1
|
You L, Wu Q. Cellular senescence in tumor immune escape: Mechanisms, implications, and therapeutic potential. Crit Rev Oncol Hematol 2025; 208:104628. [PMID: 39864532 DOI: 10.1016/j.critrevonc.2025.104628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/12/2025] [Accepted: 01/21/2025] [Indexed: 01/28/2025] Open
Abstract
Cellular senescence, a hallmark of aging, has emerged as a captivating area of research in tumor immunology with profound implications for cancer prevention and treatment. In the tumor microenvironment, senescent cells exhibit a dual role, simultaneously hindering tumor development through collaboration with immune cells and evading immune cell attacks by upregulating immunoinhibitory proteins. However, the intricate immune escape mechanism of cellular senescence in the tumor microenvironment remains a subject of intense investigation. Chronic inflammation is exacerbated by cellular senescence through the upregulation of pro-inflammatory factors such as interleukin-1β, thereby augmenting the risk of tumorigenesis. Additionally, the interplay between autophagy and cellular senescence adds another layer of complexity. Autophagy, known to slow down the aging process by reducing p53/p21 levels, may be downregulated by cellular senescence. To harness the therapeutic potential of cellular senescence, targeting its immunological aspects has gained significant attention. Strategies such as immune checkpoint inhibitors and T-cell senescence inhibition are being explored in the context of cellular senescence immunotherapy. In this comprehensive review, we provide a compelling overview of the regulation of cellular senescence and delve into the influencing factors, including chronic inflammation, autophagy, and circadian rhythms, associated with senescence in the tumor microenvironment. We specifically focus on unraveling the enigmatic dual role of cellular senescence in tumor immune escape. By deciphering the intricate nature of cellular senescence in the tumor microenvironment, this review aims to advance our understanding and pave the way for leveraging senescence as a promising target for tumor immunotherapy applications.
Collapse
Affiliation(s)
- Li You
- College of Physical Education and Health, Chongqing College of International Business and Economics, Chongqing 401520, China; College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou 434025, China.
| |
Collapse
|
2
|
Verma RK, Srivastava PK, Singh A. Comprehensive analysis of inhibin-β A as a potential biomarker for gastrointestinal tract cancers through bioinformatics approaches. Sci Rep 2025; 15:1090. [PMID: 39774945 PMCID: PMC11707248 DOI: 10.1038/s41598-024-72679-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/10/2024] [Indexed: 01/11/2025] Open
Abstract
Inhibin, β, which is also known as INHBA, encodes a protein that belongs to the Transforming Growth factor-β (TGF-β) superfamily, which plays a pivotal role in cancer. Gastrointestinal tract (GI tract) cancer refers to the cancers that develop in the colon, liver, esophagus, stomach, rectum, pancreas, and bile ducts of the digestive system. The role of INHBA in all GI tract cancers remains understudied. By utilizing GEPIA2, which uses transcriptomic data from TCGA, we examined the expression of INHBA across different GI tract cancers. The results revealed consistent upregulation of INHBA in all TCGA GI tract cancers, except for liver hepatocellular carcinoma, where it showed downregulation compared to normal tissues, along with GTEx normal samples. Significant differences in INHBA expression were noted in adenocarcinomas of the colon, pancreas, rectum, and stomach, while no such differences were observed in cholangiocarcinoma and liver cancer. Moreover, a comprehensive bioinformatics analysis has been done to demonstrate that the differences in expression levels are significantly related to pathological tumor stages and prognosis in different GI tract cancers. Mucinous adenocarcinoma, esophageal squamous cell carcinoma, and stomach adenocarcinoma show a higher frequency of INHBA alteration and are primarily linked to mutations and amplifications. DNA methylation, immune infiltration, functional enrichment analysis, the genes associated with INHBA, and survival analysis in all TCGA GI tract cancers have been extensively analyzed. In colon and stomach cancers, increased INHBA expression significantly correlates with poorer overall survival (OS). However, in colon and pancreatic adenocarcinoma, higher expression is significantly associated with worse disease-free survival (DFS). Additionally, INHBA expression exhibited a positive correlation with cancer-associated fibroblasts across all gastrointestinal (GI) tract cancers. The KEGG pathway analysis revealed that INHBA and its interacting proteins are involved in several pathways, including TGF-beta signaling, Signalling pathways regulating pluripotency of stem cells, colorectal cancer, pancreatic cancer, AGE-RAGE signaling, and so on as major pathways. These findings demonstrate that INHBA could serve as a potential biomarker therapeutic target for GI tract cancer.
Collapse
Affiliation(s)
- Rohit Kumar Verma
- Department of Life Sciences, School of Natural Sciences (SONS), Shiv Nadar Institution of Eminence, Delhi NCR, India
| | | | - Ashutosh Singh
- Department of Life Sciences, School of Natural Sciences (SONS), Shiv Nadar Institution of Eminence, Delhi NCR, India.
