1
|
Tang Q, Tang L, Wang X, Zhang Y, Liu W, Yang T, Wu Y, Ma Y, Lei T, Song W. Comprehensive Analyses of Single-Cell and Bulk RNA Sequencing Data From M2 Macrophages to Elucidate the Immune Prognostic Signature in Patients with Gastric Cancer Peritoneal Metastasis. Immunotargets Ther 2025; 14:383-402. [PMID: 40201390 PMCID: PMC11977558 DOI: 10.2147/itt.s506143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 03/04/2025] [Indexed: 04/10/2025] Open
Abstract
Purpose The peritoneum is a common site of metastasis in gastric cancer (GC), associated with poor prognosis and significant morbidity. The proclivity of GCs to metastasize to the peritoneum has been hypothesized to occur due the latter's immunosuppressive microenvironment, such as stromal infiltration and M2 macrophage enrichment, which are associated with increased risk of PM. As far as we know, a model that can effectively predict the prognosis of patients with GCPM is still lacking. Consequently, we constructed a prognostic risk model based on M2 macrophages associated with gastric cancer peritoneal metastasis, aiming to enhance predictive precision and guide tailored therapeutic interventions. Methods M2 macrophage-associated genes were identified in combination with marker genes from single-cell RNA sequencing (scRNA-seq) and modular genes from weighted gene coexpression network analysis (WGCNA). A prognostic model was constructed via LASSO analysis and validated in internal and external cohorts. We further compared the immune microenvironment, immune checkpoints, and chemotherapeutic drug sensitivity between patient groups stratified by risk to clarify the immune landscape in the GCPM. Results Our study identified 38 M2 macrophage-related genes via single-cell and bulk RNA sequencing. We developed a prognostic model based on the expression levels of 4 signature genes: DAB2, SPARC, PLTP, and FOLR2. The feasibility of the model was validated with internal and external validation sets (TCGA, GSE62254 and IMvigor210). The model also supported the prediction results of prognosis on the basis of the immunohistochemical results. Notably, patients with higher risk scores had a lower proportion of MSI-H and TMB, a higher prevalence of stages III-IV, and a lower likelihood of responding favorably to immunotherapy. Conclusion Our prognostic risk model could effectively predict the prognosis and response to chemo-immune therapy in patients with GCPM. The risk score is a promising independent prognostic factor that is closely correlated with the immune microenvironment and clinicopathological characteristics.
Collapse
Affiliation(s)
- Qiao Tang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-SenYou University, Guangzhou, Guangdong, People’s Republic of China
- Laboratory of Surgery, The First Affiliated Hospital, Sun Yat-SenYou University, Guangzhou, Guangdong, People’s Republic of China
| | - Liang Tang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-SenYou University, Guangzhou, Guangdong, People’s Republic of China
- Laboratory of Surgery, The First Affiliated Hospital, Sun Yat-SenYou University, Guangzhou, Guangdong, People’s Republic of China
| | - Xiaofeng Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-SenYou University, Guangzhou, Guangdong, People’s Republic of China
| | - Yongxin Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-SenYou University, Guangzhou, Guangdong, People’s Republic of China
| | - Wenwei Liu
- Center for Stem Cell Biology and Tissue Engineering, Sun Yat-SenYou University, Guangzhou, Guangdong, People’s Republic of China
| | - Ting Yang
- Center for Stem Cell Biology and Tissue Engineering, Sun Yat-SenYou University, Guangzhou, Guangdong, People’s Republic of China
| | - Yuxin Wu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-SenYou University, Guangzhou, Guangdong, People’s Republic of China
| | - Yuanchen Ma
- Center for Stem Cell Biology and Tissue Engineering, Sun Yat-SenYou University, Guangzhou, Guangdong, People’s Republic of China
| | - Tianxiang Lei
- Department of Thyroid and Hernia Surgery, Guangdong Provincial People’s Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Wu Song
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-SenYou University, Guangzhou, Guangdong, People’s Republic of China
| |
Collapse
|
2
|
Shi M, MacLean JA, Hayashi K. The involvement of peritoneal GATA6 + macrophages in the pathogenesis of endometriosis. Front Immunol 2024; 15:1396000. [PMID: 39192982 PMCID: PMC11348394 DOI: 10.3389/fimmu.2024.1396000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024] Open
Abstract
Endometriosis is a chronic inflammatory disease that causes debilitating pelvic pain in women. Macrophages are considered to be key players in promoting disease progression, as abundant macrophages are present in ectopic lesions and elevated in the peritoneum. In the present study, we examined the role of GATA6+ peritoneal macrophages on endometriosis-associated hyperalgesia using mice with a specific myeloid deficiency of GATA6. Lesion induction induced the disappearance of TIM4hi MHCIIlo residential macrophages and the influx of increased Ly6C+ monocytes and TIM4lo MHCIIhi macrophages. The recruitment of MHCIIhi inflammatory macrophages was extensive in Mac Gata6 KO mice due to the severe disappearance of TIM4hi MHCIIlo residential macrophages. Ki67 expression confirmed GATA6-dependent proliferative ability, showing different proliferative phenotypes of TIM4+ residential macrophages in Gata6f/f and Mac Gata6 KO mice. Peritoneal proinflammatory cytokines were elevated after lesion induction. When cytokine levels were compared between Gata6f/f and Mac Gata6 KO mice, TNFα at day 21 in Gata6f/f mice was higher than in Mac Gata6 KO mice. Lesion induction increased both abdominal and hind paw sensitivities. Gata6f/f mice tended to show higher sensitivity in the abdomen after day 21. Elevated expression of TRPV1 and CGRP was observed in the dorsal root ganglia after ELL induction in Gata6f/f mice until days 21 and 42, respectively. These results support that peritoneal GATA6+ macrophages are involved in the recruitment and reprogramming of monocyte-derived macrophages. The extensive recruitment of monocyte-derived macrophages in Mac Gata6 KO mice might protect against inflammatory stimuli during the resolution phase, whereas GATA6 deficiency did not affect lesion initiation and establishment at the acute phase of inflammation. GATA6+ residential macrophages act to sustain local inflammation in the peritoneum and sensitivities in the neurons, reflecting endometriosis-associated hyperalgesia.
Collapse
Affiliation(s)
| | | | - Kanako Hayashi
- School of Molecular Biosciences, Center for Reproductive Biology, Washington State University, Pullman, WA, United States
| |
Collapse
|
3
|
Lewis CR, Dadgar N, Yellin SA, Donnenberg VS, Donnenberg AD, Bartlett DL, Allen CJ, Wagner PL. Regional Immunotherapy for Peritoneal Carcinomatosis in Gastroesophageal Cancer: Emerging Strategies to Re-Condition a Maladaptive Tumor Environment. Cancers (Basel) 2023; 15:5107. [PMID: 37894473 PMCID: PMC10605802 DOI: 10.3390/cancers15205107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/04/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
Peritoneal carcinomatosis originating from gastric/gastroesophageal junction cancer (GC-PC) occurs in a defined subset of gastric cancer patients with unique clinical, pathologic, molecular and immunologic characteristics that create significant obstacles to effective treatment with modern therapy. Although systemic chemo- and immuno- therapy have yielded disappointing results in GC-PC, recent advances in the characterization of GC-PC and peritoneal immune biology present new opportunities for targeted therapeutics. In this review article, we discuss the distinct properties of GC-PC and the peritoneal immune environment as they pertain to current and investigative treatment strategies. We discuss pre-clinical studies and clinical trials relevant to the modulation of the peritoneal environment as a therapeutic intervention in GC-PC. Finally, we present a road map for future combinatorial strategies based on the conception of the peritoneal cavity as a bioreactor. Within this isolated compartment, prevailing immunosuppressive conditions can be altered through regional interventions toward an adaptive phenotype that would support the effectiveness of regionally delivered cellular therapy products. It is hoped that novel combination strategies would promote efficacy not only in the sequestered peritoneal environment, but also via migration into the circulation of tumor-reactive lymphocytes to produce durable systemic disease control, thereby improving oncologic outcome and quality of life in patients with GC-PC.
