Cluj-Napoca, Romania; (F.G.); (C.P.); (N.A.H.)
- Regional Institute of Gastroenterology and Hepatology “Octavian Fodor”, 400394 Cluj-Napoca, Romania;
| | - Aida Puia
- Department of General Practitioner, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400347 Cluj-Napoca, Romania
| | - Emil Ioan Mois
- Department of Surgery, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400012 Cluj-Napoca, Romania; (F.G.); (C.P.); (N.A.H.)
- Regional Institute of Gastroenterology and Hepatology “Octavian Fodor”, 400394 Cluj-Napoca, Romania;
| | - Septimiu Moldovan
- Regional Institute of Gastroenterology and Hepatology “Octavian Fodor”, 400394 Cluj-Napoca, Romania;
| | - Alexandra Pusta
- Department of Analytical Chemistry, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400347 Cluj-Napoca, Romania; (A.P.); (C.C.)
| | - Cecilia Cristea
- Department of Analytical Chemistry, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400347 Cluj-Napoca, Romania; (A.P.); (C.C.)
| | - Simona Cavalu
- Department of Medical Biophysics, Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania;
| | - Cosmin Puia
- Department of Surgery, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400012 Cluj-Napoca, Romania; (F.G.); (C.P.); (N.A.H.)
- Regional Institute of Gastroenterology and Hepatology “Octavian Fodor”, 400394 Cluj-Napoca, Romania;
| | - Nadim Al Hajjar
- Department of Surgery, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400012 Cluj-Napoca, Romania; (F.G.); (C.P.); (N.A.H.)
- Regional Institute of Gastroenterology and Hepatology “Octavian Fodor”, 400394 Cluj-Napoca, Romania;
| |
Collapse
|
16
|
Li M, Su F, Zhu M, Zhang H, Wei Y, Zhao Y, Li J, Lv S. Research Progress in the Field of Gambogic Acid and Its Derivatives as Antineoplastic Drugs. Molecules 2022; 27:2937. [PMID: 35566290 PMCID: PMC9102264 DOI: 10.3390/molecules27092937] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/13/2022] [Accepted: 04/29/2022] [Indexed: 12/18/2022] Open
Abstract
Gambogic acid (GA) is a natural product with a wide range of pharmacological properties. It plays an important role in inhibiting tumor growth. A large number of GA derivatives have been designed and prepared to improve its shortcomings, such as poor water solubility, low bioavailability, poor stability, and adverse drug effects. So far, GA has been utilized to develop a variety of active derivatives with improved water solubility and bioavailability through structural modification. This article summarized the progress in pharmaceutical chemistry of GA derivatives to provide a reference and basis for further study on structural modifications of GA and expansion of its clinical applications.
Collapse
Affiliation(s)
- Meng Li
- Heilongjiang University of Chinese Medicine, Harbin 150040, China;
| | - Fali Su
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin 150040, China; (F.S.); (M.Z.); (H.Z.); (Y.W.); (Y.Z.)
| | - Mingtao Zhu
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin 150040, China; (F.S.); (M.Z.); (H.Z.); (Y.W.); (Y.Z.)
| | - Huan Zhang
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin 150040, China; (F.S.); (M.Z.); (H.Z.); (Y.W.); (Y.Z.)
| | - Yuxin Wei
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin 150040, China; (F.S.); (M.Z.); (H.Z.); (Y.W.); (Y.Z.)
| | - Yang Zhao
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin 150040, China; (F.S.); (M.Z.); (H.Z.); (Y.W.); (Y.Z.)
| | - Jianmin Li
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150040, China;
| | - Shaowa Lv
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin 150040, China; (F.S.); (M.Z.); (H.Z.); (Y.W.); (Y.Z.)