| |
Collapse
|
3
|
Yoon ML, Chun H, Lee H, Seo W, Lee JY, Yoon JH. Identification and Validation of Serum Biomarkers to Improve Colorectal Cancer Diagnosis. Cancer Med 2024; 13:e70460. [PMID: 39628390 PMCID: PMC11615507 DOI: 10.1002/cam4.70460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/16/2024] [Accepted: 11/16/2024] [Indexed: 12/08/2024] Open
Abstract
BACKGROUND The pressing need for reliable biomarkers in colorectal cancer (CRC) diagnosis and prognosis is a major global health concern. Current diagnostic methods rely heavily on invasive procedures like colonoscopy, and existing biomarkers such as Carbohydrate Antigen 19-9 (CA19-9) and Carcinoembryonic Antigen (CEA) exhibit limitations in accuracy and specificity. AIMS This study aims to identify and validate novel biomarkers that can enhance the early detection and diagnostic precision of CRC while overcoming the shortcomings of conventional biomarkers. MATERIALS AND METHODS Leveraging advancements in genomic and proteomic technologies, gene expression datasets were obtained from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA). We identified differentially expressed genes (DEGs) and conducted further analyses, including Gene Ontology (GO) enrichment and Protein-Protein Interaction (PPI) network construction. Five promising biomarkers-INHBA, MMP7, PSAT1, SLC7A5, and TGFBI-were selected based on their robust performance in Receiver Operating Characteristic (ROC) curve analysis. Serum concentrations of these biomarkers were measured in 200 CRC patients and 100 healthy controls. RESULTS The study revealed significantly elevated expression levels of the selected biomarkers in CRC tissues compared to normal tissues. Additionally, serum concentrations of INHBA, MMP7, PSAT1, SLC7A5, and TGFBI were notably higher in CRC patients than in healthy individuals, with Area Under the Curve (AUC) values ranging from 0.8361 to 0.9869 indicating high diagnostic accuracy. Optimal cutoff values for diagnosis ranged from 38.9 pg/mL to 280.7 pg/mL, yielding sensitivity and specificity values between 74.5% and 92.9%. DISCUSSION The findings underscore the potential of INHBA, MMP7, PSAT1, SLC7A5, and TGFBI as effective non-invasive biomarkers for CRC detection. Their elevated serum concentrations and robust discriminatory abilities highlight their promise in improving diagnostic accuracy and patient outcomes compared to traditional biomarkers. CONCLUSION The identification and validation of these novel biomarkers represent a significant advancement in CRC diagnosis and management. Further studies are required to validate their clinical applicability in larger cohorts and to elucidate their functional roles in CRC pathogenesis, ultimately enhancing diagnostic strategies and personalized treatment approaches.
Collapse
Affiliation(s)
- Minha Lea Yoon
- Clinical Trial CenterGangnam St. Peter's HospitalSeoulRepublic of Korea
| | - Hyelim Chun
- Clinical Trial CenterGangnam St. Peter's HospitalSeoulRepublic of Korea
| | - HyunJu Lee
- Clinical Trial CenterGangnam St. Peter's HospitalSeoulRepublic of Korea
| | - WooJeong Seo
- Clinical Trial CenterGangnam St. Peter's HospitalSeoulRepublic of Korea
| | - Jung Young Lee
- Clinical Trial CenterGangnam St. Peter's HospitalSeoulRepublic of Korea
| | - Jung Hwan Yoon
- Department of PathologyCollege of Medicine, The Catholic University of KoreaSeoulRepublic of Korea
| |
Collapse
|
4
|
Cao L, Chen F, Xu L, Zeng J, Wang Y, Zhang S, Ba Y, Zhang H. Prognostic cellular senescence-related lncRNAs patterns to predict clinical outcome and immune response in colon cancer. Front Immunol 2024; 15:1450135. [PMID: 39355236 PMCID: PMC11443174 DOI: 10.3389/fimmu.2024.1450135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/19/2024] [Indexed: 10/03/2024] Open
Abstract
Background Cellular senescence (CS) is believed to be a major factor in the evolution of cancer. However, CS-related lncRNAs (CSRLs) involved in colon cancer regulation are not fully understood. Our goal was to create a novel CSRLs prognostic model for predicting prognosis and immunotherapy and exploring its potential molecular function in colon cancer. Methods The mRNA sequencing data and relevant clinical information of GDC TCGA Colon Cancer (TCGA-COAD) were obtained from UCSC Xena platform, and CS-associated genes was acquired from the CellAge website. Pearson correlation analysis was used to identify CSRLs. Then we used Kaplan-Meier survival curve analysis and univariate Cox analysis to acquire prognostic CSRL. Next, we created a CSRLs prognostic model using LASSO and multivariate Cox analysis, and evaluated its prognostic power by Kaplan-Meier and ROC curve analysis. Besides, we explored the difference in tumor microenvironment, somatic mutation, immunotherapy, and drug sensitivity between high-risk and low-risk groups. Finally, we verified the functions of MYOSLID in cell experiments. Results Three CSRLs (AC025165.1, LINC02257 and MYOSLID) were identified as prognostic CSRLs. The prognostic model exhibited a powerful predictive ability for overall survival and clinicopathological features in colon cancer. Moreover, there was a significant difference in the proportion of immune cells and the expression of immunosuppressive point biomarkers between the different groups. The high-risk group benefited from the chemotherapy drugs, such as Teniposide and Mitoxantrone. Finally, cell proliferation and CS were suppressed after MYOSLID knockdown. Conclusion CSRLs are promising biomarkers to forecast survival and therapeutic responses in colon cancer patients. Furthermore, MYOSLID, one of 3-CSRLs in the prognostic model, could dramatically regulate the proliferation and CS of colon cancer.