Collapse
Affiliation(s)
- Catherine R. Lewis
- Allegheny Health Network Cancer Institute, Pittsburgh, PA 15212, USA; (C.R.L.); (A.D.D.); (D.L.B.); (C.J.A.)
| | - Neda Dadgar
- Cole Eye Institute, Cleveland Clinic, Cleveland, OH 44195, USA;
| | - Samuel A. Yellin
- Department of Surgery, Lehigh Valley Health Network, Allentown, PA 18101, USA;
| | - Vera S. Donnenberg
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA;
- Hillman Cancer Centers, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Albert D. Donnenberg
- Allegheny Health Network Cancer Institute, Pittsburgh, PA 15212, USA; (C.R.L.); (A.D.D.); (D.L.B.); (C.J.A.)
| | - David L. Bartlett
- Allegheny Health Network Cancer Institute, Pittsburgh, PA 15212, USA; (C.R.L.); (A.D.D.); (D.L.B.); (C.J.A.)
| | - Casey J. Allen
- Allegheny Health Network Cancer Institute, Pittsburgh, PA 15212, USA; (C.R.L.); (A.D.D.); (D.L.B.); (C.J.A.)
| | - Patrick L. Wagner
- Allegheny Health Network Cancer Institute, Pittsburgh, PA 15212, USA; (C.R.L.); (A.D.D.); (D.L.B.); (C.J.A.)
| |
Collapse
|
4
|
Chia DKA, Demuytere J, Ernst S, Salavati H, Ceelen W. Effects of Hyperthermia and Hyperthermic Intraperitoneal Chemoperfusion on the Peritoneal and Tumor Immune Contexture. Cancers (Basel) 2023; 15:4314. [PMID: 37686590 PMCID: PMC10486595 DOI: 10.3390/cancers15174314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/12/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Hyperthermia combined with intraperitoneal (IP) drug delivery is increasingly used in the treatment of peritoneal metastases (PM). Hyperthermia enhances tumor perfusion and increases drug penetration after IP delivery. The peritoneum is increasingly recognized as an immune-privileged organ with its own distinct immune microenvironment. Here, we review the immune landscape of the healthy peritoneal cavity and immune contexture of peritoneal metastases. Next, we review the potential benefits and unwanted tumor-promoting effects of hyperthermia and the associated heat shock response on the tumor immune microenvironment. We highlight the potential modulating effect of hyperthermia on the biomechanical properties of tumor tissue and the consequences for immune cell infiltration. Data from translational and clinical studies are reviewed. We conclude that (mild) hyperthermia and HIPEC have the potential to enhance antitumor immunity, but detailed further studies are required to distinguish beneficial from tumor-promoting effects.
Collapse
Affiliation(s)
- Daryl K. A. Chia
- Department of Surgery, National University Hospital, National University Health System, Singapore 119074, Singapore
| | - Jesse Demuytere
- Department of Human Structure and Repair, Experimental Surgery Lab, Ghent University, 9052 Ghent, Belgium; (J.D.); (S.E.); (H.S.)
- Cancer Research Institute Ghent, 9000 Ghent, Belgium
| | - Sam Ernst
- Department of Human Structure and Repair, Experimental Surgery Lab, Ghent University, 9052 Ghent, Belgium; (J.D.); (S.E.); (H.S.)
- Cancer Research Institute Ghent, 9000 Ghent, Belgium
| | - Hooman Salavati
- Department of Human Structure and Repair, Experimental Surgery Lab, Ghent University, 9052 Ghent, Belgium; (J.D.); (S.E.); (H.S.)
- Cancer Research Institute Ghent, 9000 Ghent, Belgium
| | - Wim Ceelen
- Department of Human Structure and Repair, Experimental Surgery Lab, Ghent University, 9052 Ghent, Belgium; (J.D.); (S.E.); (H.S.)
- Cancer Research Institute Ghent, 9000 Ghent, Belgium
- Department of GI Surgery, Ghent University Hospital, 9000 Ghent, Belgium
| |
Collapse
|
5
|
Wang Y, Yang W, Wang Q, Zhou Y. Mechanisms of esophageal cancer metastasis and treatment progress. Front Immunol 2023; 14:1206504. [PMID: 37359527 PMCID: PMC10285156 DOI: 10.3389/fimmu.2023.1206504] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023] Open
Abstract
Esophageal cancer is a prevalent tumor of the digestive tract worldwide. The detection rate of early-stage esophageal cancer is very low, and most patients are diagnosed with metastasis. Metastasis of esophageal cancer mainly includes direct diffusion metastasis, hematogenous metastasis, and lymphatic metastasis. This article reviews the metabolic process of esophageal cancer metastasis and the mechanisms by which M2 macrophages, CAF, regulatory T cells, and their released cytokines, including chemokines, interleukins, and growth factors, form an immune barrier to the anti-tumor immune response mediated by CD8+ T cells, impeding their ability to kill tumor cells during tumor immune escape. The effect of Ferroptosis on the metastasis of esophageal cancer is briefly mentioned. Moreover, the paper also summarizes common drugs and research directions in chemotherapy, immunotherapy, and targeted therapy for advanced metastatic esophageal cancer. This review aims to serve as a foundation for further investigations into the mechanism and management of esophageal cancer metastasis.
Collapse
Affiliation(s)
- Yusheng Wang
- Department of Thoracic Surgery, The First People’s Hospital of Changzhou, Changzhou, Jiangsu, China
| | - Wei Yang
- Department of Gastroenterology, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, Jiangsu, China
| | - Qianyun Wang
- Department of Gastroenterology, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, Jiangsu, China
| | - Yong Zhou
- Department of Gastroenterology, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, Jiangsu, China
| |
Collapse
|
6
|
Liu K, Xu P, Lv J, Ge H, Yan Z, Huang S, Li B, Xu H, Yang L, Xu Z, Zhang D. Peritoneal high-fat environment promotes peritoneal metastasis of gastric cancer cells through activation of NSUN2-mediated ORAI2 m5C modification. Oncogene 2023:10.1038/s41388-023-02707-5. [PMID: 37130916 DOI: 10.1038/s41388-023-02707-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/04/2023]
Abstract
Peritoneal metastasis (PM) is an important metastatic modality of gastric cancer (GC).It is associated with poor prognosis. The underlying molecular mechanism of PM remains elusive. 5-Methylcytosine (m5C), a posttranscriptional RNA modification, involves in the progression of many tumors. However, its role in GC peritoneal metastasis remains unclear. In our study, transcriptome results suggested that NSUN2 expression was significantly upregulated in PM. And patients with high NSUN2 expression of PM predicted a worse prognosis. Mechanistically, NSUN2 regulates ORAI2 mRNA stability by m5C modification, thereby promoting ORAI2 expression and further promoting peritoneal metastasis and colonization of GC. YBX1 acts as a "reader" by binding to the ORAI2 m5C modification site. Following the uptake of fatty acids from omental adipocytes by GC cells, the transcription factor E2F1 was upregulated, which further promoted the expression of NSUN2 through cis-element. Briefly, these results revealed that peritoneal adipocytes provide fatty acid for GC cells, thus contributing to the elevation of E2F1 and NSUN2 through AMPK pathway, and upregulated NSUN2 activates the key gene ORAI2 through m5C modification, thereby promoting peritoneal metastasis and colonization of gastric cancer.
Collapse
Affiliation(s)
- Kanghui Liu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Peng Xu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jialun Lv
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Han Ge
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Zhengyuan Yan
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- Department of Surgery, Nanjing Lishui People's Hospital, Nanjing, 211200, China
| | - Shansong Huang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Bowen Li
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Hao Xu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Li Yang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Zekuan Xu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Diancai Zhang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
7
|
Wiedmann L, De Angelis Rigotti F, Vaquero-Siguero N, Donato E, Espinet E, Moll I, Alsina-Sanchis E, Bohnenberger H, Fernandez-Florido E, Mülfarth R, Vacca M, Gerwing J, Conradi LC, Ströbel P, Trumpp A, Mogler C, Fischer A, Rodriguez-Vita J. HAPLN1 potentiates peritoneal metastasis in pancreatic cancer. Nat Commun 2023; 14:2353. [PMID: 37095087 PMCID: PMC10126109 DOI: 10.1038/s41467-023-38064-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 04/12/2023] [Indexed: 04/26/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) frequently metastasizes into the peritoneum, which contributes to poor prognosis. Metastatic spreading is promoted by cancer cell plasticity, yet its regulation by the microenvironment is incompletely understood. Here, we show that the presence of hyaluronan and proteoglycan link protein-1 (HAPLN1) in the extracellular matrix enhances tumor cell plasticity and PDAC metastasis. Bioinformatic analysis showed that HAPLN1 expression is enriched in the basal PDAC subtype and associated with worse overall patient survival. In a mouse model for peritoneal carcinomatosis, HAPLN1-induced immunomodulation favors a more permissive microenvironment, which accelerates the peritoneal spread of tumor cells. Mechanistically, HAPLN1, via upregulation of tumor necrosis factor receptor 2 (TNFR2), promotes TNF-mediated upregulation of Hyaluronan (HA) production, facilitating EMT, stemness, invasion and immunomodulation. Extracellular HAPLN1 modifies cancer cells and fibroblasts, rendering them more immunomodulatory. As such, we identify HAPLN1 as a prognostic marker and as a driver for peritoneal metastasis in PDAC.
