1
|
Xu J, Li Y, Wang F, Yang H, Huang KJ, Cai R, Tan W. A Smartphone-Mediated "All-In-One" Biosensing Chip for Visual and Value-Assisted Detection. Anal Chem 2024; 96:15780-15788. [PMID: 39303167 DOI: 10.1021/acs.analchem.4c03854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
A smartphone-mediated self-powered biosensor is fabricated for miRNA-141 detection based on the CRISPR/Cas12a cross-cutting technique and a highly efficient nanozyme. As a novel nanozyme and a signal-amplified coreaction accelerator, the AuPtPd@GDY nanozyme exhibits an excellent ability to catalyze cascade color reactions and high conductivity to enhance the electrochemical signal for miRNA-141 assays. After CRISPR/Cas12a cross-cutting of S2-glucose oxidase (S2-GOD), the electrochemical signal is weakened, and miRNA-141 is detected by monitoring the decrease in the signal. On the other hand, a cascade reaction among glucose, H2O2, and TMB is catalyzed by GOD and AuPtPd@GDY, respectively, resulting in a color change of the solution, which senses miRNA-141. The self-powered biosensor enables value-assisted and visual detection of miRNA-141 with limits of detection of 3.1 and 15 aM, respectively. Based on the dual-modal self-powered sensing system, a smartphone-mediated "all-in-one" biosensing chip is designed to achieve the real-time and intelligent monitoring of miRNA-141. This work provides a new approach to design multifunctional biosensors to realize the visualization and portable detection of tumor biomarkers.
Collapse
Affiliation(s)
- Jing Xu
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Yujin Li
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, Hunan, China
| | - Futing Wang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, Hunan, China
| | - Hongfen Yang
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Ke-Jing Huang
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Ren Cai
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, Hunan, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, Hunan, China
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, China
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
2
|
He S, Ding L, Yuan H, Zhao G, Yang X, Wu Y. A review of sensors for classification and subtype discrimination of cancer: Insights into circulating tumor cells and tumor-derived extracellular vesicles. Anal Chim Acta 2023; 1244:340703. [PMID: 36737145 DOI: 10.1016/j.aca.2022.340703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 12/14/2022]
Abstract
Liquid biopsy can reflect the state of tumors in vivo non-invasively, thus providing a strong basis for the early diagnosis, individualized treatment monitoring and prognosis of tumors. Circulating tumor cells (CTCs) and tumor-derived extracellular vesicles (tdEVs) contain information-rich components, such as nucleic acids and proteins, and they are essential markers for liquid biopsies. Their capture and analysis are of great importance for the study of disease occurrence and development and, consequently, have been the subject of many reviews. However, both CTCs and tdEVs carry the biological characteristics of their original tissue, and few reviews have focused on their function in the staging and classification of cancer. In this review, we focus on state-of-the-art sensors based on the simultaneous detection of multiple biomarkers within CTCs and tdEVs, with clinical applications centered on cancer classification and subtyping. We also provide a thorough discussion of the current challenges and prospects for novel sensors with the ultimate goal of cancer classification and staging. It is hoped that these most advanced technologies will bring new insights into the clinical practice of cancer screening and diagnosis.
Collapse
Affiliation(s)
- Sitian He
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Lihua Ding
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Huijie Yuan
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Gaofeng Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China.
| | - Xiaonan Yang
- School of Information Engineering, Zhengzhou University, Zhengzhou, 450001, China.
| | - Yongjun Wu
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
3
|
Duan C, Chen Y, Hou Z, Li D, Jiao J, Sun W, Xiang Y. Heteromultivalent scaffolds fabricated by biomimetic co-assembly of DNA-RNA building blocks for the multi-analysis of miRNAs. J Mater Chem B 2023; 11:1478-1485. [PMID: 36723144 DOI: 10.1039/d2tb02663e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Heteromultivalent scaffolds with different repeated monomers have great potential in biomedicine, but convenient construction strategies for integrating various functional modules to achieve multiple biological functions are still lacking. Here, taking advantage of the heteromultivalent effect of dendritic nucleic acids and the specific biochemical properties of microRNAs (miRNAs), we assembled novel heteromultivalent nucleic acid scaffolds by biomimetic co-assembly of DNA-RNA building blocks. In our approach, two miRNAs were used to initiate and maintain dendritic structures in an interdependent manner; so, the heteromultivalent nanostructure can only form in the presence of both miRNAs. The proposed nanostructure can be used for one-step analysis of two miRNAs in an AND logic format. Taking miR-18b-5p and miR-342-3p which are associated with Alzheimer's disease as an example, a FRET sensing system was fabricated for the simultaneous analysis of two miRNAs within one hour at picomolar concentration. Further studies show that the designed device may have the potential to distinguish between AD patients and the healthy population by analysis of two miRNAs in CSF (cerebrospinal fluid) samples, suggesting its possible applicability in clinics.
Collapse
Affiliation(s)
- Chengjie Duan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China.
| | - Yan Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China.
| | - Zhiqiang Hou
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China.
| | - Dayong Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China.
| | - Jin Jiao
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P. R. China
| | - Weihao Sun
- Department of Geriatric Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, P. R. China
| | - Yang Xiang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China. .,State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, P. R. China
| |
Collapse
|
4
|
Li CH, Chan MH, Chang YC, Hsiao M. Gold Nanoparticles as a Biosensor for Cancer Biomarker Determination. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28010364. [PMID: 36615558 PMCID: PMC9822408 DOI: 10.3390/molecules28010364] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 01/04/2023]
Abstract
Molecular biology applications based on gold nanotechnology have revolutionary impacts, especially in diagnosing and treating molecular and cellular levels. The combination of plasmonic resonance, biochemistry, and optoelectronic engineering has increased the detection of molecules and the possibility of atoms. These advantages have brought medical research to the cellular level for application potential. Many research groups are working towards this. The superior analytical properties of gold nanoparticles can not only be used as an effective drug screening instrument for gene sequencing in new drug development but also as an essential tool for detecting physiological functions, such as blood glucose, antigen-antibody analysis, etc. The review introduces the principles of biomedical sensing systems, the principles of nanomaterial analysis applied to biomedicine at home and abroad, and the chemical surface modification of various gold nanoparticles.