Collapse
Affiliation(s)
- Lichao Cao
- Shenzhen Nucleus Gene Technology Co., Ltd., Shenzhen, Guangdong, China
- Shenzhen Nucleus Huaxi Medical Laboratory, Shenzhen, Guangdong, China
- Shanghai Nucleus Biotechnology Co., Ltd., Shanghai, China
| | - Fang Chen
- Shenzhen Nucleus Gene Technology Co., Ltd., Shenzhen, Guangdong, China
- Shenzhen Nucleus Huaxi Medical Laboratory, Shenzhen, Guangdong, China
- Shanghai Nucleus Biotechnology Co., Ltd., Shanghai, China
| | - Long Xu
- Department of Gastroenterology and Hepatology, Shenzhen University General Hospital, Shenzhen, Guangdong, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, Guangdong, China
| | - Jian Zeng
- Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China
| | - Yun Wang
- Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China
| | - Shenrui Zhang
- Shenzhen Nucleus Gene Technology Co., Ltd., Shenzhen, Guangdong, China
- Shenzhen Nucleus Huaxi Medical Laboratory, Shenzhen, Guangdong, China
- Shanghai Nucleus Biotechnology Co., Ltd., Shanghai, China
| | - Ying Ba
- Shenzhen Nucleus Gene Technology Co., Ltd., Shenzhen, Guangdong, China
- Shenzhen Nucleus Huaxi Medical Laboratory, Shenzhen, Guangdong, China
- Shanghai Nucleus Biotechnology Co., Ltd., Shanghai, China
| | - Hezi Zhang
- Shenzhen Nucleus Gene Technology Co., Ltd., Shenzhen, Guangdong, China
- Shenzhen Nucleus Huaxi Medical Laboratory, Shenzhen, Guangdong, China
- Shanghai Nucleus Biotechnology Co., Ltd., Shanghai, China
| |
Collapse
|
5
|
Yin D, Yang L, Feng X, Zhai X, Hua M, Liu J, Chen Y. Circ_0007422 Knockdown Inhibits Tumor Property and Immune Escape of Colorectal Cancer by Decreasing PDL1 Expression in a miR-1256-Dependent Manner. Mol Biotechnol 2024; 66:2606-2619. [PMID: 38253900 DOI: 10.1007/s12033-023-01040-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024]
Abstract
Circular RNAs (circRNAs) are a group of important molecules involved in the progression of various cancers, including colorectal cancer (CRC). Here, we aim to investigate the role and molecular mechanism of circ_0007422 in regulating CRC malignant progression. The expression levels of circ_0007422, miR-1256, and PDL1 were detected by qRT-PCR. Cell viability, proliferation, apoptosis, invasion, and self-replication ability were analyzed by CCK-8, EdU, flow cytometry, transwell, and spheroid formation experiments, respectively. Protein levels were determined by western blotting assay. CRC cells were co-cultured with CD8 + T cells, phytohemagglutinin-stimulated peripheral blood mononuclear cells (PBMCs), or cytokine-induced killer (CIK) cells in vitro, and CD8 + T-cell apoptosis, IFN-γ and TNF-α levels, and survival rate of CRC cells were analyzed to reveal the role of circ_0007422 in antitumor immunity. The relationship between miR-1256 and circ_0007422 or PDL1 was identified by a dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay. A xenograft tumor model was established to verify the function of circ_0007422 in tumor growth in vivo. Immunohistochemistry (IHC) assay was used to detect positive expression rates of Ki67, E-cadherin, N-cadherin, and PDL1 expression in primary tumors from CRC cells. Circ_0007422 was upregulated in CRC tissues and cells and its knockdown inhibited proliferation, invasion, self-replication ability, and immune escape and promoted apoptosis of CRC cells. Additionally, circ_0007422 bound to miR-1256, which was identified to target PDL1. MiR-1256 inhibition reversed the effects of circ_0007422 knockdown on the tumor properties and immune escape of CRC cells. Moreover, miR-1256 introduction interacted with PDL1 to suppress proliferation, invasion, self-replication ability, and immune escape and promote apoptosis of CRC cells. Further, circ_0007422 knockdown hampered tumorigenesis of CRC cells in vivo. Circ_0007422 knockdown inhibited tumor property and immune escape of colorectal cancer through the miR-1256/PDL1 pathway, providing a potential novel therapeutic target for CRC.
Collapse
Affiliation(s)
- Dian Yin
- Department of Oncology, Nantong First People's Hospital, the Second Affiliated Hospital of Nantong University, Nantong City, 226000, Jiangsu, China
| | - Li Yang
- Department of Oncology, Nantong First People's Hospital, the Second Affiliated Hospital of Nantong University, Nantong City, 226000, Jiangsu, China
| | - Xiu Feng
- Department of Oncology, Nantong First People's Hospital, the Second Affiliated Hospital of Nantong University, Nantong City, 226000, Jiangsu, China
| | - Xiaolu Zhai
- Department of Oncology, Nantong First People's Hospital, the Second Affiliated Hospital of Nantong University, Nantong City, 226000, Jiangsu, China
| | - Mei Hua
- Department of Oncology, Nantong First People's Hospital, the Second Affiliated Hospital of Nantong University, Nantong City, 226000, Jiangsu, China
| | - Jing Liu
- Department of Oncology, Nantong First People's Hospital, the Second Affiliated Hospital of Nantong University, Nantong City, 226000, Jiangsu, China
| | - Ying Chen
- Department of Oncology, Nantong First People's Hospital, the Second Affiliated Hospital of Nantong University, Nantong City, 226000, Jiangsu, China.
| |
Collapse
|
6
|
Zhang Z, Chen L, Yang Q, Tang X, Li J, Zhang G, Wang Y, Huang H. INHBA regulates Hippo signaling to confer 5-FU chemoresistance mediated by cellular senescence in colon cancer cells. Int J Biochem Cell Biol 2024; 171:106570. [PMID: 38588888 DOI: 10.1016/j.biocel.2024.106570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/27/2024] [Accepted: 04/05/2024] [Indexed: 04/10/2024]
Abstract
Colon cancer has become a global public health challenge, and 5-Fluorouracil (5-FU) chemoresistance is a major obstacle in its treatment. Chemoresistance can be mediated by therapy-induced cellular senescence. This study intended to investigate mechanisms of INHBA (inhibin A) in 5-FU resistance mediated by cellular senescence in colon cancer. Bioinformatics analysis of INHBA expression in colon cancer tissues, survival analysis, and correlation analysis of cellular senescence markers were performed. The effects of INHBA on the biological characteristics and 5-FU resistance of colon cancer cells were examined through loss/gain-of-function and molecular assays. Finally, a xenograft mouse model was built to validate the mechanism of INHBA in vivo. INHBA was upregulated in colon cancer and was significantly positively correlated with cellular senescence markers uncoupling protein 2 (UCP-2), matrix metalloproteinase-1 (MMP-1), dense and erect panicle 1 (DEP1), and p21. Cellular senescence in colon cancer mediated 5-FU resistance. Downregulation of INHBA expression enhanced 5-FU sensitivity in colon cancer cells, inhibited cell proliferation, promoted apoptosis, increased the proportion of cells in G0/G1 phase, and it resulted in a lower proportion of senescent cells and lower levels of the cellular senescence markers interleukin 6 (IL-6) and interleukin 8 (IL-8). Analysis of whether to use the pathway inhibitor Verteporfin proved that INHBA facilitated colon cancer cell senescence and enhanced 5-FU chemoresistance via inactivation of Hippo signaling pathway, and consistent results were obtained in vivo. Collectively, INHBA conferred 5-FU chemoresistance mediated by cellular senescence in colon cancer cells through negative regulation of Hippo signaling.