Collapse
Affiliation(s)
- Lena Wiedmann
- Division Vascular Signaling and Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Faculty of Biosciences, University of Heidelberg, 69120, Heidelberg, Germany
| | - Francesca De Angelis Rigotti
- Division Vascular Signaling and Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Tumor-Stroma Communication Laboratory, Centro de Investigación Príncipe Felipe, 46012, Valencia, Spain
| | - Nuria Vaquero-Siguero
- Division Vascular Signaling and Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Elisa Donato
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- HI-STEM - Heidelberg Institute for Stem Cell Technology and Experimental Medicine gGmbH, 69120, Heidelberg, Germany
| | - Elisa Espinet
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- HI-STEM - Heidelberg Institute for Stem Cell Technology and Experimental Medicine gGmbH, 69120, Heidelberg, Germany
- Department of Pathology and Experimental Therapy, School of Medicine, University of Barcelona (UB), L'Hospitalet de Llobregat, Barcelona, Spain
- Molecular Mechanisms and Experimental Therapy in Oncology Program (Oncobell), Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, 08908, Spain
| | - Iris Moll
- Division Vascular Signaling and Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Elisenda Alsina-Sanchis
- Division Vascular Signaling and Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Institute for Clinical Chemistry, University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Hanibal Bohnenberger
- Institute of Pathology, University Medical Center Göttingen, Georg-August-University, 37075, Göttingen, Germany
| | - Elena Fernandez-Florido
- Division Vascular Signaling and Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Ronja Mülfarth
- Division Vascular Signaling and Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Faculty of Biosciences, University of Heidelberg, 69120, Heidelberg, Germany
| | - Margherita Vacca
- Division Vascular Signaling and Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Jennifer Gerwing
- Division Vascular Signaling and Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Lena-Christin Conradi
- Clinic of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Robert-Koch-Straβe 40, 37075, Göttingen, Germany
| | - Philipp Ströbel
- Institute of Pathology, University Medical Center Göttingen, Georg-August-University, 37075, Göttingen, Germany
| | - Andreas Trumpp
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- HI-STEM - Heidelberg Institute for Stem Cell Technology and Experimental Medicine gGmbH, 69120, Heidelberg, Germany
| | - Carolin Mogler
- Institute of Pathology, Technical University of Munich, 81675, Munich, Germany
| | - Andreas Fischer
- Division Vascular Signaling and Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.
- Institute for Clinical Chemistry, University Medical Center Göttingen, 37075, Göttingen, Germany.
- German Center for Cardiovascular Research (DZHK), partner site Göttingen, Germany.
| | - Juan Rodriguez-Vita
- Division Vascular Signaling and Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.
- Tumor-Stroma Communication Laboratory, Centro de Investigación Príncipe Felipe, 46012, Valencia, Spain.
| |
Collapse
|
8
|
Shen Y, Chen JX, Li M, Xiang Z, Wu J, Wang YJ. Role of tumor-associated macrophages in common digestive system malignant tumors. World J Gastrointest Oncol 2023; 15:596-616. [PMID: 37123058 PMCID: PMC10134211 DOI: 10.4251/wjgo.v15.i4.596] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/12/2023] [Accepted: 03/30/2023] [Indexed: 04/12/2023] Open
Abstract
Many digestive system malignant tumors are characterized by high incidence and mortality rate. Increasing evidence has revealed that the tumor microenvironment (TME) is involved in cancer initiation and tumor progression. Tumor-associated macrophages (TAMs) are a predominant constituent of the TME, and participate in the regulation of various biological behaviors and influence the prognosis of digestive system cancer. TAMs can be mainly classified into the antitumor M1 phenotype and protumor M2 phenotype. The latter especially are crucial drivers of tumor invasion, growth, angiogenesis, metastasis, immunosuppression, and resistance to therapy. TAMs are of importance in the occurrence, development, diagnosis, prognosis, and treatment of common digestive system malignant tumors. In this review, we summarize the role of TAMs in common digestive system malignant tumors, including esophageal, gastric, colorectal, pancreatic and liver cancers. How TAMs promote the development of tumors, and how they act as potential therapeutic targets and their clinical applications are also described.
Collapse
Affiliation(s)
- Yue Shen
- Department of Dermatology, Suzhou Municipal Hospital, Suzhou 215008, Jiangsu Province, China
| | - Jia-Xi Chen
- School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang Province, China
| | - Ming Li
- Department of Pathology, Suzhou Municipal Hospital, Suzhou 215008, Jiangsu Province, China
| | - Ze Xiang
- School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang Province, China
| | - Jian Wu
- Department of Clinical Laboratory, Suzhou Municipal Hospital, Suzhou 215008, Jiangsu Province, China
| | - Yi-Jin Wang
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, Guangdong Province, China
| |
Collapse
|
9
|
Xu BB, Zheng ED, Sun HY, Huang Y, Zheng L, Lan QL, Zhou XL, Geng XG, Wang YN, Wang XY, Yu YC. Comprehensive analysis of circular RNA-associated competing endogenous RNA networks and immune infiltration in gastric cancer. Transpl Immunol 2023; 77:101793. [PMID: 36773765 DOI: 10.1016/j.trim.2023.101793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 02/12/2023]
Abstract
BACKGROUND Circular RNA (circRNA) has been proved to be an important regulator of gastric cancer (GC). However, the role and regulatory mechanism of circrna related competitive endogenous RNA (ceRNA) in GC have not been established. METHODS CircRNA data and clinical data were obtained from the GEO and TCGA databases. The ceRNA networks were constructed and a function enrichment analysis was completed. Additionally, correlations between hub genes expression, immune cell infiltration, and clinical phenotypes were determined. The differentially expressed circRNAs and their downstream microRNAs (miRNAs) were validated by quantitative real-time polymerase chain reaction, and the hub genes were validated by western blot analysis. The migration and invasion ability of overexpressed hsa_circ_0002504 was determined by a transwell assay. RESULTS The ceRNA network contained 2 circRNAs, 3 miRNAs, and 55 messenger RNAs (mRNAs). 323 biological processes terms, 53 cellular components terms, 51 molecular functions terms, and 4 signaling pathways were revealed by the function enrichment analysis. The GSEA analysis revealed that the hub genes were positively correlated with the axon guidance and adhesion molecules pathways. The correlation analysis revealed that overexpressed EPHA4 and KCNA1 indicated poor tissue differentiation and were associated with clinically advanced stages of GC. The in vitro experiments showed that hsa_circ_0002504 was significantly down-regulated in GC cell lines. In addition, the overexpression of hsa_circ_0002504 led to a significant downregulation of hsa-miR-615-5p and hsa-miR-767-5p, as well as an upregulation of EPHA4, KCNA1, and NCAM1. Furthermore, it suppressed the migration and invasion ability of GC cells. CONCLUSIONS Hsa_circ_0002504 is a potential diagnostic biomarker for GC. High expression of EPHA4 and KCNA1 may indicate poor prognosis.
Collapse
Affiliation(s)
- Bei-Bei Xu
- Department of Gastroenterology, The Third Affiliated Hospital of Shanghai University, Wenzhou People's Hospital, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou 325000, Zhejiang, China; Soochow University, Suzhou 215000, Jiangsu, China; Department of Gastroenterology, Zhejiang Provincial People's Hospital, Hangzhou 310000, Zhejiang, China
| | - En-Dian Zheng
- Department of Gastroenterology, The Third Affiliated Hospital of Shanghai University, Wenzhou People's Hospital, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Hao-Yue Sun
- Department of Gastroenterology, The Third Affiliated Hospital of Shanghai University, Wenzhou People's Hospital, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Yi Huang
- Department of General Surgery, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, The Third Affiliated Hospital of Shanghai University, Wenzhou People's Hospital, Wenzhou 325000, Zhejiang, China
| | - Liang Zheng
- Department of Gastroenterology, The Third Affiliated Hospital of Shanghai University, Wenzhou People's Hospital, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Qiao-Li Lan
- Department of Gastroenterology, The Third Affiliated Hospital of Shanghai University, Wenzhou People's Hospital, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Xiao-Lu Zhou
- Department of Gastroenterology, Zhejiang Provincial People's Hospital, Hangzhou 310000, Zhejiang, China
| | - Xiao-Ge Geng
- Department of Gastroenterology, Zhejiang Provincial People's Hospital, Hangzhou 310000, Zhejiang, China
| | - Ya-Nan Wang
- Zhejiang University of Technology, Hangzhou 310000, Zhejiang, China
| | - Xiu-Yan Wang
- Department of Gastroenterology, The Third Affiliated Hospital of Shanghai University, Wenzhou People's Hospital, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou 325000, Zhejiang, China.
