1
|
Pototschnig I, Feiler U, Diwoky C, Vesely PW, Rauchenwald T, Paar M, Bakiri L, Pajed L, Hofer P, Kashofer K, Sukhbaatar N, Schoiswohl G, Weichhart T, Hoefler G, Bock C, Pichler M, Wagner EF, Zechner R, Schweiger M. Interleukin-6 initiates muscle- and adipose tissue wasting in a novel C57BL/6 model of cancer-associated cachexia. J Cachexia Sarcopenia Muscle 2023; 14:93-107. [PMID: 36351437 PMCID: PMC9891934 DOI: 10.1002/jcsm.13109] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 08/23/2022] [Accepted: 09/26/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Cancer-associated cachexia (CAC) is a wasting syndrome drastically reducing efficacy of chemotherapy and life expectancy of patients. CAC affects up to 80% of cancer patients, yet the mechanisms underlying the disease are not well understood and no approved disease-specific medication exists. As a multiorgan disorder, CAC can only be studied on an organismal level. To cover the diverse aetiologies of CAC, researchers rely on the availability of a multifaceted pool of cancer models with varying degrees of cachexia symptoms. So far, no tumour model syngeneic to C57BL/6 mice exists that allows direct comparison between cachexigenic- and non-cachexigenic tumours. METHODS MCA207 and CHX207 fibrosarcoma cells were intramuscularly implanted into male or female, 10-11-week-old C57BL/6J mice. Tumour tissues were subjected to magnetic resonance imaging, immunohistochemical-, and transcriptomic analysis. Mice were analysed for tumour growth, body weight and -composition, food- and water intake, locomotor activity, O2 consumption, CO2 production, circulating blood cells, metabolites, and tumourkines. Mice were sacrificed with same tumour weights in all groups. Adipose tissues were examined using high-resolution respirometry, lipolysis measurements in vitro and ex vivo, and radioactive tracer studies in vivo. Gene expression was determined in adipose- and muscle tissues by quantitative PCR and Western blotting analyses. Muscles and cultured myotubes were analysed histologically and by immunofluorescence microscopy for myofibre cross sectional area and myofibre diameter, respectively. Interleukin-6 (Il-6) was deleted from cancer cells using CRISPR/Cas9 mediated gene editing. RESULTS CHX207, but not MCA207-tumour-bearing mice exhibited major clinical features of CAC, including systemic inflammation, increased plasma IL-6 concentrations (190 pg/mL, P ≤ 0.0001), increased energy expenditure (+28%, P ≤ 0.01), adipose tissue loss (-47%, P ≤ 0.0001), skeletal muscle wasting (-18%, P ≤ 0.001), and body weight reduction (-13%, P ≤ 0.01) 13 days after cancer cell inoculation. Adipose tissue loss resulted from reduced lipid uptake and -synthesis combined with increased lipolysis but was not associated with elevated beta-adrenergic signalling or adipose tissue browning. Muscle atrophy was evident by reduced myofibre cross sectional area (-21.8%, P ≤ 0.001), increased catabolic- and reduced anabolic signalling. Deletion of IL-6 from CHX207 cancer cells completely protected CHX207IL6KO -tumour-bearing mice from CAC. CONCLUSIONS In this study, we present CHX207 fibrosarcoma cells as a novel tool to investigate the mediators and metabolic consequences of CAC in C57BL/6 mice in comparison to non-cachectic MCA207-tumour-bearing mice. IL-6 represents an essential trigger for CAC development in CHX207-tumour-bearing mice.