Collapse
Affiliation(s)
- Zhan Zhang
- Department of Hematology and Oncology, Taizhou First People's Hospital, Taizhou 318020, China; Huangyan Hospital of Wenzhou Medical University, Taizhou 318020, China
| | - Lili Chen
- Department of Hematology and Oncology, Taizhou First People's Hospital, Taizhou 318020, China; Huangyan Hospital of Wenzhou Medical University, Taizhou 318020, China; Wenzhou Medical University, Wenzhou 325035, China.
| | - Qiao Yang
- Department of Hematology and Oncology, Taizhou First People's Hospital, Taizhou 318020, China
| | - Xiaowan Tang
- Department of Hematology and Oncology, Taizhou First People's Hospital, Taizhou 318020, China
| | - Jianhua Li
- Department of Hematology and Oncology, Taizhou First People's Hospital, Taizhou 318020, China
| | - Guangwen Zhang
- Department of Hematology and Oncology, Taizhou First People's Hospital, Taizhou 318020, China
| | - Youqun Wang
- Department of Hematology and Oncology, Taizhou First People's Hospital, Taizhou 318020, China
| | - Hui Huang
- Department of Hematology and Oncology, Taizhou First People's Hospital, Taizhou 318020, China
| |
Collapse
|
7
|
Abutalebi M, Li D, Ahmad W, Mokhtari K, Entezari M, Hashemi M, Fu J, Maghsoudloo M. Discovery of PELATON links to the INHBA gene in the TGF-β pathway in colorectal cancer using a combination of bioinformatics and experimental investigations. Int J Biol Macromol 2024; 270:132239. [PMID: 38735606 DOI: 10.1016/j.ijbiomac.2024.132239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/14/2024] [Accepted: 05/07/2024] [Indexed: 05/14/2024]
Abstract
Colorectal cancer (CRC) is a major worldwide health issue, with high rates of both occurrence and mortality. Dysregulation of the transforming growth factor-beta (TGF-β) signaling pathway is recognized as a pivotal factor in CRC pathogenesis. Notably, the INHBA gene and long non-coding RNAs (lncRNAs) have emerged as key contributors to CRC progression. The aim of this research is to explore the immunological roles of INHBA and PELATON in CRC through a combination of computational predictions and experimental validations, with the goal of enhancing diagnostic and therapeutic strategies. In this study, we utilized bioinformatics analyses, which involved examining differential gene expression (DEG) in the TCGA-COAD dataset and exploring the INHBA gene in relation to the TGF-β pathway. Additionally, we analyzed mutations of INHBA, evaluated the microenvironment and tumor purity, investigated the INHBA's connection to immune checkpoint inhibitors, and measured its potential as an immunotherapy target using the TIDE score. Utilizing bioinformatics analyses of the TCGA-COAD dataset beside experimental methodologies such as RT-qPCR, our investigation revealed significant upregulation of INHBA in CRC. As results, our analysis of the protein-protein interaction network associated with INHBA showed 10 interacting proteins that play a role in CRC-associated processes. We observed a notable prevalence of mutations within INHBA and explored its correlation with the response to immune checkpoint inhibitors. Our study highlights INHBA as a promising target for immunotherapy in CRC. Moreover, our study identified PELATON as a closely correlated lncRNA with INHBA, with experimental validation confirming their concurrent upregulation in CRC tissues. Thus, these findings highlight the importance of INHBA and PELATON in driving CRC progression, suggesting their potential utility as diagnostic and prognostic biomarkers. By integrating computational predictions with experimental validations, this research enhances our understanding of CRC pathogenesis and uncovers prospects for personalized therapeutic interventions.
Collapse
Affiliation(s)
- Maryam Abutalebi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Dabing Li
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, Sichuan, China; Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Waqar Ahmad
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou 646000, China
| | - Khatere Mokhtari
- Department of Modern Biology, ACECR Institute of Higher Education (Isfahan Branch), Isfahan, Iran; Department of Cellular and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Junjiang Fu
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, Sichuan, China.
| | - Mazaher Maghsoudloo
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, Sichuan, China.
| |
Collapse
|
8
|
Abou Kors T, Hofmann L, Betzler A, Payer K, Bens M, Truong J, von Witzleben A, Thomas J, Kraus JM, Kalaajieh R, Huber D, Ezić J, Benckendorff J, Greve J, Schuler PJ, Ottensmeier CH, Kestler HA, Hoffmann TK, Theodoraki MN, Brunner C, Laban S. INHBA is Enriched in HPV-negative Oropharyngeal Squamous Cell Carcinoma and Promotes Cancer Progression. CANCER RESEARCH COMMUNICATIONS 2024; 4:571-587. [PMID: 38329386 PMCID: PMC10901070 DOI: 10.1158/2767-9764.crc-23-0258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 12/15/2023] [Accepted: 02/06/2024] [Indexed: 02/09/2024]
Abstract
Patients with oropharyngeal squamous cell carcinoma (OPSCC) caused by human papilloma virus (HPV) exhibit a better prognosis than those with HPV-negative OPSCC. This study investigated the distinct molecular pathways that delineate HPV-negative from HPV-positive OPSCC to identify biologically relevant therapeutic targets. Bulk mRNA from 23 HPV-negative and 39 HPV-positive OPSCC tumors (n = 62) was sequenced to uncover the transcriptomic profiles. Differential expression followed by gene set enrichment analysis was performed to outline the top enriched biological process in the HPV-negative compared with HPV-positive entity. INHBA, the highest overexpressed gene in the HPV-negative tumor, was knocked down. Functional assays (migration, proliferation, cell death, stemness) were conducted to confirm the target's oncogenic role. Correlation analyses to reveal its impact on the tumor microenvironment were performed. We revealed that epithelial-to-mesenchymal transition (EMT) is the most enriched process in HPV-negative compared with HPV-positive OPSCC, with INHBA (inhibin beta A subunit) being the top upregulated gene. INHBA knockdown downregulated the expression of EMT transcription factors and attenuated migration, proliferation, stemness, and cell death resistance of OPSCC cells. We uncovered that INHBA associates with a pro-tumor microenvironment by negatively correlating with antitumor CD8+ T and B cells while positively correlating with pro-tumor M1 macrophages. We identified three miRNAs that are putatively involved in repressing INHBA expression. Our results indicate that the upregulation of INHBA is tumor-promoting. We propose INHBA as an attractive therapeutic target for the treatment of INHBA-enriched tumors in patients with HPV-negative OPSCC to ameliorate prognosis. SIGNIFICANCE Patients with HPV-negative OPSCC have a poorer prognosis due to distinct molecular pathways. This study reveals significant transcriptomic differences between HPV-negative and HPV-positive OPSCC, identifying INHBA as a key upregulated gene in HPV-negative OPSCC's oncogenic pathways. INHBA is crucial in promoting EMT, cell proliferation, and an immunosuppressive tumor environment, suggesting its potential as a therapeutic target for HPV-negative OPSCC.
