1
|
Zeng Q, Zhang S, Leng N, Xing Y. Advancing tumor vaccines: Overcoming TME challenges, delivery strategies, and biomaterial-based vaccine for enhanced immunotherapy. Crit Rev Oncol Hematol 2025; 205:104576. [PMID: 39581246 DOI: 10.1016/j.critrevonc.2024.104576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/03/2024] [Accepted: 11/16/2024] [Indexed: 11/26/2024] Open
Abstract
Tumor vaccines, as an immunotherapeutic approach, harness the body's immune cells to provoke antitumor responses, which have shown promising efficacy in clinical settings. However, the immunosuppressive tumor microenvironment (TME) and the ineffective vaccine delivery systems hinder the progression of many vaccines beyond phase II trials. This article begins with a comprehensive review of the complex interactions between tumor vaccines and TME, summarizing the current state of vaccine clinical research. Subsequently, we review recent advancements in targeted vaccine delivery systems and explore biomaterial-based tumor vaccines as a strategy to improve the efficacy of both delivery systems and treatment. Finally, we have presented our perspectives on tumor vaccine development, aiming to advance the field towards the creation of more effective tumor vaccines.
Collapse
Affiliation(s)
- Qingsong Zeng
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Shibo Zhang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Ning Leng
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Yingying Xing
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, PR China.
| |
Collapse
|
2
|
Zhang H, Fu L, Leiliang X, Qu C, Wu W, Wen R, Huang N, He Q, Cheng Q, Liu G, Cheng Y. Beyond the Gut: The intratumoral microbiome's influence on tumorigenesis and treatment response. Cancer Commun (Lond) 2024; 44:1130-1167. [PMID: 39087354 PMCID: PMC11483591 DOI: 10.1002/cac2.12597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/25/2024] [Accepted: 07/13/2024] [Indexed: 08/02/2024] Open
Abstract
The intratumoral microbiome (TM) refers to the microorganisms in the tumor tissues, including bacteria, fungi, viruses, and so on, and is distinct from the gut microbiome and circulating microbiota. TM is strongly associated with tumorigenesis, progression, metastasis, and response to therapy. This paper highlights the current status of TM. Tract sources, adjacent normal tissue, circulatory system, and concomitant tumor co-metastasis are the main origin of TM. The advanced techniques in TM analysis are comprehensively summarized. Besides, TM is involved in tumor progression through several mechanisms, including DNA damage, activation of oncogenic signaling pathways (phosphoinositide 3-kinase [PI3K], signal transducer and activator of transcription [STAT], WNT/β-catenin, and extracellular regulated protein kinases [ERK]), influence of cytokines and induce inflammatory responses, and interaction with the tumor microenvironment (anti-tumor immunity, pro-tumor immunity, and microbial-derived metabolites). Moreover, promising directions of TM in tumor therapy include immunotherapy, chemotherapy, radiotherapy, the application of probiotics/prebiotics/synbiotics, fecal microbiome transplantation, engineered microbiota, phage therapy, and oncolytic virus therapy. The inherent challenges of clinical application are also summarized. This review provides a comprehensive landscape for analyzing TM, especially the TM-related mechanisms and TM-based treatment in cancer.
Collapse
Affiliation(s)
- Hao Zhang
- Department of NeurosurgeryThe Second Affiliated HospitalChongqing Medical UniversityChongqingP. R. China
| | - Li Fu
- Department of NeurosurgeryThe Second Affiliated HospitalChongqing Medical UniversityChongqingP. R. China
- Department of GastroenterologyThe Second Affiliated HospitalChongqing Medical UniversityChongqingP. R. China
| | - Xinwen Leiliang
- Department of NeurosurgeryThe Second Affiliated HospitalChongqing Medical UniversityChongqingP. R. China
| | - Chunrun Qu
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaHunanP. R. China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunanP. R. China
| | - Wantao Wu
- Department of OncologyXiangya HospitalCentral South UniversityChangshaHunanP. R. China
| | - Rong Wen
- Department of NeurosurgeryThe Second Affiliated HospitalChongqing Medical UniversityChongqingP. R. China
| | - Ning Huang
- Department of NeurosurgeryThe Second Affiliated HospitalChongqing Medical UniversityChongqingP. R. China
| | - Qiuguang He
- Department of NeurosurgeryThe Second Affiliated HospitalChongqing Medical UniversityChongqingP. R. China
| | - Quan Cheng
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaHunanP. R. China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunanP. R. China
| | - Guodong Liu
- Department of NeurosurgeryThe Second Affiliated HospitalChongqing Medical UniversityChongqingP. R. China
| | - Yuan Cheng
- Department of NeurosurgeryThe Second Affiliated HospitalChongqing Medical UniversityChongqingP. R. China
| |
Collapse
|
3
|
Lv M, Shang S, Liu K, Wang Y, Xu P, Song H, Zhang J, Sun Z, Yan Y, Zhu Z, Wu H, Li H. Revitalizing Bacillus Calmette-Guérin Immunotherapy for Bladder Cancer: Nanotechnology and Bioengineering Approaches. Pharmaceutics 2024; 16:1067. [PMID: 39204412 PMCID: PMC11359013 DOI: 10.3390/pharmaceutics16081067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/30/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Bacillus Calmette-Guérin (BCG) immunotherapy has been a cornerstone treatment for non-muscle-invasive bladder cancer for decades and still faces challenges, such as severe immune adverse reactions, which reduce its use as a first-line treatment. This review examines BCG therapy's history, mechanisms, and current status, highlighting how nanotechnology and bioengineering are revitalizing its application. We discuss novel nanocarrier systems aimed at enhancing BCG's efficacy while mitigating specific side effects. These approaches promise improved tumor targeting, better drug loading, and an enhanced stimulation of anti-tumor immune responses. Key strategies involve using materials such as liposomes, polymers, and magnetic particles to encapsulate BCG or functional BCG cell wall components. Additionally, co-delivering BCG with chemotherapeutics enhances drug targeting and tumor-killing effects while reducing drug toxicity, with some studies even achieving synergistic effects. While most studies remain experimental, this research direction offers hope for overcoming BCG's limitations and advancing bladder cancer immunotherapy. Further elucidation of BCG's mechanisms and rigorous safety evaluations of new delivery systems will be crucial for translating these innovations into clinical practice.