| | - Ying-Cong Yu
- Department of Gastroenterology, The Third Affiliated Hospital of Shanghai University, Wenzhou People's Hospital, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| |
Collapse
|
10
|
Zhang J, Sun Y, Bai X, Wang P, Tian L, Tian Y, Zhong Y. Single versus multiple hyperthermic intraperitoneal chemotherapy applications for T4 gastric cancer patients: Efficacy and safety profiles. Front Oncol 2023; 13:1109633. [PMID: 37007142 PMCID: PMC10063781 DOI: 10.3389/fonc.2023.1109633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/06/2023] [Indexed: 03/19/2023] Open
Abstract
ObjectiveTo explore the clinical safety and efficacy of single and multiple applications of lobaplatin-based hyperthermic intraperitoneal chemotherapy (HIPEC) for patients with T4 gastric cancer and to evaluate the impact of HIPEC on peritoneal metastasis.Materials and methodsWe retrospectively reviewed prospectively collected data from T4 gastric cancer patients who underwent radical gastric resection plus HIPEC between March 2018 and August 2020 from the National Cancer Center and Huangxing Cancer Hospital. Patients who underwent radical surgery and HIPEC were divided into two groups: the single-HIPEC group (radical resection + a single application of intraoperative HIPEC with lobaplatin 50 mg/m2 at 43.0 ± 0.5°C for 60 min), and a multi-HIPEC group (two more HIPEC applications were performed after radical surgery).ResultsA total of 78 patients were enrolled in this two-center study; among them, 40 patients were in the single-HIPEC group, and 38 patients were in the multi-HIPEC group. The baseline characteristics were well balanced between the two groups. There was no significant difference in the postoperative complication rates between the two groups (P > 0.05). Mild renal dysfunction, mild liver dysfunction, low platelet levels and low white blood cell levels were recorded in both groups, without significant differences between the two groups (P > 0.05). After a mean follow-up of 36.8 months, 3 (7.5%) patients in the single-HIPEC group and 2 (5.2%) patients in the multi-HIPEC group experienced peritoneal recurrence (P > 0.05). Both groups had comparable 3-year overall survival (OS) (51.3% vs. 54.5%, P = 0.558) and 3-year disease-free survival (DFS) rates (44.1% vs. 45.7%, P = 0.975). Multivariate analysis showed that an age > 60 years and low preoperative albumin levels were independent risk factors for postoperative complications.ConclusionSingle and multiple applications of HIPEC in patients with T4 gastric cancer were safe and feasible. Both groups had similar postoperative complication rates, 3-year OS rates and 3-year DFS rates. Special attention should be given to HIPEC for patients aged > 60 years and patients with low preoperative albumin levels.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Surgery, Huanxing Cancer Hospital, Beijing, China
| | - Yuemin Sun
- Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaofeng Bai
- Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Peng Wang
- Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liang Tian
- Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yantao Tian
- Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Yantao Tian, ; Yuxin Zhong,
| | - Yuxin Zhong
- Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Yantao Tian, ; Yuxin Zhong,
| |
Collapse
|
11
|
Gata6 + large peritoneal macrophages: an evolutionarily conserved sentinel and effector system for infection and injury. Trends Immunol 2023; 44:129-145. [PMID: 36623953 DOI: 10.1016/j.it.2022.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 01/08/2023]
Abstract
There are striking similarities between the sea urchin cavity macrophage-like phagocytes (coelomocytes) and mammalian cavity macrophages in not only their location, but also their behaviors. These cells are crucial for maintaining homeostasis within the cavity following a breach, filling the gap and functioning as a barrier between vital organs and the environment. In this review, we summarize the evolving literature regarding these Gata6+ large peritoneal macrophages (GLPMs), focusing on ontogeny, their responses to perturbations, including their rapid aggregation via coagulation, as well as scavenger receptor cysteine-rich domains and their potential roles in diseases, such as cancer. We challenge the 50-year old phenomenon of the 'macrophage disappearance reaction' (MDR) and propose the new term 'macrophage disturbance of homeostasis reaction' (MDHR), which may better describe this complex phenomenon.
Collapse
|
12
|
Zhong Y, Kang W, Hu H, Li W, Zhang J, Tian Y. Lobaplatin-based prophylactic hyperthermic intraperitoneal chemotherapy for T4 gastric cancer patients: A retrospective clinical study. Front Oncol 2023; 13:995618. [PMID: 36741012 PMCID: PMC9890050 DOI: 10.3389/fonc.2023.995618] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 01/03/2023] [Indexed: 01/19/2023] Open
Abstract
Objective To explore the clinical efficacy of lobaplatin-based prophylactic hyperthermic intraperitoneal chemotherapy (HIPEC) for patients with T4 gastric cancer after surgery and to evaluate its impact on survival. Materials and methods Data on patients with T4 gastric cancer who underwent radical gastric resection between March 2016 and August 2017 were collected from the National Cancer Center and Huangxing Cancer Hospital. Enrolled patients were divided into two groups according to receiving or not receiving HIPEC. Results A total of 106 patients were included in this study; among them, 51 patients underwent radical gastric resection plus prophylactic HIPEC, and 55 patients underwent radical gastric resection only. The baseline characteristics were well balanced between the two groups. The postoperative platelet counts in the HIPEC group were significantly lower than those in the non-HIPEC group (P < 0.05); however, we did not observe any occurrences of serious bleeding in the HIPEC group. There were no significant differences in the postoperative complication rates between the two groups (P > 0.05). The postoperative (1 month) CEA, CA19-9, and CA72-4 levels in the HIPEC group were significantly decreased in the HIPEC group (P < 0.05). At a median follow-up of 59.3 months, 3 (5.5%) patients in the HIPEC group experienced peritoneal recurrence, and 10 (18.2%) patients in the non-HIPEC group experienced peritoneal recurrence (P < 0.05). Both groups had comparable 5-year overall survival (OS) rates (41.1% HIPEC group vs. 34.5% non-HIPEC group, P = 0.118). The 5-year disease-free survival was significantly higher in the HIPEC group than in the non-HIPEC group (28.6% versus 39.7%, p = 0.046). Conclusions Lobaplatin-based prophylactic HIPEC is feasible and safe for patients with T4 gastric cancer and does not increase postoperative adverse effects. The use of HIPEC showed a significant decrease in the incidence of local recurrence rates and blood tumor marker levels. The 5-year disease-free survival was significantly higher in the HIPEC group; however, the 5-year OS benefit was not found in T4 stage patients.
Collapse
Affiliation(s)
- Yuxin Zhong
- Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenzhe Kang
- Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haitao Hu
- Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weikun Li
- Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Zhang
- Department of Surgery, Huanxing Cancer Hospital, Beijing, China,*Correspondence: Yantao Tian, ; Jing Zhang,
| | - Yantao Tian
- Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China,*Correspondence: Yantao Tian, ; Jing Zhang,
| |
Collapse
|
13
|
Ohm H, Abdel-Rahman O. Impact of Patient Characteristics on the Outcomes of Patients with Gastrointestinal Cancers Treated with Immune Checkpoint Inhibitors. Curr Oncol 2023; 30:786-802. [PMID: 36661709 PMCID: PMC9858132 DOI: 10.3390/curroncol30010060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/01/2023] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
Gastrointestinal (GI) cancers are a group of malignancies that globally account for a significant portion of cancer incidence and cancer-related death. Survival outcomes for esophageal, gastric, pancreatic, and hepatobiliary cancers remain poor, but new treatment paradigms are emerging with the advent of immune checkpoint inhibitor (ICI) therapy. This review characterizes patient-related prognostic factors that influence the response to ICI therapy. We performed an analysis of the landmark randomized clinical trials in esophageal, gastric, colorectal, hepatocellular, pancreatic, and biliary tract cancers in terms of patient demographic factors. A literature review of smaller retrospective studies investigating patient-related factors was completed. The immunological bases for these associations were further explored. The key predictive factors identified include age, sex, performance status, geography, body mass index, sarcopenia, gut microbiome, various biochemical factors, and disease distribution.
Collapse
Affiliation(s)
- Hyejee Ohm
- Department of Medicine, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| | - Omar Abdel-Rahman
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| |
Collapse
|
14
|
Jiang T, Zhang H, Li Y, Jayakumar P, Liao H, Huang H, Billiar TR, Deng M. Intraperitoneal injection of class A TLR9 agonist enhances anti-PD-1 immunotherapy in colorectal peritoneal metastases. JCI Insight 2022; 7:e160063. [PMID: 36278484 PMCID: PMC9714777 DOI: 10.1172/jci.insight.160063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 08/31/2022] [Indexed: 07/02/2024] Open
Abstract
Peritoneal metastases are associated with a low response rate to immune checkpoint blockade (ICB) therapy. The numbers of peritoneal resident macrophages (PRMs) are reversely correlated with the response rate to ICB therapy. We have previously shown that TLR9 in fibroblastic reticular cells (FRCs) plays a critical role in regulating peritoneal immune cell recruitment. However, the role of TLR9 in FRCs in regulating PRMs is unclear. Here, we demonstrated that the class A TLR9 agonist, ODN1585, markedly enhanced the efficacy of anti-PD-1 therapy in mouse models of colorectal peritoneal metastases. ODN1585 injected i.p. reduced the numbers of Tim4+ PRMs and enhanced CD8+ T cell antitumor immunity. Mechanistically, treatment of ODN1585 suppressed the expression of genes required for retinoid metabolism in FRCs, and this was associated with reduced expression of the PRM lineage-defining transcription factor GATA6. Selective deletion of TLR9 in FRCs diminished the benefit of ODN1585 in anti-PD-1 therapy in reducing peritoneal metastases. The crosstalk between PRMs and FRCs may be utilized to develop new strategies to improve the efficacy of ICB therapy for peritoneal metastases.