Collapse
Affiliation(s)
| | - Ursula Feiler
- Institute of Molecular BiosciencesUniversity of GrazGrazAustria
| | - Clemens Diwoky
- Institute of Molecular BiosciencesUniversity of GrazGrazAustria
| | - Paul W. Vesely
- Diagnostic and Research Institute of PathologyMedical University of GrazGrazAustria
| | | | - Margret Paar
- Division of Physiological Chemistry, Otto‐Loewi Research CenterMedical University of GrazGrazAustria
| | - Latifa Bakiri
- Department of Laboratory MedicineMedical University of ViennaViennaAustria
| | - Laura Pajed
- Institute of Molecular BiosciencesUniversity of GrazGrazAustria
| | - Peter Hofer
- Institute of Molecular BiosciencesUniversity of GrazGrazAustria
| | - Karl Kashofer
- Diagnostic and Research Institute of PathologyMedical University of GrazGrazAustria
| | | | | | - Thomas Weichhart
- Institute of Medical GeneticsMedical University of ViennaViennaAustria
| | - Gerald Hoefler
- Diagnostic and Research Institute of PathologyMedical University of GrazGrazAustria
- BioTechMed‐GrazGrazAustria
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
- Institute of Artificial Intelligence, Center for Medical Statistics, Informatics, and Intelligent SystemsMedical University of ViennaViennaAustria
| | | | - Erwin F. Wagner
- Department of Laboratory MedicineMedical University of ViennaViennaAustria
- Department of DermatologyMedical University of ViennaViennaAustria
| | - Rudolf Zechner
- Institute of Molecular BiosciencesUniversity of GrazGrazAustria
- BioTechMed‐GrazGrazAustria
- Field of Excellence BioHealth ‐ University of GrazGrazAustria
| | - Martina Schweiger
- Institute of Molecular BiosciencesUniversity of GrazGrazAustria
- BioTechMed‐GrazGrazAustria
- Field of Excellence BioHealth ‐ University of GrazGrazAustria
| |
Collapse
|
2
|
Jin Z, Peng F, Zhang C, Tao S, Xu D, Zhu Z. Expression, regulating mechanism and therapeutic target of KIF20A in multiple cancer. Heliyon 2023; 9:e13195. [PMID: 36798768 PMCID: PMC9925975 DOI: 10.1016/j.heliyon.2023.e13195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 01/15/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Kinesin family member 20A (KIF20A) is a member of the kinesin family. It transports chromosomes during mitosis, plays a key role in cell division. Recently, studies proved that KIF20A was highly expressed in cancer. High expression of KIF20A was correlated with poor overall survival (OS). In this review, we summarized all the cancer that highly expressed KIF20A, described the role of KIF20A in cancer. We also organized phase I and phase II clinical trials of KIF20A peptides vaccine. All results indicated that KIF20A was a promising therapeutic target for multiple cancer.
Collapse
Key Words
- ATP, adenosine triphosphate
- BTC, biliary tract cancer
- CPC, chromosomal passenger complex
- CTL, cytotoxic T lymphocyte
- Cancer
- Cdk1, cyclin-dependent kinase 1
- DLG5, discs large MAGUK scaffold protein 5
- EMT, epithelial-mesenchymal transition
- Expression
- FoxM1, forkhead box protein M1
- GC, gastric cancer
- GEM, gemcitabine
- Gli2, glioma-associated oncogene 2
- HLA, human leukocyte antigen
- HNMT, head-and-neck malignant tumor
- IRF, interferon regulatory factor
- JAK, Janus kinase
- KIF20A
- KIF20A, kinesin family member 20A
- LP, long peptide
- MHC I, major histocompatibility complex I
- MKlp2, mitotic kinesin-like protein 2
- Mad2, mitotic arrest deficient 2
- OS, overall survival
- PBMC, peripheral blood mononuclear cell
- Plk1, polo-like kinase 1
- Regulating mechanisms
- Therapeutic target
- circRNA, circular RNA
- miRNA, microRNA
Collapse
Affiliation(s)
- Zheng Jin
- Department of Respirology & Allergy, The Third Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong Province, China
| | - Fei Peng
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Baylor College of Medicine, Houston, Texas, USA
| | - Chao Zhang
- Guangzhou Women and Children's Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Shuang Tao
- Department of Otorhinolaryngology Head and Neck Surgery, Longgang Central Hospital of Shenzhen, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Damo Xu
- Department of Respirology & Allergy, The Third Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong Province, China,State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen Key Laboratory of Allergy and Immunology, Shenzhen University School of Medicine, Shenzhen, Guangdong Province, China,Corresponding author. Department of Respirology & Allergy, The Third Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong Province, China.