Collapse
Affiliation(s)
- Maoxin Lv
- Department of Urology, First Affiliated Hospital, Kunming Medical University, Kunming 650000, China;
- School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education, Xi’an Jiaotong University, Xi’an 710061, China
| | - Shihao Shang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (S.S.); (Z.S.)
| | - Kepu Liu
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (S.S.); (Z.S.)
| | - Yuliang Wang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (S.S.); (Z.S.)
| | - Peng Xu
- School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education, Xi’an Jiaotong University, Xi’an 710061, China
- Department of Oncology, The Second Affiliated Hospital, Medical School of Xi’an Jiaotong University, Xi’an 710061, China
| | - Hao Song
- School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education, Xi’an Jiaotong University, Xi’an 710061, China
| | - Jie Zhang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (S.S.); (Z.S.)
| | - Zelong Sun
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (S.S.); (Z.S.)
| | - Yuhao Yan
- Student Brigade of Basic Medicine School, Fourth Military Medical University, Xi’an 710032, China
| | - Zheng Zhu
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (S.S.); (Z.S.)
| | - Hao Wu
- School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education, Xi’an Jiaotong University, Xi’an 710061, China
- Department of Oncology, The Second Affiliated Hospital, Medical School of Xi’an Jiaotong University, Xi’an 710061, China
| | - Hao Li
- Department of Urology, First Affiliated Hospital, Kunming Medical University, Kunming 650000, China;
| |
Collapse
|
4
|
Jia J, Wang X, Lin X, Zhao Y. Engineered Microorganisms for Advancing Tumor Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313389. [PMID: 38485221 DOI: 10.1002/adma.202313389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/27/2024] [Indexed: 03/23/2024]
Abstract
Engineered microorganisms have attracted significant interest as a unique therapeutic platform in tumor treatment. Compared with conventional cancer treatment strategies, engineering microorganism-based systems provide various distinct advantages, such as the intrinsic capability in targeting tumors, their inherent immunogenicity, in situ production of antitumor agents, and multiple synergistic functions to fight against tumors. Herein, the design, preparation, and application of the engineered microorganisms for advanced tumor therapy are thoroughly reviewed. This review presents a comprehensive survey of innovative tumor therapeutic strategies based on a series of representative engineered microorganisms, including bacteria, viruses, microalgae, and fungi. Specifically, it offers extensive analyses of the design principles, engineering strategies, and tumor therapeutic mechanisms, as well as the advantages and limitations of different engineered microorganism-based systems. Finally, the current challenges and future research prospects in this field, which can inspire new ideas for the design of creative tumor therapy paradigms utilizing engineered microorganisms and facilitate their clinical applications, are discussed.
Collapse
Affiliation(s)
- Jinxuan Jia
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Xiaocheng Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Xiang Lin
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Yuanjin Zhao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| |
Collapse
|
5
|
Dailey KM, Small JM, Pullan JE, Winfree S, Vance KE, Orr M, Mallik S, Bayles KW, Hollingsworth MA, Brooks AE. An intravenous pancreatic cancer therapeutic: Characterization of CRISPR/Cas9n-modified Clostridium novyi-Non Toxic. PLoS One 2023; 18:e0289183. [PMID: 37963142 PMCID: PMC10645340 DOI: 10.1371/journal.pone.0289183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/12/2023] [Indexed: 11/16/2023] Open
Abstract
Clostridium novyi has demonstrated selective efficacy against solid tumors largely due to the microenvironment contained within dense tumor cores. The core of a solid tumor is typically hypoxic, acidic, and necrotic-impeding the penetration of current therapeutics. C. novyi is attracted to the tumor microenvironment and once there, can both lyse and proliferate while simultaneously re-activating the suppressed immune system. C. novyi systemic toxicity is easily mitigated by knocking out the phage DNA plasmid encoded alpha toxin resulting in C. novyi-NT; but, after intravenous injection spores are quickly cleared by phagocytosis before accomplishing significant tumor localization. C. novyi-NT could be designed to accomplish intravenous delivery with the potential to target all solid tumors and their metastases in a single dose. This study characterizes CRISPR/Cas9 modified C. novyi-NT to insert the gene for RGD, a tumor targeting peptide, expressed within the promoter region of a spore coat protein. Expression of the RGD peptide on the outer spore coat of C. novyi-NT indicates an increased capacity for tumor localization of C. novyi upon intravenous introduction based on the natural binding of RGD with the αvβ3 integrin commonly overexpressed on the epithelial tissue surrounding a tumor, and lead to immune stimulation.
