1
|
Arab A, Kashani B, Cordova-Delgado M, Scott EN, Alemi K, Trueman J, Groeneweg G, Chang WC, Loucks CM, Ross CJD, Carleton BC, Ester M. Machine learning model identifies genetic predictors of cisplatin-induced ototoxicity in CERS6 and TLR4. Comput Biol Med 2024; 183:109324. [PMID: 39488053 DOI: 10.1016/j.compbiomed.2024.109324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/20/2024] [Accepted: 10/22/2024] [Indexed: 11/04/2024]
Abstract
BACKGROUND Cisplatin-induced ototoxicity remains a significant concern in pediatric cancer treatment due to its permanent impact on quality of life. Previously, genetic association analyses have been performed to detect genetic variants associated with this adverse reaction. METHODS In this study, a combination of interpretable neural networks and Generative Adversarial Networks (GANs) was employed to identify genetic markers associated with cisplatin-induced ototoxicity. The applied method, BRI-Net, incorporates biological domain knowledge to define the network structure and employs adversarial training to learn an unbiased representation of the data, which is robust to known confounders. Leveraging genomic data from a cohort of 362 cisplatin-treated pediatric cancer patients recruited by the CPNDS (Canadian Pharmacogenomics Network for Drug Safety), this model revealed two statistically significant single nucleotide polymorphisms to be associated with cisplatin-induced ototoxicity. RESULTS Two markers within the CERS6 (rs13022792, p-value: 3 × 10-4) and TLR4 (rs10759932, p-value: 7 × 10-4) genes were associated with this cisplatin-induced adverse reaction. CERS6, a ceramide synthase, contributes to elevated ceramide levels, a known initiator of apoptotic signals in mouse models of inner ear hair cells. TLR4, a pattern-recognition protein, initiates inflammation in response to cisplatin, and reduced TLR4 expression has been shown in murine hair cells to confer protection from ototoxicity. CONCLUSION Overall, these findings provide a foundation for understanding the genetic landscape of cisplatin-induced ototoxicity, with implications for improving patient care and treatment outcomes.
Collapse
Affiliation(s)
- Ali Arab
- School of Computing Science, Simon Fraser University, Burnaby, BC, Canada
| | - Bahareh Kashani
- Department of Experimental Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada; BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | | | - Erika N Scott
- BC Children's Hospital Research Institute, Vancouver, BC, Canada; Division of Translational Therapeutics, Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Kaveh Alemi
- School of Computing Science, Simon Fraser University, Burnaby, BC, Canada
| | - Jessica Trueman
- BC Children's Hospital Research Institute, Vancouver, BC, Canada; Division of Translational Therapeutics, Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Gabriella Groeneweg
- Division of Translational Therapeutics, Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada; Pharmaceutical Outcomes Programme, BC Children's Hospital, Vancouver, BC, Canada
| | - Wan-Chun Chang
- BC Children's Hospital Research Institute, Vancouver, BC, Canada; Division of Translational Therapeutics, Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Catrina M Loucks
- BC Children's Hospital Research Institute, Vancouver, BC, Canada; Division of Translational Therapeutics, Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada; Department of Anesthesiology, Pharmacology & Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Colin J D Ross
- BC Children's Hospital Research Institute, Vancouver, BC, Canada; Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Bruce C Carleton
- BC Children's Hospital Research Institute, Vancouver, BC, Canada; Division of Translational Therapeutics, Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada; Pharmaceutical Outcomes Programme, BC Children's Hospital, Vancouver, BC, Canada.