Collapse
Affiliation(s)
- Ting Jiang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Tsinghua University School of Medicine, Beijing, China
| | - Hongji Zhang
- Department of Surgery, The Ohio State University, Columbus, Ohio, USA
- Department of Surgery, University of Virginia, Charlottesville, Virginia, USA
| | - Yiming Li
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Preethi Jayakumar
- Department of Surgery, The Ohio State University, Columbus, Ohio, USA
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Hong Liao
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Hai Huang
- Department of Surgery, The Ohio State University, Columbus, Ohio, USA
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Timothy R. Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Meihong Deng
- Department of Surgery, The Ohio State University, Columbus, Ohio, USA
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Manhasset, New York, USA
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
15
|
Zhang Y, Ouyang D, Chen YH, Xia H. Peritoneal resident macrophages in tumor metastasis and immunotherapy. Front Cell Dev Biol 2022; 10:948952. [PMID: 36035994 PMCID: PMC9402905 DOI: 10.3389/fcell.2022.948952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/20/2022] [Indexed: 11/30/2022] Open
Abstract
Macrophages residing in various tissues play crucial roles in innate immunity, tissue repair, and immune homeostasis. The development and differentiation of macrophages in non-lymphoid tissues are highly regulated by the tissue microenvironment. Peritoneum provides a unique metastatic niche for certain types of tumor cells. As the dominant immune cell type in peritoneal cavity, macrophages control the immune response to tumor and influence the efficacy of anti-tumor therapy. Considering the heterogeneity of macrophages in origin, metabolism, and function, it is always challenging to define the precise roles of macrophages in tumor microenvironment. We review here recent progresses in peritoneal resident macrophage research in the context of physiological and metastatic tumor conditions, which may benefit the development of new anti-tumor therapies through targeting macrophages.
Collapse
Affiliation(s)
- Yu Zhang
- Center for Cancer Immunology, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Dongyun Ouyang
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Youhai H. Chen
- Center for Cancer Immunology, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Houjun Xia
- Center for Cancer Immunology, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- *Correspondence: Houjun Xia,
| |
Collapse
|
16
|
Wang D, Gu Y, Huo C, Zhao Y, Teng M, Li Y. MCEMP1 is a potential therapeutic biomarker associated with immune infiltration in advanced gastric cancer microenvironment. Gene 2022; 840:146760. [PMID: 35905854 DOI: 10.1016/j.gene.2022.146760] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 07/03/2022] [Accepted: 07/24/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND Over the last decade, breakthroughs have been made in cancer immunotherapy. However, for advanced gastric cancer (AGC), the complexity and heterogeneity of the tumor microenvironment (TME) has been the biggest challenge for immunotherapy. Therefore, an intensive study on TME of AGC is necessary. METHODS ESTIMATE and CIBERSORT algorithms were applied to analyze the transcriptome data of AGC using TCGA database systematically. We identified mast cell-expressed membrane protein 1 (MCEMP1) as a potential prognostic marker by protein-protein interaction (PPI) and Univariate Cox regression. The expression of MCEMP1 was evaluated by immunohistochemistry (IHC) and quantitative real time PCR. We assessed prognostic values of MCEMP1 with use of Kaplan-Meier and Multivariate Cox regression analysis. Gene set enrichment analysis (GSEA) was used to analyze the molecular mechanism of MCEMP1. The correlation between MCEMP1 expression and tumor immune infiltration was analyzed by the TIMER database and CIBERSORT algorithm, which was confirmed by IHC. RESULTS The mRNA and protein expression of MCEMP1 was up-regulated substantially and related to poor survival in AGC. GSEA analysis revealed that MCEMP1 was involved in the immune-related signaling pathways. We further demonstrated that the expression of MCEMP1 was correlated with multiple immune cells and immune checkpoints. The results of IHC indicated that there was a positive correlation between PD-L1 expression and MCEMP1, suggesting that MCEMP1 may affect the prognosis of AGC patients by regulating immune infiltration and the function of immune cells. CONCLUSION MCEMP1 may serve as a biomarker associated with immune infiltration in TME and could be a potential therapeutic target for AGC patients.
Collapse
Affiliation(s)
- Daijun Wang
- Lanzhou University Second Hospital, the Second Clinical Medical College of Lanzhou University, Lanzhou 730030, Gansu, China
| | - Yanmei Gu
- Lanzhou University Second Hospital, the Second Clinical Medical College of Lanzhou University, Lanzhou 730030, Gansu, China
| | - Chengdong Huo
- Lanzhou University Second Hospital, the Second Clinical Medical College of Lanzhou University, Lanzhou 730030, Gansu, China
| | - Yang Zhao
- Lanzhou University Second Hospital, the Second Clinical Medical College of Lanzhou University, Lanzhou 730030, Gansu, China; Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou 730030, Gansu, China
| | - Muzhou Teng
- Lanzhou University Second Hospital, the Second Clinical Medical College of Lanzhou University, Lanzhou 730030, Gansu, China; Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou 730030, Gansu, China.
| | - Yumin Li
- Lanzhou University Second Hospital, the Second Clinical Medical College of Lanzhou University, Lanzhou 730030, Gansu, China; Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou 730030, Gansu, China.
| |
Collapse
|
17
|
Demuytere J, Ernst S, van Ovost J, Cosyns S, Ceelen W. The tumor immune microenvironment in peritoneal carcinomatosis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 371:63-95. [PMID: 35965001 DOI: 10.1016/bs.ircmb.2022.04.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
One in four patients with colorectal cancer, 40% of gastric cancer patients, and 60% of ovarian cancer patients will develop peritoneal metastases (PM) in the course of their disease. The outcome of patients with widespread PM remains poor with currently available treatments. Despite the relatively common occurrence of PM, little is known on the pathophysiology that drives the peritoneal metastatic cascade. It is increasingly recognized that the stromal components of the peritoneal microenvironment play an essential role in tumor progression. However, little is known about the specific interactions and components of the peritoneal tumor microenvironment, particularly with respect the immune cell population. We summarize the current knowledge of the tumor immune microenvironment (TIME) in peritoneal metastases originating from the three most common origins: ovarian, gastric, and colorectal cancer. Clearly, the TIME is highly heterogeneous and its composition and functional activity differ according to tumor type and, within the same patient, according to anatomical location. The TIME in PM remains to be explored in detail, and further elucidation of their immune contexture may allow biology driven design of novel immune modulating or immune targeting therapies.
Collapse
Affiliation(s)
- Jesse Demuytere
- Experimental Surgery Lab, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Sam Ernst
- Experimental Surgery Lab, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium; Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Judith van Ovost
- Experimental Surgery Lab, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Sarah Cosyns
- Experimental Surgery Lab, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Wim Ceelen
- Experimental Surgery Lab, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| |
Collapse
|
18
|
Kang D, Kim IH. Molecular Mechanisms and Potential Rationale of Immunotherapy in Peritoneal Metastasis of Advanced Gastric Cancer. Biomedicines 2022; 10:biomedicines10061376. [PMID: 35740397 PMCID: PMC9220323 DOI: 10.3390/biomedicines10061376] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/03/2022] [Accepted: 06/08/2022] [Indexed: 11/16/2022] Open
Abstract
Peritoneal metastasis (PM) is one of the most frequent metastasis patterns of gastric cancer (GC), and the prognosis of patients with PM is very dismal. According to Paget’s theory, disseminated free cancer cells are seeded and survive in the abdominal cavity, adhere to the peritoneum, invade the subperitoneal tissue, and proliferate through angiogenesis. In these sequential processes, several key molecules are involved. From a therapeutic point of view, immunotherapy with chemotherapy combination has become the standard of care for advanced GC. Several clinical trials of newer immunotherapy agents are ongoing. Understanding of the molecular process of PM and the potential rationale of immunotherapy for PM treatment is necessary. Beyond understanding of the molecular aspect of PM, many studies have been conducted on the modality of treatment of PM. Notably, intraperitoneal approaches, including chemotherapy or immunotherapy, have been conducted, because systemic treatment of PM has limitations. In this study, we reviewed the molecular mechanisms and immunologic aspects of PM, and intraperitoneal approaches under investigation for treating PM.