Collapse
Affiliation(s)
- Kaitlin M. Dailey
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE, United States of America
- Cell and Molecular Biology Program, North Dakota State University, Fargo, ND, United States of America
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, United States of America
| | - James M. Small
- Department of Pathology and Microbiology, Rocky Vista University, Parker, CO, United States of America
| | - Jessica E. Pullan
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, United States of America
- Department of Physical Science, Southern Utah University, Cedar City, UT, United States of America
| | - Seth Winfree
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE, United States of America
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Krysten E. Vance
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Megan Orr
- Department of Statistics, North Dakota State University, Fargo, ND, United States of America
- Center for Diagnostics and Therapeutic Strategies in Pancreatic Cancer Biostatistics Core Facility, North Dakota State University, Fargo, ND, United States of America
| | - Sanku Mallik
- Cell and Molecular Biology Program, North Dakota State University, Fargo, ND, United States of America
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, United States of America
| | - Kenneth W. Bayles
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Michael A. Hollingsworth
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Amanda E. Brooks
- Cell and Molecular Biology Program, North Dakota State University, Fargo, ND, United States of America
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, United States of America
- Department of Research and Scholarly Activity, Rocky Vista University, Ivins, UT, United States of America
| |
Collapse
|
6
|
Ikryannikova LN, Gorokhovets NV, Belykh DA, Kurbatov LK, Zamyatnin AA. Bacterial Therapy of Cancer: A Way to the Dustbin of History or to the Medicine of the Future? Int J Mol Sci 2023; 24:ijms24119726. [PMID: 37298677 DOI: 10.3390/ijms24119726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/23/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Bacteria are the constant companions of the human body throughout its life and even after its death. The history of a human disease such as cancer and the history of microorganisms, particularly bacteria, are believed to closely intertwined. This review was conceived to highlight the attempts of scientists from ancient times to the present day to discover the relationship between bacteria and the emergence or development of tumors in the human body. Challenges and achievements of 21st century science in forcing bacteria to serve for cancer treatment are considered. The future possibilities of bacterial cancer therapy, including the creation of bacterial microrobots, or "bacteriobots", are also discussed.
Collapse
Affiliation(s)
- Larisa N Ikryannikova
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Trubetskaya 8/2, 119991 Moscow, Russia
| | - Neonila V Gorokhovets
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Trubetskaya 8/2, 119991 Moscow, Russia
| | - Darya A Belykh
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Trubetskaya 8/2, 119991 Moscow, Russia
| | - Leonid K Kurbatov
- Orekhovich Research Institute of Biomedical Chemistry, Pogodinskaya 10/8, 119991 Moscow, Russia
| | - Andrey A Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Trubetskaya 8/2, 119991 Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Leninskie Gory 1/73, 119234 Moscow, Russia
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1/40, 119992 Moscow, Russia
- Scientific Center for Translation Medicine, Sirius University of Science and Technology, 1 Olympic Ave, 354340 Sochi, Russia
| |
Collapse
|
7
|
Zheng X, Lu X, Hu Y. Distinct respiratory microbiota associates with lung cancer clinicopathological characteristics. Front Oncol 2023; 13:847182. [PMID: 36816941 PMCID: PMC9932187 DOI: 10.3389/fonc.2023.847182] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 01/09/2023] [Indexed: 02/05/2023] Open
Abstract
Introduction Commensal microbiota dysbiosis is associated with the development of lung cancer. The current studies about composition of respiratory microbiota in lung cancer patients yielded inconsistent results. This study aimed to examine the association between airway microbiota and lung cancer clinicopathological characteristics. Methods Surgically removed lesion tissues from 75 non-small cell lung cancer patients and 7 patients with benign pulmonary diseases were analyzed by 16S rRNA sequencing. Taxonomy, relative abundance, and diversity of respiratory microbiota were compared among lung cancer of different pathology and TNM stages. The effects of antibiotic and cigarette exposure on respiratory microbiota in lung cancer patients were also evaluated. Results Bacterial relative abundance and alpha- and beta-diversity analysis of lung microbiota showed significant differences among lung cancer of different pathology and benign pulmonary diseases. At the genus level, the abundance differences of 13 taxa between lung squamous cell carcinoma and lung adenocarcinoma, 63 taxa between lung squamous cell carcinoma and benign pulmonary diseases, and 4 taxa between lung adenocarcinoma and benign pulmonary diseases reached statistical significance. In contrast, diversity differences were not as significant across lung cancer of different stages. No significant differences were observed in tissue taxonomic abundances and diversity at all taxonomic levels between lung cancer patients with and without antibiotic exposure 3 months prior to surgery. For lung adenocarcinoma, respiratory bacterial abundance and diversity at all taxonomic levels did not show significant differences between smokers and non-smokers. Conclusions Our results confirm significantly differential respiratory microbiome taxa, abundance, and diversity in lung cancer of different pathology and some stages. Short-term antibiotic application might play a minor role in molding airway microbiota in lung cancer patients. Composition and diversity of respiratory microbiota in lung adenocarcinoma are not affected by cigarette exposure.