| |
Collapse
|
17
|
pH-sensitive hyaluronic acid-targeted prodrug micelles constructed via a one-step reaction for enhanced chemotherapy. Int J Biol Macromol 2022; 206:489-500. [PMID: 35240214 DOI: 10.1016/j.ijbiomac.2022.02.131] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 01/09/2022] [Accepted: 02/21/2022] [Indexed: 12/12/2022]
Abstract
Although many chemotherapy prodrugs have been developed for tumor therapy, non-targeted delivery, uncontrolled release and tedious construction procedure of prodrugs still limit their clinical application in tumor treatment. In this work, hyaluronic acid (HA) which has tumor-targeting ability was used to conjugate to antitumor drug podophyllotoxin (PPT) to construct a pH-sensitive prodrug named HA-CO-O-PPT just via a one-step esterification reaction. The HA-CO-O-PPT spontaneously assembled into nano spherical micelles in aqueous medium, which had outstanding serum stability and blood compatibility. The obtained prodrug micelles (named HP micelles) exhibited a pH-responsive drug release mode with cumulative release reaching 81.2% due to their dissociation in response to acid stimulus, and had a high cellular uptake efficiency beyond 97% owing to HA receptor-mediated targeting. Furthermore, it was found that the prodrug micelles showed excellent antitumor activities in vivo with the tumor inhibition ratio up to 85% and negligible systemic toxicity. Accordingly, the pH-responsive HP micelles constructed by a simple one-step reaction, could be a promising candidate as a chemotherapeutic agent for cancer therapy.
Collapse
|
18
|
Miatmoko A, Mianing EA, Sari R, Hendradi E. Nanoparticles use for Delivering Ursolic Acid in Cancer Therapy: A Scoping Review. Front Pharmacol 2021; 12:787226. [PMID: 35002719 PMCID: PMC8740088 DOI: 10.3389/fphar.2021.787226] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Ursolic acid is a natural pentacyclic triterpenoid that exerts a potent anticancer effect. Furthermore, it is classified as a BCS class IV compound possessing low permeability and water solubility, consequently demonstrating limited bioavailability in addition to low therapeutic effectiveness. Nanoparticles are developed to modify the physical characteristics of drug and can often be produced in the range of 30-200 nm, providing highly effective cancer therapy due to the Enhanced Permeation and Retention (EPR) Effect. This study aims to provide a review of the efficacy and safety of various types of Ursolic Acid-loading nanoparticles within the setting of preclinical and clinical anticancer studies. This literature study used scoping review method, where the extracted data must comply with the journal inclusion criteria of within years of 2010-2020. The identification stage produced 237 suitable articles. Duplicate screening was then conducted followed by the initial selection of 18 articles that had been reviewed and extracted for data analysis. Based on this review, the use of nanoparticles can be seen to increase the anticancer efficacy of Ursolic Acid in terms of several parameters including pharmacokinetic data, survival rates and inhibition rates, as well as the absence of serious toxicity in preclinical and clinical trials in terms of several parameters including body weight, blood clinical chemistry, and organ histipathology. Based on this review, the use of nanoparticles has been able to increase the anticancer efficacy of Ursolic Acid, as well as show the absence of serious toxicity in preclinical and clinical trials. Evenmore, the liposome carrier provides development data that has reached the clinical trial phase I. The use of nanoparticle provides high potential for Ursolic Acid delivery in cancer therapy.