| | - Martin Ester
- School of Computing Science, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
2
|
Lai C, Xu L, Dai S. The nuclear export protein exportin-1 in solid malignant tumours: From biology to clinical trials. Clin Transl Med 2024; 14:e1684. [PMID: 38783482 PMCID: PMC11116501 DOI: 10.1002/ctm2.1684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Exportin-1 (XPO1), a crucial protein regulating nuclear-cytoplasmic transport, is frequently overexpressed in various cancers, driving tumor progression and drug resistance. This makes XPO1 an attractive therapeutic target. Over the past few decades, the number of available nuclear export-selective inhibitors has been increasing. Only KPT-330 (selinexor) has been successfully used for treating haematological malignancies, and KPT-8602 (eltanexor) has been used for treating haematologic tumours in clinical trials. However, the use of nuclear export-selective inhibitors for the inhibition of XPO1 expression has yet to be thoroughly investigated in clinical studies and therapeutic outcomes for solid tumours. METHODS We collected numerous literatures to explain the efficacy of XPO1 Inhibitors in preclinical and clinical studies of a wide range of solid tumours. RESULTS In this review, we focus on the nuclear export function of XPO1 and results from clinical trials of its inhibitors in solid malignant tumours. We summarized the mechanism of action and therapeutic potential of XPO1 inhibitors, as well as adverse effects and response biomarkers. CONCLUSION XPO1 inhibition has emerged as a promising therapeutic strategy in the fight against cancer, offering a novel approach to targeting tumorigenic processes and overcoming drug resistance. SINE compounds have demonstrated efficacy in a wide range of solid tumours, and ongoing research is focused on optimizing their use, identifying response biomarkers, and developing effective combination therapies. KEY POINTS Exportin-1 (XPO1) plays a critical role in mediating nucleocytoplasmic transport and cell cycle. XPO1 dysfunction promotes tumourigenesis and drug resistance within solid tumours. The therapeutic potential and ongoing researches on XPO1 inhibitors in the treatment of solid tumours. Additional researches are essential to address safety concerns and identify biomarkers for predicting patient response to XPO1 inhibitors.
Collapse
Affiliation(s)
- Chuanxi Lai
- Department of Colorectal SurgerySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouChina
- Key Laboratory of Biotherapy of Zhejiang ProvinceHangzhouChina
| | - Lingna Xu
- Department of Colorectal SurgerySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouChina
- Key Laboratory of Biotherapy of Zhejiang ProvinceHangzhouChina
| | - Sheng Dai
- Department of Colorectal SurgerySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouChina
- Key Laboratory of Biotherapy of Zhejiang ProvinceHangzhouChina
| |
Collapse
|
3
|
Dialog beyond the Grave: Necrosis in the Tumor Microenvironment and Its Contribution to Tumor Growth. Int J Mol Sci 2023; 24:ijms24065278. [PMID: 36982351 PMCID: PMC10049335 DOI: 10.3390/ijms24065278] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/27/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Damage-associated molecular patterns (DAMPs) are endogenous molecules released from the necrotic cells dying after exposure to various stressors. After binding to their receptors, they can stimulate various signaling pathways in target cells. DAMPs are especially abundant in the microenvironment of malignant tumors and are suspected to influence the behavior of malignant and stromal cells in multiple ways often resulting in promotion of cell proliferation, migration, invasion, and metastasis, as well as increased immune evasion. This review will start with a reminder of the main features of cell necrosis, which will be compared to other forms of cell death. Then we will summarize the various methods used to assess tumor necrosis in clinical practice including medical imaging, histopathological examination, and/or biological assays. We will also consider the importance of necrosis as a prognostic factor. Then the focus will be on the DAMPs and their role in the tumor microenvironment (TME). We will address not only their interactions with the malignant cells, frequently leading to cancer progression, but also with the immune cells and their contribution to immunosuppression. Finally, we will emphasize the role of DAMPs released by necrotic cells in the activation of Toll-like receptors (TLRs) and the possible contributions of TLRs to tumor development. This last point is very important for the future of cancer therapeutics since there are attempts to use TLR artificial ligands for cancer therapeutics.
Collapse
|
4
|
Sun Z, Li Y, Tan X, Liu W, He X, Pan D, Li E, Xu L, Long L. Friend or Foe: Regulation, Downstream Effectors of RRAD in Cancer. Biomolecules 2023; 13:biom13030477. [PMID: 36979412 PMCID: PMC10046484 DOI: 10.3390/biom13030477] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Ras-related associated with diabetes (RRAD), a member of the Ras-related GTPase superfamily, is primarily a cytosolic protein that actives in the plasma membrane. RRAD is highly expressed in type 2 diabetes patients and as a biomarker of congestive heart failure. Mounting evidence showed that RRAD is important for the progression and metastasis of tumor cells, which play opposite roles as an oncogene or tumor suppressor gene depending on cancer and cell type. These findings are of great significance, especially given that relevant molecular mechanisms are being discovered. Being regulated in various pathways, RRAD plays wide spectrum cellular activity including tumor cell division, motility, apoptosis, and energy metabolism by modulating tumor-related gene expression and interacting with multiple downstream effectors. Additionally, RRAD in senescence may contribute to its role in cancer. Despite the twofold characters of RRAD, targeted therapies are becoming a potential therapeutic strategy to combat cancers. This review will discuss the dual identity of RRAD in specific cancer type, provides an overview of the regulation and downstream effectors of RRAD to offer valuable insights for readers, explore the intracellular role of RRAD in cancer, and give a reference for future mechanistic studies.