Collapse
Affiliation(s)
- Xi Zheng
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xingbing Lu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Hu
- Department of Thoracic surgery, West China Hospital, Sichuan University, Chengdu, China,*Correspondence: Yang Hu,
| |
Collapse
|
8
|
Progress of engineered bacteria for tumor therapy. Adv Drug Deliv Rev 2022; 185:114296. [PMID: 35439571 DOI: 10.1016/j.addr.2022.114296] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/25/2022] [Accepted: 04/10/2022] [Indexed: 02/08/2023]
Abstract
Recently, with the rapid development of bioengineering technology and nanotechnology, natural bacteria were modified to change their physiological activities and therapeutic functions for improved therapeutic efficiency of diseases. These engineered bacteria were equipped to achieve directed genetic reprogramming, selective functional reorganization and precise spatio-temporal control. In this review, research progress in the basic modification methodologies of engineered bacteria were summarized, and representative researches about their therapeutic performances for tumor treatment were illustrated. Moreover, the strategies for the construction of engineered colonies based on engineering of individual bacteria were summarized, providing innovative ideas for complex functions and efficient anti-tumor treatment. Finally, current limitation and challenges of tumor therapy utilizing engineered bacteria were discussed.
Collapse
|
9
|
Bacteria and tumor: Understanding the roles of bacteria in tumor genesis and immunology. Microbiol Res 2022; 261:127082. [PMID: 35660471 DOI: 10.1016/j.micres.2022.127082] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 11/08/2021] [Accepted: 05/26/2022] [Indexed: 02/05/2023]
Abstract
In the past, tumor and microbial infection were commonly regarded as independent diseases with few interrelations. The discovery of bacteria in tumor tissue changed the knowledge of bacteria-tumor relationship. Recently, more and more findings have demonstrated the significant effects of bacteria on the genesis, development and metastasis of tumor. Particularly, the influence of bacteria on tumor immunity is of great interest. Bacteria can inhibit the function of immune system through multiple mechanisms. On the other hand, some bacteria can also enhance the immune response and inhibit tumor progression. Understanding the bacteria-tumor interactions is of great importance for developing novel anticancer approaches. Herein, we aim to provide a comprehensive understanding of the tumor/tumor immunology, the biogenesis of bacteria in tumor and the relation of tumorigenesis with bacteria. In addition, the roles of bacteria in tumor immunology and the potential approaches to use bacteria for cancer therapy are discussed.
Collapse
|
10
|
Bacteria therapeutics for cancer oncology: a crossroads for new paradigms. Drug Discov Today 2022; 27:2043-2050. [PMID: 35304339 DOI: 10.1016/j.drudis.2022.03.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 11/05/2021] [Accepted: 03/11/2022] [Indexed: 12/23/2022]
Abstract
A promising treatment for cancer remains challenging owing to insufficient tumor targeting and predictable resistance. Current therapies have their drawbacks and there is a need for innovative treatment that can overcome all the limitations with the traditional approaches. One of the novel treatments is bacteria-mediated cancer therapy, which has shown a beneficial impact on tumor regression and metastasis inhibition. It can selectively target cancer cells and potentially serve as a therapeutic-gene-drug delivery approach. In their original form, genetically or chemically modified, or combined with conventional therapeutic approaches, bacteria produce safe and effective cancer with minimized cytotoxicity. This review discusses the key benefits, applicability and further implementations in the clinical translation of bacteriotherapy for cancer treatments.
Collapse
|
11
|
Doocey CM, Finn K, Murphy C, Guinane CM. The impact of the human microbiome in tumorigenesis, cancer progression, and biotherapeutic development. BMC Microbiol 2022; 22:53. [PMID: 35151278 PMCID: PMC8840051 DOI: 10.1186/s12866-022-02465-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/03/2022] [Indexed: 02/08/2023] Open
Abstract
Abstract
Background
Cancer impacts millions of lives globally each year, with approximately 10 million cancer-related deaths recorded worldwide in 2020. Mounting research has recognised the human microbiome as a key area of interest in the pathophysiology of various human diseases including cancer tumorigenesis, progression and in disease outcome. It is suggested that approximately 20% of human cancers may be linked to microbes. Certain residents of the human microbiome have been identified as potentially playing a role, including: Helicobacter pylori, Fusobacterium nucleatum, Escherichia coli, Bacteroides fragilis and Porphyromonas gingivalis.