Collapse
Affiliation(s)
- Chien-Hsiu Li
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Ming-Hsien Chan
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Yu-Chan Chang
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
- Department and Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei 106, Taiwan
- Correspondence:
| |
Collapse
|
5
|
Matthews EZ, Lanham S, White K, Kyriazi ME, Alexaki K, El-Sagheer AH, Brown T, Kanaras AG, J West J, MacArthur BD, Stumpf PS, Oreffo ROC. Single-cell RNA-sequence analysis of human bone marrow reveals new targets for isolation of skeletal stem cells using spherical nucleic acids. J Tissue Eng 2023; 14:20417314231169375. [PMID: 37216034 PMCID: PMC10192814 DOI: 10.1177/20417314231169375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/24/2023] [Indexed: 05/24/2023] Open
Abstract
There is a wealth of data indicating human bone marrow contains skeletal stem cells (SSC) with the capacity for osteogenic, chondrogenic and adipogenic differentiation. However, current methods to isolate SSCs are restricted by the lack of a defined marker, limiting understanding of SSC fate, immunophenotype, function and clinical application. The current study applied single-cell RNA-sequencing to profile human adult bone marrow populations from 11 donors and identified novel targets for SSC enrichment. Spherical nucleic acids were used to detect these mRNA targets in SSCs. This methodology was able to rapidly isolate potential SSCs found at a frequency of <1 in 1,000,000 in human bone marrow, with the capacity for tri-lineage differentiation in vitro and ectopic bone formation in vivo. The current studies detail the development of a platform to advance SSC enrichment from human bone marrow, offering an invaluable resource for further SSC characterisation, with significant therapeutic impact therein.
Collapse
Affiliation(s)
- Elloise Z Matthews
- Faculty of Medicine, Centre for Human
Development, Stem Cells and Regeneration, Human Development and Health, Institute of
Developmental Sciences, University of Southampton, Southampton, UK
| | - Stuart Lanham
- Faculty of Medicine, Centre for Human
Development, Stem Cells and Regeneration, Human Development and Health, Institute of
Developmental Sciences, University of Southampton, Southampton, UK
- Cancer Sciences, Faculty of Medicine,
University of Southampton, Southampton, UK
| | - Kate White
- Faculty of Medicine, Centre for Human
Development, Stem Cells and Regeneration, Human Development and Health, Institute of
Developmental Sciences, University of Southampton, Southampton, UK
| | - Maria-Eleni Kyriazi
- College of Engineering and Technology,
American University of the Middle East, Kuwait
| | - Konstantina Alexaki
- Physics and Astronomy, Faculty of
Physical Sciences and Engineering, University of Southampton, Southampton, UK
| | - Afaf H El-Sagheer
- Department of Chemistry, Chemistry
Research Laboratory, University of Oxford, Oxford, UK
- Chemistry Branch, Department of Science
and Mathematics, Faculty of Petroleum and Mining Engineering, Suez University, Suez,
Egypt
| | - Tom Brown
- Department of Chemistry, Chemistry
Research Laboratory, University of Oxford, Oxford, UK
| | - Antonios G Kanaras
- Physics and Astronomy, Faculty of
Physical Sciences and Engineering, University of Southampton, Southampton, UK
- Institute for Life Sciences, University
of Southampton, Southampton, UK
| | - Jonathan J West
- Cancer Sciences, Faculty of Medicine,
University of Southampton, Southampton, UK
- Physics and Astronomy, Faculty of
Physical Sciences and Engineering, University of Southampton, Southampton, UK
| | - Ben D MacArthur
- Faculty of Medicine, Centre for Human
Development, Stem Cells and Regeneration, Human Development and Health, Institute of
Developmental Sciences, University of Southampton, Southampton, UK
- Institute for Life Sciences, University
of Southampton, Southampton, UK
- Mathematical Sciences, University of
Southampton, Southampton, UK
| | - Patrick S Stumpf
- Faculty of Medicine, Centre for Human
Development, Stem Cells and Regeneration, Human Development and Health, Institute of
Developmental Sciences, University of Southampton, Southampton, UK
- Joint Research Center for Computational
Biomedicine, RWTH Aachen University, Aachen, Germany
| | - Richard OC Oreffo
- Faculty of Medicine, Centre for Human
Development, Stem Cells and Regeneration, Human Development and Health, Institute of
Developmental Sciences, University of Southampton, Southampton, UK
- Institute for Life Sciences, University
of Southampton, Southampton, UK
- College of Biomedical Engineering,
China Medical University, Taichung, Taiwan
| |
Collapse
|
6
|
Review of FRET biosensing and its application in biomolecular detection. Am J Transl Res 2023; 15:694-709. [PMID: 36915763 PMCID: PMC10006758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 01/05/2023] [Indexed: 03/16/2023]
Abstract
Life science research is advancing rapidly in the 21st century. Many innovative technologies and methodologies are being applied in various fields of the life sciences to reveal how macromolecules interact with each other. The technology of using fluorescent molecules in biomedical research has contributed immensely to progress in this field. Fluorescence-based optical biosensors, which show high specificity, exhibit huge potential for clinical diagnosis and treatment of many of the life-changing diseases. Fluorescence resonance energy transfer (FRET), is a technique that has been widely employed in biosensing ever since its discovery. It is a classic fluorescence technique, and an important biosensing research tool extensively utilized in the fields of toxicology, pharmacology, and biomedicine; many biosensor designs are based on FRET. Radiometric imaging of biological molecules, biomolecular interactions, and cellular processes are extensively performed using FRET biosensors. This review focuses on the selection of FRET donors and acceptors used for biosensing, and presents an overview of different FRET technologies. Furthermore, it highlights the progress in the application for FRET in nucleic acid and protein biosensing, and provides a viewpoint for future developmental trends using FRET technology.