Collapse
Affiliation(s)
- Tsima Abou Kors
- Department of Otorhinolaryngology, Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
| | - Linda Hofmann
- Department of Otorhinolaryngology, Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
| | - Annika Betzler
- Department of Otorhinolaryngology, Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
| | - Kathrina Payer
- Department of Otorhinolaryngology, Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
| | - Martin Bens
- Fritz Lipmann Institute, Leibniz Institute on Aging, University of Jena, Jena, Germany
| | - Jens Truong
- Department of Otorhinolaryngology, Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
| | - Adrian von Witzleben
- Department of Otorhinolaryngology, Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
| | - Jaya Thomas
- Cancer Sciences Unit, University of Southampton, Faculty of Medicine, Southampton, United Kingdom
| | - Johann M Kraus
- Institute for Medical Systems Biology, Ulm University, Ulm, Germany
| | - Randa Kalaajieh
- Department of Otorhinolaryngology, Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
| | - Diana Huber
- Department of Otorhinolaryngology, Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
| | - Jasmin Ezić
- Department of Otorhinolaryngology, Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
| | | | - Jens Greve
- Department of Otorhinolaryngology, Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
| | - Patrick J Schuler
- Department of Otorhinolaryngology, Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
| | - Christian H Ottensmeier
- Institute of Systems, Molecular and Integrative Biology, Liverpool Head and Neck Center, University of Liverpool, Faculty of Medicine, Liverpool, United Kingdom
| | - Hans A Kestler
- Institute for Medical Systems Biology, Ulm University, Ulm, Germany
| | - Thomas K Hoffmann
- Department of Otorhinolaryngology, Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
| | - Marie-Nicole Theodoraki
- Department of Otorhinolaryngology, Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
| | - Cornelia Brunner
- Department of Otorhinolaryngology, Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
| | - Simon Laban
- Department of Otorhinolaryngology, Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
9
|
Yu GT, Monie DD, Khosla S, Tchkonia T, Kirkland JL, Wyles SP. Mapping cellular senescence networks in human diabetic foot ulcers. GeroScience 2024; 46:1071-1082. [PMID: 37380899 PMCID: PMC10828272 DOI: 10.1007/s11357-023-00854-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 06/14/2023] [Indexed: 06/30/2023] Open
Abstract
Cellular senescence, a cell fate defined by irreversible cell cycle arrest, has been observed to contribute to chronic age-related conditions including non-healing wounds, such as diabetic foot ulcers. However, the role of cellular senescence in the pathogenesis of diabetic foot ulcers remains unclear. To examine the contribution of senescent phenotypes to these chronic wounds, differential gene and network analyses were performed on publicly available bulk RNA sequencing of whole skin biopsies of wound edge diabetic foot ulcers and uninvolved diabetic foot skin. Wald tests with Benjamini-Hochberg correction were used to evaluate differential gene expression. Results showed that cellular senescence markers, CDKN1A, CXCL8, IGFBP2, IL1A, MMP10, SERPINE1, and TGFA, were upregulated, while TP53 was downregulated in diabetic foot ulcers compared to uninvolved diabetic foot skin. NetDecoder was then used to identify and compare context-specific protein-protein interaction networks using known cellular senescence markers as pathway sources. The diabetic foot ulcer protein-protein interaction network demonstrated significant perturbations with decreased inhibitory interactions and increased senescence markers compared to uninvolved diabetic foot skin. Indeed, TP53 (p53) and CDKN1A (p21) appeared to be key regulators in diabetic foot ulcer formation. These findings suggest that cellular senescence is an important mediator of diabetic foot ulcer pathogenesis.
Collapse
Affiliation(s)
- Grace T Yu
- Mayo Clinic Medical Scientist Training Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic Alix School of Medicine, Rochester, MN, USA
| | - Dileep D Monie
- Mayo Clinic Medical Scientist Training Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic Alix School of Medicine, Rochester, MN, USA
| | - Sundeep Khosla
- Division of Endocrinology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center On Aging, Mayo Clinic, Rochester, MN, USA
| | - Tamar Tchkonia
- Robert and Arlene Kogod Center On Aging, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - James L Kirkland
- Robert and Arlene Kogod Center On Aging, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Division of General Internal Medicine, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Saranya P Wyles
- Robert and Arlene Kogod Center On Aging, Mayo Clinic, Rochester, MN, USA.
- Department of Dermatology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
10
|
Zhou Z, Wu B, Chen J, Shen Y, Wang J, Chen X, Fei F, Zhu M. A Lactic Acid Metabolism-Related Gene Signature for Predicting Clinical Outcome and Tumor Microenvironmental Status in Patients with Hepatocellular Carcinoma. Nutr Cancer 2024; 76:279-295. [PMID: 38226887 DOI: 10.1080/01635581.2024.2302202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/05/2023] [Accepted: 01/01/2024] [Indexed: 01/17/2024]
Abstract
This study aims to build a prognostic model based on lactic acid metabolism-related genes (LMRGs) to predict survival outcomes and tumor microenvironment status of Hepatocellular carcinoma (HCC) patients. The model was used to calculate riskscores of clinical samples. Survival analysis and Cox regression analysis were conducted to verify the independence and reliability of the riskscore to determine its clinical significance in prognosis evaluation of HCC. Additionally, we conducted a comprehensive analysis of tumor mutation burden (TMB), immune cell infiltration, and gene set molecular function in the high- and low-risk groups. We obtained 134 LMRGs mainly involved in cellular calcium homeostasis and calcium signaling pathways. The LMRGs in the risk assessment model included PFKFB4, SLC16A3, ADRA2B, SLC22A1, QRFPR, and PROK1. This study discovered much shorter overall survival and median survival time of patients with higher riskscores when compared to those with lower riskscores. It was indicated that for independent prediction of patients' prognosis, the riskscore had a significant clinical value. A remarkable difference was also found regarding TMB between the two groups. Finally, cell experiments demonstrated that the knockout of PFKFB4 and SLC16A3 genes suppressed lactate. Our research demonstrated that the riskscore, established based on LMRGs, is a promising biomarker.