Main body
In this review, we explore the current evidence that indicate a link between the human microbiome and cancer. Microbiome compositional changes have been well documented in cancer patients. Furthermore, pathogenic microbes harbouring specific virulence factors have been implicated in driving the carcinogenic activity of various malignancies including colorectal, gastric and pancreatic cancer. The associated genetic mechanisms with possible roles in cancer will be outlined. It will be indicated which microbes have a potential direct link with cancer cell proliferation, tumorigenesis and disease progression. Recent studies have also linked certain microbial cytotoxins and probiotic strains to cancer cell death, suggesting their potential to target the tumour microenvironment given that cancer cells are integral to its composition. Studies pertaining to such cytotoxic activity have suggested the benefit of microbial therapies in oncological treatment regimes. It is also apparent that bacterial pathogenic protein products encoded for by certain loci may have potential as oncogenic therapeutic targets given their possible role in tumorigenesis.
Conclusion
Research investigating the impact of the human microbiome in cancer has recently gathered pace. Vast amounts of evidence indicate the human microbiome as a potential player in tumorigenesis and progression. Promise in the development of cancer biomarkers and in targeted oncological therapies has also been demonstrated, although more studies are needed. Despite extensive in vitro and in vivo research, clinical studies involving large cohorts of human patients are lacking. The current literature suggests that further intensive research is necessary to validate both the role of the human microbiome in cancer, and the use of microbiome modification in cancer therapy.
Collapse
|
12
|
Pan H, Zheng M, Ma A, Liu L, Cai L. Cell/Bacteria-Based Bioactive Materials for Cancer Immune Modulation and Precision Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100241. [PMID: 34121236 DOI: 10.1002/adma.202100241] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/24/2021] [Indexed: 06/12/2023]
Abstract
Numerous clinical trials for cancer precision medicine research are limited due to the drug resistance, side effects, and low efficacy. Unsatisfactory outcomes are often caused by complex physiologic barriers and abnormal immune events in tumors, such as tumor target alterations and immunosuppression. Cell/bacteria-derived materials with unique bioactive properties have emerged as attractive tools for personalized therapy in cancer. Naturally derived bioactive materials, such as cell and bacterial therapeutic agents with native tropism or good biocompatibility, can precisely target tumors and effectively modulate immune microenvironments to inhibit tumors. Here, the recent advances in the development of cell/bacteria-based bioactive materials for immune modulation and precision therapy in cancer are summarized. Cell/bacterial constituents, including cell membranes, bacterial vesicles, and other active substances have inherited their unique targeting properties and antitumor capabilities. Strategies for engineering living cell/bacteria to overcome complex biological barriers and immunosuppression to promote antitumor efficacy are also summarized. Moreover, past and ongoing trials involving personalized bioactive materials and promising agents such as cell/bacteria-based micro/nano-biorobotics are further discussed, which may become another powerful tool for treatment in the near future.
Collapse
Affiliation(s)
- Hong Pan
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Mingbin Zheng
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, 518055, China
- National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518112, P. R. China
| | - Aiqing Ma
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Lanlan Liu
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Lintao Cai
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, 518055, China
| |
Collapse
|
13
|
The Evolution and Future of Targeted Cancer Therapy: From Nanoparticles, Oncolytic Viruses, and Oncolytic Bacteria to the Treatment of Solid Tumors. NANOMATERIALS 2021; 11:nano11113018. [PMID: 34835785 PMCID: PMC8623458 DOI: 10.3390/nano11113018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/28/2021] [Accepted: 11/01/2021] [Indexed: 02/07/2023]
Abstract
While many classes of chemotherapeutic agents exist to treat solid tumors, few can generate a lasting response without substantial off-target toxicity despite significant scientific advancements and investments. In this review, the paths of development for nanoparticles, oncolytic viruses, and oncolytic bacteria over the last 20 years of research towards clinical translation and acceptance as novel cancer therapeutics are compared. Novel nanoparticle, oncolytic virus, and oncolytic bacteria therapies all start with a common goal of accomplishing therapeutic drug activity or delivery to a specific site while avoiding off-target effects, with overlapping methodology between all three modalities. Indeed, the degree of overlap is substantial enough that breakthroughs in one therapeutic could have considerable implications on the progression of the other two. Each oncotherapeutic modality has accomplished clinical translation, successfully overcoming the potential pitfalls promising therapeutics face. However, once studies enter clinical trials, the data all but disappears, leaving pre-clinical researchers largely in the dark. Overall, the creativity, flexibility, and innovation of these modalities for solid tumor treatments are greatly encouraging, and usher in a new age of pharmaceutical development.