Collapse
Affiliation(s)
- Zhangyue Sun
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China
- Cancer Research Center, Institute of Basic Medical Science, Shantou University Medical College, Shantou 515041, China
| | - Yongkang Li
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China
- Cancer Research Center, Institute of Basic Medical Science, Shantou University Medical College, Shantou 515041, China
| | - Xiaolu Tan
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China
- Cancer Research Center, Institute of Basic Medical Science, Shantou University Medical College, Shantou 515041, China
| | - Wanyi Liu
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China
- Cancer Research Center, Institute of Basic Medical Science, Shantou University Medical College, Shantou 515041, China
| | - Xinglin He
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China
- Cancer Research Center, Institute of Basic Medical Science, Shantou University Medical College, Shantou 515041, China
| | - Deyuan Pan
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China
- Cancer Research Center, Institute of Basic Medical Science, Shantou University Medical College, Shantou 515041, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, China
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, China
| | - Enmin Li
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China
- Cancer Research Center, Institute of Basic Medical Science, Shantou University Medical College, Shantou 515041, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, China
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, China
| | - Liyan Xu
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China
- Cancer Research Center, Institute of Basic Medical Science, Shantou University Medical College, Shantou 515041, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, China
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, China
| | - Lin Long
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China
- Cancer Research Center, Institute of Basic Medical Science, Shantou University Medical College, Shantou 515041, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, China
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, China
- Correspondence: ; Tel.: +86-754-88900460; Fax: +86-754-88900847
| |
Collapse
|
5
|
Norda S, Papadantonaki R. Regulation of cells of the arterial wall by hypoxia and its role in the development of atherosclerosis. VASA 2023; 52:6-21. [PMID: 36484144 DOI: 10.1024/0301-1526/a001044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The cell's response to hypoxia depends on stabilization of the hypoxia-inducible factor 1 complex and transactivation of nuclear factor kappa-B (NF-κB). HIF target gene transcription in cells resident to atherosclerotic lesions adjoins a complex interplay of cytokines and mediators of inflammation affecting cholesterol uptake, migration, and inflammation. Maladaptive activation of the HIF-pathway and transactivation of nuclear factor kappa-B causes monocytes to invade early atherosclerotic lesions, maintaining inflammation and aggravating a low-oxygen environment. Meanwhile HIF-dependent upregulation of the ATP-binding cassette transporter ABCA1 causes attenuation of cholesterol efflux and ultimately macrophages becoming foam cells. Hypoxia facilitates neovascularization by upregulation of vascular endothelial growth factor (VEGF) secreted by endothelial cells and vascular smooth muscle cells lining the arterial wall destabilizing the plaque. HIF-knockout animal models and inhibitor studies were able to show beneficial effects on atherogenesis by counteracting the HIF-pathway in the cell wall. In this review the authors elaborate on the up-to-date literature on regulation of cells of the arterial wall through activation of HIF-1α and its effect on atherosclerotic plaque formation.
Collapse
Affiliation(s)
- Stephen Norda
- Department of Cardiovascular Medicine, University Hospital Münster, Germany
| | - Rosa Papadantonaki
- Emergency Department, West Middlesex University Hospital, Chelsea and Westminster NHS Trust, London, United Kingdom
| |
Collapse
|
6
|
Zhang J, Han H, Wang L, Wang W, Yang M, Qin Y. Overcoming the therapeutic resistance of hepatomas by targeting the tumor microenvironment. Front Oncol 2022; 12:988956. [DOI: 10.3389/fonc.2022.988956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/01/2022] [Indexed: 11/16/2022] Open
Abstract
Hepatocellular carcinoma (HCC) accounts for the majority of primary liver cancers and is the third leading cause of cancer-related mortality worldwide. Multifactorial drug resistance is regarded as the major cause of treatment failure in HCC. Accumulating evidence shows that the constituents of the tumor microenvironment (TME), including cancer-associated fibroblasts, tumor vasculature, immune cells, physical factors, cytokines, and exosomes may explain the therapeutic resistance mechanisms in HCC. In recent years, anti-angiogenic drugs and immune checkpoint inhibitors have shown satisfactory results in HCC patients. However, due to enhanced communication between the tumor and TME, the effect of heterogeneity of the microenvironment on therapeutic resistance is particularly complicated, which suggests a more challenging research direction. In addition, it has been reported that the three-dimensional (3D) organoid model derived from patient biopsies is more intuitive to fully understand the role of the TME in acquired resistance. Therefore, in this review, we have focused not only on the mechanisms and targets of therapeutic resistance related to the contents of the TME in HCC but also provide a comprehensive description of 3D models and how they contribute to the exploration of HCC therapies.