| | - Zhenhua Zhu
- Department of Orthopaedic Trauma, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong Province, China,Corresponding author. Department of Orthopaedic Trauma, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
3
|
Jeon H, Lim Y, Lee IG, Kim DI, Kim KP, Hong SH, Kim J, Jung YS, Seo YJ. Inhibition of KIF20A suppresses the replication of influenza A virus by inhibiting viral entry. J Microbiol 2022; 60:1113-1121. [PMID: 36318360 DOI: 10.1007/s12275-022-2436-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
The influenza A virus (IAV) has caused several pandemics, and therefore there are many ongoing efforts to identify novel antiviral therapeutic strategies including vaccines and antiviral drugs. However, influenza viruses continuously undergo antigenic drift and shift, resulting in the emergence of mutated viruses. In turn, this decreases the efficiency of existing vaccines and antiviral drugs to control IAV infection. Therefore, this study sought to identify alternative therapeutic strategies targeting host cell factors rather than viruses to avoid infection by mutated viruses. Particularly, we investigated the role of KIF20A that is one of kinesin superfamily proteins in the replication of IAV. The KIF20A increased viral protein levels in IAV-infected cells by regulating the initial entry stage during viral infection. Furthermore, the KIF20A inhibitor significantly suppressed viral replication, which protected mice from morbidity and mortality. Therefore, our findings demonstrated that KIF20A is highly involved in the viral replication process and viral propagation both in vitro and in vivo, and could thus be used as a target for the development of novel antiviral drugs.
Collapse
Affiliation(s)
- Hoyeon Jeon
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Younghyun Lim
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - In-Gu Lee
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Dong-In Kim
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Keun Pil Kim
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - So-Hee Hong
- Department of Microbiology, College of Medicine, Ewha Womans University, Seoul, 07804, Republic of Korea
| | - Jeongkyu Kim
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea.
| | - Youn-Sang Jung
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea.
| | - Young-Jin Seo
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
4
|
Liang B, Zhou Y, Jiao J, Xu L, Yan Y, Wu Q, Tong X, Yan H. Integrated Analysis of Transcriptome Data Revealed AURKA and KIF20A as Critical Genes in Medulloblastoma Progression. Front Oncol 2022; 12:875521. [PMID: 35574421 PMCID: PMC9092218 DOI: 10.3389/fonc.2022.875521] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/29/2022] [Indexed: 12/03/2022] Open
Abstract
Medulloblastoma is the neuroepithelial tumor with the highest degree of malignancy in the central nervous system, accounting for about 8% to 10% of children’s brain tumors. It has a high degree of malignancy and is easily transmitted through cerebrospinal fluid, with a relatively poor prognosis. Although medulloblastoma has been widely studied and treated, its molecular mechanism remains unclear. To determine which gene plays a crucial role in medulloblastoma development and progression, we analyzed three microarray datasets from Gene Expression Omnibus. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes were used to detect and evaluate differentially expressed genes. Protein interaction network was established, and the hub genes were determined in cytoHubba through various assessment methods, while the target genes were screened out using survival analysis. Ultimately, human medulloblastoma samples were utilized to confirm target gene expression. In conclusion, This study found that aurora kinase A (AURKA) and kinesin family member 20A (KIF20A) may be involved in the initiation and development of medulloblastoma, have a close association with prognosis, and may become a potential therapeutic target and prognostic marker of MED.