Collapse
|
14
|
Ma J, Huang L, Hu D, Zeng S, Han Y, Shen H. The role of the tumor microbe microenvironment in the tumor immune microenvironment: bystander, activator, or inhibitor? JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:327. [PMID: 34656142 PMCID: PMC8520212 DOI: 10.1186/s13046-021-02128-w] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/04/2021] [Indexed: 02/08/2023]
Abstract
The efficacy of cancer immunotherapy largely depends on the tumor microenvironment, especially the tumor immune microenvironment. Emerging studies have claimed that microbes reside within tumor cells and immune cells, suggesting that these microbes can impact the state of the tumor immune microenvironment. For the first time, this review delineates the landscape of intra-tumoral microbes and their products, herein defined as the tumor microbe microenvironment. The role of the tumor microbe microenvironment in the tumor immune microenvironment is multifaceted: either as an immune activator, inhibitor, or bystander. The underlying mechanisms include: (I) the presentation of microbial antigens by cancer cells and immune cells, (II) microbial antigens mimicry shared with tumor antigens, (III) microbe-induced immunogenic cell death, (IV) microbial adjuvanticity mediated by pattern recognition receptors, (V) microbe-derived metabolites, and (VI) microbial stimulation of inhibitory checkpoints. The review further suggests the use of potential modulation strategies of the tumor microbe microenvironment to enhance the efficacy and reduce the adverse effects of checkpoint inhibitors. Lastly, the review highlights some critical questions awaiting to be answered in this field and provides possible solutions. Overall, the tumor microbe microenvironment modulates the tumor immune microenvironment, making it a potential target for improving immunotherapy. It is a novel field facing major challenges and deserves further exploration.
Collapse
Affiliation(s)
- Jiayao Ma
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Lingjuan Huang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Die Hu
- Xiangya Medical College, Central South University, Changsha, 410013, Hunan, China
| | - Shan Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China. .,Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China.
| | - Ying Han
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China. .,Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Hong Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China. .,Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China.
| |
Collapse
|
15
|
Chen Y, Liu X, Guo Y, Wang J, Zhang D, Mei Y, Shi J, Tan W, Zheng JH. Genetically engineered oncolytic bacteria as drug delivery systems for targeted cancer theranostics. Acta Biomater 2021; 124:72-87. [PMID: 33561563 DOI: 10.1016/j.actbio.2021.02.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/28/2021] [Accepted: 02/02/2021] [Indexed: 12/16/2022]
Abstract
Drug delivery systems based on genetically engineered oncolytic bacteria have properties that cannot be achieved by traditional therapeutic interventions. Thus, they have attracted considerable attention in cancer therapies. Attenuated bacteria can specifically target and actively penetrate tumor tissues and play an important role in cancer suppression as the "factories" of diverse anticancer drugs. Over the past decades, several bacterial strains including Salmonella and Clostridium have been shown to effectively retard tumor growth and metastasis, and thus improve survival in preclinical models or clinical cases. In this review, we summarize the unique properties of oncolytic bacteria and their anticancer mechanisms and highlight the particular advantages compared with traditional strategies. With the current research progress, we demonstrate the potential value of oncolytic bacteria-based drug delivery systems for clinical applications. In addition, we discuss novel strategies of cancer therapies integrating oncolytic bacteria, which will provide hope to further improve and standardize the current regimens in the near future.
Collapse
|
16
|
Dailey KM, Jacobson RI, Johnson PR, Woolery TJ, Kim J, Jansen RJ, Mallik S, Brooks AE. Methods and Techniques to Facilitate the Development of Clostridium novyi NT as an Effective, Therapeutic Oncolytic Bacteria. Front Microbiol 2021; 12:624618. [PMID: 33854487 PMCID: PMC8039391 DOI: 10.3389/fmicb.2021.624618] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/28/2021] [Indexed: 12/17/2022] Open
Abstract
The tumor microenvironment is characterized by anomalous vascularization, hypoxia, and acidity at the core of solid tumors that culminates in concentrated necrosis and immune system dysregulation among other effects. While this environment presents several challenges for the development of oncotherapeutics that deliver their activity via the enhanced permeability and retention (EPR) effect of the leaky blood vessels around a tumor, oncolytic bacteria, or a class of bacteria with a noted capacity to lyse solid tumors, are attracted to the very environment found at the center of solid tumors that confounds other therapeutics. It is this capacity that allows for a potent, active penetration from the tumor margins into the core, and subsequent colonization to facilitate lysis and immune reactivation. Clostridium novyi in particular has recently shown great promise in preclinical and clinical trials when administered directly to the tumor. These studies indicate that C. novyi is uniquely poised to effectively accomplish the long sought after "holy grail" of oncotherapeutics: selective tumor localization via intravenous delivery. This study reports the development of efficient methods that facilitate experimental work and therapeutic translation of C. novyi including the ability to work with this obligate micro-anaerobe on the benchtop. Additionally, this study seeks to utilize this newfound experimental flexibility to address several gaps in the current knowledge regarding the efficacy of CRIPSR/Cas9-mediated gene insertion in this species to further develop this oncolytic bacteria and the genetic customization of bacteria in general.