Collapse
Affiliation(s)
- Donghoon Kang
- Division of Gastroenterology, Department of Internal Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul 06591, Korea;
| | - In-Ho Kim
- Division of Medical Oncology, Department of Internal Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul 06591, Korea
- Correspondence:
| |
Collapse
|
19
|
Yang J, Cao W, Xing E. Levels and Significance of Tumor Markers and Cytokines in Serum and Peritoneal Lavage Fluid of Patients with Peritoneal Metastasis of Gastric Cancer. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9528444. [PMID: 35692594 PMCID: PMC9184211 DOI: 10.1155/2022/9528444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/18/2022] [Accepted: 04/29/2022] [Indexed: 11/17/2022]
Abstract
The paper is written to investigate the levels and significance of tumor markers [carcinoembryonic antigen (CEA), carbohydrate antigen 125 (CA125), and carbohydrate antigen 19-9 (CA19-9)] and cytokines [interleukin-6 (IL-6), IL-4, and IL-2] in serum and peritoneal lavage fluid of patients with peritoneal metastasis of gastric cancer. For this research, 145 patients with gastric cancer treated in our hospital were divided into peritoneal metastasis group (n = 25), other metastasis group (n = 32), and nonmetastasis group (n = 88) according to the occurrence of metastasis. At the same time, the levels of serum tumor markers and cytokines and tumor markers and cytokines in intraoperative peritoneal lavage fluid were compared among the three groups. The results showed that the proportion of TNM stage III in peritoneal metastasis group and other metastasis group was 68.00% and 62.50%, respectively, and the proportion of tumor >5 cm was 64.00% and 59.38%, respectively, which was significantly higher than that in the control group. The 1-year survival rate of peritoneal metastasis group and other metastasis group was 44.00% and 40.63%, respectively, which was significantly lower than that of nonmetastasis group (P < 0.05).The serum levels of CEA, CA125, CA19-9, IL-6, IL-4, and IL-2 in peritoneal metastasis group and other metastasis group were higher than those in nonmetastasis group. The intraoperative peritoneal lavage fluid CEA, CA125, and IL-6 were 13.41 ± 3.72 ng/ml, 8.97 ± 1.33 U/ml, and 1.85 ± 0.44 pg/ml, respectively, which were higher than those in other metastasis groups and nonmetastasis groups (P < 0.05). There was no significant difference in the levels of CA19-9, IL-4, and IL-2 in peritoneal lavage fluid among peritoneal metastasis group, other metastasis groups, and nonmetastasis groups (P > 0.05); the areas under the ROC curve of intraoperative peritoneal lavage fluid CEA, CA125, and IL-6 in predicting peritoneal metastasis were 0.850, 0.902, and 0.806, respectively, P < 0.05. Thus, the conclusion is that peritoneal lavage fluid CEA, CA125, and IL-6 have certain application value in predicting and diagnosing peritoneal metastasis of gastric cancer, while the other indexes have no application value.
Collapse
Affiliation(s)
- Jianqi Yang
- Oncology Department of Northern Jiangsu People's Hospital Affiliated to Yangzhou University, 225000, China
| | - Wenmiao Cao
- Oncology Department of Northern Jiangsu People's Hospital Affiliated to Yangzhou University, 225000, China
| | - Enming Xing
- Oncology Department of Northern Jiangsu People's Hospital Affiliated to Yangzhou University, 225000, China
| |
Collapse
|
20
|
Jayakumar P, Laganson A, Deng M. GATA6 + Peritoneal Resident Macrophage: The Immune Custodian in the Peritoneal Cavity. Front Pharmacol 2022; 13:866993. [PMID: 35401237 PMCID: PMC8984154 DOI: 10.3389/fphar.2022.866993] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/08/2022] [Indexed: 12/14/2022] Open
Abstract
Peritoneal resident macrophages (PRMs) have been a prominent topic in the research field of immunology due to their critical roles in immune surveillance in the peritoneal cavity. PRMs initially develop from embryonic progenitor cells and are replenished by bone marrow origin monocytes during inflammation and aging. Furthermore, PRMs have been shown to crosstalk with other cells in the peritoneal cavity to control the immune response during infection, injury, and tumorigenesis. With the advance in genetic studies, GATA-binding factor 6 (GATA6) has been identified as a lineage determining transcription factor of PRMs controlling the phenotypic and functional features of PRMs. Here, we review recent advances in the developmental origin, the phenotypic identity, and functions of PRMs, emphasizing the role of GATA6 in the pathobiology of PRMs in host defense, tissue repairing, and peritoneal tumorigenesis.
Collapse
Affiliation(s)
- Preethi Jayakumar
- Department of Surgery, The Ohio State University, Columbus, OH, United States
| | - Andrea Laganson
- Department of Surgery, The Ohio State University, Columbus, OH, United States
| | - Meihong Deng
- Department of Surgery, The Ohio State University, Columbus, OH, United States.,Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
21
|
Tang D, Liu S, Shen H, Deng G, Zeng S. Extracellular Vesicles Promote the Formation of Pre-Metastasis Niche in Gastric Cancer. Front Immunol 2022; 13:813015. [PMID: 35173726 PMCID: PMC8841609 DOI: 10.3389/fimmu.2022.813015] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/12/2022] [Indexed: 12/12/2022] Open
Abstract
Globally, gastric cancer (GC) ranks fourth in the incidence of malignant tumors. The early clinical manifestations of GC lack specificity. Most patients are already at an advanced stage when they are first diagnosed, and their late progression is mainly due to peritoneal metastasis. A pre-metastatic microenvironment is formed, before the macroscopic tumor metastasis. Extracellular vesicles (EVs) are nanovesicles released by cells into body fluids. Recent studies have shown that EVs can affect the tumor microenvironment by carrying cargos to participate in cell-to-cell communication. EVs derived from GC cells mediate the regulation of the pre-metastasis niche and act as a coordinator between tumor cells and normal stroma, immune cells, inflammatory cells, and tumor fibroblasts to promote tumor growth and metastasis. This review highlights the regulatory role of EVs in the pre-metastatic niche of GC and mulls EVs as a potential biomarker for liquid biopsy.
Collapse
Affiliation(s)
- Diya Tang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Shanshan Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hong Shen
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Gongping Deng
- Department of Emergency, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
- *Correspondence: Gongping Deng, ; Shan Zeng,
| | - Shan Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Gongping Deng, ; Shan Zeng,
| |
Collapse
|
22
|
Senchukova MA. Issues of origin, morphology and clinical significance of tumor microvessels in gastric cancer. World J Gastroenterol 2021; 27:8262-8282. [PMID: 35068869 PMCID: PMC8717017 DOI: 10.3748/wjg.v27.i48.8262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/02/2021] [Accepted: 12/22/2021] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer (GC) remains a serious oncological problem, ranking third in the structure of mortality from malignant neoplasms. Improving treatment outcomes for this pathology largely depends on understanding the pathogenesis and biological characteristics of GC, including the identification and characterization of diagnostic, prognostic, predictive, and therapeutic biomarkers. It is known that the main cause of death from malignant neoplasms and GC, in particular, is tumor metastasis. Given that angiogenesis is a critical process for tumor growth and metastasis, it is now considered an important marker of disease prognosis and sensitivity to anticancer therapy. In the presented review, modern concepts of the mechanisms of tumor vessel formation and the peculiarities of their morphology are considered; data on numerous factors influencing the formation of tumor microvessels and their role in GC progression are summarized; and various approaches to the classification of tumor vessels, as well as the methods for assessing angiogenesis activity in a tumor, are highlighted. Here, results from studies on the prognostic and predictive significance of tumor microvessels in GC are also discussed, and a new classification of tumor microvessels in GC, based on their morphology and clinical significance, is proposed for consideration.
