1
|
Ding B, Li M, Zhang J, Zhang X, Gao H, Gao J, Shen C, Zhou Y, Li F, Liu A. Co-Delivery of Dacarbazine and miRNA 34a Combinations to Synergistically Improve Malignant Melanoma Treatments. Drug Des Devel Ther 2025; 19:553-568. [PMID: 39876991 PMCID: PMC11774112 DOI: 10.2147/dddt.s497888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 01/14/2025] [Indexed: 01/31/2025] Open
Abstract
Purpose The incidence of malignant melanoma (MM) has risen over the past three decades, and despite advancements in treatment, there is still a need to improve treatment modalities. This study developed a promising strategy for tumor-targeted co-delivery of Dacarbazine (DTIC) and miRNA 34a-loaded PHRD micelles (Co-PHRD) for combination treatment of MM. Methods To construct the dual drug-loaded delivery system Co-PHRD, poly (L-arginine)-poly (L-histidine)-polylactic acid (PLA) was employed as a building block. In this system, poly (L-arginine) and PLA function as hydrophilic and hydrophobic blocks, respectively, which self-assemble into micelles in aqueous solution. Poly(L-arginine) and poly(L-histidine) are efficiently taken up by cells and perform efficient gene condensation, which facilitate the release of encapsulated miRNA 34a into the cytoplasm. Due to its lipophilic properties, PLA can effectively encapsulate DTIC. The polypeptide aptamer DR5-TAT (D21) was used as a targeting ligand. The properties of Co-PHRD and its in vitro release behaviour were characterized. Additionally, the synergetic effects of DTIC and miRNA 34a in melanoma therapy were investigated in vitro and in vivo. Results Compared to DTIC treatment alone, Co-PHRD treatment exhibited 1.84-fold greater cytotoxicity in A375 cells, demonstrating that miRNA 34a enhanced the efficacy of DTIC. The particle size of Co-PHRD at an N/P ratio of 10 was 164.1 ± 4.5 nm, and the zeta potential of Co-PHRD was 27.3 ± 1.38 mV. The flow cytometry and CLSM results revealed both DTIC and miRNA 34a were avidly taken up by A375 cells at 1 h and 4 h in PHRD. In addition, in vivo results indicated that Co-PHRD micelles can significantly inhibit tumor growth without causing significant damage to major organs. Conclusion Co-delivery of DTIC and miRNA 34a via polypeptide micelles showed synergistic effects against MM, offering a new strategy for gene and chemotherapy.
Collapse
Affiliation(s)
- Baoyue Ding
- Department of Pharmaceutical Analysis, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, The School of Pharmacy, Fujian Medical University, Fuzhou, 350122, People’s Republic of China
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, Jiaxing University College of Medicine, Jiaxing, Zhejiang, People’s Republic of China
| | - Mingjuan Li
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, Jiaxing University College of Medicine, Jiaxing, Zhejiang, People’s Republic of China
| | - Jie Zhang
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, Jiaxing University College of Medicine, Jiaxing, Zhejiang, People’s Republic of China
| | - Xiaojuan Zhang
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, Jiaxing University College of Medicine, Jiaxing, Zhejiang, People’s Republic of China
| | - Huan Gao
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, Jiaxing University College of Medicine, Jiaxing, Zhejiang, People’s Republic of China
| | - Jianqing Gao
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058People’s Republic of China
| | - Chunyan Shen
- Jiaxing Institute for Food, Drug and Product Quality Control, Jiaxing, Zhejiang, People’s Republic of China
| | - Yan Zhou
- Jiaxing Institute for Food, Drug and Product Quality Control, Jiaxing, Zhejiang, People’s Republic of China
| | - Fanzhu Li
- Zhejiang Chinese Medical University, School of Pharmaceutical Science, Hangzhou, 310053, People’s Republic of China
| | - Ailin Liu
- Department of Pharmaceutical Analysis, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, The School of Pharmacy, Fujian Medical University, Fuzhou, 350122, People’s Republic of China
| |
Collapse
|
2
|
Wang X, Woo HH, Wei M, Gibson S, Miranda M, Rush D, Cragun J, Zheng W, Yao G, Chambers SK. miR-449, identified through antiandrogen exposure, mitigates functional biomarkers associated with ovarian cancer risk. Sci Rep 2024; 14:29937. [PMID: 39622842 PMCID: PMC11611913 DOI: 10.1038/s41598-024-80173-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 11/15/2024] [Indexed: 12/06/2024] Open
Abstract
The involvement of the androgen receptor (AR) pathway in developing epithelial ovarian cancer is increasingly acknowledged. However, the specific mechanisms by which anti-androgen agents, such as flutamide, may prevent ovarian cancer and their efficacy remain unknown. This study was initiated by investigating the impact of flutamide on miRNA expression in women at high risk (HR) for ovarian cancer. Ovarian and tubal tissues, free from ovarian, tubal, peritoneal cancers, and serous tubal intraepithelial carcinoma (STIC), were collected from untreated and flutamide-treated HR women as well as low-risk (LR) women controls. We performed miRNA sequencing on these 3 sample cohorts and observed that flutamide normalized miRNA levels in HR tissues, notably upregulating the miR-449 family to levels seen in LR tissues. In subsequent tests in primary ovarian epithelial cells and ovarian cancer cell lines (SKOV3 and Hey), flutamide also increased miR-449a and miR-449b-5p levels. Introducing mimics of these miRNAs reduced the mRNA and protein levels of AR and colony-stimulating factor 1 receptor (CSF1R, also known as c-fms), both of which are known contributors to ovarian cancer progression, with emerging evidence also supporting their roles in ovarian cancer initiation. Ovarian cancer cell migration was inhibited upon introducing miR-449a and miR-449b-5p mimics. Together, our study suggests a novel dual-inhibitory mechanism of flutamide on the AR pathway (AR expression suppression in addition to direct androgen antagonism) and supports its chemopreventive potential in ovarian cancer, especially for HR patients with low miR-449 expression.
Collapse
Affiliation(s)
- Xia Wang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi, China
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA
| | - Ho-Hyung Woo
- Department of Obstetrics and Gynecology, University of Arizona, Tucson, AZ, USA
- University of Arizona Cancer Center, Tucson, AZ, USA
| | - Michelle Wei
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA
| | - Steven Gibson
- Department of Obstetrics and Gynecology, University of Arizona, Tucson, AZ, USA
- University of Arizona Cancer Center, Tucson, AZ, USA
| | - Mitzi Miranda
- Department of Obstetrics and Gynecology, University of Arizona, Tucson, AZ, USA
- University of Arizona Cancer Center, Tucson, AZ, USA
| | - Demaretta Rush
- Department of Pathology, University of Arizona, Tucson, AZ, USA
| | - Janiel Cragun
- Department of Obstetrics and Gynecology, University of Arizona, Tucson, AZ, USA
- University of Arizona Cancer Center, Tucson, AZ, USA
| | - Wenxin Zheng
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Guang Yao
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA.
- University of Arizona Cancer Center, Tucson, AZ, USA.
| | - Setsuko K Chambers
- Department of Obstetrics and Gynecology, University of Arizona, Tucson, AZ, USA.
- University of Arizona Cancer Center, Tucson, AZ, USA.
| |
Collapse
|
3
|
Fawzy MP, Hassan HAFM, Sedky NK, Nafie MS, Youness RA, Fahmy SA. Revolutionizing cancer therapy: nanoformulation of miRNA-34 - enhancing delivery and efficacy for various cancer immunotherapies: a review. NANOSCALE ADVANCES 2024:d4na00488d. [PMID: 39309515 PMCID: PMC11414826 DOI: 10.1039/d4na00488d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/12/2024] [Indexed: 09/25/2024]
Abstract
Despite recent advancements in cancer therapies, challenges such as severe toxic effects, non-selective targeting, resistance to chemotherapy and radiotherapy, and recurrence of metastatic tumors persist. Consequently, there has been considerable effort to explore innovative anticancer compounds, particularly in immunotherapy, which offer the potential for enhanced biosafety and efficacy in cancer prevention and treatment. One such avenue of exploration involves the miRNA-34 (miR-34) family, known for its ability to inhibit tumorigenesis across various cancers. Dysregulation of miR-34 has been observed in several human cancers, and it is recognized as a tumor suppressor microRNA due to its synergistic interaction with the well-established tumor suppressor p53. However, challenges have arisen with the therapeutic application of miR-34a. These include its susceptibility to degradation by RNase in serum, limiting its ability to penetrate capillary endothelium and reach target cells, as well as reports of immunoreactive adverse reactions. Furthermore, unexpected side effects may occur, such as the accumulation of therapeutic miRNAs in healthy tissues due to interactions with serum proteins on nano-vector surfaces, nanoparticle breakdown in the bloodstream due to shearing stress, and unsuccessful extravasation of nanocarriers to target cells owing to interstitial fluid pressure. Despite these challenges, miR-34a remains a promising candidate for cancer therapy, and other members of the miR-34 family have also shown potential in inhibiting tumor cell proliferation. While the in vivo applications of miR-34b/c are limited, they warrant further exploration for oncotherapy. Recently, procedures utilizing nanoparticles have been developed to address the challenges associated with the clinical use of miR-34, demonstrating efficacy both in vitro and in vivo. This review highlights emerging trends in nanodelivery systems for miR-34 targeting cancer cells, offering insights into novel nanoformulations designed to enhance the anticancer therapeutic activity and targeting precision of miR-34. As far as current knowledge extends, no similar recent review comprehensively addresses the diverse nanoformulations aimed at optimizing the therapeutic potential of miR-34 in anticancer strategies.