Collapse
Affiliation(s)
- Zhongcheng Zhou
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang Province, China
| | - Bin Wu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang Province, China
| | - Jing Chen
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang Province, China
| | - Yiyu Shen
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang Province, China
| | - Jing Wang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang Province, China
| | - Xujian Chen
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang Province, China
| | - Faming Fei
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang Province, China
| | - Mingyuan Zhu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang Province, China
| |
Collapse
|
11
|
Weng M, Lai Y, Ge X, Gu W, Zhang X, Li L, Sun M. HOXC6: A promising biomarker linked to an immunoevasive microenvironment in colorectal cancer based on TCGA analysis and cohort validation. Heliyon 2024; 10:e23500. [PMID: 38192826 PMCID: PMC10772581 DOI: 10.1016/j.heliyon.2023.e23500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 10/22/2023] [Accepted: 12/05/2023] [Indexed: 01/10/2024] Open
Abstract
HOXC6 plays an essential part of the carcinogenesis of solid tumors, but its functional relevance within the immune contexture in patients with colorectal cancer (CRC) is still uncertain. We intended to investigate the predictive value of HOXC6 expression for survival outcomes and its correlation with immune contexture in CRC patients by utilizing the Cancer Genome Atlas database (n = 619). Validation was performed in cohorts from Zhongshan Hospital (n = 200) and Shanghai Cancer Center (n = 300). Immunohistochemical (IHC) staining was utilized to compare the levels of immunocytes infiltrating the tumor between the groups with high and low expression of HOXC6. Elevated levels of HOXC6 expression in CRC tissues were linked to malignant progression and poor prognosis. HOXC6 as a risk factor for survival of CRC patients was confirmed. Receiver operating characteristic analysis confirmed its diagnostic value, and a reliable prognostic nomogram was constructed. KEGG analysis and GSEA showed that HOXC6 participated in immune regulation, and its expression was tightly linked to the abundance of infiltrating immunocytes. HOXC6 was upregulated in patients diagnosed with CRC within the two cohorts, and high HOXC6 levels were correlated with a worse prognosis. The high-HOXC6 expression group showed increased infiltration of Treg cells, CD68+ macrophages, CD66b+ neutrophils, and CD8+ T-cells and elevated levels of PD-L1 and PD-1, but decreased levels of granzyme B and perforin. These findings suggest that HOXC6 abundance in patients with CRC determines a poor prognosis, promotes an immunoevasive environment, and directs CD8+ T-cell dysfunction. HOXC6 is expected to become a prospective biomarker for the outcome of CRC.
Collapse
Affiliation(s)
- Meilin Weng
- Department of Anesthesiology, Zhongshan hospital, Fudan University, Shanghai, 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Zhongshan hospital, Fudan University, Shanghai, 200032, China
| | - Yuling Lai
- Department of Anesthesiology, Zhongshan hospital, Fudan University, Shanghai, 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Zhongshan hospital, Fudan University, Shanghai, 200032, China
| | - Xiaodong Ge
- Department of Anesthesiology, Zhongshan hospital, Fudan University, Shanghai, 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Zhongshan hospital, Fudan University, Shanghai, 200032, China
| | - Wenchao Gu
- Department of Diagnostic and Interventional Radiology, University of Tsukuba, Faculty of medicine, Ibaraki, Tsukuba, Japan
| | - Xixue Zhang
- Department of Anesthesiology, Huadong Hospital Affiliated to Fudan University, No 221, West Yan'an Road, Shanghai 200040, China
| | - Lihong Li
- Department of Anesthesiology, Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
| | - Minli Sun
- Department of Anesthesiology, Zhongshan hospital, Fudan University, Shanghai, 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Zhongshan hospital, Fudan University, Shanghai, 200032, China
| |
Collapse
|
12
|
Zhang H, Huang Y, Wen Q, Li Y, Guo L, Ge N. INHBA gene silencing inhibits proliferation, migration, and invasion of osteosarcoma cells by repressing TGF-β signaling pathway activation. J Orthop Surg Res 2023; 18:848. [PMID: 37940978 PMCID: PMC10634167 DOI: 10.1186/s13018-023-04330-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/29/2023] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND Osteosarcoma (OS) is a refractory malignancy. This study aimed to explore the roles and mechanisms of Inhibin subunit beta A (INHBA) in OS. METHODS INHBA expression levels in OS tissues and cells were assessed using RT-qPCR and western blotting. The impact of INHBA silencing on OS development was then explored by transfecting the OS cell lines U2OS and MG63 with INHBA-small interfering RNA (siRNA). The influence of INHBA silencing on U2OS and MG63 cell proliferation, migration, and invasion was examined using MTT and Transwell assays. Epithelial-mesenchymal transition (EMT) markers (E-cadherin and N-cadherin) were analyzed by RT-qPCR. The expression of genes involved in cell proliferation, migration, invasion, and the TGF-β signaling pathway was evaluated by western blotting and RT-qPCR. RESULTS INHBA levels were elevated in the OS tissues and cells. Furthermore, the transforming growth factor-β (TGF-β) signaling pathway of OS cells was suppressed in response to INHBA-siRNA, whereas proliferation, migration, and invasion of OS cells were inhibited. Besides, INHBA-siRNA significantly inhibited OS cell EMT, evidenced by enhanced E-cadherin mRNA expression and reduced N-cadherin mRNA expression. Further mechanistic studies revealed that the TGF-β1 agonist SRI-011381 hydrochloride increased OS cell proliferation, migration, and invasion after INHBA downregulation. CONCLUSION We found that INHBA silencing could play a vital role in OS via TGF-β1-regulated proliferation, migration, and invasion.