Collapse
Affiliation(s)
- Marina A Senchukova
- Department of Oncology, Orenburg State Medical University, Orenburg 460021, Russia
| |
Collapse
|
23
|
Ozawa H, Imazeki H, Ogiwara Y, Kawakubo H, Fukuda K, Kitagawa Y, Kudo-Saito C. Targeting AURKA in treatment of peritoneal tumor dissemination in gastrointestinal cancer. Transl Oncol 2021; 16:101307. [PMID: 34902741 PMCID: PMC8681022 DOI: 10.1016/j.tranon.2021.101307] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/01/2021] [Accepted: 11/30/2021] [Indexed: 01/16/2023] Open
Abstract
Intraperitoneal (i.p.) tumor dissemination and the consequent malignant ascites remain unpredictable and incurable in patients with gastrointestinal (GI) cancer, and practical advances in diagnosis and treatment are urgently needed in the clinical settings. Here, we explored tumor biological and immunological mechanisms underlying the i.p. tumor progression for establishing more effective treatments. We established mouse tumor ascites models that murine and human colorectal cancer cells were both i.p. and subcutaneously (s.c.) implanted in mice, and analyzed peritoneal exudate cells (PECs) obtained from the mice. We then evaluated anti-tumor efficacy of agents targeting the identified molecular mechanisms using the ascites models. Furthermore, we validated the clinical relevancy of the findings using peritoneal lavage fluids obtained from gastric cancer patients. I.p. tumor cells were giant with large nuclei, and highly express AURKA, but less phosphorylated TP53, as compared to s.c. tumor cells, suggesting polyploidy-like cells. The i.p. tumors impaired phagocytic activity and the consequent T-cell stimulatory activity of CD11b+Gr1+PD1+ myeloid cells by GDF15 that is regulated by AURKA, leading to treatment resistance. Blocking AURKA with MLN8237 or siRNAs, however, abrogated the adverse events, and induced potent anti-tumor immunity in the ascites models. This treatment synergized with anti-PD1 therapy. The CD11b+PD1+ TAMs are also markedly expanded in the PECs of gastric cancer patients. These suggest AURKA is a determinant of treatment resistance of the i.p. tumors. Targeting the AURKA-GDF15 axis could be a promising strategy for improving clinical outcome in the treatment of GI cancer.
Collapse
Affiliation(s)
- Hiroki Ozawa
- Department of Immune Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; Department of Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Hiroshi Imazeki
- Department of Immune Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Yamato Ogiwara
- Department of Immune Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Hirofumi Kawakubo
- Department of Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Kazumasa Fukuda
- Department of Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Yuko Kitagawa
- Department of Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Chie Kudo-Saito
- Department of Immune Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
| |
Collapse
|
24
|
Papaefthymiou A, Christodoulidis G, Koffas A, Doulberis M, Polyzos SA, Manolakis A, Potamianos S, Kapsoritakis A, Kountouras J. Role of autophagy in gastric carcinogenesis. World J Gastrointest Oncol 2021; 13:1244-1262. [PMID: 34721765 PMCID: PMC8529927 DOI: 10.4251/wjgo.v13.i10.1244] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/06/2021] [Accepted: 08/02/2021] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer represents a common and highly fatal malignancy, and thus a pathophysiology-based reconsideration is necessary, given the absence of efficient therapeutic regimens. In this regard, emerging data reveal a significant role of autophagy in gastric oncogenesis, progression, metastasis and chemoresistance. Although autophagy comprises a normal primordial process, ensuring cellular homeostasis under energy depletion and stress conditions, alterations at any stage of the complex regulatory system could stimulate a tumorigenic and promoting cascade. Among others, Helicobacter pylori infection induces a variety of signaling molecules modifying autophagy, during acute infection or after chronic autophagy degeneration. Subsequently, defective autophagy allows malignant transformation and upon cancer establishment, an overactive autophagy is stimulated. This overexpressed autophagy provides energy supplies and resistance mechanisms to gastric cancer cells against hosts defenses and anticancer treatment. This review interprets the implicated autophagic pathways in normal cells and in gastric cancer to illuminate the potential preventive, therapeutic and prognostic benefits of understanding and intervening autophagy.
Collapse
Affiliation(s)
- Apostolis Papaefthymiou
- Department of Gastroenterology, University Hospital of Larissa, Larissa 41110, Thessaly, Greece
- First Laboratory of Pharmacology, Aristotle University of Thessaloniki, Thessaloniki 54124, Macedonia, Greece
- Department of Medicine, Second Medical Clinic, Aristotle University of Thessaloniki, Ippokration Hospital, Thessaloniki 54642, Macedonia, Greece
| | | | - Apostolos Koffas
- Department of Gastroenterology, University Hospital of Larissa, Larissa 41110, Thessaly, Greece
| | - Michael Doulberis
- First Laboratory of Pharmacology, Aristotle University of Thessaloniki, Thessaloniki 54124, Macedonia, Greece
- Department of Medicine, Second Medical Clinic, Aristotle University of Thessaloniki, Ippokration Hospital, Thessaloniki 54642, Macedonia, Greece
- Division of Gastroenterology and Hepatology, Medical University Department, Kantonsspital Aarau, Aarau 5001, Switzerland
| | - Stergios A Polyzos
- First Laboratory of Pharmacology, Aristotle University of Thessaloniki, Thessaloniki 54124, Macedonia, Greece
| | - Anastasios Manolakis
- Department of Gastroenterology, University Hospital of Larissa, Larissa 41110, Thessaly, Greece
| | - Spyros Potamianos
- Department of Gastroenterology, University Hospital of Larissa, Larissa 41110, Thessaly, Greece
| | - Andreas Kapsoritakis
- Department of Gastroenterology, University Hospital of Larissa, Larissa 41110, Thessaly, Greece
| | - Jannis Kountouras
- Department of Medicine, Second Medical Clinic, Aristotle University of Thessaloniki, Ippokration Hospital, Thessaloniki 54642, Macedonia, Greece
| |
Collapse
|
25
|
Zhang C, Li D, Yu R, Li C, Song Y, Chen X, Fan Y, Liu Y, Qu X. Immune Landscape of Gastric Carcinoma Tumor Microenvironment Identifies a Peritoneal Relapse Relevant Immune Signature. Front Immunol 2021; 12:651033. [PMID: 34054812 PMCID: PMC8155484 DOI: 10.3389/fimmu.2021.651033] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/20/2021] [Indexed: 12/24/2022] Open
Abstract
Background Gastric cancer (GC) still represents the third leading cause of cancer-related death worldwide. Peritoneal relapse (PR) is the most frequent metastasis occurring among patients with advanced gastric cancer. Increasingly more evidence have clarified the tumor immune microenvironment (TIME) may predict survival and have clinical significance in GC. However, tumor-transcriptomics based immune signatures derived from immune profiling have not been established for predicting the peritoneal recurrence of the advanced GC. Methods In this study, we depict the immune landscape of GC by using transcriptome profiling and clinical characteristics retrieved from GSE62254 of Gene Expression Omnibus (GEO). Immune cell infiltration score was evaluated via single-sample gene set enrichment (ssGSEA) analysis algorithm. The least absolute shrinkage and selection operator (LASSO) Cox regression algorithm was used to select the valuable immune cells and construct the final model for the prediction of PR. The receiver operating characteristic (ROC) curve and the Kaplan-Meier curve were used to check the accuracy of PRIs. Gene Set Enrichment Analysis (GSEA) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were performed to explore the molecular pathways associated with PRIs. Results A peritoneal recurrence related immune score (PRIs) with 10 immune cells was constructed. Compared to the low-PRIs group, the high-PRIs group had a greater risk. The upregulation of the focal adhesion signaling was observed in the high-PRIs subtype by GSEA and KEGG. Multivariate analysis found that both in the internal training cohort and the internal validation cohort, PRIs was a stable and independent predictor for PR. A nomogram that integrated clinicopathological features and PRIs to predict peritoneal relapse was constructed. Subgroup analysis indicated that the PRIs could obviously distinguish peritoneal recurrence in different molecular subtypes, pathological stages and Lauren subtypes, in which PRIs of Epithelial-Mesenchymal Transitions (EMT) subtype, III-IV stage and diffuse subtype are higher respectively. Conclusion Overall, we performed a comprehensive evaluation of the immune landscape of GC and constructed a predictive PR model based on the immune cell infiltration. The PRIs represents novel promising feature of predicting peritoneal recurrence of GC and sheds light on the improvement of the personalized management of GC patients after surgery.