Collapse
Affiliation(s)
- Marola Paula Fawzy
- Department of Chemistry, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation R5 New Garden City, New Capital Cairo 11835 Egypt
| | - Hatem A F M Hassan
- Medway School of Pharmacy, University of Kent Central Avenue, Chatham Maritime Canterbury ME44TB UK
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University 11562 Cairo Egypt
| | - Nada K Sedky
- Department of Biochemistry, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation R5 New Garden City, New Administrative Capital Cairo 11835 Egypt
| | - Mohamed S Nafie
- Department of Chemistry, College of Sciences, University of Sharjah (P.O. 27272) Sharjah United Arab Emirates (UAE)
- Chemistry Department, Faculty of Science, Suez Canal University (P.O. 41522) Ismailia Egypt
| | - Rana A Youness
- Molecular Genetics and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU) 11835 Cairo Egypt
| | - Sherif Ashraf Fahmy
- Department of Chemistry, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation R5 New Garden City, New Capital Cairo 11835 Egypt
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg Robert-Koch-Str. 4 35037 Marburg Germany
| |
Collapse
|
4
|
Li M, Zhao Q, Wang S, Song Y, Zhai L, Zhao J. Differential Impairment Mechanism of Sperm Production via Induction of miR-34c-Activated Apoptosis and Spermatogenesis Pathway in Diet-Induced Obesity and Resistant Mice and GC-1 Spg Cells. Int J Mol Sci 2024; 25:7451. [PMID: 39000558 PMCID: PMC11242685 DOI: 10.3390/ijms25137451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/15/2024] [Accepted: 06/19/2024] [Indexed: 07/16/2024] Open
Abstract
Male reproductive dysfunction is a clinical disease, with a large number of cases being idiopathic. Reproductive disorders have been found in obese (diet-induced obesity and diet-induced obesity-resistant) mice, but the mechanism behind the male reproductive dysfunction between them may be different. The purpose of this study was to explore the possible role and mechanism of miR-34c on sperm production in high-fat-diet-induced obesity-resistant (DIO-R) mice and GC-1 spg cells, which may differ from those in high-fat-diet-induced obesity (DIO) mice. In vivo and in vitro experiments were performed. C57BL/6J mice were fed a high-fat diet for 10 weeks to establish the DIO and DIO-R mouse model. GC-1 spg cells were used to verify the mechanism of miR-34c on sperm production. During in vivo experiments, sperm production damage was found in both DIO and DIO-R male mice. Compared to the control mice, significantly decreased levels of testosterone, LH, activities of acrosome enzyme (ACE), HAse, and activating transcription factor 1 (ATF1) were found in both DIO and DIO-R male mice (p < 0.05). Compared with the control group, the ratio of B-cell lymphoma-2 (Bcl-2)/bcl-2-associated X protein (Bax) in the DIO group was significantly decreased, and the expression level of cleaved caspase-3 was significantly increased (p < 0.05). Compared with the control group, the Bcl-2 protein expression level in the testes of the DIO-R group significantly decreased (p < 0.05). However, the Bax expression level increased. Thus, the Bcl-2/Bax ratio significantly decreased (p < 0.01); however, the factor-related apoptosis (Fas), Fas ligand (FasLG), cleaved caspase-8, caspase-8, cleaved caspase-3, and caspase-3 protein expression levels significantly increased (p < 0.05). Compared with the DIO group, in DIO-R mice, the activities of ACE, ATF1, Bcl-2, and Bcl-2/Bax's spermatogenesis protein expression decreased, while the apoptosis-promoting protein expression significantly increased (p < 0.05). During the in vitro experiment, the late and early apoptotic ratio in the miR-34c over-expression group increased. MiR-34c over-expression enhanced the expression of apoptosis-related proteins Fas/FasLG and Bax/Bcl-2 while inhibiting the expression of ATF1 and the sperm-associated protein in GC-1 spg cells. DIO and DIO-R could harm sperm production. DIO-R could impair sperm production by inducing the miR-34c-activated apoptosis and spermatogenesis pathway, which may be different from that of DIO.
Collapse
Affiliation(s)
- Mujiao Li
- Department of Pharmacology, Shenyang Pharmaceutical University, No. 103, Wenhua Rd., Shenhe District, Shenyang 110016, China; (M.L.); (Q.Z.); (S.W.); (Y.S.)
| | - Qing Zhao
- Department of Pharmacology, Shenyang Pharmaceutical University, No. 103, Wenhua Rd., Shenhe District, Shenyang 110016, China; (M.L.); (Q.Z.); (S.W.); (Y.S.)
| | - Siyu Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, No. 103, Wenhua Rd., Shenhe District, Shenyang 110016, China; (M.L.); (Q.Z.); (S.W.); (Y.S.)
| | - Yangyang Song
- Department of Pharmacology, Shenyang Pharmaceutical University, No. 103, Wenhua Rd., Shenhe District, Shenyang 110016, China; (M.L.); (Q.Z.); (S.W.); (Y.S.)
| | - Lingling Zhai
- Department of Maternal, Child and Adolescent Health, School of Public Health, China Medical University, Shenyang 110122, China;
| | - Jian Zhao
- Department of Pharmacology, Shenyang Pharmaceutical University, No. 103, Wenhua Rd., Shenhe District, Shenyang 110016, China; (M.L.); (Q.Z.); (S.W.); (Y.S.)
| |
Collapse
|
5
|
Liu L, Zhang P, Liu Z, Sun T, Qiao H. Joint global and local interpretation method for CIN status classification in breast cancer. Heliyon 2024; 10:e27054. [PMID: 38562500 PMCID: PMC10982965 DOI: 10.1016/j.heliyon.2024.e27054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 12/10/2023] [Accepted: 02/22/2024] [Indexed: 04/04/2024] Open
Abstract
Breast cancer is among the cancer types with the highest numbers of new cases. The study of this disease from a microscopic perspective has been a prominent research topic. Previous studies have shown that microRNAs (miRNAs) are closely linked to chromosomal instability (CIN). Correctly predicting CIN status from miRNAs can help to improve the survival of breast cancer patients. In this study, a joint global and local interpretation method called GL_XGBoost is proposed for predicting CIN status in breast cancer. GL_XGBoost integrates the eXtreme Gradient Boosting (XGBoost) and SHapley Additive exPlanation (SHAP) methods. XGBoost is used to predict CIN status from miRNA data, whereas SHAP is used to select miRNA features that have strong relationships with CIN. Furthermore, SHAP's rich visualization strategies enhance the interpretability of the entire model at the global and local levels. The performance of GL_XGBoost is validated on the TCGA-BRCA dataset, and it is shown to have an accuracy of 78.57% and an area under the curve value of 0.87. Rich visual analysis is used to explain the relationships between miRNAs and CIN status from different perspectives. Our study demonstrates an intuitive way of exploring the relationship between CIN and cancer from a microscopic perspective.
Collapse
Affiliation(s)
- Liangliang Liu
- College of Information and Management Science, Henan Agricultural University, Zhengzhou, Henan 450046, PR China
| | - Pei Zhang
- College of Information and Management Science, Henan Agricultural University, Zhengzhou, Henan 450046, PR China
| | - Zhihong Liu
- College of Information and Management Science, Henan Agricultural University, Zhengzhou, Henan 450046, PR China
| | - Tong Sun
- College of Information and Management Science, Henan Agricultural University, Zhengzhou, Henan 450046, PR China
| | - Hongbo Qiao
- College of Information and Management Science, Henan Agricultural University, Zhengzhou, Henan 450046, PR China
| |
Collapse
|
6
|
Wang X, Woo HH, Wei M, Gibson S, Miranda M, Rush D, Cragun J, Zheng W, Yao G, Chambers SK. Antiandrogen Flutamide-Induced Restoration of miR-449 Expression Mitigates Functional Biomarkers Associated with Ovarian Cancer Risk. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.26.24303311. [PMID: 38464045 PMCID: PMC10925355 DOI: 10.1101/2024.02.26.24303311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Background The involvement of the androgen and androgen receptor (AR) pathway in the development of epithelial ovarian cancer is increasingly recognized. However, the specific mechanisms by which anti-androgen agents, such as flutamide, may prevent ovarian cancer and their efficacy remain unknown. We examined the effects of flutamide on the miRNA expression profile found in women at high risk (HR) for ovarian cancer. Methods Ovarian and tubal tissues, free from ovarian, tubal, peritoneal cancers, and serous tubal intraepithelial carcinoma (STIC), were collected from untreated and flutamide-treated HR women. Low-risk (LR) women served as controls. Transcriptomic miRNA sequencing was performed on these 3 sample cohorts. The miRNAs that showed the most notable differential expression were subjected to functional assays in primary ovarian epithelial cells and ovarian cancer cells. Results Flutamide treatment demonstrated a normalization effect on diminished miRNA levels in HR tissues compared to LR tissues. Particularly, the miR-449 family was significantly upregulated in HR ovarian tissues following flutamide treatment, reaching levels comparable to those in LR tissues. MiR-449a and miR-449b-5p, members of the miR-449 family, were computationally predicted to target the mRNAs of AR and colony-stimulating factor 1 receptor (CSF1R, also known as c-fms), both of which are known contributors to ovarian cancer progression, with emerging evidence also supporting their roles in ovarian cancer initiation. These findings were experimentally validated in primary ovarian epithelial cells and ovarian cancer cell lines (SKOV3 and Hey): flutamide treatment resulted in elevated levels of miR-449a and miR-449b-5p, and introducing mimics of these miRNAs reduced the mRNA and protein levels of CSF1R and AR. Furthermore, introducing miR-449a and miR-449b-5p mimics showed inhibitory effects on the migration and proliferation of ovarian cancer cells. Conclusion Flutamide treatment restored the reduced expression of miR-449a and miR-449b-5p in HR tissues, thereby decreasing the expression of CSF1R and AR, functional biomarkers associated with an increased risk of ovarian cancer. In addition to the known direct binding of flutamide to the AR, we found that flutamide also suppresses AR expression via miR-449a and miR-449b-5p upregulation, revealing a novel dual-inhibitory mechanism on the AR pathway. Taken together, our study highlights mechanisms supporting the chemopreventive potential of flutamide in ovarian cancer, particularly in HR patients with reduced miR-449 expression.