Collapse
Affiliation(s)
- Andang Miatmoko
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
- Stem Cell Research and Development Center, Universitas Airlangga, Surabaya, Indonesia
| | - Ester Adelia Mianing
- Study Program of Pharmacy, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| | - Retno Sari
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| | - Esti Hendradi
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
19
|
Zhang Y, Ma X, Li H, Zhuang J, Feng F, Liu L, Liu C, Sun C. Identifying the Effect of Ursolic Acid Against Triple-Negative Breast Cancer: Coupling Network Pharmacology With Experiments Verification. Front Pharmacol 2021; 12:685773. [PMID: 34858165 PMCID: PMC8631906 DOI: 10.3389/fphar.2021.685773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 10/20/2021] [Indexed: 11/13/2022] Open
Abstract
Triple negative breast cancer (TNBC) is a subtype of breast cancer with complex heterogeneity, high invasiveness, and long-term poor prognosis. With the development of molecular pathology and molecular genetics, the gene map of TNBC with distinctive biological characteristics has been outlined more clearly. Natural plant extracts such as paclitaxel, vinblastine, colchicine etc., have occupied an important position in the treatment of hormone-independent breast cancer. Ursolic acid (UA), a triterpenoid acid compound derived from apple, pear, loquat leaves, etc., has been reported to be effective in a variety of cancer treatments, but there are few reports on the treatment of TNBC. This study performed comprehensive bioinformatics analysis and in vitro experiments to identify the effect of UA on TNBC treatment and its potential molecular mechanism. Our results showed that UA could not only reduce the proliferation, migration, and invasion in MDA-MB-231 and MDA-MB-468 cell lines with a dose-dependent manner but also induce cell cycle arrest and apoptosis. Meanwhile, we collected the gene expression data GSE45827 and GSE65194 from GEO for comparison between TNBC and normal cell type and obtained 724 DEGs. Subsequently, PLK1 and CCNB1 related to TNBC were screened as the key targets via topological analysis and molecular docking, and gene set enrichment analysis identified the key pathway as the p53 signaling pathway. In addition, quantitative real-time PCR and western blot verified the key genes were PLK1 and CCNB1. In vivo and in vitro experiments showed that UA could inhibit the growth of TNBC cells, and down-regulate the protein expression levels of PLK1 and CCNB1 by mediating p53 signaling pathway. These findings provide strong evidence for UA intervention in TNBC via multi-target therapy.
Collapse
Affiliation(s)
- Yubao Zhang
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xiaoran Ma
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Huayao Li
- College of Basic Medical, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jing Zhuang
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
| | - Fubin Feng
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
| | - Lijuan Liu
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
| | - Cun Liu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Changgang Sun
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China.,Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, China
| |
Collapse
|
20
|
Zhou D, Bao Q, Fu S. Anticancer activity of ursolic acid on retinoblastoma cells determined by bioinformatics analysis and validation. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1548. [PMID: 34790754 PMCID: PMC8576664 DOI: 10.21037/atm-21-4617] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/28/2021] [Indexed: 12/27/2022]
Abstract
Background This article aims to explore whether ursolic acid (UA) inhibits the progression of retinoblastoma (Rb) by regulating stearoyl-CoA desaturase (SCD). Methods The Gene Expression Omnibus (GEO) database was used to filter the chip, then the GEO2R software was used to analyze the microarray data (GSE97508, GSE24673, and GSE110811). Gene set enrichment analysis (GSEA) was used to analyze the relationship between the expression level of SCD and the proliferation, migration, invasion, and inflammation in Rb patients. SO-RB50 and Y79 cell proliferation, migration, and invasion were assessed by the CCK-8 assay, the colony formation assay, the Transwell assay, and the wound scratch test. The protein expression levels of SCD were measured by western blot. The mRNA expression levels of IL-8, IL-6, CXCL1, and CCL2 were measured by RT-qPCR. The protein expression levels of IL-8 and IL-6 were measured by ELISA. A xenograft nude mouse model was established to evaluate the effect of UA on tumor growth in male BALB/c mice. Results The expression levels of SCD were related to cell proliferation, migration, invasion, and inflammation. UA inhibited SO-RB50 and Y79 cell proliferation, migration, and invasion. At the same time, UA suppressed tumor growth in the xenograft nude mouse model. Overexpression of SCD promoted SO-RB50 and Y79 cell proliferation, migration, invasion, and inflammation, while SCD knockout inhibited SO-RB50 and Y79 cell proliferation, migration, invasion, and inflammation. Importantly, UA inhibited the proliferation, migration, and invasion of Rb cells through SCD inhibition. Conclusions UA inhibited the proliferation, migration, and invasion of Rb cells through SCD. This provides a new scientific basis for targeted therapy of Rb.