Collapse
|
7
|
Spherical nucleic acids-based biosensors for cancer biomarkers detection. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
8
|
Yang Y, Luo T, He Y, Deng Z, Li J, Liu H, Nie J, Wang D, Huang J, Zhong S. Nanoflare Couple: Multiplexed mRNA Imaging and Logic-Controlled Combinational Therapy. Anal Chem 2022; 94:12204-12212. [PMID: 36007146 DOI: 10.1021/acs.analchem.2c02689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Theranostics, which combines both diagnostic and therapeutic capabilities in one dose, has always been an intractable challenge in personalized cancer treatment. Herein, a versatile nanotheranostic platform "nanoflare couple (NC)" has been developed for in situ multiplex cancer-related mRNA imaging and subsequent logic-controlled aggregation of gold nanoparticles, leading to gene therapy and photothermal therapy upon irradiation with infrared light. As a proof of concept, TK1 and survivin mRNAs that are highly expressed in most tumor tissues are selected as endogenous cancer indicators and therapy triggers to design the NC. Mice bearing breast cancer cells MCF-7 are prepared as a model to test its efficacy. The in vitro and in vivo assays validate that the NC show the capability for multiplexed mRNA imaging and high efficiency for logic-controlled combinational therapy of breast cancer.
Collapse
Affiliation(s)
- Yanjing Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Tong Luo
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Yao He
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Zhiwei Deng
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Jiacheng Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Hui Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Jing Nie
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - De Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Jin Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, P. R. China
| | - Shian Zhong
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| |
Collapse
|
9
|
A colorimetric biosensor based on peroxidase-like activity of CuO nanoparticles for simultaneous detection of microRNAs. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02417-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
Liu C, Deng J, Yi J, Zhang R, Chen L, Fu X, Liao S, Yi W, Zou G, Yang H. A novel binding-induced DNAzyme motor triggered by survivin mRNA. Anal Bioanal Chem 2022; 414:6167-6175. [PMID: 35767031 DOI: 10.1007/s00216-022-04183-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/10/2022] [Accepted: 06/15/2022] [Indexed: 11/27/2022]
Abstract
The accurate and sensitive detection of survivin mRNA is of great significance for cancer diagnosis and treatment. However, limited by the low-abundance mRNA in live cells, most strategies of survivin mRNA detection that were one-to-one signal-triggered model (one target triggered one signal) were inapplicable in practice. Here, we reported a binding-induced DNAzyme motor triggered by the survivin mRNA, which was a one-to-more signal-triggered model (one target triggered more signals), amplifying the detection signal and enhancing the sensitivity. The nanomotor is constructed by assembling several DNAzyme motor strands silenced by the blocker strands, and dozens of FAM-labeled substrate strands on a single gold nanoparticle (AuNP), forming three-dimensional DNA tracks. Through building the survivin mRNA bridge between the blocker and the DNAzyme motor strand, the binding-induced DNA nanomotor could be triggered by survivin mRNA. The operation of the DNAzyme motor was self-powered. And each walking step of the DNAzyme motor was fueled by DNAzyme-catalyzed substrate cleavage, along with the cleavage of the fluorescent molecule, resulting in autonomous and progressive walking along the AuNP-based tracks, and the fluorescence increase. The DNAzyme motor exhibited excellent sensitivity and remarkable specificity for survivin mRNA, providing the potential for cell image.
Collapse
Affiliation(s)
- Chang Liu
- School of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Xiangtan, 411104, Hunan, China.
| | - Jiyu Deng
- School of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Xiangtan, 411104, Hunan, China
| | - Juan Yi
- School of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Xiangtan, 411104, Hunan, China
| | - Ru Zhang
- School of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Xiangtan, 411104, Hunan, China
| | - Lixin Chen
- School of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Xiangtan, 411104, Hunan, China
| | - Xin Fu
- School of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Xiangtan, 411104, Hunan, China
| | - Shuzhen Liao
- School of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Xiangtan, 411104, Hunan, China
| | - Wenjun Yi
- College of Materials Science and Engineering, Changsha University of Science & Technology, Changsha, 410114, Hunan, China
| | - Guoqiang Zou
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan, China.
| | - Hai Yang
- School of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Xiangtan, 411104, Hunan, China.
| |
Collapse
|
11
|
Role of Nano-miRNAs in Diagnostics and Therapeutics. Int J Mol Sci 2022; 23:ijms23126836. [PMID: 35743278 PMCID: PMC9223810 DOI: 10.3390/ijms23126836] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 12/26/2022] Open
Abstract
MicroRNAs (miRNA) are key regulators of gene expression, controlling different biological processes such as cellular development, differentiation, proliferation, metabolism, and apoptosis. The relationships between miRNA expression and the onset and progression of different diseases, such as tumours, cardiovascular and rheumatic diseases, and neurological disorders, are well known. A nanotechnology-based approach could match miRNA delivery and detection to move beyond the proof-of-concept stage. Different kinds of nanotechnologies can have a major impact on the diagnosis and treatment of miRNA-related diseases such as cancer. Developing novel methodologies aimed at clinical practice represents a big challenge for the early diagnosis of specific diseases. Within this context, nanotechnology represents a wide emerging area at the forefront of research over the last two decades, whose potential has yet to be fully attained. Nanomedicine, derived from nanotechnology, can exploit the unique properties of nanometer-sized particles for diagnostic and therapeutic purposes. Through nanomedicine, specific treatment to counteract only cancer-cell proliferation will be improved, while leaving healthy cells intact. In this review, we dissect the properties of different nanocarriers and their roles in the early detection and treatment of cancer.