Collapse
Affiliation(s)
- Xia Wang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi, China
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ
| | - Ho-Hyung Woo
- Department of Obstetrics and Gynecology, University of Arizona, Tucson, AZ
- University of Arizona Cancer Center, Tucson, AZ
| | - Michele Wei
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ
| | - Steven Gibson
- Department of Obstetrics and Gynecology, University of Arizona, Tucson, AZ
- University of Arizona Cancer Center, Tucson, AZ
| | - Mitzi Miranda
- Department of Obstetrics and Gynecology, University of Arizona, Tucson, AZ
- University of Arizona Cancer Center, Tucson, AZ
| | - Demaretta Rush
- Department of Pathology, University of Arizona, Tucson, AZ
| | - Janiel Cragun
- Department of Obstetrics and Gynecology, University of Arizona, Tucson, AZ
- University of Arizona Cancer Center, Tucson, AZ
| | - Wenxin Zheng
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Guang Yao
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ
- University of Arizona Cancer Center, Tucson, AZ
| | - Setsuko K Chambers
- Department of Obstetrics and Gynecology, University of Arizona, Tucson, AZ
- University of Arizona Cancer Center, Tucson, AZ
| |
Collapse
|
7
|
Dzhugashvili E, Tamkovich S. Exosomal Cargo in Ovarian Cancer Dissemination. Curr Issues Mol Biol 2023; 45:9851-9867. [PMID: 38132461 PMCID: PMC10742327 DOI: 10.3390/cimb45120615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/22/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
Ovarian cancer (OC) has the highest mortality rate among all gynecologic cancers and is characterized by early peritoneal spread. The growth and development of OC are associated with the formation of ascitic fluid, creating a unique tumor microenvironment. Understanding the mechanisms of tumor progression is crucial in identifying new diagnostic biomarkers and developing novel therapeutic strategies. Exosomes, lipid bilayer vesicles measuring 30-150 nm in size, are known to establish a crucial link between malignant cells and their microenvironment. Additionally, the confirmed involvement of exosomes in carcinogenesis enables them to mediate the invasion, migration, metastasis, and angiogenesis of tumor cells. Functionally active non-coding RNAs (such as microRNAs, long non-coding RNAs, circRNAs), proteins, and lipid rafts transported within exosomes can activate numerous signaling pathways and modify gene expression. This review aims to expand our understanding of the role of exosomes and their contents in OC carcinogenesis processes such as epithelial-mesenchymal transition (EMT), angiogenesis, vasculogenic mimicry, tumor cell proliferation, and peritoneal spread. It also discusses the potential for utilizing exosomal cargo to develop novel "liquid biopsy" biomarkers for early OC diagnosis.
Collapse
Affiliation(s)
- Ekaterina Dzhugashvili
- V. Zelman Institute for Medicine and Psychology, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Svetlana Tamkovich
- V. Zelman Institute for Medicine and Psychology, Novosibirsk State University, 630090 Novosibirsk, Russia
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| |
Collapse
|
8
|
Duan C, Liu H, Yang X, Liu J, Deng Y, Wang T, Xing J, Hu Z, Xu H. Sirtuin1 inhibits calcium oxalate crystal-induced kidney injury by regulating TLR4 signaling and macrophage-mediated inflammatory activation. Cell Signal 2023; 112:110887. [PMID: 37717713 DOI: 10.1016/j.cellsig.2023.110887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/27/2023] [Accepted: 09/10/2023] [Indexed: 09/19/2023]
Abstract
Sirtuin1 (Sirt1) activation significantly attenuated calcium oxalate (CaOx) crystal deposition and renal inflammatory injury by regulating renal immune microenvironment. Here, to elucidate the molecular mechanism underlying the therapeutic effects of Sirt1 on macrophage related inflammation and tubular epithelial cells (TECs) necrosis, we constructed a macrophage and CaOx monohydrate (COM)-stimulated tubular cell co-culture system to mimic immune microenvironment in kidney and established a mouse model of CaOx nephrocalcinosis in wild-type and myeloid-specific Sirt1 knockout mice. Target prediction analyses of Gene Expression Omnibus Datasets showed that only miR-34b-5p is regulated by lipopolysaccharides and upregulated by SRT1720 and targets the TLR4 3'-untranslated region. In vitro, SRT1720 suppressed TLR4 expression and M1 macrophage polarization and decreased reactive oxygen species (ROS) production and mitochondrial damage in COM-stimulated TECs by targeting miR-34b-5p. Mechanically, Sirt1 promoted miR-34b-5p expression by suppressing the tri-methylation of H3K27, which directly bound to the miR-34b-5p promoter and abolished the miR-34b-5p transcription. Furthermore, loss of Sirt1 aggravated CaOx nephrocalcinosis-induced inflammatory and oxidative kidney injury, while AgomiR-34b reversed these effects. Therefore, our data suggested that Sirt1 inhibited TLR4 signaling and M1 macrophage polarization and decreased inflammatory and oxidative injury of TECs in vitro and in vivo.
Collapse
Affiliation(s)
- Chen Duan
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430000 Wuhan, China
| | - Haoran Liu
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, 230000 Hefei, China
| | - Xiaoqi Yang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430000 Wuhan, China
| | - Jianhe Liu
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, 650000 Kunming, China
| | - Yaoliang Deng
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, 530000 Nanning, China
| | - Tao Wang
- Department of Urology, The First Affiliated Hospital of Xiamen University, 361000 Xiamen, China
| | - Jinchun Xing
- Department of Urology, The First Affiliated Hospital of Xiamen University, 361000 Xiamen, China
| | - Zhiquan Hu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430000 Wuhan, China.
| | - Hua Xu
- Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, 430000 Wuhan, China; Department of Biological Repositories, Zhongnan Hospital of Wuhan University, 430000 Wuhan, China; Department of Urology, Zhongnan Hospital of Wuhan University, 430000 Wuhan, China.; Taikang Center for Life and Medical Sciences, Wuhan University, 430000 Wuhan, China.
| |
Collapse
|
9
|
Fu J, Imani S, Wu MY, Wu RC. MicroRNA-34 Family in Cancers: Role, Mechanism, and Therapeutic Potential. Cancers (Basel) 2023; 15:4723. [PMID: 37835417 PMCID: PMC10571940 DOI: 10.3390/cancers15194723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
MicroRNA (miRNA) are small noncoding RNAs that play vital roles in post-transcriptional gene regulation by inhibiting mRNA translation or promoting mRNA degradation. The dysregulation of miRNA has been implicated in numerous human diseases, including cancers. miR-34 family members (miR-34s), including miR-34a, miR-34b, and miR-34c, have emerged as the most extensively studied tumor-suppressive miRNAs. In this comprehensive review, we aim to provide an overview of the major signaling pathways and gene networks regulated by miR-34s in various cancers and highlight the critical tumor suppressor role of miR-34s. Furthermore, we will discuss the potential of using miR-34 mimics as a novel therapeutic approach against cancer, while also addressing the challenges associated with their development and delivery. It is anticipated that gaining a deeper understanding of the functions and mechanisms of miR-34s in cancer will greatly contribute to the development of effective miR-34-based cancer therapeutics.
Collapse
Affiliation(s)
- Junjiang Fu
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Saber Imani
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310022, China
| | - Mei-Yi Wu
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland Baltimore, Baltimore, MD 21201, USA
| | - Ray-Chang Wu
- Department of Biochemistry and Molecular Medicine, The George Washington University, Washington, DC 20052, USA
| |
Collapse
|
10
|
Dirimtekin E, Mortoglou M, Alavanda C, Benomar Yemlahi A, Arslan Ates E, Guney I, Uysal-Onganer P. miR-34a-FOXP1 Loop in Ovarian Cancer. ACS OMEGA 2023; 8:27743-27750. [PMID: 37546627 PMCID: PMC10399168 DOI: 10.1021/acsomega.3c03867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/10/2023] [Indexed: 08/08/2023]
Abstract
Ovarian cancer (OC) is the main cause of gynecological cancer mortality in most developed countries. microRNA (miR) expression dysregulation has been highlighted in human cancers, and miR-34a is found to be downregulated and associated with inhibition of tumor growth and invasion in several malignancies, including OC. The winged helix transcription factor forkhead box P1 (FOXP1) is reported as either an oncogene or tumor suppressor in various cancers. This study aimed to elucidate potential clinical and biological associations of miR-34a and transcription factor FOXP1 in OC. We investigated nine OC patients' blood samples and two OC cell lines (SKOV-3 and OVCAR-3) using quantitative real-time reverse transcription polymerase chain reaction (RT-qPCR) to determine both miR-34a and FOXP1 expressions. We have found that miR-34a and FOXP1 are reversely correlated in both in vitro and in vivo. Inhibition of miR-34a transiently led to upregulation of FOXP1 mRNA expression and increased cellular invasion in vitro. Our data indicate that miR-34a could be a potential biomarker for improving the diagnostic efficiency of OC, and miR-34a overexpression may reduce OC pathogenesis by targeting FOXP1.
Collapse
Affiliation(s)
- Esra Dirimtekin
- Department
of Medical Genetics, School of Medicine, Marmara University, 34854 Istanbul, Turkey
| | - Maria Mortoglou
- Cancer
Mechanisms and Biomarkers Research Group, School of Life Sciences, University of Westminster, W1W 6UW London, U.K.
| | - Ceren Alavanda
- Department
of Medical Genetics, School of Medicine, Marmara University, 34854 Istanbul, Turkey
- Department
of Medical Genetics, Van Training and Research Hospital, University of Health Sciences, 65170 Van, Turkey
| | - Asmaa Benomar Yemlahi
- Cancer
Mechanisms and Biomarkers Research Group, School of Life Sciences, University of Westminster, W1W 6UW London, U.K.
| | - Esra Arslan Ates
- Department
of Medical Genetics, Istanbul University-Cerrahpasa,
Cerrahpasa Faculty of Medicine, 34098 Istanbul, Turkey
| | - Ilter Guney
- Department
of Medical Genetics, School of Medicine, Marmara University, 34854 Istanbul, Turkey
| | - Pinar Uysal-Onganer
- Cancer
Mechanisms and Biomarkers Research Group, School of Life Sciences, University of Westminster, W1W 6UW London, U.K.
| |
Collapse
|
11
|
Fang Y, Zhang X, Huang H, Zeng Z. The interplay between noncoding RNAs and drug resistance in hepatocellular carcinoma: the big impact of little things. J Transl Med 2023; 21:369. [PMID: 37286982 DOI: 10.1186/s12967-023-04238-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 05/30/2023] [Indexed: 06/09/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the leading cause of cancer-related death in people, and a common primary liver cancer. Lacking early diagnosis and a high recurrence rate after surgical resection, systemic treatment is still an important treatment method for advanced HCC. Different drugs have distinct curative effects, side effects and drug resistance due to different properties. At present, conventional molecular drugs for HCC have displayed some limitations, such as adverse drug reactions, insensitivity to some medicines, and drug resistance. Noncoding RNAs (ncRNAs), including microRNAs (miRNAs), long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs), have been well documented to be involved in the occurrence and progression of cancer. Novel biomarkers and therapeutic targets, as well as research into the molecular basis of drug resistance, are urgently needed for the management of HCC. We review current research on ncRNAs and consolidate the known roles regulating drug resistance in HCC and examine the potential clinical applications of ncRNAs in overcoming drug resistance barriers in HCC based on targeted therapy, cell cycle non-specific chemotherapy and cell cycle specific chemotherapy.