Collapse
Affiliation(s)
- Dan Zhou
- Department of Ophthalmology, Suzhou High Tech Zone People's Hospital, Suzhou, China
| | - Qi Bao
- Department of Ophthalmology, Suzhou High Tech Zone People's Hospital, Suzhou, China
| | - Songbin Fu
- Department of Ophthalmology, Harbin Medical University, Harbin, China
| |
Collapse
|
21
|
Zhang J, Hu K, Di L, Wang P, Liu Z, Zhang J, Yue P, Song W, Zhang J, Chen T, Wang Z, Zhang Y, Wang X, Zhan C, Cheng YC, Li X, Li Q, Fan JY, Shen Y, Han JY, Qiao H. Traditional herbal medicine and nanomedicine: Converging disciplines to improve therapeutic efficacy and human health. Adv Drug Deliv Rev 2021; 178:113964. [PMID: 34499982 DOI: 10.1016/j.addr.2021.113964] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 08/28/2021] [Accepted: 09/01/2021] [Indexed: 02/08/2023]
Abstract
Traditional herbal medicine (THM), an ancient science, is a gift from nature. For thousands of years, it has helped humans fight diseases and protect life, health, and reproduction. Nanomedicine, a newer discipline has evolved from exploitation of the unique nanoscale morphology and is widely used in diagnosis, imaging, drug delivery, and other biomedical fields. Although THM and nanomedicine differ greatly in time span and discipline dimensions, they are closely related and are even evolving toward integration and convergence. This review begins with the history and latest research progress of THM and nanomedicine, expounding their respective developmental trajectory. It then discusses the overlapping connectivity and relevance of the two fields, including nanoaggregates generated in herbal medicine decoctions, the application of nanotechnology in the delivery and treatment of natural active ingredients, and the influence of physiological regulatory capability of THM on the in vivo fate of nanoparticles. Finally, future development trends, challenges, and research directions are discussed.
Collapse
|
22
|
Wang L, Yin Q, Liu C, Tang Y, Sun C, Zhuang J. Nanoformulations of Ursolic Acid: A Modern Natural Anticancer Molecule. Front Pharmacol 2021; 12:706121. [PMID: 34295253 PMCID: PMC8289884 DOI: 10.3389/fphar.2021.706121] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/22/2021] [Indexed: 12/23/2022] Open
Abstract
Background: Ursolic acid (UA) is a natural pentacyclic triterpene derived from fruit, herb, and other plants. UA can act on molecular targets of various signaling pathways, inhibit the growth of cancer cells, promote cycle stagnation, and induce apoptosis, thereby exerting anticancer activity. However, its poor water-solubility, low intestinal mucosal absorption, and low bioavailability restrict its clinical application. In order to overcome these deficiencies, nanotechnology, has been applied to the pharmacological study of UA. Objective: In this review, we focused on the absorption, distribution, and elimination pharmacokinetics of UA in vivo, as well as on the research progress in various UA nanoformulations, in the hope of providing reference information for the research on the anticancer activity of UA. Methods: Relevant research articles on Pubmed and Web of Science in recent years were searched selectively by using the keywords and subheadings, and were summarized systematically. Key finding: The improvement of the antitumor ability of the UA nanoformulations is mainly due to the improvement of the bioavailability and the enhancement of the targeting ability of the UA molecules. UA nanoformulations can even be combined with computational imaging technology for monitoring or diagnosis. Conclusion: Currently, a variety of UA nanoformulations, such as micelles, liposomes, and nanoparticles, which can increase the solubility and bioactivity of UA, while promoting the accumulation of UA in tumor tissues, have been prepared. Although the research of UA in the nanofield has made great progress, there is still a long way to go before the clinical application of UA nanoformulations.