Collapse
|
7
|
Hu Y, Lu H, Li H, Ge J. Molecular basis and clinical implications of HIFs in cardiovascular diseases. Trends Mol Med 2022; 28:916-938. [PMID: 36208988 DOI: 10.1016/j.molmed.2022.09.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/18/2022]
Abstract
Oxygen maintains the homeostasis of an organism in a delicate balance in different tissues and organs. Under hypoxic conditions, hypoxia-inducible factors (HIFs) are specific and dominant factors in the spatiotemporal regulation of oxygen homeostasis. As the most basic functional unit of the heart at the cellular level, the cardiomyocyte relies on oxygen and nutrients delivered by the microvasculature to keep the heart functioning properly. Under hypoxic stress, HIFs are involved in acute and chronic myocardial pathology because of their spatiotemporal specificity, thus granting them therapeutic potential. Most adult animals lack the ability to regenerate their myocardium entirely following injury, and complete regeneration has long been a goal of clinical treatment for heart failure. The precise manipulation of HIFs (considering their dynamic balance and transformation) and the development of HIF-targeted drugs is therefore an extremely attractive cardioprotective therapy for protecting against myocardial ischemic and hypoxic injury, avoiding myocardial remodeling and heart failure, and promoting recovery of cardiac function.
Collapse
Affiliation(s)
- Yiqing Hu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China
| | - Hao Lu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China; National Clinical Research Center for Interventional Medicine, Shanghai, China; Shanghai Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Hua Li
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China.
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China; National Clinical Research Center for Interventional Medicine, Shanghai, China; Shanghai Clinical Research Center for Interventional Medicine, Shanghai, China; Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China; Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China; Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
8
|
Xu W, Cheng Y, Guo Y, Yao W, Qian H. Targeting tumor associated macrophages in hepatocellular carcinoma. Biochem Pharmacol 2022; 199:114990. [DOI: 10.1016/j.bcp.2022.114990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 03/02/2022] [Accepted: 03/07/2022] [Indexed: 12/12/2022]
|
9
|
Abstract
Inflammasomes are multiprotein complexes that assemble in host cells upon recognition of infection or danger via pattern recognition receptors and/or danger recognition receptors. The assembly of inflammasomes results in the activation of caspase-1 and is followed by the enzymatic maturation and secretion of inflammatory cytokines like interleukin 1β (IL-1β) and IL-18.In the oral cavity, gingival epithelial cells (GECs) line the mucosa and have a barrier role for invading pathogens. In these cells, the NLRP3 inflammasome is the best studied and has been shown to play a role in the inflammatory immune response against a variety of oral pathogens. As such, in order to study gingivitis and other oral pathologic inflammatory conditions, studying the activation of inflammasomes is important. The simplest way to detect inflammasome activation is to detect the activated caspase-1, as well as the secretion of mature IL-1β and IL-18, via ELISA, Western blot, and immunofluorescence techniques.Here we describe the detection of NLRP3 inflammasome activation by the oral pathogen Porphyromonas gingivalis in human GECs via these three methods and mention other methods and techniques that we have successfully used together with these in our quest to understand the host-pathogen interaction.
Collapse
Affiliation(s)
- Kalina R Atanasova
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Özlem Yilmaz
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, SC, USA.
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
10
|
Zhou D, Luan J, Huang C, Li J. Tumor-Associated Macrophages in Hepatocellular Carcinoma: Friend or Foe? Gut Liver 2021; 15:500-516. [PMID: 33087588 PMCID: PMC8283292 DOI: 10.5009/gnl20223] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/21/2020] [Accepted: 08/22/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide, and it has diverse etiologies with multiple mechanisms. The diagnosis of HCC typically occurs at advanced stages when there are limited therapeutic options. Hepatocarcinogenesis is considered a multistep process, and hepatic macrophages play a critical role in the inflammatory process leading to HCC. Emerging evidence has shown that tumor-associated macrophages (TAMs) are crucial components defining the HCC immune microenvironment and represent an appealing option for disrupting the formation and development of HCC. In this review, we summarize the current knowledge of the polarization and function of TAMs in the pathogenesis of HCC, as well as the mechanisms underlying TAM-related anti-HCC therapies. Eventually, novel insights into these important aspects of TAMs and their roles in the HCC microenvironment might lead to promising TAM-focused therapeutic strategies for HCC.