Collapse
Affiliation(s)
- Yuan Fang
- Organ Transplantation Center, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650032, Yunnan, People's Republic of China
| | - XiaoLi Zhang
- Gastrointestinal and Hernia Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, People's Republic of China
| | - HanFei Huang
- Organ Transplantation Center, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650032, Yunnan, People's Republic of China.
| | - Zhong Zeng
- Organ Transplantation Center, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650032, Yunnan, People's Republic of China.
| |
Collapse
|
12
|
Pan W, Chai B, Li L, Lu Z, Ma Z. p53/MicroRNA-34 axis in cancer and beyond. Heliyon 2023; 9:e15155. [PMID: 37095919 PMCID: PMC10121403 DOI: 10.1016/j.heliyon.2023.e15155] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/25/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
Cancer is serious endangers human life. After a long period of research and accumulation, people's understanding of cancer and the corresponding treatment methods are constantly developing. p53 is an important tumor suppressor gene. With the more in-depth understanding of the structure and function of p53, the more importance of this tumor suppressor gene is realized in the process of inhibiting tumor formation. MicroRNAs (miRNAs) are important regulatory molecules with a length of about 22nucleotides (nt), which belong to non-coding RNA and play an important role in the occurrence and development of tumors. miR-34 is currently considered to be a master regulator of tumor suppression. The positive feedback regulatory network formed by p53 and miR-34 can inhibit the growth and metastasis of tumor cells and inhibit tumor stem cells. This review focuses on the latest progress of p53/miR-34 regulatory network, and discusses its application in tumor diagnosis and treatment.
Collapse
|
13
|
Long Non-Coding RNAs and microRNAs Groups in the Regulation of Expression Level of a Number of Tumor-Associated Genes in Ovarian Cancer. Bull Exp Biol Med 2023; 174:354-359. [PMID: 36723744 DOI: 10.1007/s10517-023-05707-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Indexed: 02/02/2023]
Abstract
The search for interacting long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and mRNAs of protein-coding genes through the mechanism of competing endogenous RNAs in tumors of ovarian cancer patients was carried out. The levels of expression of 24 lncRNAs, 20 miRNAs, and 28 mRNAs of protein-coding genes involved in oncogenesis were determined by real-time PCR on a set of representative samples. Correlations between lncRNAs/miRNA and miRNA/mRNA levels in ovarian cancer samples were analyzed. We identified 8 pairs of lncRNAs/miRNA and 17 pairs of miRNA/mRNA, the expression levels of which have a negative correlation. Five triplets of potentially interacting lncRNAs/miRNA/mRNA have been identified, among which the most significant triplet is the OIP5-AS1/miR-203a-3p/ZEB1. The data obtained determine new epigenetic profiles, as well as new potential biomarkers and targets for targeted therapy of ovarian cancer patients.
Collapse
|
14
|
Fabová Z, Loncová B, Bauer M, Sirotkin AV. Interrelationships Between miR-34a and FSH in the Control of Porcine Ovarian Cell Functions. Reprod Sci 2022; 30:1789-1807. [DOI: 10.1007/s43032-022-01127-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 11/05/2022] [Indexed: 12/13/2022]
|
15
|
Feng Q, Wang D, Guo P, Zhang Z, Feng J. Apatinib Functioned as Tumor Suppressor of Synovial Sarcoma through Regulating miR-34a-5p/HOXA13 Axis. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:7214904. [PMID: 36276991 PMCID: PMC9581677 DOI: 10.1155/2022/7214904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/03/2022] [Indexed: 12/02/2022]
Abstract
Objective Synovial sarcoma is a rare malignant tumor. The role of apatinib in synovial sarcoma remains unclear. In this study, we aimed to determine the biological functions and the potential molecular mechanism of action of apatinib in synovial sarcoma. Methods SW982 cells were stimulated with apatinib. The relative expression of the genes was determined by performing qPCR. Protein levels were evaluated by western blot and immunohistochemistry assays. Proliferation, apoptosis, migration, and invasion of SW982 cells were determined by the CCK-8 assay, clone formation assay, flow cytometry, wound healing, and the transwell assay, respectively. Additionally, SW982 cells were injected into mice to induce synovial sarcoma. Results Apatinib decreased the proliferation, migration, and invasion but increased the apoptosis of SW982 cells. Apatinib repressed tumor growth in vivo and elevated miR-34a-5p in SW982 cells. The inhibition of miR-34a-5p repressed the reduction of proliferation, migration, and invasion and also the elevation of apoptosis in apatinib-treated SW982 cells. The luciferase activity decreased after cotransfection of the miR-34a-5p mimic and the wild-type HOXA13 vector. Additionally, an increase in miR-34a-5p repressed the levels of HOXA13 mRNA and protein. Moreover, HOXA13 reversed these patterns caused by the inhibition of miR-34a-5p in apatinib-treated SW982 cells. Conclusion Apatinib elevated miR-34a-5p and reduced HOXA13, leading to a significant decrease in proliferation, migration, and invasion, along with an enhancement of apoptosis in SW982 cells. Apatinib suppressed tumorigenesis and tumor growth in SW982 cells in vivo.
Collapse
Affiliation(s)
- Qi Feng
- Department of Orthopedics, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011 Hebei Province, China
| | - Donglai Wang
- Department of Orthopedics, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011 Hebei Province, China
| | - Peng Guo
- Department of Orthopedics, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011 Hebei Province, China
| | - Zibo Zhang
- Department of Orthopedics, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011 Hebei Province, China
| | - Jiangang Feng
- Department of Orthopedics, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011 Hebei Province, China
| |
Collapse
|
16
|
Ai J, Li J, Su Q, Ma H, He R, Wei Q, Li H, Gao G. rAAV-based and intraprostatically delivered miR-34a therapeutics for efficient inhibition of prostate cancer progression. Gene Ther 2022; 29:418-424. [PMID: 34226687 PMCID: PMC8848550 DOI: 10.1038/s41434-021-00275-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 06/22/2021] [Accepted: 06/25/2021] [Indexed: 02/05/2023]
Abstract
At present, there is no effective treatment for prostate cancer (PCa). Previous studies have reported that miR-34a is significantly downregulated in PCa cells; therefore, modulation of miR-34a expression might be a promising therapeutic approach for PCa treatment. To this end, we first verified the downregulation of miR-34a in prostate tumors from a transgenic adenocarcinoma mouse prostate (TRAMP) model. We found that miR-34a overexpression significantly inhibited the cell cycle, viability, and migration of PCa cells by targeting its downstream genes. Next, we tested the concept of intraprostatic injection of rAAV9·pri-miR-34a into 8-week-old TRAMP mice to inhibit PCa progression. We observed that the treatment lowered body weights significantly compared to the control treatment starting at 30 weeks after injection. rAAV9·pri-miR-34a treatment also obviously extended the lifespan of TRAMP mice. Moreover, we confirmed that the neoplasia in the treated prostates was significantly diminished compared to that in the control group. In addition, overexpressed miR-34a downregulated the expression of its target genes. Taken together, our results demonstrated, for the first time, the potential of rAAV-mediated efficient modulation of miR-34a expression in the prostate to inhibit PCa progression by regulating its downstream gene expression.
Collapse
Affiliation(s)
- Jianzhong Ai
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China.
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA.
| | - Jia Li
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
| | - Qin Su
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
| | - Hong Ma
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
| | - Ran He
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
| | - Qiang Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Hong Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
17
|
Roles of lncRNA LVBU in regulating urea cycle/polyamine synthesis axis to promote colorectal carcinoma progression. Oncogene 2022; 41:4231-4243. [PMID: 35906392 PMCID: PMC9439952 DOI: 10.1038/s41388-022-02413-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 07/03/2022] [Accepted: 07/07/2022] [Indexed: 11/08/2022]
Abstract
Altered expression of Urea Cycle (UC) enzymes occurs in many tumors, resulting a metabolic hallmark termed as UC dysregulation. Polyamines are synthesized from ornithine, and polyamine synthetic genes are elevated in various tumors. However, the underlying deregulations of UC/ polyamine synthesis in cancer remain elusive. Here, we characterized a hypoxia-induced lncRNA LVBU (lncRNA regulation via BCL6/urea cycle) that is highly expressed in colorectal cancer (CRC) and correlates with poor cancer prognosis. Increased LVBU expression promoted CRC cells proliferation, foci formation and tumorigenesis. Further, LVBU regulates urea cycle and polyamine synthesis through BCL6, a negative regulator of p53. Mechanistically, overexpression of LVBU competitively bound miR-10a/miR-34c to protect BCL6 from miR-10a/34c-mediated degradation, which in turn allows BCL6 to block p53-mediated suppression of genes (arginase1 ARG1, ornithine transcarbamylase OTC, ornithine decarboxylase 1 ODC1) involved in UC/polyamine synthesis. Significantly, ODC1 inhibitor attenuated the growth of patient derived xenografts (PDX) that sustain high LVBU levels. Taken together, elevated LVBU can regulate BCL6-p53 signaling axis for systemic UC/polyamine synthesis reprogramming and confers a predilection toward CRC development. Our data demonstrates that further drug development and clinical evaluation of inhibiting UC/polyamine synthesis are warranted for CRC patients with high expression of LVBU.
Collapse
|
18
|
Giordo R, Wehbe Z, Posadino AM, Erre GL, Eid AH, Mangoni AA, Pintus G. Disease-Associated Regulation of Non-Coding RNAs by Resveratrol: Molecular Insights and Therapeutic Applications. Front Cell Dev Biol 2022; 10:894305. [PMID: 35912113 PMCID: PMC9326031 DOI: 10.3389/fcell.2022.894305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/21/2022] [Indexed: 12/13/2022] Open
Abstract
There have been significant advances, particularly over the last 20 years, in the identification of non-coding RNAs (ncRNAs) and their pathophysiological role in a wide range of disease states, particularly cancer and other chronic conditions characterized by excess inflammation and oxidative stress such as atherosclerosis, diabetes, obesity, multiple sclerosis, osteoporosis, liver and lung fibrosis. Such discoveries have potential therapeutic implications as a better understanding of the molecular mechanisms underpinning the effects of ncRNAs on critical homeostatic control mechanisms and biochemical pathways might lead to the identification of novel druggable targets. In this context, increasing evidence suggests that several natural compounds can target ncRNAs at different levels and, consequently, influence processes involved in the onset and progression of disease states. The natural phenol resveratrol has been extensively studied for therapeutic purposes in view of its established anti-inflammatory and antioxidant effects, particularly in disease states such as cancer and cardiovascular disease that are associated with human aging. However, increasing in vitro and in vivo evidence also suggests that resveratrol can directly target various ncRNAs and that this mediates, at least in part, its potential therapeutic effects. This review critically appraises the available evidence regarding the resveratrol-mediated modulation of different ncRNAs in a wide range of disease states characterized by a pro-inflammatory state and oxidative stress, the potential therapeutic applications, and future research directions.