Collapse
Affiliation(s)
- Longyun Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qianqian Yin
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Cun Liu
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ying Tang
- Department of Hematology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Changgang Sun
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China.,Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, China
| | - Jing Zhuang
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
| |
Collapse
|
23
|
Sureda A, Martorell M, Capó X, Monserrat-Mesquida M, Quetglas-Llabrés MM, Rasekhian M, Nabavi SM, Tejada S. Antitumor Effects of Triterpenes in Hepatocellular Carcinoma. Curr Med Chem 2021; 28:2465-2484. [PMID: 32484765 DOI: 10.2174/0929867327666200602132000] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/22/2020] [Accepted: 05/06/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Triterpenes are a large group of secondary metabolites mainly produced by plants with a variety of biological activities, including potential antitumor effects. Hepatocellular carcinoma (HCC) is a very common primary liver disease spread worldwide. The treatment can consist of surgical intervention, radiotherapy, immunotherapy and chemotherapeutic drugs. These drugs mainly include tyrosine multikinase inhibitors, although their use is limited by the underlying liver disease and displays side effects. For that reason, the utility of natural compounds such as triterpenes to treat HCC is an interesting line of research. No clinical studies are reported in humans so far. OBJECTIVE The aim of the present work is to review the knowledge about the effects of triterpenes as a possible coadjuvant tool to treat HCC. RESULTS In vitro and xenograft models have pointed out the cytotoxic and anti-proliferative effects as well as improvements in tumor growth and development of many triterpenes. In addition, they have also shown to be chemosensitizing agents when co-administered with chemotherapeutic agents. The mechanisms of action are diverse and involve the participation of mitogen-activated protein kinases, including JNK, p38 MAPK and ERK, and the survival-associated PI3K / Akt signaling pathway. However, no clinical studies are still reported in humans. CONCLUSION Triterpenes could become a future strategy to address HCC or at least improve results when administered in combination with chemotherapeutic agents.
Collapse
Affiliation(s)
- Antoni Sureda
- Research Group in Community Nutrition and Oxidative Stress, Health Research Institute of Balearic Islands (IdISBa) and CIBEROBN (Physiopathology of Obesity and Nutrition), University of Balearic Islands, Balearic Islands, E-07122 Palma, Spain
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, Centre for Healthy Living, University of Concepcion, 4070386 Concepcion, Chile
| | - Xavier Capó
- Research Group in Community Nutrition and Oxidative Stress, Health Research Institute of Balearic Islands (IdISBa) and CIBEROBN (Physiopathology of Obesity and Nutrition), University of Balearic Islands, Balearic Islands, E-07122 Palma, Spain
| | - Margalida Monserrat-Mesquida
- Research Group in Community Nutrition and Oxidative Stress, Health Research Institute of Balearic Islands (IdISBa) and CIBEROBN (Physiopathology of Obesity and Nutrition), University of Balearic Islands, Balearic Islands, E-07122 Palma, Spain
| | - Maria Magdalena Quetglas-Llabrés
- Research Group in Community Nutrition and Oxidative Stress, Health Research Institute of Balearic Islands (IdISBa) and CIBEROBN (Physiopathology of Obesity and Nutrition), University of Balearic Islands, Balearic Islands, E-07122 Palma, Spain
| | - Mahsa Rasekhian
- Pharmaceutical Sciences Research Center Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyed M Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran 14359-16471, Iran
| | - Silvia Tejada
- Laboratory of Neurophysiology, Biology Department, Health Research Institute of Balearic Islands (IdISBa) and CIBEROBN (Physiopathology of Obesity and Nutrition), University of the Balearic Islands, Balearic Islands, E-07122 Palma, Spain
| |
Collapse
|
24
|
A multiple environment-sensitive prodrug nanomicelle strategy based on chitosan graftomer for enhanced tumor therapy of gambogic acid. Carbohydr Polym 2021; 267:118229. [PMID: 34119182 DOI: 10.1016/j.carbpol.2021.118229] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 04/26/2021] [Accepted: 05/17/2021] [Indexed: 01/15/2023]
Abstract
A novel multiple environment-sensitive polymeric prodrug of gambogic acid (GA) based on chitosan graftomer was fabricated for cancer treatment. Folic acid-chitosan conjugates was complexed with thermosensitive amine terminated poly-N-isopropylacrylamide (NH2-PNIPAM) to develop FA-CSPN. Gambogic acid was conjugated with the graftomer via esterification to achieve high drug-loading capacity and controlled drug release. The resulting amphiphilic prodrug, O-(gambogic acid)-N-(folic acid)-N'-(NH2-PNIPAM) chitosan graftomer (GFCP), could self-assemble into micelles. As expected, the micelles were stable and biocompatible, featuring pH-, esterase- and temperature-dependent manner of drug release. Moreover, the anticancer effect studies of GFCP micelles were performed using a tumor-bearing mouse model and cellular assays (tumor cell uptake assay, cytotoxicity and tumor-sphere penetration). Collectively, GFCP micelles show both potential in vivo and in vitro in improving the anticancer effectiveness of GA owing to high loading capacity, targeted tumor accumulation, and multiple tumor microenvironmental responsiveness.