Collapse
|
12
|
Andreou C, Weissleder R, Kircher MF. Multiplexed imaging in oncology. Nat Biomed Eng 2022; 6:527-540. [PMID: 35624151 DOI: 10.1038/s41551-022-00891-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 09/06/2021] [Indexed: 01/24/2023]
Abstract
In oncology, technologies for clinical molecular imaging are used to diagnose patients, establish the efficacy of treatments and monitor the recurrence of disease. Multiplexed methods increase the number of disease-specific biomarkers that can be detected simultaneously, such as the overexpression of oncogenic proteins, aberrant metabolite uptake and anomalous blood perfusion. The quantitative localization of each biomarker could considerably increase the specificity and the accuracy of technologies for clinical molecular imaging to facilitate granular diagnoses, patient stratification and earlier assessments of the responses to administered therapeutics. In this Review, we discuss established techniques for multiplexed imaging and the most promising emerging multiplexing technologies applied to the imaging of isolated tissues and cells and to non-invasive whole-body imaging. We also highlight advances in radiology that have been made possible by multiplexed imaging.
Collapse
Affiliation(s)
- Chrysafis Andreou
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Center for Molecular Imaging and Nanotechnology (CMINT), Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Electrical and Computer Engineering, University of Cyprus, Nicosia, Cyprus
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA. .,Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA. .,Department of Systems Biology, Harvard Medical School, Boston, MA, USA.
| | - Moritz F Kircher
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY, USA.,Department of Imaging, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
13
|
Poly-adenine-mediated spherical nucleic acid probes for live cell fluorescence imaging of tumor-related microRNAs. Mol Biol Rep 2022; 49:3705-3712. [DOI: 10.1007/s11033-022-07210-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 01/27/2022] [Indexed: 11/24/2022]
|
14
|
Kyriazi ME, El-Sagheer AH, Medintz IL, Brown T, Kanaras AG. An Investigation into the Resistance of Spherical Nucleic Acids against DNA Enzymatic Degradation. Bioconjug Chem 2022; 33:219-225. [PMID: 35001632 DOI: 10.1021/acs.bioconjchem.1c00540] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nanoparticles coated with oligonucleotides, also termed spherical nucleic acids (SNAs), are at the forefront of scientific research and have been applied in vitro and in vivo for sensing, gene regulation, and drug delivery. They demonstrate unique properties stemming from the three-dimensional shell of oligonucleotides and present high cellular uptake. However, their resistance to enzymatic degradation is highly dependent on their physicochemical characteristics. In particular, the oligonucleotide loading of SNAs has been determined to be a critical parameter in SNA design. In order to ensure the successful function of SNAs, the degree of oligonucleotide loading has to be quantitatively determined to confirm that a dense oligonucleotide shell has been achieved. However, this can be time-consuming and may lead to multiple syntheses being required to achieve the necessary degree of surface functionalization. In this work we show how this limitation can be overcome by introducing an oligonucleotide modification. By replacing the phosphodiester bond on the oligonucleotide backbone with a phosphorothioate bond, SNAs even with a low DNA loading showed remarkable stability in the presence of nucleases. Furthermore, these chemically modified SNAs exhibited high selectivity and specificity toward the detection of mRNA in cellulo.
Collapse
Affiliation(s)
- Maria-Eleni Kyriazi
- Physics and Astronomy, Faculty of Physical Sciences and Engineering, University of Southampton, Southampton SO171BJ, United Kingdom
- College of Engineering and Technology, American University of the Middle East, Kuwait City, 15453, Kuwait
| | - Afaf H El-Sagheer
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
- Chemistry Branch, Department of Science and Mathematics, Faculty of Petroleum and Mining Engineering, Suez University, Suez 43721, Egypt
| | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Tom Brown
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Antonios G Kanaras
- Physics and Astronomy, Faculty of Physical Sciences and Engineering, University of Southampton, Southampton SO171BJ, United Kingdom
- Institute for Life Science, University of Southampton, Southampton, SO171BJ, United Kingdom
| |
Collapse
|
15
|
Li J, Liu S, Wang J, Liu R, Yang X, Wang K, Huang J. Photocaged amplified FRET nanoflares: spatiotemporal controllable of mRNA-powered nanomachines for precise and sensitive microRNA imaging in live cells. Nucleic Acids Res 2021; 50:e40. [PMID: 34935962 PMCID: PMC9023253 DOI: 10.1093/nar/gkab1258] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 11/24/2021] [Accepted: 12/21/2021] [Indexed: 12/18/2022] Open
Abstract
There is considerable interest in creating a precise and sensitive strategy for in situ visualizing and profiling intracellular miRNA. Present here is a novel photocaged amplified FRET nanoflare (PAFN), which spatiotemporal controls of mRNA-powered nanomachine for precise and sensitive miRNA imaging in live cells. The PAFN could be activated remotely by light, be triggered by specific low-abundance miRNA and fueled by high-abundance mRNA. It offers high spatiotemporal control over the initial activity of nanomachine at desirable time and site, and a ‘one-to-more’ ratiometric signal amplification model. The PAFN, an unprecedented design, is quiescent during the delivery process. However, upon reaching the interest tumor site, it can be selectively activated by light, and then be triggered by specific miRNA, avoiding undesirable early activation and reducing nonspecific signals, allowing precise and sensitive detection of specific miRNA in live cells. This strategy may open new avenues for creating spatiotemporally controllable and endogenous molecule-powered nanomachine, facilitating application at biological and medical imaging.
Collapse
Affiliation(s)
- Jing Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, P.R. China.,School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, P.R. China
| | - Shiyuan Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, P.R. China
| | - Jiaoli Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, P.R. China
| | - Ruiting Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, P.R. China
| | - Xiaohai Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, P.R. China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, P.R. China
| | - Jin Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, P.R. China
| |
Collapse
|
16
|
Gao P, Shen X, Liu X, Cui B, Wang M, Wan X, Li N, Tang B. Covalent Organic Framework-Derived Carbonous Nanoprobes for Cancer Cell Imaging. ACS APPLIED MATERIALS & INTERFACES 2021; 13:41498-41506. [PMID: 34435498 DOI: 10.1021/acsami.1c14998] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Covalent organic frameworks (COFs) have emerged as promising materials for biomedical applications, but their functions remain to be explored and the potential toxicity concerns should be resolved. Herein, it is presented that carbonization significantly enhances the fluorescence quenching efficiency and aqueous stability of nanoscale COFs. The probes prepared by physisorbing dye-labeled nucleic acid recognition sequences onto the carbonized COF nanoparticles (termed C-COF) were employed for cell imaging, which could effectively light up biomarkers (survivin and TK1 mRNA) in living cells. The C-COF has enhanced photothermal conversion capacity, indicating that the probes are also promising candidates for photothermal therapy. The potential toxicity concern from the aromatic rigid building units of COFs was detoured by carbonization. Overall, carbonization is a promising strategy for developing biocompatible and multifunctional COF-derived nanoprobes for biomedical applications. This work may inspire more versatile COF-derived nanoprobes for bioanalysis and nanomedicine.