Collapse
Affiliation(s)
- Roberta Giordo
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Zena Wehbe
- Vascular Biology Research Centre, Molecular and Clinical Research Institute, University of London, London, United Kingdom
| | | | - Gian Luca Erre
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University Hospital (AOUSS) and University of Sassari, Sassari, Italy
| | - Ali H. Eid
- Department of Basic Medical Sciences, College of Medicine, Q.U. Health. Qatar University, Doha, Qatar
| | - Arduino A. Mangoni
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
- Department of Clinical Pharmacology, Flinders Medical Centre, Adelaide, SA, Australia
- *Correspondence: Arduino A. Mangoni, ; Gianfranco Pintus,
| | - Gianfranco Pintus
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Department of Medical Laboratory Sciences, College of Health Sciences and Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- *Correspondence: Arduino A. Mangoni, ; Gianfranco Pintus,
| |
Collapse
|
19
|
Yang Z, Liu T, Ren X, Yang M, Tu C, Li Z. Mir-34a: a regulatory hub with versatile functions that controls osteosarcoma networks. Cell Cycle 2022; 21:2121-2131. [PMID: 35699451 DOI: 10.1080/15384101.2022.2087755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Osteosarcoma (OS) is one of the most prevalent and highly aggressive bone malignancies. The treatment strategies of OS is under standard regimens, including surgical resection, chemotherapy, and other adjuvant therapy. However, the 5-year survival rate is still unsatisfactory. Previous studies have demonstrated that the expression of miR-34a decreases in osteosarcoma, which is involved in regulating numerous genes directly or indirectly at the post-transcriptional level and other pathways. Thus, miR-34a plays an important role in mediating OS cell proliferation, differentiation, migration, and apoptosis, and might be a pivotal biomarker for OS with diagnostic and therapeutic potentials. In this review, we aim to summarize the relationship between miR-34a and OS, with an emphasis on the specific mechanisms in OS development referring to miR-34a. Moreover, the potential role of miR-34a as a diagnostic, prognostic, and therapeutic candidate for OS would be presented in detail. However, the molecular mechanisms related to miR-34a and OS remain elusive, and more investigations are needed to reach a comprehensive understanding.
Collapse
Affiliation(s)
- Zhimin Yang
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Hunan, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Hunan, China
| | - Tang Liu
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Hunan, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Hunan, China
| | - Xiaolei Ren
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Hunan, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Hunan, China
| | - Mei Yang
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Hunan, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Hunan, China
| | - Chao Tu
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Hunan, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Hunan, China
| | - Zhihong Li
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Hunan, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Hunan, China
| |
Collapse
|
20
|
Wu Z, Huang T. Bone Marrow Mesenchymal Stem Cell (BMSC)-Derived Exosomal miR-168-5p Inhibits Proliferation and Chemotherapy Resistance in Gastric Cancer by Downregulation of Cyclin D1 and P Glycoprotein. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.2912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
miR-168-5p is indicated as an upstream effector of the tumor suppressor signal pathway in ovarian cancer and bladder cancer, but the role in gastric cancer (GC) remains unknown. This study aims to reveal the expression and significance of miR-168-5p in GC. RT-qPCR analysis was used
to detect the expression of miR-168-5p in GC tissues and plasma, and the relationship of miR-168-5p and CCND1 was evaluated. GC cells were co-cultured with BMSCs or transfected with miR-168-5p mimic. CCK-8 assay and flow cytometry were conducted to assess the effect of miR-168-5p in GC and
the interaction between BMSCs and cancer cell progression. Animal experiment was established to explore the in vivo effect of miR-168-5p. miR-168-5p is poorly expressed in gastric cancer cells and the plasma of patients with gastric cancer. BMSC co-culture is similar to miR-168-5p mimic
induced miR-168-5p expression increase. miR-168-5p overexpression decreased the proliferative, invasive and migratory capacities of GC cells, and promoted apoptosis. Mechanically, miR-168-5p targeted and decreased the expression of CCND1. Additionally, the low miR-168-5p expression in GC was
closely related to poor prognosis and malignant transformation. BMSC exosomes carrying miR-168-5p suppress cell progression in GC when inhibiting the expression of CCND1 and P glycoprotein, which indicates potential diagnostic and prognostic value of miR-168-5p and helps the development of
miR-168-5p-based treatment for drug-resistant GC.
Collapse
Affiliation(s)
- ZhongXin Wu
- Department of General Surgery, Huzhou Central Hospital, Affiliated Cent Hospital HuZhou University, Huzhou City, Zhejiang Province, 313204, China
| | - Tianyi Huang
- Department of Anesthesia and Surgery, Huzhou Central Hospital, Affiliated Cent Hospital HuZhou University, Huzhou City, Zhejiang Province, 313204, China
| |
Collapse
|
21
|
Wang C, Jia Q, Guo X, Li K, Chen W, Shen Q, Xu C, Fu Y. microRNA-34 Family: From Mechanism to Potential Applications. Int J Biochem Cell Biol 2022; 144:106168. [DOI: 10.1016/j.biocel.2022.106168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/04/2022] [Accepted: 01/21/2022] [Indexed: 02/06/2023]
|
22
|
Ashrafizadeh M, Mirzaei S, Gholami MH, Hashemi F, Zabolian A, Raei M, Hushmandi K, Zarrabi A, Voelcker NH, Aref AR, Hamblin MR, Varma RS, Samarghandian S, Arostegi IJ, Alzola M, Kumar AP, Thakur VK, Nabavi N, Makvandi P, Tay FR, Orive G. Hyaluronic acid-based nanoplatforms for Doxorubicin: A review of stimuli-responsive carriers, co-delivery and resistance suppression. Carbohydr Polym 2021; 272:118491. [PMID: 34420747 DOI: 10.1016/j.carbpol.2021.118491] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 07/23/2021] [Accepted: 07/23/2021] [Indexed: 12/11/2022]
Abstract
An important motivation for the use of nanomaterials and nanoarchitectures in cancer therapy emanates from the widespread emergence of drug resistance. Although doxorubicin (DOX) induces cell cycle arrest and DNA damage by suppressing topoisomerase activity, resistance to DOX has severely restricted its anti-cancer potential. Hyaluronic acid (HA) has been extensively utilized for synthesizing nanoparticles as it interacts with CD44 expressed on the surface of cancer cells. Cancer cells can take up HA-modified nanoparticles through receptor-mediated endocytosis. Various types of nanostructures such as carbon nanomaterials, lipid nanoparticles and polymeric nanocarriers have been modified with HA to enhance the delivery of DOX to cancer cells. Hyaluronic acid-based advanced materials provide a platform for the co-delivery of genes and drugs along with DOX to enhance the efficacy of anti-cancer therapy and overcome chemoresistance. In the present review, the potential methods and application of HA-modified nanostructures for DOX delivery in anti-cancer therapy are discussed.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956, Istanbul, Turkey; Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | | | - Farid Hashemi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehdi Raei
- Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey
| | - Nicolas H Voelcker
- Monash Institute of Pharmaceutical Sciences, Parkville, Victoria 3052, Australia; Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria, 3168, Australia; Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, Victoria 3168, Australia
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Department of Translational Sciences, Xsphera Biosciences Inc., Boston, MA, USA
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa; Radiobiology Research Center, Iran University of Medical Science, Tehran, Iran
| | - Rajender S Varma
- Regional Center of Advanced Technologies and Materials, Palacky University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - I J Arostegi
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - M Alzola
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Alan Prem Kumar
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, Edinburgh EH9 3JG, UK; Department of Mechanical Engineering, School of Engineering, Shiv Nadar University, Uttar Pradesh 201314, India
| | - Noushin Nabavi
- Department of Urological Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC V6H3Z6, Canada
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia, Center for Materials Interfaces, viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy.
| | - Franklin R Tay
- The Graduate School, Augusta University, Augusta, GA, USA.
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore.
| |
Collapse
|
23
|
Wei X, Zhu J, Zhang Y, Zhao Q, Wang H, Gu K. miR-338-5p-ZEB2 axis in Diagnostic, Therapeutic Predictive and Prognostic Value of Gastric Cancer. J Cancer 2021; 12:6756-6772. [PMID: 34659565 PMCID: PMC8518007 DOI: 10.7150/jca.58249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 07/10/2021] [Indexed: 12/24/2022] Open
Abstract
MiRNAs have been widely reported to be involved in the occurrence and development of cancers. So far, some studies have revealed that miR-338-5p has the functions of tumorigenesis and tumor suppression. However, the role of miR-338-5p in the pathogenesis, progression and treatment of gastric cancer (GC) has not been reported. MiRNAs microarray analysis showed for the first time that miR-338-5p was significantly lower-expression in cisplin-resistant GC cells SGC7901/DDP, and cell viability assay and flow cytometry confirmed that overexpression of miR-338-5p could significantly increase cisplatin-sensitivity of SGC7901/DDP and BGC823 cells. Subsequently, we found that the expression of miR-338-5p in postoperative cancer tissues of GC patients was also significantly lower than the corresponding paracancer tissues. The expression of miR-338-5p in peripheral blood serum of GC patients is generally lower than that of healthy people. Moreover, the low expression of miR-338-5p in the cancer tissues and serum of GC patients was closely associated with larger tumor volume, lymph node metastasis, later stage, and even poorer survival, which was confirmed by close 5-year cases follow-up. ZEB2, as a predictive target of miR-338-5p, its expression was negatively regulated by miR-338-5p and can promote cisplatin-resistance in SGC7901/DDP and BGC823 cells. The expression of ZEB2 in cisplatin-resistant SGC7901/DDP cells and GC tissues were significantly higher than SGC7901 cells and paracancer tissues, respectively. Moreover, the expression of ZEB2 in tumor tissues was negatively correlated with miR-338-5p in tumor tissues and peripheral blood serum of GC patients, and the abnormally high expression of ZEB2 in prospective case studies is positively related with more serious clinical pathology and worse survival. More meaningfully, in a retrospective case study, we found that high ZEB2 expression predicts worse clinical efficacy of platinum chemotherapy. Thus, miR-338-5p-ZEB2 axis have novel diagnostic, therapeutic predictive, and prognostic value in GC patients.