Collapse
|
25
|
Amparo TR, Seibert JB, Almeida TC, Costa FSF, Silveira BM, da Silva GN, Dos Santos ODH, de Souza GHB. In silico approach of secondary metabolites from Brazilian herbal medicines to search for potential drugs against SARS-CoV-2. Phytother Res 2021; 35:4297-4308. [PMID: 33797123 PMCID: PMC8250981 DOI: 10.1002/ptr.7097] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 12/16/2020] [Accepted: 02/24/2021] [Indexed: 12/29/2022]
Abstract
The new severe acute respiratory syndrome coronavirus (SARS‐CoV‐2) recently emerged as a worrying pandemic, with many confirmed cases and deaths globally. Therefore, there is a clear need for identifying effective therapeutic options and a review of secondary metabolites related to Brazilian herbal medicines was performed as a strategy for the discovery of new antiviral agents. To confirm this potential, an in silico screening of the identified compounds identified was also evaluated. The review was performed by the PubMed database and the selected natural compounds were subjected to in silico analysis such as QSAR, molecular docking and ADMET. 497 secondary metabolites were identified from 23 species. The in silico assays indicated 19 potential anti‐SARS‐CoV‐2 compounds, being triterpenes and phenolic compounds. The indicated compounds showed a high affinity with proteins considered as the main molecular targets against SARS‐CoV‐2 and parameters indicated low toxicity. In addition to Brazilian medicinal plants, these compounds can be found in other species and they can be a base for the synthesis of other anti‐COVID‐19 drugs. Therefore, this review is important to conduct researches that address the emerging need for drugs in COVID‐19 treatment.
Collapse
Affiliation(s)
- Tatiane R Amparo
- Laboratório de Fitotecnologia, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Janaína B Seibert
- Laboratório de Fitotecnologia, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Tamires C Almeida
- Laboratório de Pesquisas Clínicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Fernanda S F Costa
- Laboratório de Microbiologia Ambiental e Biotecnologia, Universidade Vila Velha, Vila Velha, Brazil
| | - Benila M Silveira
- Laboratório de Fitotecnologia, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Glenda N da Silva
- Laboratório de Pesquisas Clínicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | | | - Gustavo H B de Souza
- Laboratório de Fitotecnologia, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| |
Collapse
|
26
|
Nanoformulations for Delivery of Pentacyclic Triterpenoids in Anticancer Therapies. Molecules 2021; 26:molecules26061764. [PMID: 33801096 PMCID: PMC8004206 DOI: 10.3390/molecules26061764] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/17/2021] [Accepted: 03/17/2021] [Indexed: 12/12/2022] Open
Abstract
The search for safe and effective anticancer therapies is one of the major challenges of the 21st century. The ineffective treatment of cancers, classified as civilization diseases, contributes to a decreased quality of life, health loss, and premature mortality in oncological patients. Many natural phytochemicals have anticancer potential. Pentacyclic triterpenoids, characterized by six- and five-membered ring structures, are one of the largest class of natural metabolites sourced from the plant kingdom. Among the known natural triterpenoids, we can distinguish lupane-, oleanane-, and ursane-types. Pentacyclic triterpenoids are known to have many biological activities, e.g., anti-inflammatory, antibacterial, hepatoprotective, immunomodulatory, antioxidant, and anticancer properties. Unfortunately, they are also characterized by poor water solubility and, hence, low bioavailability. These pharmacological properties may be improved by both introducing some modifications to their native structures and developing novel delivery systems based on the latest nanotechnological achievements. The development of nanocarrier-delivery systems is aimed at increasing the transport capacity of bioactive compounds by enhancing their solubility, bioavailability, stability in vivo and ensuring tumor-targeting while their toxicity and risk of side effects are significantly reduced. Nanocarriers may vary in sizes, constituents, shapes, and surface properties, all of which affect the ultimate efficacy and safety of a given anticancer therapy, as presented in this review. The presented results demonstrate the high antitumor potential of systems for delivery of pentacyclic triterpenoids.