Collapse
Affiliation(s)
- Peng Gao
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Xiaoying Shen
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Xiaohan Liu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Bingjie Cui
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Mengzhen Wang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Xiuyan Wan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| |
Collapse
|
17
|
Song C, Chen W, Kuang J, Yao Y, Tang S, Zhao Z, Guo X, Shen W, Lee HK. Recent advances in the detection of multiple microRNAs. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116269] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
18
|
Xavier M, Kyriazi ME, Lanham S, Alexaki K, Matthews E, El-Sagheer AH, Brown T, Kanaras AG, Oreffo ROC. Enrichment of Skeletal Stem Cells from Human Bone Marrow Using Spherical Nucleic Acids. ACS NANO 2021; 15:6909-6916. [PMID: 33751885 DOI: 10.1021/acsnano.0c10683] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Human bone marrow (BM)-derived stromal cells contain a population of skeletal stem cells (SSCs), with the capacity to differentiate along the osteogenic, adipogenic, and chondrogenic lineages, enabling their application to clinical therapies. However, current methods to isolate and enrich SSCs from human tissues remain, at best, challenging in the absence of a specific SSC marker. Unfortunately, none of the current proposed markers alone can isolate a homogeneous cell population with the ability to form bone, cartilage, and adipose tissue in humans. Here, we have designed DNA-gold nanoparticles able to identify and sort SSCs displaying specific mRNA signatures. The current approach demonstrates the significant enrichment attained in the isolation of SSCs, with potential therein to enhance our understanding of bone cell biology and translational applications.
Collapse
Affiliation(s)
- Miguel Xavier
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Human Development and Health, Institute of Developmental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, United Kingdom
| | - Maria-Eleni Kyriazi
- School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Stuart Lanham
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Human Development and Health, Institute of Developmental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, United Kingdom
| | - Konstantina Alexaki
- School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Elloise Matthews
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Human Development and Health, Institute of Developmental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, United Kingdom
| | - Afaf H El-Sagheer
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
- Chemistry Branch, Department of Science and Mathematics, Faculty of Petroleum and Mining Engineering, Suez University, Suez 43721, Egypt
| | - Tom Brown
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Antonios G Kanaras
- School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Richard O C Oreffo
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Human Development and Health, Institute of Developmental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| |
Collapse
|
19
|
Jet T, Gines G, Rondelez Y, Taly V. Advances in multiplexed techniques for the detection and quantification of microRNAs. Chem Soc Rev 2021; 50:4141-4161. [PMID: 33538706 DOI: 10.1039/d0cs00609b] [Citation(s) in RCA: 142] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
MicroRNA detection is currently a crucial analytical chemistry challenge: almost 2000 papers were referenced in PubMed in 2018 and 2019 for the keywords "miRNA detection method". MicroRNAs are potential biomarkers for multiple diseases including cancers, neurodegenerative and cardiovascular diseases. Since miRNAs are stably released in bodily fluids, they are of prime interest for the development of non-invasive diagnosis methods, such as liquid biopsies. Their detection is however challenging, as high levels of sensitivity, specificity and robustness are required. The analysis also needs to be quantitative, since the aim is to detect miRNA concentration changes. Moreover, a high multiplexing capability is also of crucial importance, since the clinical potential of miRNAs probably lays in our ability to perform parallel mapping of multiple miRNA concentrations and recognize typical disease signature from this profile. A plethora of biochemical innovative detection methods have been reported recently and some of them provide new solutions to the problem of sensitive multiplex detection. In this review, we propose to analyze in particular the new developments in multiplexed approaches to miRNA detection. The main aspects of these methods (including sensitivity and specificity) will be analyzed, with a particular focus on the demonstrated multiplexing capability and potential of each of these methods.
Collapse
Affiliation(s)
- Thomas Jet
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, CNRS SNC5096, Equipe Labellisée Ligue Nationale Contre le Cancer, F-75006 Paris, France.