Collapse
Affiliation(s)
- Xiaoli Wei
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Jiejie Zhu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yiyin Zhang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Qihong Zhao
- Department of Food and Nutrition Hygiene, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Kangsheng Gu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
24
|
Hu J, Cao J, Topatana W, Juengpanich S, Li S, Zhang B, Shen J, Cai L, Cai X, Chen M. Targeting mutant p53 for cancer therapy: direct and indirect strategies. J Hematol Oncol 2021; 14:157. [PMID: 34583722 PMCID: PMC8480024 DOI: 10.1186/s13045-021-01169-0] [Citation(s) in RCA: 251] [Impact Index Per Article: 62.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/13/2021] [Indexed: 02/08/2023] Open
Abstract
TP53 is a critical tumor-suppressor gene that is mutated in more than half of all human cancers. Mutations in TP53 not only impair its antitumor activity, but also confer mutant p53 protein oncogenic properties. The p53-targeted therapy approach began with the identification of compounds capable of restoring/reactivating wild-type p53 functions or eliminating mutant p53. Treatments that directly target mutant p53 are extremely structure and drug-species-dependent. Due to the mutation of wild-type p53, multiple survival pathways that are normally maintained by wild-type p53 are disrupted, necessitating the activation of compensatory genes or pathways to promote cancer cell survival. Additionally, because the oncogenic functions of mutant p53 contribute to cancer proliferation and metastasis, targeting the signaling pathways altered by p53 mutation appears to be an attractive strategy. Synthetic lethality implies that while disruption of either gene alone is permissible among two genes with synthetic lethal interactions, complete disruption of both genes results in cell death. Thus, rather than directly targeting p53, exploiting mutant p53 synthetic lethal genes may provide additional therapeutic benefits. Additionally, research progress on the functions of noncoding RNAs has made it clear that disrupting noncoding RNA networks has a favorable antitumor effect, supporting the hypothesis that targeting noncoding RNAs may have potential synthetic lethal effects in cancers with p53 mutations. The purpose of this review is to discuss treatments for cancers with mutant p53 that focus on directly targeting mutant p53, restoring wild-type functions, and exploiting synthetic lethal interactions with mutant p53. Additionally, the possibility of noncoding RNAs acting as synthetic lethal targets for mutant p53 will be discussed.
Collapse
Affiliation(s)
- Jiahao Hu
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, No. 3 East Qingchun Road, Hangzhou, 310016, China
- School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Jiasheng Cao
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, No. 3 East Qingchun Road, Hangzhou, 310016, China
- School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Win Topatana
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, No. 3 East Qingchun Road, Hangzhou, 310016, China
- School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | | | - Shijie Li
- School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Bin Zhang
- School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Jiliang Shen
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, No. 3 East Qingchun Road, Hangzhou, 310016, China
| | - Liuxin Cai
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, No. 3 East Qingchun Road, Hangzhou, 310016, China
| | - Xiujun Cai
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, No. 3 East Qingchun Road, Hangzhou, 310016, China.
- School of Medicine, Zhejiang University, Hangzhou, 310058, China.
- Engineering Research Center of Cognitive Healthcare of Zhejiang Province, Zhejiang Province, Hangzhou, China.
- Key Laboratory of Endoscopic Technique Research of Zhejiang Province, No. 3 East Qingchun Road, Hangzhou, 310016, China.
| | - Mingyu Chen
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, No. 3 East Qingchun Road, Hangzhou, 310016, China.
- School of Medicine, Zhejiang University, Hangzhou, 310058, China.
- Engineering Research Center of Cognitive Healthcare of Zhejiang Province, Zhejiang Province, Hangzhou, China.
| |
Collapse
|
25
|
Yao S, Gao M, Wang Z, Wang W, Zhan L, Wei B. Upregulation of MicroRNA-34a Sensitizes Ovarian Cancer Cells to Resveratrol by Targeting Bcl-2. Yonsei Med J 2021; 62:691-701. [PMID: 34296546 PMCID: PMC8298871 DOI: 10.3349/ymj.2021.62.8.691] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 03/15/2021] [Accepted: 04/05/2021] [Indexed: 11/27/2022] Open
Abstract
PURPOSE Resveratrol (REV), a natural compound found in red wine, exhibits antitumor activity in various cancers, including ovarian cancer (OC). However, its potential anti-tumor mechanisms in OC are not well characterized. Here, we tried to elucidate the underlying mechanisms of REV in OC cells. MATERIALS AND METHODS The anti-proliferative effects of REV against OC cells were measured using CCK-8 assay. Apoptosis was measured using an Annexin V-FITC/PI apoptosis detection kit. The anti-metastasis effects of REV were evaluated by invasion assay and wound healing assay. The miRNA profiles in REV-treated cells were determined by microarray assay. RESULTS Our results showed that REV treatment suppresses the proliferation, induces the apoptosis, and inhibits the invasion and migration of OV-90 and SKOV-3 cells. miR-34a was selected for further study due to its tumor suppressive roles in various human cancers. We found miR-34a overexpression enhanced the inhibitory effects of REV on OC cells, whereas miR-34a inhibition had the opposite effect in OC cells. In addition, we verified that BCL2, an anti-apoptotic gene, was found directly targeted by miR-34a. We also found that REV reduced the expression of Bcl-2 in OC cells. Further investigations revealed that overexpression of Bcl-2 significantly abolished the anti-tumor effects of REV on OC cells. CONCLUSION Overall, these results demonstrated that REV exerts anti-cancer effects on OC cells through an miR-34a/Bcl-2 axis, highlighting the therapeutic potential of REV for treatment of OC.
Collapse
Affiliation(s)
- Shangli Yao
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ming Gao
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zujun Wang
- Department of Obstetrics and Gynecology, Lu'an Civily Hospital, Lu'an, China
| | - Wenyan Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Lei Zhan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Bing Wei
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
26
|
Changes in Stem Cell Regulation and Epithelial Organisation during Carcinogenesis and Disease Progression in Gynaecological Malignancies. Cancers (Basel) 2021; 13:cancers13133349. [PMID: 34283069 PMCID: PMC8268501 DOI: 10.3390/cancers13133349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 01/06/2023] Open
Abstract
Simple Summary Recent advances in our understanding of the stem cell potential in adult tissues have far-reaching implications for cancer research, and this creates new opportunities for the development of new therapeutic strategies. Here we outline changes in stem cell biology that characterize main gynaecological malignancies, ovarian, endometrial, and cervical cancer, and focus on specific differences between them. We highlight the importance of the local niche environment as a driver of malignant transformation in addition to mutations in key cancer-driving genes. Patient-derived organoids capture in vitro main aspects of cancer tissue architecture and stemness regulatory mechanisms, thus providing a valuable new platform for a personalized approach in the treatment of gynecological malignancies. This review summarizes the main achievement and formulates remaining open questions in this fast-evolving research field. Abstract Gynaecological malignancies represent a heterogeneous group of neoplasms with vastly different aetiology, risk factors, molecular drivers, and disease outcomes. From HPV-driven cervical cancer where early screening and molecular diagnostics efficiently reduced the number of advanced-stage diagnosis, prevalent and relatively well-treated endometrial cancers, to highly aggressive and mostly lethal high-grade serous ovarian cancer, malignancies of the female genital tract have unique presentations and distinct cell biology features. Recent discoveries of stem cell regulatory mechanisms, development of organoid cultures, and NGS analysis have provided valuable insights into the basic biology of these cancers that could help advance new-targeted therapeutic approaches. This review revisits new findings on stemness and differentiation, considering main challenges and open questions. We focus on the role of stem cell niche and tumour microenvironment in early and metastatic stages of the disease progression and highlight the potential of patient-derived organoid models to study key events in tumour evolution, the appearance of resistance mechanisms, and as screening tools to enable personalisation of drug treatments.
Collapse
|
27
|
Xu Y, Guo B, Liu X, Tao K. miR-34a inhibits melanoma growth by targeting ZEB1. Aging (Albany NY) 2021; 13:15538-15547. [PMID: 34102608 PMCID: PMC8221330 DOI: 10.18632/aging.203114] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 05/13/2021] [Indexed: 02/06/2023]
Abstract
Melanoma is a highly lethal cutaneous cancer with the tendency for early invasion and metastasis. Integrated miRNA transcriptome sequence analysis of human melanoma tumors and adjacent control tissues identified 17 miRNAs differentially expressed in melanoma tissues: let-7a-5p, let-7b-5p, let-7c, miR-374a-3p, miR-100-5p, miR-7, miR-195, miR-1908, miR-214, miR-221, miR-199a-5p, miR-21, miR-18, miR-34a, miR-199a-3p, miR-92a and miR-106b. Among these, miR-34a was most significantly down-regulated in melanoma tissues, and its expression correlated with TNM melanoma stage. miR-34a overexpression inhibited expression and activity of the transcription factor ZEB1, resulting in decreased proliferation and migration of melanoma cells. Moreover, miR-34a overexpression inhibited ZEB1 expression and melanoma tumor growth in vivo, in a melanoma nude mouse model. Together, these findings demonstrate that miR-34a inhibits melanoma growth by targeting the proto-oncogene ZEB1 and suggest the miR-34a -ZEB1 axis may serve as a novel target for melanoma treatment.