Collapse
Affiliation(s)
- Hongyu Zhang
- Second Department of Orthopaedics, The Third Affiliated Hospital of Qiqihar Medial University, Qiqihar, 161000, China
| | - Yuemei Huang
- Wuzhou Red Cross Hospital, Wuzhou, 543002, China
| | - Qiuting Wen
- Department of Clinical Pathology, College of Qiqihar Medical University, Qiqihar, 161006, China
| | - Yan Li
- The First Hospital of Qiqihar, Qiqihar, 161005, China
| | - Lin Guo
- Second Department of Orthopaedics, The Third Affiliated Hospital of Qiqihar Medial University, Qiqihar, 161000, China
| | - Na Ge
- Department of Radiology, The Third Affiliated Hospital of Qiqihar Medial University, No. 27 Taishun Street, Qiqihar, 161000, China.
| |
Collapse
|
13
|
Xia L, Komissarova A, Jacover A, Shovman Y, Arcila-Barrera S, Tornovsky-Babeay S, Jaya Prakashan MM, Nasereddin A, Plaschkes I, Nevo Y, Shiff I, Yosefov-Levi O, Izhiman T, Medvedev E, Eilon E, Wilensky A, Yona S, Parnas O. Systematic identification of gene combinations to target in innate immune cells to enhance T cell activation. Nat Commun 2023; 14:6295. [PMID: 37813864 PMCID: PMC10562403 DOI: 10.1038/s41467-023-41792-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/19/2023] [Indexed: 10/11/2023] Open
Abstract
Genetic engineering of immune cells has opened new avenues for improving their functionality but it remains a challenge to pinpoint which genes or combination of genes are the most beneficial to target. Here, we conduct High Multiplicity of Perturbations and Cellular Indexing of Transcriptomes and Epitopes (HMPCITE-seq) to find combinations of genes whose joint targeting improves antigen-presenting cell activity and enhances their ability to activate T cells. Specifically, we perform two genome-wide CRISPR screens in bone marrow dendritic cells and identify negative regulators of CD86, that participate in the co-stimulation programs, including Chd4, Stat5b, Egr2, Med12, and positive regulators of PD-L1, that participate in the co-inhibitory programs, including Sptlc2, Nckap1l, and Pi4kb. To identify the genetic interactions between top-ranked genes and find superior combinations to target, we perform high-order Perturb-Seq experiments and we show that targeting both Cebpb and Med12 results in a better phenotype compared to the single perturbations or other combinations of perturbations.
Collapse
Affiliation(s)
- Lei Xia
- The Lautenberg Center for Immunology and Cancer Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel
| | - Anastasia Komissarova
- The Lautenberg Center for Immunology and Cancer Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel
| | - Arielle Jacover
- The Lautenberg Center for Immunology and Cancer Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel
| | - Yehuda Shovman
- The Lautenberg Center for Immunology and Cancer Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel.
| | - Sebastian Arcila-Barrera
- The Lautenberg Center for Immunology and Cancer Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel
| | - Sharona Tornovsky-Babeay
- The Lautenberg Center for Immunology and Cancer Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel
| | - Milsee Mol Jaya Prakashan
- The Lautenberg Center for Immunology and Cancer Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel
| | - Abdelmajeed Nasereddin
- Core Research Facility, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel
| | - Inbar Plaschkes
- I-CORE Bioinformatics Unit of the Hebrew University and Hadassah Medical Center, Jerusalem, 91120, Israel
| | - Yuval Nevo
- I-CORE Bioinformatics Unit of the Hebrew University and Hadassah Medical Center, Jerusalem, 91120, Israel
| | - Idit Shiff
- Core Research Facility, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel
| | - Oshri Yosefov-Levi
- The Lautenberg Center for Immunology and Cancer Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel
| | - Tamara Izhiman
- The Lautenberg Center for Immunology and Cancer Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel
| | - Eleonora Medvedev
- Core Research Facility, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel
| | - Elad Eilon
- The Lautenberg Center for Immunology and Cancer Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel
| | - Asaf Wilensky
- Department of Periodontology, Hadassah Medical Center, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem, 91120, Israel
| | - Simon Yona
- The Institute of Biomedical and Oral Research, Hebrew University, Jerusalem, 91120, Israel
| | - Oren Parnas
- The Lautenberg Center for Immunology and Cancer Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel.
| |
Collapse
|
14
|
Wei W, Li Y, Huang T. Using Machine Learning Methods to Study Colorectal Cancer Tumor Micro-Environment and Its Biomarkers. Int J Mol Sci 2023; 24:11133. [PMID: 37446311 DOI: 10.3390/ijms241311133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Colorectal cancer (CRC) is a leading cause of cancer deaths worldwide, and the identification of biomarkers can improve early detection and personalized treatment. In this study, RNA-seq data and gene chip data from TCGA and GEO were used to explore potential biomarkers for CRC. The SMOTE method was used to address class imbalance, and four feature selection algorithms (MCFS, Borota, mRMR, and LightGBM) were used to select genes from the gene expression matrix. Four machine learning algorithms (SVM, XGBoost, RF, and kNN) were then employed to obtain the optimal number of genes for model construction. Through interpretable machine learning (IML), co-predictive networks were generated to identify rules and uncover underlying relationships among the selected genes. Survival analysis revealed that INHBA, FNBP1, PDE9A, HIST1H2BG, and CADM3 were significantly correlated with prognosis in CRC patients. In addition, the CIBERSORT algorithm was used to investigate the proportion of immune cells in CRC tissues, and gene mutation rates for the five selected biomarkers were explored. The biomarkers identified in this study have significant implications for the development of personalized therapies and could ultimately lead to improved clinical outcomes for CRC patients.