Collapse
|
27
|
Edis Z, Wang J, Waqas MK, Ijaz M, Ijaz M. Nanocarriers-Mediated Drug Delivery Systems for Anticancer Agents: An Overview and Perspectives. Int J Nanomedicine 2021; 16:1313-1330. [PMID: 33628022 PMCID: PMC7898224 DOI: 10.2147/ijn.s289443] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/23/2020] [Indexed: 12/12/2022] Open
Abstract
Nanotechnology has been actively integrated as drug carriers over the last few years to treat various cancers. The main hurdle in the clinical management of cancer is the development of multidrug resistance against chemotherapeutic agents. To overcome the limitations of chemotherapy, the researchers have been developing technological advances for significant progress in the oncotherapy by enabling the delivery of chemotherapeutic agents at increased drug content levels to the targeted spots. Several nano-drug delivery systems designed for tumor-targeting are evaluated in preclinical and clinical trials and showed promising outcomes in cancerous tumors' clinical management. This review describes nanocarrier's importance in managing different types of cancers and emphasizing nanocarriers for drug delivery and cancer nanotherapeutics. It also highlights the recent advances in nanocarriers-based delivery systems, including polymeric nanocarriers, micelles, nanotubes, dendrimers, magnetic nanoparticles, solid lipid nanoparticles, and quantum dots (QDs). The nanocarrier-based composites are discussed in terms of their structure, characteristics, and therapeutic applications in oncology. To conclude, the challenges and future exploration opportunities of nanocarriers in chemotherapeutics are also presented.
Collapse
Affiliation(s)
- Zehra Edis
- Department of Pharmaceutical Sciences,College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Junli Wang
- Laboratory of Reproduction and Genetics, Affiliated Hospital of Youjiang Medical College for Nationalities, Baise, Guangxi, People’s Republic of China
| | - Muhammad Khurram Waqas
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Ijaz
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Munazza Ijaz
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Defense Road Campus, Lahore, Pakistan
| |
Collapse
|
28
|
Di Y, Xu T, Tian Y, Ma T, Qu D, Wang Y, Lin Y, Bao D, Yu L, Liu S, Wang A. Ursolic acid protects against cisplatin‑induced ototoxicity by inhibiting oxidative stress and TRPV1‑mediated Ca2+‑signaling. Int J Mol Med 2020; 46:806-816. [PMID: 32626955 PMCID: PMC7307815 DOI: 10.3892/ijmm.2020.4633] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 05/13/2020] [Indexed: 12/14/2022] Open
Abstract
Cisplatin (CDDP) is widely used in clinical settings for the treatment of various cancers. However, ototoxicity is a major side effect of CDDP, and there is an associated risk of irreversible hearing loss. We previously demonstrated that CDDP could induce ototoxicity via activation of the transient receptor potential vanilloid receptor 1 (TRPV1) pathway and subsequent induction of oxidative stress. The present study investigated whether ursolic acid (UA) treatment could protect against CDDP‑induced ototoxicity. UA is a triterpenoid with strong antioxidant activity widely used in China for the treatment of liver diseases. This traditional Chinese medicine is mainly isolated from bearberry, a Chinese herb. The present results showed that CDDP increased auditory brainstem response threshold shifts in frequencies associated with observed damage to the outer hair cells. Moreover, CDDP increased the expression of TRPV1, calpain 2 and caspase‑3 in the cochlea, and the levels of Ca2+ and 4‑hydroxynonenal. UA co‑treatment significantly attenuated CDDP‑induced hearing loss and inhibited TRPV1 pathway activation. In addition, UA enhanced CDDP‑induced growth inhibition in the human ovarian cancer cell line SKOV3, suggesting that UA synergizes with CDDP in vitro. Collectively, the present data suggested that UA could effectively attenuate CDDP‑induced hearing loss by inhibiting the TRPV1/Ca²+/calpain‑oxidative stress pathway without impairing the antitumor effects of CDDP.
Collapse
Affiliation(s)
| | - Tao Xu
- Life Science Institute, Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|