Collapse
Affiliation(s)
- Yazhen Xu
- Reconstructive and Plastic Surgery, General Hospital of Northern Theater Command, Shenyang, P.R. China
| | - Bingyu Guo
- Reconstructive and Plastic Surgery, General Hospital of Northern Theater Command, Shenyang, P.R. China
| | - Xiaoyan Liu
- Reconstructive and Plastic Surgery, General Hospital of Northern Theater Command, Shenyang, P.R. China
| | - Kai Tao
- Reconstructive and Plastic Surgery, General Hospital of Northern Theater Command, Shenyang, P.R. China
| |
Collapse
|
28
|
Cao Y, Xie X, Li M, Gao Y. CircHIPK2 Contributes to DDP Resistance and Malignant Behaviors of DDP-Resistant Ovarian Cancer Cells Both in vitro and in vivo Through circHIPK2/miR-338-3p/CHTOP ceRNA Pathway. Onco Targets Ther 2021; 14:3151-3165. [PMID: 34012271 PMCID: PMC8128508 DOI: 10.2147/ott.s291823] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 04/01/2021] [Indexed: 12/17/2022] Open
Abstract
Background Cisplatin (DDP) is standard-of-care and first-line management for ovarian cancer (OvCa). Circular RNA HIPK2 (circHIPK2) is abnormally upregulated in serum of OvCa patients. However, its role in DDP resistance remains unclear. Methods Expression of cirHIPK2, microRNA (miR)-338-3p and chromatin target of protein arginine methyltransferase (CHTOP) was detected by quantitative reverse transcription PCR and Western blotting. Functional experiments were performed using cell counting kit-8 assay, flow cytometry, transwell assays, Western blotting, and xenograft experiment. The interaction among cirHIPK2, miR-338-3p and CHTOP was confirmed by dual-luciferase reporter assay and RNA pull-down assay. Results Expression of circHIPK2 and CHTOP was upregulated, and miR-338-3p was downregulated in human DDP-resistant OvCa tumors and cells. Blocking circHIPK2 could promote apoptosis and suppress the 50% inhibitory concentration (IC50) of DDP, cell proliferation, cell cycle entrance, migration and invasion in SKOV3/DDP and A2780/DDP cells. Allied with that was decreased B cell lymphoma (Bcl)-2, matrix metalloproteinase 2 (MMP2) and MMP9 levels, and increased Bcl-2-associated X protein (Bax) level. Similarly, overexpression of miR-338-3p functioned suppressive role in SKOV3/DDP and A2780/DDP cells. MiR-338-3p was a target for circHIPK2, and CHTOP was targeted by miR-338-3p, whereas silencing miR-338-3p counteracted the role of circHIPK2 knockdown, and restoring CHTOP either cancelled miR-338-3p role. The growth of A2780/DDP cells in nude mice was restrained by silencing circHIPK2 under DDP treatment or not. Conclusion CircHIPK2 might be a tumor promoter in OvCa and was associated with DDP resistance. Silencing circHIPK2 might suppress DDP-resistant OvCa through regulating miR-338-3p/CHTOP axis.
Collapse
Affiliation(s)
- Yang Cao
- Department of Gynaecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang City, Liaoning Province, People's Republic of China
| | - Xin Xie
- Department of Teaching and Research Center, Liaoning University of Traditional Chinese Medicine, Shenyang City, Liaoning Province, People's Republic of China
| | - Mingzhu Li
- Department of Integrated Traditional Chinese and Western Medicine Medical Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang City, Liaoning Province, People's Republic of China
| | - Yuhua Gao
- Department of Gynaecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang City, Liaoning Province, People's Republic of China
| |
Collapse
|
29
|
Comprehensive Analysis of the Expression of Key Genes Related to Hippo Signaling and Their Prognosis Impact in Ovarian Cancer. Diagnostics (Basel) 2021; 11:diagnostics11020344. [PMID: 33669647 PMCID: PMC7922135 DOI: 10.3390/diagnostics11020344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/24/2022] Open
Abstract
The Hippo signaling pathway, one of the most conserved in humans, controlling dimensions of organs and tumor growth, is frequently deregulated in several human malignancies, including ovarian cancer (OC). The alteration of Hippo signaling has been reported to contribute to ovarian carcinogenesis and progression. However, the prognostic roles of individual Hippo genes in OC patients remain elusive. Herein we investigated the expression level and prognostic value of key Hippo genes in OC using online databases, followed by a qRT-PCR validation step in an additional patient cohort. Using the GEPIA database, we observed an increased level for TP53 and reduced expression level for LATS1, LATS2, MST1, TAZ, and TEF in tumor tissue versus normal adjacent tissue. Moreover, LATS1, LATS2, TP53, TAZ, and TEF expression levels have prognostic significance correlated with progression-free survival. The qRT-PCR validation step was conducted in an OC patient cohort comprising 29 tumor tissues and 20 normal adjacent tissues, endorsing the expression level for LATS1, LATS2, and TP53, as well as for two of the miRNAs targeting the TP53 gene, revealing miR-25-3p upregulation and miR-181c-5p downregulation. These results display that there are critical prognostic value dysregulations of the Hippo genes in OC. Our data demonstrate the major role the conserved Hippo pathway presents in tumor control, underlying potential therapeutic strategies and controlling several steps modulated by miRNAs and their target genes that could limit ovarian cancer progression.
Collapse
|
30
|
Wu X, Cheng YSL, Matthen M, Yoon A, Schwartz GK, Bala S, Taylor AM, Momen-Heravi F. Down-regulation of the tumor suppressor miR-34a contributes to head and neck cancer by up-regulating the MET oncogene and modulating tumor immune evasion. J Exp Clin Cancer Res 2021; 40:70. [PMID: 33596979 PMCID: PMC7890893 DOI: 10.1186/s13046-021-01865-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/02/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND MicroRNAs (miRs) have been shown to play an important role in tumorigenesis, including in head and neck squamous cell carcinoma (HNSCC). The miR-34 family is thought to play a role in tumor suppression, but the exact mechanism of their action in HNSCC is not well understood. Moreover, the impact of chromosomal changes and mutation status on miR-34a expression remains unknown. METHODS Differential expression of miR-34a, MET, and genomic alterations were assessed in the Cancer Genome Atlas (TCGA) datasets as well as in primary HNSCC and adjacent normal tissue. The biological functions of miR-34a in HNSCC were investigated in samples derived from primary human tumors and HNSCC cell lines. The expression of MET was evaluated using immunohistochemistry, and the molecular interaction of miR-34a and MET were demonstrated by RNA pulldown, RNA immunoprecipitation, luciferase reporter assay, and rescue experiments. Lastly, locked nucleic acid (LNA) miRs in mouse xenograft models were used to evaluate the clinical relevance of miR-34a in HNSCC tumor growth and modulation of the tumor microenvironment in vivo. RESULTS Chromosome arm 1p loss and P53 mutations are both associated with lower levels of miR-34a. In HNSCC, miR-34a acts as a tumor suppressor and physically interacts with and functionally targets the proto-oncogene MET. Our studies found that miR-34a suppresses HNSCC carcinogenesis, at least in part, by downregulating MET, consequently inhibiting HNSCC proliferation. Consistent with these findings, administration of LNA-miR-34a in an in vivo model of HNSCC leads to diminished HNSCC cell proliferation and tumor burden in vitro and in vivo, represses expression of genes involved in epithelial-mesenchymal transition, and negates the oncogenic effect of MET in mouse tumors. Consistently, LNA-miR-34a induced a decreased number of immunosuppressive PDL1-expressing tumor-associated macrophages in the tumor microenvironment. In HNSCC patient samples, higher levels of miR-34a are significantly associated with a higher frequency of Th1 cells and CD8 naïve T cells. CONCLUSIONS Our results demonstrate that miR-34a directly targets MET and maintains anti-tumor immune activity. We propose miR-34a as a potential new therapeutic approach for HNSCC.
Collapse
Affiliation(s)
- Xun Wu
- Cancer Biology and Immunology Laboratory, College of Dental Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Division of Periodontics, Section of Oral, Diagnostic and Rehabilitation Sciences, Columbia University College of Dental Medicine, New York, NY, USA
- Department of Maxillofacial Surgery, Guangxi Medical University College of Stomatology, Nanning, Guangxi, China
| | - Yi-Shing Lisa Cheng
- Department of Diagnostic Sciences, Texas A&M University College of Dentistry, Dallas, TX, USA
| | - Mathew Matthen
- Department of Medicine Division of Hematology/Oncology, Columbia University Irving Medical Center, New York, NY, USA
| | - Angela Yoon
- Division of Pathology, Columbia University College of Dental Medicine, New York, NY, USA
| | - Gary K Schwartz
- Department of Medicine Division of Hematology/Oncology, Columbia University Irving Medical Center, New York, NY, USA
| | - Shashi Bala
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Alison M Taylor
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.
| | - Fatemeh Momen-Heravi
- Cancer Biology and Immunology Laboratory, College of Dental Medicine, Columbia University Irving Medical Center, New York, NY, USA.
- Division of Periodontics, Section of Oral, Diagnostic and Rehabilitation Sciences, Columbia University College of Dental Medicine, New York, NY, USA.
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
31
|
Meireles Da Costa N, Palumbo A, De Martino M, Fusco A, Ribeiro Pinto LF, Nasciutti LE. Interplay between HMGA and TP53 in cell cycle control along tumor progression. Cell Mol Life Sci 2021; 78:817-831. [PMID: 32920697 PMCID: PMC11071717 DOI: 10.1007/s00018-020-03634-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/05/2020] [Accepted: 09/03/2020] [Indexed: 01/27/2023]
Abstract
The high mobility group A (HMGA) proteins are found to be aberrantly expressed in several tumors. Studies (in vitro and in vivo) have shown that HMGA protein overexpression has a causative role in carcinogenesis process. HMGA proteins regulate cell cycle progression through distinct mechanisms which strongly influence its normal dynamics along malignant transformation. Tumor protein p53 (TP53) is the most frequently altered gene in cancer. The loss of its activity is recognized as the fall of a barrier that enables neoplastic transformation. Among the different functions, TP53 signaling pathway is tightly involved in control of cell cycle, with cell cycle arrest being the main biological outcome observed upon p53 activation, which prevents accumulation of damaged DNA, as well as genomic instability. Therefore, the interaction and opposing effects of HMGA and p53 proteins on regulation of cell cycle in normal and tumor cells are discussed in this review. HMGA proteins and p53 may reciprocally regulate the expression and/or activity of each other, leading to the counteraction of their regulation mechanisms at different stages of the cell cycle. The existence of a functional crosstalk between these proteins in the control of cell cycle could open the possibility of targeting HMGA and p53 in combination with other therapeutic strategies, particularly those that target cell cycle regulation, to improve the management and prognosis of cancer patients.