Collapse
Affiliation(s)
- Dexi Zhou
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, China.,Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wuhu, China.,School of Pharmacy, Wannan Medical College, Wuhu, China
| | - Jiajie Luan
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, China.,Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wuhu, China.,School of Pharmacy, Wannan Medical College, Wuhu, China
| | - Cheng Huang
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Jun Li
- School of Pharmacy, Anhui Medical University, Hefei, China
| |
Collapse
|
11
|
Mirzaei S, Hushmandi K, Zabolian A, Saleki H, Torabi SMR, Ranjbar A, SeyedSaleh S, Sharifzadeh SO, Khan H, Ashrafizadeh M, Zarrabi A, Ahn KS. Elucidating Role of Reactive Oxygen Species (ROS) in Cisplatin Chemotherapy: A Focus on Molecular Pathways and Possible Therapeutic Strategies. Molecules 2021; 26:2382. [PMID: 33921908 PMCID: PMC8073650 DOI: 10.3390/molecules26082382] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 02/06/2023] Open
Abstract
The failure of chemotherapy is a major challenge nowadays, and in order to ensure effective treatment of cancer patients, it is of great importance to reveal the molecular pathways and mechanisms involved in chemoresistance. Cisplatin (CP) is a platinum-containing drug with anti-tumor activity against different cancers in both pre-clinical and clinical studies. However, drug resistance has restricted its potential in the treatment of cancer patients. CP can promote levels of free radicals, particularly reactive oxygen species (ROS) to induce cell death. Due to the double-edged sword role of ROS in cancer as a pro-survival or pro-death mechanism, ROS can result in CP resistance. In the present review, association of ROS with CP sensitivity/resistance is discussed, and in particular, how molecular pathways, both upstream and downstream targets, can affect the response of cancer cells to CP chemotherapy. Furthermore, anti-tumor compounds, such as curcumin, emodin, chloroquine that regulate ROS and related molecular pathways in increasing CP sensitivity are described. Nanoparticles can provide co-delivery of CP with anti-tumor agents and by mediating photodynamic therapy, and induce ROS overgeneration to trigger CP sensitivity. Genetic tools, such as small interfering RNA (siRNA) can down-regulate molecular pathways such as HIF-1α and Nrf2 to promote ROS levels, leading to CP sensitivity. Considering the relationship between ROS and CP chemotherapy, and translating these findings to clinic can pave the way for effective treatment of cancer patients.
Collapse
Affiliation(s)
- Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran 1477893855, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran 1417466191, Iran
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1477893855, Iran
| | - Hossein Saleki
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1477893855, Iran
| | - Seyed Mohammad Reza Torabi
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1477893855, Iran
| | - Adnan Ranjbar
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1477893855, Iran
| | - SeyedHesam SeyedSaleh
- Student Research Committee, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Seyed Omid Sharifzadeh
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1477893855, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, Istanbul 34956, Turkey
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey
| | - Kwang-Seok Ahn
- Department of Science in Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea
| |
Collapse
|
12
|
Sun YD, Zhang H, Chen YQ, Wu CX, Zhang JB, Xu HR, Liu JZ, Han JJ. HMGB1, the Next Predictor of Transcatheter Arterial Chemoembolization for Liver Metastasis of Colorectal Cancer? Front Oncol 2020; 10:572418. [PMID: 33473353 PMCID: PMC7812918 DOI: 10.3389/fonc.2020.572418] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 10/19/2020] [Indexed: 12/12/2022] Open
Abstract
HMGB1 is an important mediator of inflammation during ischemia-reperfusion injury on organs. The serum expression of HMGB1 was increased significantly on the 1st day after TACE and decreased significantly which was lower on the 30th day after TACE. Tumor markers of post-DEB-TACE decreased significantly. The correlational analysis showed that patients with low HMGB1 expression had lower risks of fever and liver injury compared those with the higher expression, while the ORR is relatively worse. Patients with lower expression of HMGB1 had longer PFS, better efficacy, and higher quality of life. With the high post-expression, the low expression had lower incidence of fever and liver injury too. There was no statistical difference in the one-year survival among the different groups. The quality of life of all patients was improved significantly. The over-expression of HMGB1 in LMCRC is an adverse prognostic feature and a positive predictor of response to TACE.