Collapse
Affiliation(s)
- Wei Wei
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yixue Li
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Guangzhou Laboratory, Guangzhou 510005, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai 200433, China
| | - Tao Huang
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
15
|
Zeng L, Sun X. Correlation of INHBA Overexpression with Pathological Features, Antitumor Immune Response and Clinical Prognosis in Cervical Cancer. Medicina (B Aires) 2023; 59:medicina59030495. [PMID: 36984496 PMCID: PMC10051788 DOI: 10.3390/medicina59030495] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/03/2023] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
Background and Objectives: Cervical cancer (CC) is a malignant tumor occurring in the cervical epithelium, which is one of the most common cancer-caused deaths in females. Inhibin β A (INHBA) is the most widely expressed biomarker of the transforming growth factor-β (TGF-β) family in tumor cells, and has predictive value for tumor development and prognosis. In this study, the expression of INHBA in CC tissue was examined to analyze the relationship between INHBA expression and pathological characteristics, anti-tumor immune response and clinical prognosis of CC. In addition, the factors affecting the prognosis of CC patients were explored. Materials and Methods: 84 patients with CC, who underwent surgical resection in our hospital from March 2016 to August 2017, were retrospectively picked. The tumor tissues and normal adjacent tissues of patients with CC were collected, and the expression of INHBA in CC tissues and adjacent tissues was detected using immunohistochemistry (IHC). The relationship between INHBA expression and clinicopathological characteristics of CC patients was analyzed. The relationship between INHBA expression and clinical prognosis was analyzed using the Kaplan–Meier (K–M) survival curve. The levels of anti-tumor immune-response-related factors (interferon-γ (IFN-γ), interleukin-10 (IL-10), tumor necrosis factor- α (TNF-α) and IL-2) were evaluated in patients with negative and positive expressions of INHBA. The patients were followed up for 60 months and were graded as a good prognosis group and poor prognosis group according to whether the patients died or had recurrence and metastasis. Relevant factors affecting the prognosis of the patients were analyzed. Results: INHBA was localized in the cytoplasm of cancer tissues. The positive expression rate in cancer tissues was 67.86%, which was much higher than the 28.57% in normal adjacent tissues (p < 0.05). Expression of INHBA was closely correlated with Federation of Gynecology and Obstetrics (FIGO) staging, differentiation and lymph node metastasis (p < 0.05). Compared with INHBA-negative expression group, the contents of IFN-γ, TNF-α and IL-2 were much lower, while the level of IL-10 was strongly elevated in the INHBA-positive expression group (p < 0.01). Eighty-four patients with CC were followed up for 36 months. The K–M survival curve showed that the patients with a positive expression of INHBA had a significantly shorter survival period than the patients with a negative expression of INHBA (p < 0.05). There were significant differences in FIGO staging, differentiation, lymph node metastasis and INHBA expression between patients with a good prognosis and poor prognosis (p < 0.05). Logistic regression analysis showed that FIGO stage, differentiation degree, lymph node metastasis and INHBA were the factors influencing the poor prognosis of patients with CC (p < 0.05). Conclusion: The abnormally high expression of INHBA in patients with CC was related to the pathological characteristics, anti-tumor immune response and survival time, and leaded to a poor prognosis. It was speculated that INHBA exerted an important reference role in tumor invasion and clinical prognosis evaluation, which could act as a new target for anti-tumor treatment of CC.
Collapse
Affiliation(s)
- Lin Zeng
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Department of Pathology, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang 621000, China
| | - Xingwang Sun
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Correspondence:
| |
Collapse
|
16
|
Huang A, Shi J, Sun Z, Yang Y, Gao Z, Gu J. Identification of a prognostic signature and ENTR1 as a prognostic biomarker for colorectal mucinous adenocarcinoma. Front Oncol 2023; 13:1061785. [PMID: 37182178 PMCID: PMC10172661 DOI: 10.3389/fonc.2023.1061785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 04/11/2023] [Indexed: 05/16/2023] Open
Abstract
Background Mucinous adenocarcinoma (MAC) is a unique clinicopathological colorectal cancer (CRC) type that has been recognized as a separate entity from non-mucinous adenocarcinoma (NMAC), with distinct clinical, pathologic, and molecular characteristics. We aimed to construct prognostic signatures and identifying candidate biomarkers for patients with MAC. Methods Differential expression analysis, weighted correlation network analysis (WGCNA), and least absolute shrinkage and selection operator (LASSO)-Cox regression model were used to identify hub genes and construct a prognostic signature based on RNA sequencing data from TCGA datasets. The Kaplan-Meier survival curve, gene set enrichment analysis (GSEA), cell stemness, and immune infiltration were analyzed. Biomarker expression in MAC and corresponding normal tissues from patients operated in 2020 was validated using immunohistochemistry. Results We constructed a prognostic signature based on ten hub genes. Patients in the high-risk group had significantly worse overall survival (OS) than patients in the low-risk group (p < 0.0001). We also found that ENTR1 was closely associated with OS (p = 0.016). ENTR1 expression was significantly positively correlated with cell stemness of MAC (p < 0.0001) and CD8+ T cell infiltration (p = 0.01), whereas it was negatively associated with stromal scores (p = 0.03). Finally, the higher expression of ENTR1 in MAC tissues than in normal tissues was validated. Conclusion We established the first MAC prognostic signature, and determined that ENTR1 could serve as a prognostic marker for MAC.
Collapse
Affiliation(s)
- An Huang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jingyi Shi
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, Beijing, China
| | - Zhuang Sun
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yong Yang
- Department of Gastrointestinal Surgery, Peking University Shougang Hospital, Beijing, China
| | - Zhaoya Gao
- Department of Gastrointestinal Surgery, Peking University Shougang Hospital, Beijing, China
- Department of General Surgery, Peking University First Hospital, Beijing, China
| | - Jin Gu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, Beijing, China
- Department of Gastrointestinal Surgery, Peking University Shougang Hospital, Beijing, China
- Peking Tsinghua Center for Life Science, Peking University International Cancer Center, Beijing, China
- *Correspondence: Jin Gu,
| |
Collapse
|