Collapse
Affiliation(s)
- Kaitlin M Dailey
- Cell and Molecular Biology Program, North Dakota State University, Fargo, ND, United States.,Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, United States
| | - Reed I Jacobson
- Department of Biological Sciences, North Dakota State University, Fargo, ND, United States
| | - Paige R Johnson
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, United States
| | - Taylor J Woolery
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, United States
| | - Jiha Kim
- Department of Biological Sciences, North Dakota State University, Fargo, ND, United States
| | - Rick J Jansen
- Department of Public Health, North Dakota State University, Fargo, ND, United States.,Genomics and Bioinformatics Program, North Dakota State University, Fargo, ND, United States
| | - Sanku Mallik
- Cell and Molecular Biology Program, North Dakota State University, Fargo, ND, United States.,Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, United States
| | - Amanda E Brooks
- Cell and Molecular Biology Program, North Dakota State University, Fargo, ND, United States.,Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, United States.,Office of Research and Scholarly Activity, Rocky Vista University, Ivins, UT, United States
| |
Collapse
|
17
|
Dailey KM, Allgood JE, Johnson PR, Ostlie MA, Schaner KC, Brooks BD, Brooks AE. The next frontier of oncotherapy: accomplishing clinical translation of oncolytic bacteria through genetic engineering. Future Microbiol 2021; 16:341-368. [PMID: 33754804 DOI: 10.2217/fmb-2020-0245] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The development of a 'smart' drug capable of distinguishing tumor from host cells has been sought for centuries, but the microenvironment of solid tumors continues to confound therapeutics. Solid tumors present several challenges for current oncotherapeutics, including aberrant vascularization, hypoxia, necrosis, abnormally high pH and local immune suppression. While traditional chemotherapeutics are limited by such an environment, oncolytic microbes are drawn to it - having an innate ability to selectively infect, colonize and eradicate solid tumors. Development of an oncolytic species would represent a shift in the cancer therapeutic paradigm, with ramifications reaching from the medical into the socio-economic. Modern genetic engineering techniques could be implemented to customize 'Frankenstein' bacteria with advantageous characteristics from several species.
Collapse
Affiliation(s)
- Kaitlin M Dailey
- Cellular & Molecular Biology Program, North Dakota State University, Fargo, ND 58103, USA.,Pharmaceutical Sciences Department, North Dakota State University, Fargo, ND 58103, USA
| | - JuliAnne E Allgood
- Department of Neuroscience, University of Wyoming, Laramie, WY 82071, USA
| | - Paige R Johnson
- Pharmaceutical Sciences Department, North Dakota State University, Fargo, ND 58103, USA
| | - Mackenzie A Ostlie
- Pharmaceutical Sciences Department, North Dakota State University, Fargo, ND 58103, USA
| | - Kambri C Schaner
- Pharmaceutical Sciences Department, North Dakota State University, Fargo, ND 58103, USA
| | | | - Amanda E Brooks
- Cellular & Molecular Biology Program, North Dakota State University, Fargo, ND 58103, USA.,Pharmaceutical Sciences Department, North Dakota State University, Fargo, ND 58103, USA.,Office of Research & Scholarly Activity. Rocky Vista University, Ivins, UT 84738, USA
| |
Collapse
|
18
|
Grenda A, Krawczyk P. Cancer trigger or remedy: two faces of the human microbiome. Appl Microbiol Biotechnol 2021; 105:1395-1405. [PMID: 33492450 DOI: 10.1007/s00253-021-11125-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/08/2021] [Accepted: 01/16/2021] [Indexed: 12/12/2022]
Abstract
Currently, increasing attention cancer treatment has focused on molecularly targeted therapies and more recently on immunotherapies targeting immune checkpoints. However, even such advanced treatment may be ineffective. The reasons for this are sought, inter alia, in the human microbiome. In our intestines, there are bacteria that are beneficial to us, but pathogenic microorganisms may also be present. Microbial imbalance (dysbiosis) is now perceived as one of the gateways to cancer. However, it is feasible to use bacteria and their metabolites to restore the natural, beneficial microbiome during oncological treatment. Akkermansia mucinifila, Enterococcus hirae, or Faecalibacterium prausnitzii are bacteria that exhibit this beneficial potential. Greater benefits of therapy can be observed in cancer patients enriched in these bacterial species and treated with anti-PD-1, anti-PD-L1, or anti-CTLA-4 monoclonal antibodies. In this review, we present issues related to the role of bacteria in carcinogenesis and their therapeutic potential "supporting" modern anti-cancer therapies.Key Points• Bacteria can be directly or indirectly a cancer trigger.• Bacterial metabolites regulate the pathways associated with carcinogenesis.• Intestinal bacteria activate the immune system to fight cancer.