| | | | | | | |
Collapse
|
20
|
Li J, Wang J, Liu S, Xie N, Quan K, Yang Y, Yang X, Huang J, Wang K. Amplified FRET Nanoflares: An Endogenous mRNA‐Powered Nanomachine for Intracellular MicroRNA Imaging. Angew Chem Int Ed Engl 2020; 59:20104-20111. [DOI: 10.1002/anie.202008245] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/12/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Jing Li
- State key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province Hunan University Changsha P. R. China
| | - Jiaoli Wang
- State key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province Hunan University Changsha P. R. China
| | - Shiyuan Liu
- State key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province Hunan University Changsha P. R. China
| | - Nuli Xie
- State key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province Hunan University Changsha P. R. China
| | - Ke Quan
- School of Chemistry and Food Engineering Changsha University of Science and Technology Changsha P. R. China
| | - Yanjing Yang
- College of Chemistry and Chemical Engineering Central South University Changsha P. R. China
| | - Xiaohai Yang
- State key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province Hunan University Changsha P. R. China
| | - Jin Huang
- State key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province Hunan University Changsha P. R. China
| | - Kemin Wang
- State key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province Hunan University Changsha P. R. China
| |
Collapse
|
21
|
Li J, Wang J, Liu S, Xie N, Quan K, Yang Y, Yang X, Huang J, Wang K. Amplified FRET Nanoflares: An Endogenous mRNA‐Powered Nanomachine for Intracellular MicroRNA Imaging. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008245] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Jing Li
- State key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province Hunan University Changsha P. R. China
| | - Jiaoli Wang
- State key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province Hunan University Changsha P. R. China
| | - Shiyuan Liu
- State key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province Hunan University Changsha P. R. China
| | - Nuli Xie
- State key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province Hunan University Changsha P. R. China
| | - Ke Quan
- School of Chemistry and Food Engineering Changsha University of Science and Technology Changsha P. R. China
| | - Yanjing Yang
- College of Chemistry and Chemical Engineering Central South University Changsha P. R. China
| | - Xiaohai Yang
- State key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province Hunan University Changsha P. R. China
| | - Jin Huang
- State key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province Hunan University Changsha P. R. China
| | - Kemin Wang
- State key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province Hunan University Changsha P. R. China
| |
Collapse
|
22
|
Zhang Y, Shen X, Li W, Long Z, Ouyang J, Na N. Multi-Dimensionally Extended Functionalization Innovates to an Entropy-Driven Detection of Multi-miRNAs for One-Step Cancer Screening and Diagnosis in Living Cells. Anal Chem 2020; 92:8125-8132. [PMID: 32380833 DOI: 10.1021/acs.analchem.0c00045] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Compared with tedious multi-step detections, multi-functional nanoprobes are effective for one-step screening and diagnosis of cancers by multi-detection of microRNAs (miRNAs). However, limited probe density, spatial mutual interference, and low target-triggered hybridization efficiency of nanoprobes will hinder intracellular applications. Here, for obtaining high loading density but low spatial mutual interference between functional biomolecules on nanoprobes, an extended biofunctionalization in three dimensions (the two-dimensional surface and a special "height" direction) is designed. Therefore, a multi-functional probe is constructed for one-step detection of multi-miRNAs for cancer screening and diagnosis. With linker-bridged multiple single-stranded DNAs swung out rigidly, multi-dimensionally extended upconversion nanorods (ME-UCNRs) covered by chitosan are constructed to load and deliver multiple biomolecules into living cells. Escaping from endolysosomes, ME-UCNRs maintain good biological activities of functionalized DNAs for effective detection of multi-miRNAs in living cells. Thereby, with multiple targets of miRNAs, toehold-mediated entropy-driven strand displacements are employed to give respectively changed fluorescent signals via fluorescence resonance energy transfer. Thus, a universal cancer biomarker of miR-21 and two specific liver-cancer biomarkers (miR-199a and miR-224) are efficiently detected through a one-step detection. By discriminating cancer cells from normal ones and determining liver-cancer cells simultaneously, this work innovates an efficient and definite one-step strategy for fast screening and early cancer diagnosis.
Collapse
Affiliation(s)
- Ying Zhang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xiaotong Shen
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Weixiang Li
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Zi Long
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Jin Ouyang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Na Na
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
23
|
Li Z, Yang H, Hu M, Zhang L, Ge S, Cui K, Yu J. Cathode Photoelectrochemical Paper Device for microRNA Detection Based on Cascaded Photoactive Structures and Hemin/Pt Nanoparticle-Decorated DNA Dendrimers. ACS APPLIED MATERIALS & INTERFACES 2020; 12:17177-17184. [PMID: 32193932 DOI: 10.1021/acsami.9b22558] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this work, a lab-on-paper cathode photoelectrochemical (PEC) sensing platform was constructed for ultrasensitive microRNA-141 (miRNA-141) assay using cascaded multiple photo-active structures as signal generators and hemin/Pt nanoparticle (Pt NP) trunk-branching-decorated DNA dendrimers as signal reinforcers. Specifically, pyramid-like Cu2O was first in situ grown on the Au nanoparticle-functionalized tangled cellulose fibers network, followed by the sensitization of trepang-like BiVO4-Bi2S3 heterostructures, forming the cascaded sensitization structures. Then, the DNA dendrimer was introduced into the photocathode sensing interface by coupling the duplex-specific-nuclease (DSN)-induced target recycling reaction with multiple-branched hybridization chain reaction (MHCR). The programmed target recycling procedures propelled using DSN guaranteed the highly amplified transduction of miRNA-141 to the exposed initiator strand, which triggered the cascaded MHCR accompanied by the formation of the DNA dendrimer with unique trunk-branching structures. Finally, the hemin/Pt NP trunk-branching-decorated DNA dendrimer (HPTD) was acquired by the assembly of Pt NPs and hemin on the trunk and branch, respectively. The resulting HPTD with the synergy catalysis of Pt NPs and hemin could efficiently catalyze the decomposition of H2O2 for in situ generation of O2 as the electron acceptor, leading to an enhanced photocurrent response. Based on the target-dependent photocurrent enhancement, ultrasensitive determination of miRNA-141 was realized with persuasive selectivity, high stability, and excellent reproducibility. Thus, the proposed paper-based cathode PEC sensing platform possessed promising application prospect in clinical miRNA diagnosis.
Collapse
Affiliation(s)
- Zhenglin Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Hongmei Yang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Mengsu Hu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Lina Zhang
- Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan 250022, PR China
| | - Shenguang Ge
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, PR China
| | - Kang Cui
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| |
Collapse
|
24
|
Wang H, Dardir K, Lee KB, Fabris L. Impact of Protein Corona in Nanoflare-Based Biomolecular Detection and Quantification. Bioconjug Chem 2019; 30:2555-2562. [PMID: 31479244 DOI: 10.1021/acs.bioconjchem.9b00495] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Selective detection and precise quantification of biomolecules in intracellular settings play a pivotal role in the diagnostics and therapeutics of diseases, including various cancers and infectious epidemics. Because of this clinical relevance, nanoprobes with high sensitivity, wide tunability, and excellent biological stability have become of high demand. In particular, nanoflares based on gold nanoparticles have emerged as an attractive candidate for intracellular detection due to their efficient cellular uptake, enhanced binding affinity with complementary targets, and improved biological compatibility. However, nanoprobes, including these nanoflares, are known to be susceptible to the adsorption of proteins present in the biological environment, which leads to the formation of a so-called protein corona layer on their surface, leading to an altered targeting efficiency and cellular uptake. In this work, we leverage the nanoflares platform to demonstrate the effect of protein corona on biomolecular detection, quantification, as well as biological stability against enzymatic degradation. Nanoflares incubated in a biologically relevant concentration of serum albumin proteins (0.50 wt %) were shown to result in more than 20% signal reduction in target detection, with a decrease varying proportionally with the protein concentrations. In addition, similar signal reduction was observed for different serum proteins, and PEG backfilling was found to be ineffective in mitigating the negative impact induced by the corona formation. Furthermore, nuclease resistance in nanoflares was also severely compromised by the presence of the corona shell (∼2-fold increase in hydrolysis activity). This work demonstrates the consequences of an in situ formed protein corona layer on molecular detection/quantification and biological stability of nanoflares in the presence of nuclease enzymes, highlighting the importance of calibrating similar nanoprobes in proper biological media to improve the accuracy of molecular detection and quantification.