Collapse
Affiliation(s)
- Yuan-dong Sun
- Interventional Medicine Department, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Ji’nan, China
| | - Hao Zhang
- Interventional Medicine Department, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Ji’nan, China
| | - Ye-qiang Chen
- Maternal and Child Health Care Hospital of Shandong Province, Ji’nan, China
| | - Chun-xue Wu
- Interventional Medicine Department, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Ji’nan, China
- School of Medicine and Life Sciences, University of Ji’nan-Shandong Academy of Medical Sciences, Ji’nan, China
| | - Jian-bo Zhang
- Interventional Medicine Department, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Ji’nan, China
| | - Hui-rong Xu
- Interventional Medicine Department, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Ji’nan, China
| | - Jing-zhou Liu
- Interventional Medicine Department, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Ji’nan, China
| | - Jian-jun Han
- Interventional Medicine Department, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Ji’nan, China
| |
Collapse
|
13
|
Ashrafizadeh M, Hushmandi K, Rahmani Moghadam E, Zarrin V, Hosseinzadeh Kashani S, Bokaie S, Najafi M, Tavakol S, Mohammadinejad R, Nabavi N, Hsieh CL, Zarepour A, Zare EN, Zarrabi A, Makvandi P. Progress in Delivery of siRNA-Based Therapeutics Employing Nano-Vehicles for Treatment of Prostate Cancer. Bioengineering (Basel) 2020; 7:E91. [PMID: 32784981 PMCID: PMC7552721 DOI: 10.3390/bioengineering7030091] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/31/2020] [Accepted: 08/06/2020] [Indexed: 02/06/2023] Open
Abstract
Prostate cancer (PCa) accounts for a high number of deaths in males with no available curative treatments. Patients with PCa are commonly diagnosed in advanced stages due to the lack of symptoms in the early stages. Recently, the research focus was directed toward gene editing in cancer therapy. Small interfering RNA (siRNA) intervention is considered as a powerful tool for gene silencing (knockdown), enabling the suppression of oncogene factors in cancer. This strategy is applied to the treatment of various cancers including PCa. The siRNA can inhibit proliferation and invasion of PCa cells and is able to promote the anti-tumor activity of chemotherapeutic agents. However, the off-target effects of siRNA therapy remarkably reduce its efficacy in PCa therapy. To date, various carriers were designed to improve the delivery of siRNA and, among them, nanoparticles are of importance. Nanoparticles enable the targeted delivery of siRNAs and enhance their potential in the downregulation of target genes of interest. Additionally, nanoparticles can provide a platform for the co-delivery of siRNAs and anti-tumor drugs, resulting in decreased growth and migration of PCa cells. The efficacy, specificity, and delivery of siRNAs are comprehensively discussed in this review to direct further studies toward using siRNAs and their nanoscale-delivery systems in PCa therapy and perhaps other cancer types.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz 5166616471, Iran;
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran 1419963114, Iran; (K.H.); (S.B.)
| | - Ebrahim Rahmani Moghadam
- Department of Anatomical Sciences, School of Medicine, Student Research Committee, Shiraz University of Medical Sciences, Shiraz 7134814336, Iran;
| | - Vahideh Zarrin
- Laboratory for Stem Cell Research, Shiraz University of Medical Sciences, Shiraz 7134814336, Iran;
| | | | - Saied Bokaie
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran 1419963114, Iran; (K.H.); (S.B.)
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran;
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614525, Iran;
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kermaan 55425147, Iran;
| | - Noushin Nabavi
- Research Services, University of Victoria, Victoria, BC V8W 2Y2, Canada;
| | - Chia-Ling Hsieh
- Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei City 110, Taiwan;
| | - Atefeh Zarepour
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan 8174673441, Iran;
| | | | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey
- Center of Excellence for Functional Surfaces and Interfaces (EFSUN), Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul 34956, Turkey
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Micro-BioRobotics, viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
- Chemistry Department, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz 61537-53843, Iran
| |
Collapse
|