Collapse
Affiliation(s)
- Bo Liang
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China.,Department of Neurosurgery, The Fifith Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yan Zhou
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Jiji Jiao
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Lixia Xu
- Tianjin Neurosurgical Institute, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin Huanhu Hospital, Tianjin, China
| | - Yan Yan
- Clinical Laboratory, Tianjin Huanhu Hospital, Tianjin, China
| | - Qiaoli Wu
- Tianjin Neurosurgical Institute, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin Huanhu Hospital, Tianjin, China
| | - Xiaoguang Tong
- Tianjin Neurosurgical Institute, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin Huanhu Hospital, Tianjin, China.,Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, China
| | - Hua Yan
- Tianjin Neurosurgical Institute, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin Huanhu Hospital, Tianjin, China.,Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, China
| |
Collapse
|
5
|
Yang Y, Li Y, Qi R, Zhang L. Development and Validation of a Combined Glycolysis and Immune Prognostic Model for Melanoma. Front Immunol 2021; 12:711145. [PMID: 34659201 PMCID: PMC8517401 DOI: 10.3389/fimmu.2021.711145] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/15/2021] [Indexed: 11/26/2022] Open
Abstract
Background Glycolytic effects and immune microenvironments play important roles in the development of melanoma. However, reliable biomarkers for prognostic prediction of melanoma as based on glycolysis and immune status remain to be identified. Methods Glycolysis-related genes (GRGs) were obtained from the Molecular Signatures database and immune-related genes (IRGs) were downloaded from the ImmPort dataset. Prognostic GRGs and IRGs in the TCGA (The Cancer Genome Atlas) and GSE65904 datasets were identified. Least absolute shrinkage and selection operator (LASSO) Cox regression and multivariate Cox regression were used for model construction. Glycolysis expression profiles and the infiltration of immune cells were analyzed and compared. Finally, in vitro experiments were performed to assess the expression and function of these CIGI genes. Results Four prognostic glycolysis- and immune-related signatures (SEMA4D, IFITM1, KIF20A and GPR87) were identified for use in constructing a comprehensive glycolysis and immune (CIGI) model. CIGI proved to be a stable, predictive method as determined from different datasets and subgroups of patients and served as an independent prognostic factor for melanoma patients. In addition, patients in the high-CIGI group showed increased levels of glycolytic gene expressions and exhibited immune-suppressive features. Finally, SEMA4D and IFITM1 may function as tumor suppressor genes, while KIF20A and GPR87 may function as oncogenes in melanoma as revealed from results of in vitro experiments. Conclusion In this report we present our findings on the development and validation of a novel prognostic classifier for use in patients with melanoma as based on glycolysis and immune expression profiles.
Collapse
Affiliation(s)
- Yang Yang
- Department of Dermatology, The First Hospital of China Medical University and National Joint Engineering Research Center for Theranostics of Immunological Skin Diseases, The First Hospital of China Medical University and Key Laboratory of Immunodermatology, Ministry of Health and Ministry of Education, Shenyang, China
| | - Yaling Li
- Department of Dermatology, The First Hospital of China Medical University and National Joint Engineering Research Center for Theranostics of Immunological Skin Diseases, The First Hospital of China Medical University and Key Laboratory of Immunodermatology, Ministry of Health and Ministry of Education, Shenyang, China
| | - Ruiqun Qi
- Department of Dermatology, The First Hospital of China Medical University and National Joint Engineering Research Center for Theranostics of Immunological Skin Diseases, The First Hospital of China Medical University and Key Laboratory of Immunodermatology, Ministry of Health and Ministry of Education, Shenyang, China
| | - Lan Zhang
- Department of Dermatology, The First Hospital of China Medical University and National Joint Engineering Research Center for Theranostics of Immunological Skin Diseases, The First Hospital of China Medical University and Key Laboratory of Immunodermatology, Ministry of Health and Ministry of Education, Shenyang, China
| |
Collapse
|
6
|
Yang Q, Qi M, Chen Y, Tian S, Liao F, Dong W. ASPM is a Novel Candidate Gene Associated with Colorectal Cancer Cell Growth. DNA Cell Biol 2021; 40:921-935. [PMID: 34042518 DOI: 10.1089/dna.2020.6457] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most prevalent diseases worldwide; however, the molecular mechanisms involved in CRC remain unclear. Thus, we aimed to explore a novel biomarker for CRC. In this study, we screened 361 differentially expressed genes; 152 downregulated genes; and 209 upregulated genes) through analysis of the GSE44861, GSE110223, GSE110224, and GSE113513 CRC datasets. Next, ASPM, CCNA2, CCNB1, CEP55, KIF20A, MAD2L1, MELK, RRM2, TOP2A, TPX2, TRIP13, and TTK were identified as hub genes associated with the cell cycle in CRC through comprehensive bioinformatics analysis using the Cytoscape and Metascape software, the Database for Annotation, Visualization, and Integrated Discovery (DAVID), and the Oncomine and Gene Expression Profiling Interactive Analysis 2 (GEPIA2) databases. Furthermore, ASPM mRNA expression in CRC tissues was verified in Oncomine, The Cancer Genome Atlas and our data, and ASPM was found to be significantly upregulated in CRC tissues compared with that in the noncancer colon tissues. Functionally, we showed that overexpression of ASPM significantly promoted the proliferation and inhibited apoptosis; silencing of ASPM suppressed the proliferation of CRC cells by affecting the cell cycle G1/S transition by reducing cyclin E1 expression, and inducing apoptosis. Overall, our findings indicated that ASPM plays a crucial role in the regulation of CRC cell proliferation, and ASPM is a potential candidate diagnostic tool and therapeutic target for CRC.