Collapse
Affiliation(s)
- Hao Wang
- Department of Materials Science and Engineering , Rutgers University , 607 Taylor Road , Piscataway , New Jersey 08854 , United States
| | - Kholud Dardir
- Department of Materials Science and Engineering , Rutgers University , 607 Taylor Road , Piscataway , New Jersey 08854 , United States
| | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology , Rutgers University , 123 Bevier Road , Piscataway , New Jersey 08854 , United States.,Department of Life and Nanopharmaceutical Science, College of Pharmacy , Kyung Hee University , Seoul 02447 , Republic of Korea
| | - Laura Fabris
- Department of Materials Science and Engineering , Rutgers University , 607 Taylor Road , Piscataway , New Jersey 08854 , United States
| |
Collapse
|
25
|
Huang J, Shangguan J, Guo Q, Ma W, Wang H, Jia R, Ye Z, He X, Wang K. Colorimetric and fluorescent dual-mode detection of microRNA based on duplex-specific nuclease assisted gold nanoparticle amplification. Analyst 2019; 144:4917-4924. [PMID: 31313769 DOI: 10.1039/c9an01013k] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
MicroRNAs (miRNAs) are attractive candidates for biomarkers for early cancer diagnosis, and play vital roles in physiological and pathological processes. In this work, we developed a colorimetric and fluorescent dual-mode sensor for miRNA detection based on the optical properties of gold nanoparticles (AuNPs) and the duplex-specific nuclease (DSN)-assisted signal amplification technique. In brief, FAM labelled hairpin probes (HPs) were immobilized on AuNPs, and fluorescence was efficiently quenched by the vicinity of the fluorophores to the AuNPs surface. In the presence of target miRNAs, the HPs could specifically hybridize with miRNAs and the DNA strand in the DNA/RNA heteroduplexes could be subsequently hydrolyzed by DSN. As a result, numbers of fluorophores were released into the solution, resulting in obvious fluorescence signal recovery. Meanwhile, the target miRNAs were able to participate in other hybridization reactions. With the DSN-assisted signal amplification technique, lots of gold nanoparticles were produced with short-chain DNA on their surface, which could aggregate in salt solution and result in a colorimetric detection. The proposed dual-mode strategy offers a sensitive, accurate and selective detection method for miRNAs. One reason is that the stem of the HPs was elaborately designed to avoid hydrolyzation by DSN under optimal conditions, which ensures a relatively low background and high sensitivity. The other is that the dual-mode strategy is more beneficial for enhancing the accuracy and reproducibility of the measurements. Moreover, the unique selective-cutting ability and single-base mismatch differentiation capability of the DSN also give rise to a satisfactory selectivity. This demonstrated that the developed method could quantitatively detect miR-21 down to 50 pM with a linear calibration range from 50 pM to 1 nM, and the analytical assay of target miRNAs in cell lysate samples revealed its great potential for application in biomedical research and clinical diagnostics.
Collapse
Affiliation(s)
- Jin Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China.
| | - Jingfang Shangguan
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China.
| | - Qiuping Guo
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China.
| | - Wenjie Ma
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China.
| | - Huizhen Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China.
| | - Ruichen Jia
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China.
| | - Zi Ye
- High School of Yali, Changsha, Hunan 410007, China
| | - Xiaoxiao He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China.
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China.
| |
Collapse
|
26
|
Moros M, Kyriazi ME, El-Sagheer AH, Brown T, Tortiglione C, Kanaras AG. DNA-Coated Gold Nanoparticles for the Detection of mRNA in Live Hydra Vulgaris Animals. ACS APPLIED MATERIALS & INTERFACES 2019; 11:13905-13911. [PMID: 30525369 DOI: 10.1021/acsami.8b17846] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Advances in nanoparticle design have led to the development of nanoparticulate systems that can sense intracellular molecules, alter cellular processes, and release drugs to specific targets in vitro. In this work, we demonstrate that oligonucleotide-coated gold nanoparticles are suitable for the detection of mRNA in live Hydra vulgaris, a model organism, without affecting the animal's integrity. We specifically focus on the detection of Hymyc1 mRNA, which is responsible for the regulation of the balance between stem cell self-renewal and differentiation. Myc deregulation is found in more than half of human cancers, thus the ability to detect in vivo related mRNAs through innovative fluorescent systems is of outmost interest.