Collapse
Affiliation(s)
- Nathalia Meireles Da Costa
- Programa de Carcinogênese Molecular, Instituto Nacional de Câncer-INCA, Rua André Cavalcanti, 37-6th floor-Centro, 20231-050, Rio de Janeiro, RJ, Brazil.
| | - Antonio Palumbo
- Laboratório de Interações Celulares, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro Prédio de Ciências da Saúde-Cidade Universitária, Ilha do Fundão, A. Carlos Chagas, 373-Bloco F, Sala 26, 21941-902, Rio de Janeiro, RJ, Brazil
| | - Marco De Martino
- Istituto di Endocrinologia e Oncologia Sperimentale-CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Alfredo Fusco
- Istituto di Endocrinologia e Oncologia Sperimentale-CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Luis Felipe Ribeiro Pinto
- Programa de Carcinogênese Molecular, Instituto Nacional de Câncer-INCA, Rua André Cavalcanti, 37-6th floor-Centro, 20231-050, Rio de Janeiro, RJ, Brazil
| | - Luiz Eurico Nasciutti
- Laboratório de Interações Celulares, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro Prédio de Ciências da Saúde-Cidade Universitária, Ilha do Fundão, A. Carlos Chagas, 373-Bloco F, Sala 26, 21941-902, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
32
|
Kumar V, Gupta S, Varma K, Sachan M. MicroRNA as Biomarker in Ovarian Cancer Management: Advantages and Challenges. DNA Cell Biol 2020; 39:2103-2124. [PMID: 33156705 DOI: 10.1089/dna.2020.6024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Ovarian cancer is the most prevalent gynecological malignancy affecting women throughout the globe. Ovarian cancer has several subtypes, including epithelial ovarian cancer (EOC) with a whopping incidence rate of 239,000 per year, making it the sixth most common gynecological malignancy worldwide. Despite advancement of detection and therapeutics, death rate accounts for 152,000 per annum. Several protein-based biomarkers such as CA125 and HE4 are currently being used for diagnosis, but their sensitivity and specificity for early detection of ovarian cancer are under question. MicroRNA (a small noncoding RNA molecule that participates in post-transcription regulation of gene expression) and its functional deregulation in most cancers have been discovered in the previous two decades. Studies support that miRNA deregulation has an epigenetic component as well. Aberrant miRNA expression is often correlated with the form of EOC tumor, histological grade, prognosis, and FIGO stage. In this review, we addressed epigenetic regulation of miRNAs, the latest research on miRs as a biomarker in the detection of EOC, and tailored assays to use miRNAs as a biomarker in ovarian cancer diagnosis.
Collapse
Affiliation(s)
- Vivek Kumar
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, India
| | - Sameer Gupta
- Department of Surgical Oncology, King George Medical University, Lucknow, India
| | - Kachnar Varma
- Department of Pathology, Motilal Nehru Medical College, Allahabad, India
| | - Manisha Sachan
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, India
| |
Collapse
|
33
|
Ji Q, Han J, Wang L, Liu J, Dong Y, Zhu K, Shi L. MicroRNA-34a promotes apoptosis of retinal vascular endothelial cells by targeting SIRT1 in rats with diabetic retinopathy. Cell Cycle 2020; 19:2886-2896. [PMID: 33064974 DOI: 10.1080/15384101.2020.1827509] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
MiR-34a is associated with diabetic retinopathy (DR). This article aims to demystify the role of miR-34a in DR. We established a DR model by streptozocin injection. Rat retinal vascular endothelial cells (RVECs) were treated with high glucose (HG) to induce DR. The pathological changes of retinal tissues and blood-retinal vascular barrier permeability of DR rats were assessed by HE staining and Evans-Blue leak test. The expression of gene and protein was evaluated by quantitative real-time PCR or western blot. MTT assay and flow cytometry were performed to detect proliferation and apoptosis. The relationship between miR-34a and SIRT1 was evaluated using luciferase reporter assay. MiR-34a was up-regulated and SIRT1 was down-regulated in retinal tissues of DR rats and HG-induced RVECs. MiR-34a silencing improved DR by regulating apoptosis and VEGF expression in DR rats. Furthermore, miR-34a interacted with SIRT1 and suppressed SIRT1 expression. MiR-34a overexpression inhibited proliferation and promoted apoptosis of RVECs, which was effectively abolished by SIRT1 up-regulation. In summary, our data demonstrate that miR-34a promotes apoptosis of RVECs by targeting SIRT1 in DR rats. Our findings suggest that miR-34a/SIRT1 axis could be a valuable target for DR therapies.
Collapse
Affiliation(s)
- Qingshan Ji
- Department of Ophthalmology, Affiliated First Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China , Hefei, Anhui, China
| | - Jing Han
- Department of Ophthalmology, Affiliated First Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China , Hefei, Anhui, China
| | - Lisong Wang
- Department of Ophthalmology, Affiliated First Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China , Hefei, Anhui, China
| | - Jiajia Liu
- Department of Ophthalmology, Affiliated First Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China , Hefei, Anhui, China
| | - Yiran Dong
- Department of Ophthalmology, Affiliated First Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China , Hefei, Anhui, China
| | - Kai Zhu
- Department of Ophthalmology, Affiliated First Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China , Hefei, Anhui, China
| | - Lei Shi
- Department of Ophthalmology, Affiliated First Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China , Hefei, Anhui, China
| |
Collapse
|
34
|
Nguyen VHL, Yue C, Du KY, Salem M, O’Brien J, Peng C. The Role of microRNAs in Epithelial Ovarian Cancer Metastasis. Int J Mol Sci 2020; 21:ijms21197093. [PMID: 32993038 PMCID: PMC7583982 DOI: 10.3390/ijms21197093] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 12/11/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is the deadliest gynecological cancer, and the major cause of death is mainly attributed to metastasis. MicroRNAs (miRNAs) are a group of small non-coding RNAs that exert important regulatory functions in many biological processes through their effects on regulating gene expression. In most cases, miRNAs interact with the 3′ UTRs of target mRNAs to induce their degradation and suppress their translation. Aberrant expression of miRNAs has been detected in EOC tumors and/or the biological fluids of EOC patients. Such dysregulation occurs as the result of alterations in DNA copy numbers, epigenetic regulation, and miRNA biogenesis. Many studies have demonstrated that miRNAs can promote or suppress events related to EOC metastasis, such as cell migration, invasion, epithelial-to-mesenchymal transition, and interaction with the tumor microenvironment. In this review, we provide a brief overview of miRNA biogenesis and highlight some key events and regulations related to EOC metastasis. We summarize current knowledge on how miRNAs are dysregulated, focusing on those that have been reported to regulate metastasis. Furthermore, we discuss the role of miRNAs in promoting and inhibiting EOC metastasis. Finally, we point out some limitations of current findings and suggest future research directions in the field.
Collapse
Affiliation(s)
- Vu Hong Loan Nguyen
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada; (V.H.L.N.); (C.Y.); (K.Y.D.); (M.S.); (J.O.)
| | - Chenyang Yue
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada; (V.H.L.N.); (C.Y.); (K.Y.D.); (M.S.); (J.O.)
| | - Kevin Y. Du
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada; (V.H.L.N.); (C.Y.); (K.Y.D.); (M.S.); (J.O.)
| | - Mohamed Salem
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada; (V.H.L.N.); (C.Y.); (K.Y.D.); (M.S.); (J.O.)
| | - Jacob O’Brien
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada; (V.H.L.N.); (C.Y.); (K.Y.D.); (M.S.); (J.O.)
| | - Chun Peng
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada; (V.H.L.N.); (C.Y.); (K.Y.D.); (M.S.); (J.O.)
- Centre for Research in Biomolecular Interactions, York University, Toronto, ON M3J 1P3, Canada
- Correspondence:
| |
Collapse
|
35
|
Maeda K, Sasaki H, Ueda S, Miyamoto S, Terada S, Konishi H, Kogata Y, Ashihara K, Fujiwara S, Tanaka Y, Tanaka T, Hayashi M, Ito Y, Kondo Y, Ochiya T, Ohmichi M. Serum exosomal microRNA-34a as a potential biomarker in epithelial ovarian cancer. J Ovarian Res 2020; 13:47. [PMID: 32336272 PMCID: PMC7184688 DOI: 10.1186/s13048-020-00648-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 04/14/2020] [Indexed: 02/07/2023] Open
Abstract
Background Ovarian cancer (OC) is a leading cause of cancer-related death in women, and thus an accurate diagnosis of the predisposition and its early detection is necessary. The aims of this study were to determine whether serum exosomal microRNA-34a (miR-34a) in ovarian cancer could be used as a potential biomarker. Methods Exosomes from OC patients’ serum were collected, and exosomal miRNAs were extracted. The relative expression of miR-34a was calculated from 58 OC samples by quantitative real-time polymerase chain reaction. Results Serum exosomal miR-34a levels were significantly increased in early-stage OC patients compared with advanced-stage patients. Its levels were significantly lower in patients with lymph node metastasis than in those with no lymph node metastasis. Furthermore, its levels in the recurrence group were significantly lower than those in the recurrence-free group. Conclusions Serum exosomal miR-34a could be a potential biomarker for improving the diagnostic efficiency of OC.
Collapse
Affiliation(s)
- Kazuya Maeda
- Department of Obstetrics and Gynecology, Osaka Medical College, Osaka, Japan.
| | - Hiroshi Sasaki
- Department of Obstetrics and Gynecology, Osaka Medical College, Osaka, Japan
| | - Shoko Ueda
- Department of Obstetrics and Gynecology, Osaka Medical College, Osaka, Japan
| | - Shunsuke Miyamoto
- Department of Obstetrics and Gynecology, Osaka Medical College, Osaka, Japan
| | - Shinichi Terada
- Department of Obstetrics and Gynecology, Osaka Medical College, Osaka, Japan
| | - Hiromi Konishi
- Department of Obstetrics and Gynecology, Osaka Medical College, Osaka, Japan
| | - Yuhei Kogata
- Department of Obstetrics and Gynecology, Osaka Medical College, Osaka, Japan
| | - Keisuke Ashihara
- Department of Obstetrics and Gynecology, Osaka Medical College, Osaka, Japan
| | - Satoe Fujiwara
- Department of Obstetrics and Gynecology, Osaka Medical College, Osaka, Japan
| | - Yoshimichi Tanaka
- Department of Obstetrics and Gynecology, Osaka Medical College, Osaka, Japan
| | - Tomohito Tanaka
- Department of Obstetrics and Gynecology, Osaka Medical College, Osaka, Japan
| | - Masami Hayashi
- Department of Obstetrics and Gynecology, Osaka Medical College, Osaka, Japan
| | - Yuko Ito
- Department of Anatomy and Cell Biology, Osaka Medical College, Osaka, Japan
| | - Yoichi Kondo
- Department of Anatomy and Cell Biology, Osaka Medical College, Osaka, Japan
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan
| | - Masahide Ohmichi
- Department of Obstetrics and Gynecology, Osaka Medical College, Osaka, Japan
| |
Collapse
|