Collapse
Affiliation(s)
- Qian Yang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, P.R. China.,Key Laboratory of Hubei Province for Digestive System Disease, Wuhan, P.R. China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, P.R. China
| | - Mingming Qi
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, P.R. China.,Key Laboratory of Hubei Province for Digestive System Disease, Wuhan, P.R. China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, P.R. China
| | - Yongyu Chen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, P.R. China.,Key Laboratory of Hubei Province for Digestive System Disease, Wuhan, P.R. China
| | - Shan Tian
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, P.R. China
| | - Fei Liao
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, P.R. China
| | - Weiguo Dong
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, P.R. China.,Key Laboratory of Hubei Province for Digestive System Disease, Wuhan, P.R. China
| |
Collapse
|
7
|
Ma X, Wang X, Dong Q, Pang H, Xu J, Shen J, Zhu J. Inhibition of KIF20A by transcription factor IRF6 affects the progression of renal clear cell carcinoma. Cancer Cell Int 2021; 21:246. [PMID: 33941190 PMCID: PMC8091794 DOI: 10.1186/s12935-021-01879-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/16/2021] [Indexed: 11/13/2022] Open
Abstract
Background Renal clear cell carcinoma (ccRCC) is one of the most common malignant tumors, whose incidence is increasing year by year. IRF6 plays an important role in the occurrence of tumors, although there is yet no report on its expression in ccRCC. Methods The expression of IRF6 and KIF20A in ccRCC was predicted by GEPIA and HAP databases. In addition, GEPIA database predicted the relationship between IRF6 and KIF20A expressions and the pathological staging, overall survival, and disease-free survival of ccRCC. The possible binding sites of IRF6 and KIF20A promoters were predicted by JASPAR database and verified by luciferase and ChIP assays. The specific effects of IRF6 on ccRCC cell proliferation, invasion and apoptosis were subsequently examined at both cellular level and animal level. Results The database predicted down-regulated IRF6 expression in renal carcinoma tissues and its correlation with poor prognosis. IRF6 overexpression inhibited cRCC cell proliferation, invasion and migration. In addition, up-regulated KIF20A expression in renal carcinoma tissues and its association with prognosis were also predicted. Interference with KIF20A inhibited the proliferation, invasion, and migration of ccRCC cells. Finally, we confirmed that KIF20A is a functional target of IRF6 and can partially reverse the effects of IRF6 on the proliferation, invasion and migration of ccRCC cells. Conclusion: Inhibition of KIF20A by transcription factor IRF6 affects cell proliferation, invasion and migration in renal clear cell carcinoma. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-01879-y.
Collapse
Affiliation(s)
- Xinwei Ma
- Department of Radiology, The Second Affiliated Hospital of Soochow University, No.1055 Sanxiang Road, Suzhou, 215004, Jiangsu, China.,Department of Radiology, Suzhou Science and Technology Town Hospital, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, No.1 Lijiang Road, high Tech Zone, Suzhou, 215153, Jiangsu, China
| | - Xiaoqi Wang
- Department of Medical Oncology, The First Affiliated Hospital of Anhui University of Science and Technology, Huainan, 232001, Anhui, China
| | - Qian Dong
- Department of Radiology, Suzhou Science and Technology Town Hospital, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, No.1 Lijiang Road, high Tech Zone, Suzhou, 215153, Jiangsu, China
| | - Hongquan Pang
- Department of Radiology, Suzhou Science and Technology Town Hospital, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, No.1 Lijiang Road, high Tech Zone, Suzhou, 215153, Jiangsu, China
| | - Jianming Xu
- Department of Radiology, Suzhou Science and Technology Town Hospital, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, No.1 Lijiang Road, high Tech Zone, Suzhou, 215153, Jiangsu, China
| | - Junkang Shen
- Department of Radiology, The Second Affiliated Hospital of Soochow University, No.1055 Sanxiang Road, Suzhou, 215004, Jiangsu, China.
| | - Jianbing Zhu
- Department of Radiology, Suzhou Science and Technology Town Hospital, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, No.1 Lijiang Road, high Tech Zone, Suzhou, 215153, Jiangsu, China.
| |
Collapse
|