Collapse
Affiliation(s)
- Chuang Zhang
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China.,Liaoning Province Clinical Research Center for Cancer, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Hospital of China Medical University, Shenyang, China
| | - Danni Li
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China.,Liaoning Province Clinical Research Center for Cancer, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Hospital of China Medical University, Shenyang, China
| | - Ruoxi Yu
- Department of Radiation Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institution, Shenyang, China
| | - Ce Li
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China.,Liaoning Province Clinical Research Center for Cancer, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Hospital of China Medical University, Shenyang, China
| | - Yujia Song
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China.,Liaoning Province Clinical Research Center for Cancer, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Hospital of China Medical University, Shenyang, China
| | - Xi Chen
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China.,Liaoning Province Clinical Research Center for Cancer, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Hospital of China Medical University, Shenyang, China
| | - Yibo Fan
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China.,Liaoning Province Clinical Research Center for Cancer, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Hospital of China Medical University, Shenyang, China
| | - Yunpeng Liu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China.,Liaoning Province Clinical Research Center for Cancer, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Hospital of China Medical University, Shenyang, China
| | - Xiujuan Qu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China.,Liaoning Province Clinical Research Center for Cancer, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
26
|
Rihawi K, Ricci AD, Rizzo A, Brocchi S, Marasco G, Pastore LV, Llimpe FLR, Golfieri R, Renzulli M. Tumor-Associated Macrophages and Inflammatory Microenvironment in Gastric Cancer: Novel Translational Implications. Int J Mol Sci 2021; 22:ijms22083805. [PMID: 33916915 PMCID: PMC8067563 DOI: 10.3390/ijms22083805] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 03/30/2021] [Accepted: 04/05/2021] [Indexed: 02/07/2023] Open
Abstract
Gastric cancer (GC) represents the fifth most frequently diagnosed cancer worldwide, with a poor prognosis in patients with advanced disease despite many improvements in systemic treatments in the last decade. In fact, GC has shown resistance to several treatment options, and thus, notable efforts have been focused on the research and identification of novel therapeutic targets in this setting. The tumor microenvironment (TME) has emerged as a potential therapeutic target in several malignancies including GC, due to its pivotal role in cancer progression and drug resistance. Therefore, several agents and therapeutic strategies targeting the TME are currently under assessment in both preclinical and clinical studies. The present study provides an overview of available evidence of the inflammatory TME in GC, highlighting different types of tumor-associated cells and implications for future therapeutic strategies.
Collapse
Affiliation(s)
- Karim Rihawi
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (K.R.); (A.D.R.); (A.R.); (F.L.R.L.)
| | - Angela Dalia Ricci
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (K.R.); (A.D.R.); (A.R.); (F.L.R.L.)
| | - Alessandro Rizzo
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (K.R.); (A.D.R.); (A.R.); (F.L.R.L.)
| | - Stefano Brocchi
- Department of Radiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (S.B.); (L.V.P.); (R.G.)
| | - Giovanni Marasco
- Department of Medical and Surgical Sciences, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Luigi Vincenzo Pastore
- Department of Radiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (S.B.); (L.V.P.); (R.G.)
| | - Fabiola Lorena Rojas Llimpe
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (K.R.); (A.D.R.); (A.R.); (F.L.R.L.)
| | - Rita Golfieri
- Department of Radiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (S.B.); (L.V.P.); (R.G.)
| | - Matteo Renzulli
- Department of Radiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (S.B.); (L.V.P.); (R.G.)
- Correspondence: ; Tel.: +39-0512142958; Fax: +39-0512142805
| |
Collapse
|
27
|
Li H, Zhou L, Zhou J, Li Q, Ji Q. Underlying mechanisms and drug intervention strategies for the tumour microenvironment. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:97. [PMID: 33722297 PMCID: PMC7962349 DOI: 10.1186/s13046-021-01893-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/24/2021] [Indexed: 02/08/2023]
Abstract
Cancer occurs in a complex tissue environment, and its progression depends largely on the tumour microenvironment (TME). The TME has a highly complex and comprehensive system accompanied by dynamic changes and special biological characteristics, such as hypoxia, nutrient deficiency, inflammation, immunosuppression and cytokine production. In addition, a large number of cancer-associated biomolecules and signalling pathways are involved in the above bioprocesses. This paper reviews our understanding of the TME and describes its biological and molecular characterization in different stages of cancer development. Furthermore, we discuss in detail the intervention strategies for the critical points of the TME, including chemotherapy, targeted therapy, immunotherapy, natural products from traditional Chinese medicine, combined drug therapy, etc., providing a scientific basis for cancer therapy from the perspective of key molecular targets in the TME.
Collapse
Affiliation(s)
- Haoze Li
- Department of Medical Oncology and Cancer Institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.,Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Lihong Zhou
- Department of Medical Oncology and Cancer Institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.,Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jing Zhou
- Department of Medical Oncology and Cancer Institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.,Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Qi Li
- Department of Medical Oncology and Cancer Institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China. .,Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Qing Ji
- Department of Medical Oncology and Cancer Institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China. .,Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
28
|
Zhu AK, Shan YQ, Zhang J, Liu XC, Ying RC, Kong WC. Exosomal NNMT from peritoneum lavage fluid promotes peritoneal metastasis in gastric cancer. Kaohsiung J Med Sci 2021; 37:305-313. [PMID: 33508890 DOI: 10.1002/kjm2.12334] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/22/2020] [Accepted: 11/08/2020] [Indexed: 12/18/2022] Open
Abstract
Peritoneal metastasis (PM) is the major cause of recurrence in patients with gastric cancer (GC) and is associated with poor prognosis. The oncogenic role of Nicotinamide N-methyltransferase (NNMT) in GC has been reported, but the role of secreted NNMT that is transported by exosomes remains unknown. In this study, exosomes were isolated from GC patients with or without PM and from GC cell line, including GC-114, GC-026, MKN45, and SNU-16 cells. The contents of NNMT were significantly enhanced in exosomes isolated from GC patients with PM compared with those from GC patients without PM. Furthermore, the levels of NNMT were significantly enhanced in exosomes from GC cell lines relative to those from normal human gastric epithelial cell line GES-1 cells. These data indicate that NNMT may be involved in intercellular communication for peritoneal dissemination. Moreover, colocalization of GC-derived exosomal NNMT was found in human peritoneal mesothelial cell line HMrSV5 cells. Additionally, relative to GES-1 exosomes, SNU-16 exosomes significantly activated TGF-β/smad2 signaling in HMrSV5 cells. However, when NNMT was silenced, the activation of TGF-β/smad2 by SNU-16 exosomes was abolished in HMrSV5 cells. We propose that NNMT-containing exosomes derived from GC cells could promote peritoneal metastasis via TGF-β/smad2 signaling.
Collapse
Affiliation(s)
- A-Kao Zhu
- Department of General Surgery, Affiliated Hangzhou First People Hospital, Zhejiang University School of Medicine, Zhejiang Province, China
| | - Yu-Qiang Shan
- Department of General Surgery, Affiliated Hangzhou First People Hospital, Zhejiang University School of Medicine, Zhejiang Province, China
| | - Jian Zhang
- Department of General Surgery, Affiliated Hangzhou First People Hospital, Zhejiang University School of Medicine, Zhejiang Province, China
| | - Xin-Chun Liu
- Department of General Surgery, Affiliated Hangzhou First People Hospital, Zhejiang University School of Medicine, Zhejiang Province, China
| | - Rong-Chao Ying
- Department of General Surgery, Affiliated Hangzhou First People Hospital, Zhejiang University School of Medicine, Zhejiang Province, China
| | - Wen-Cheng Kong
- Department of General Surgery, Affiliated Hangzhou First People Hospital, Zhejiang University School of Medicine, Zhejiang Province, China
| |
Collapse
|
29
|
Oya Y, Hayakawa Y, Koike K. Tumor microenvironment in gastric cancers. Cancer Sci 2020; 111:2696-2707. [PMID: 32519436 PMCID: PMC7419059 DOI: 10.1111/cas.14521] [Citation(s) in RCA: 182] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 05/25/2020] [Accepted: 06/01/2020] [Indexed: 02/06/2023] Open
Abstract
The tumor microenvironment favors the growth and expansion of cancer cells. Many cell types are involved in the tumor microenvironment such as inflammatory cells, fibroblasts, nerves, and vascular endothelial cells. These stromal cells contribute to tumor growth by releasing various molecules to either directly activate the growth signaling in cancer cells or remodel surrounding areas. This review introduces recent advances in findings on the interactions within the tumor microenvironment such as in cancer-associated fibroblasts (CAFs), immune cells, and endothelial cells, in particular those established in mouse gastric cancer models. In mice, myofibroblasts in the gastric stroma secrete R-spondin and support normal gastric stem cells. Most CAFs promote tumor growth in a paracrine manner, but CAF population appears to be heterogeneous in terms of their function and origin, and include both tumor-promoting and tumor-restraining populations. Among immune cell populations, tumor-associated macrophages, including M1 and M2 macrophages, and myeloid-derived suppressor cells (MDSCs), are reported to directly or indirectly promote gastric tumorigenesis by secreting soluble factors or modulating immune responses. Endothelial cells or blood vessels not only fuel tumors with nutrients, but also interact with cancer stem cells and immune cells by secreting chemokines or cytokines, and act as a cancer niche. Understanding these interactions within the tumor microenvironment would contribute to unraveling new therapeutic targets.
Collapse
Affiliation(s)
- Yukiko Oya
- Department of GastroenterologyGraduate school of Medicinethe University of TokyoTokyoJapan
| | - Yoku Hayakawa
- Department of GastroenterologyGraduate school of Medicinethe University of TokyoTokyoJapan
| | - Kazuhiko Koike
- Department of GastroenterologyGraduate school of Medicinethe University of TokyoTokyoJapan
| |
Collapse
|