Collapse
Affiliation(s)
- Anna Grenda
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, Jaczewskiego 8, 20-090, Lublin, Poland.
| | - Paweł Krawczyk
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, Jaczewskiego 8, 20-090, Lublin, Poland
| |
Collapse
|
19
|
Bondhopadhyay B, Sisodiya S, Chikara A, Khan A, Tanwar P, Afroze D, Singh N, Agrawal U, Mehrotra R, Hussain S. Cancer immunotherapy: a promising dawn in cancer research. AMERICAN JOURNAL OF BLOOD RESEARCH 2020; 10:375-385. [PMID: 33489447 PMCID: PMC7811907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023]
Abstract
Cancer is a highly proliferative disease, which is caused due to the loss of regulation of cell cycle and apoptosis, DNA damage, faulty repair system etc. The cancer microenvironment plays a pivotal role in disease progression as they contain different types of innate and adaptive immune cells. The most important molecules that establish a correlation between inflammation, innate immunity, adaptive immunity, and cancer are the molecules released by inflammatory cells in cancer microenvironment. These molecules secreted by the immune cells, which might activate a pro-tumorigenic and anti-tumorigenic response in cancer. In inflammatory microenvironment, the equilibrium state of immunosuppressive and immunostimulatory signals are important in tumor suppression. The immunotherapeutic approaches could be more effective in cancer treatment. However, advancement in immunobiology and cancer are improving the prospects of immunotherapy alone and/or in combination with the conventional therapies. Thus, the review attempts to highlight a promising and futuristic immunotherapeutic approach in combination with conventional treatment modalities.
Collapse
Affiliation(s)
- Banashree Bondhopadhyay
- Division of Molecular Oncology and Cellular & Molecular Diagnostics, National Institute of Cancer Prevention and Research (NICPR)Noida, India
| | - Sandeep Sisodiya
- Division of Molecular Oncology and Cellular & Molecular Diagnostics, National Institute of Cancer Prevention and Research (NICPR)Noida, India
| | - Atul Chikara
- Division of Molecular Oncology and Cellular & Molecular Diagnostics, National Institute of Cancer Prevention and Research (NICPR)Noida, India
| | - Asiya Khan
- All India Institute of Medical Science (AIIMS)New Delhi, India
| | - Pranay Tanwar
- All India Institute of Medical Science (AIIMS)New Delhi, India
| | - Dil Afroze
- Sher-i-Kashmir Institute of Medical Sciences Soura (SKIMS)Srinagar, Jammu and Kashmir, India
| | - Neha Singh
- Department of Surgical and Perioperative Sciences, Umea UniversitySweden
| | | | - Ravi Mehrotra
- Division of Molecular Oncology and Cellular & Molecular Diagnostics, National Institute of Cancer Prevention and Research (NICPR)Noida, India
| | - Showket Hussain
- Division of Molecular Oncology and Cellular & Molecular Diagnostics, National Institute of Cancer Prevention and Research (NICPR)Noida, India
| |
Collapse
|
20
|
Inamura K. Gut microbiota contributes towards immunomodulation against cancer: New frontiers in precision cancer therapeutics. Semin Cancer Biol 2020; 70:11-23. [PMID: 32580023 DOI: 10.1016/j.semcancer.2020.06.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 02/08/2023]
Abstract
The microbiota influences human health and the development of diverse diseases, including cancer. Microbes can influence tumor initiation and development in either a positive or negative manner. In addition, the composition of the gut microbiota affects the efficacy and toxicity of cancer therapeutics as well as therapeutic resistance. The striking impact of microbiota on oncogenesis and cancer therapy provides compelling evidence to support the notion that manipulating microbial networks represents a promising strategy for treating and preventing cancer. Specific microbes or the microbial ecosystem can be modified via a multiplicity of processes, and therapeutic methods and approaches have been evolving. Microbial manipulation can be applied as an adjunct to traditional cancer therapies such as chemotherapy and immunotherapy. Furthermore, this approach displays great promise as a stand-alone therapy following the failure of standard therapy. Moreover, such strategies may also benefit patients by avoiding the emergence of toxic side effects that result in treatment discontinuation. A better understanding of the host-microbial ecosystem in patients with cancer, together with the development of methodologies for manipulating the microbiome, will help expand the frontiers of precision cancer therapeutics, thereby improving patient care. This review discusses the roles of the microbiota in oncogenesis and cancer therapy, with a focus on efforts to harness the microbiota to fight cancer.
Collapse
Affiliation(s)
- Kentaro Inamura
- Division of Pathology, The Cancer Institute, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan.
| |
Collapse
|
21
|
Immunotherapy with engineered bacteria by targeting the STING pathway for anti-tumor immunity. Nat Commun 2020; 11:2739. [PMID: 32483165 PMCID: PMC7264239 DOI: 10.1038/s41467-020-16602-0] [Citation(s) in RCA: 217] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 05/11/2020] [Indexed: 01/04/2023] Open
Abstract
Synthetic biology is a powerful tool to create therapeutics which can be rationally designed to enable unique and combinatorial functionalities. Here we utilize non-pathogenic E coli Nissle as a versatile platform for the development of a living biotherapeutic for the treatment of cancer. The engineered bacterial strain, referred to as SYNB1891, targets STING-activation to phagocytic antigen-presenting cells (APCs) in the tumor and activates complementary innate immune pathways. SYNB1891 treatment results in efficacious antitumor immunity with the formation of immunological memory in murine tumor models and robust activation of human APCs. SYNB1891 is designed to meet manufacturability and regulatory requirements with built in biocontainment features which do not compromise its efficacy. This work provides a roadmap for the development of future therapeutics and demonstrates the transformative potential of synthetic biology for the treatment of human disease when drug development criteria are incorporated into the design process for a living medicine.
Collapse
|