Collapse
Affiliation(s)
- Maria Moros
- Istituto di Scienze Applicate e Sistemi Intelligenti "E.Caianiello" , Consiglio Nazionale delle Ricerche , Pozzuoli 80078 , Italy
| | | | - Afaf H El-Sagheer
- Department of Chemistry , University of Oxford , Chemistry Research Laboratory, 12 Mansfield Road , Oxford OX1 3TA , United Kingdom
- Chemistry Branch, Department of Science and Mathematics, Faculty of Petroleum and Mining Engineering , Suez University , Suez 43721 , Egypt
| | - Tom Brown
- Department of Chemistry , University of Oxford , Chemistry Research Laboratory, 12 Mansfield Road , Oxford OX1 3TA , United Kingdom
| | - Claudia Tortiglione
- Istituto di Scienze Applicate e Sistemi Intelligenti "E.Caianiello" , Consiglio Nazionale delle Ricerche , Pozzuoli 80078 , Italy
| | | |
Collapse
|
27
|
Chenab KK, Eivazzadeh-Keihan R, Maleki A, Pashazadeh-Panahi P, Hamblin MR, Mokhtarzadeh A. Biomedical applications of nanoflares: Targeted intracellular fluorescence probes. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2019; 17:342-358. [PMID: 30826476 PMCID: PMC6520197 DOI: 10.1016/j.nano.2019.02.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/08/2019] [Accepted: 02/11/2019] [Indexed: 12/16/2022]
Abstract
Nanoflares are intracellular probes consisting of oligonucleotides immobilized on various nanoparticles that can recognize intracellular nucleic acids or other analytes, thus releasing a fluorescent reporter dye. Single-stranded DNA (ssDNA) complementary to mRNA for a target gene is constructed containing a 3'-thiol for binding to gold nanoparticles. The ssDNA "recognition sequence" is prehybridized to a shorter DNA complement containing a fluorescent dye that is quenched. The functionalized gold nanoparticles are easily taken up into cells. When the ssDNA recognizes its complementary target, the fluorescent dye is released inside the cells. Different intracellular targets can be detected by nanoflares, such as mRNAs coding for genes over-expressed in cancer (epithelial-mesenchymal transition, oncogenes, thymidine kinase, telomerase, etc.), intracellular levels of ATP, pH values and inorganic ions can also be measured. Advantages include high transfection efficiency, enzymatic stability, good optical properties, biocompatibility, high selectivity and specificity. Multiplexed assays and FRET-based systems have been designed.
Collapse
Affiliation(s)
- Karim Khanmohammadi Chenab
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Reza Eivazzadeh-Keihan
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Paria Pashazadeh-Panahi
- Department of Biochemistry and Biophysics, Metabolic Disorders Research Center, Gorgan Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Golestan Province, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA; Department of Dermatology, Harvard Medical School, Boston, MA, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA.
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biotechnology, Higher Education Institute of Rab-Rashid, Tabriz, Iran.
| |
Collapse
|
28
|
Yang Y, Zhong S, Wang K, Huang J. Gold nanoparticle based fluorescent oligonucleotide probes for imaging and therapy in living systems. Analyst 2019; 144:1052-1072. [DOI: 10.1039/c8an02070a] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Gold nanoparticles (AuNPs) with unique physical and chemical properties have become an integral part of research in nanoscience.
Collapse
Affiliation(s)
- Yanjing Yang
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha
- PR China
- State Key Laboratory of Chemo/Biosensing and Chemometrics
| | - Shian Zhong
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha
- PR China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
- Changsha 410082
| | - Jin Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
- Changsha 410082
| |
Collapse
|
29
|
Fang H, Xie N, Ou M, Huang J, Li W, Wang Q, Liu J, Yang X, Wang K. Detection of Nucleic Acids in Complex Samples via Magnetic Microbead-Assisted Catalyzed Hairpin Assembly and “DD–A” FRET. Anal Chem 2018; 90:7164-7170. [DOI: 10.1021/acs.analchem.8b01330] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Hongmei Fang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Nuli Xie
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Min Ou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Jin Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Wenshan Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Qing Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Jianbo Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Xiaohai Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| |
Collapse
|
30
|
Yu J, He S, Shao C, Zhao H, Li J, Tian L. A common anchor facilitated GO-DNA nano-system for multiplex microRNA analysis in live cells. NANOSCALE 2018; 10:7067-7076. [PMID: 29616255 DOI: 10.1039/c8nr00364e] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The design of a nano-system for the detection of intracellular microRNAs is challenging as it must fulfill complex requirements, i.e., it must have a high sensitivity to determine the dynamic expression level, a good reliability for multiplex and simultaneous detection, and a satisfactory biostability to work in biological environments. Instead of employing a commonly used physisorption or a full-conjugation strategy, here, a GO-DNA nano-system was developed under graft/base-pairing construction. The common anchor sequence was chemically grafted to GO to base-pair with various microRNA probes; and the hybridization with miRNAs drives the dyes on the probes to leave away from GO, resulting in "turned-on" fluorescence. This strategy not only simplifies the synthesis but also efficiently balances the loading yields of different probes. Moreover, the conjugation yield of GO with a base-paired hybrid has been improved by more than two-fold compared to that of the conjugation with a single strand. We demonstrated that base-paired DNA probes could be efficiently delivered into cells along with GO and are properly stabilized by the conjugated anchor sequence. The resultant GO-DNA nano-system exhibited high stability in a complex biological environment and good resistance to nucleases, and was able to accurately discriminate various miRNAs without cross-reaction. With all of these positive features, the GO-DNA nano-system can simultaneously detect three miRNAs and monitor their dynamic expression levels.
Collapse
Affiliation(s)
- Jiantao Yu
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd., Nanshan District, Shenzhen, Guangdong 518055, P. R. China.
| | | | | | | | | | | |
Collapse
|
31
|
He D, Wong KW, Dong Z, Li HW. Recent progress in live cell mRNA/microRNA imaging probes based on smart and versatile nanomaterials. J Mater Chem B 2018; 6:7773-7793. [DOI: 10.1039/c8tb02285b] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We summarize the recent progress in live cell mRNA/miRNA imaging probes based on various versatile nanomaterials, describing their structures and their working principles of bio-imaging applications.
Collapse
Affiliation(s)
- Dinggeng He
- Department of Chemistry
- Hong Kong Baptist University
- Kowloon Tong
- China
- State Key Laboratory of Developmental Biology of Freshwater Fish
| | - Ka-Wang Wong
- Department of Chemistry
- Hong Kong Baptist University
- Kowloon Tong
- China
| | - Zhenzhen Dong
- Department of Chemistry
- Hong Kong Baptist University
- Kowloon Tong
- China
| | - Hung-Wing Li
- Department of Chemistry
- Hong Kong Baptist University
- Kowloon Tong
- China
| |
Collapse
|