1
|
Tang X, Han Y, Zhou W, Shen W, Wang Y. A FRET Based Composite Sensing Material Based on UCNPs and Rhodamine Derivative for Highly Sensitive and Selective Detection of Fe 3. J Fluoresc 2023; 33:2219-2228. [PMID: 37004623 DOI: 10.1007/s10895-023-03223-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/21/2023] [Indexed: 04/04/2023]
Abstract
The existence of excessive concentration of iron ion (Fe3+) in water will do harm to the environment and biology. Presently, sensitive and selective determination of Fe3+ directly in real environment samples is still a challenging job because of the high complexity of the sample matrix. In this work, we reported a new sensor system for Fe3+ based on fluorescence resonance energy transfer (FRET) from upconversion nanoparticles (UCNPs) to Rhodamine derivative probe (RhB). The NaYF4: Yb, Er@SiO2@P(NIPAM-co-RhB) nanocomposites was constructed, in which PNIPAm was used as the probe carrier. The nanocomposites can not only be excited by infrared light to avoid the interference of background light in the Fe3+ detection process, but also enhance the detection signal output through temperature control. Under the optimum conditions, the RSD (Relative standard deviation) of actual sample measurements ranges was from 1.95% to 4.96%, with the recovery rate from 97.4% to 103.3%, which showed high reliability for Fe3+ detection. This work could be extended to sensing other target ions or molecules and may promote the widespread use of FRET technique.
Collapse
Affiliation(s)
- Xu Tang
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| | - Yunlong Han
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Wencheng Zhou
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Wenjing Shen
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Yemei Wang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China
| |
Collapse
|
2
|
Wang H, Wei Z, Zhao Y, Wang S, Cao L, Wang F, Liu K, Sun Y. Engineered rare-earth nanomaterials for fluorescence imaging and therapy. RSC Adv 2023; 13:27512-27519. [PMID: 37720837 PMCID: PMC10500252 DOI: 10.1039/d3ra02503a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 08/26/2023] [Indexed: 09/19/2023] Open
Abstract
Early diagnosis and treatment are of great significance for hindering the progression of brain disease. The limited effects of available treatments and poor prognosis are currently the most pressing problems faced by clinicians and their patients. Therefore, developing new diagnosis and treatment programs for brain diseases is urgently needed. Near-infrared (NIR)-light-responsive, lanthanide-doped upconversion nanoparticles (UCNPs) provide great advantages both in diagnosis and therapy. Hence, we synthesised nanoparticles comprised of a UCNPs core with surface functionalization. UCNPs@Au was used for NIR fluorescence imaging in the brain and inhibiting the growth of mouse glioma 261 (GL261) cells depending on photothermal properties. In addition, a UCNPs core and a mesoporous silica layer as the outer shell with a tannic acid-Al3+ ions (TA-Al) complex as a "gatekeeper" were used for pH-triggered doxorubicin/small interfering ribonucleic acid delivery in vitro. Based on our preliminary results, we expect to develop more multifunctional nanoscale diagnostic and therapeutic agents based on UCNPs for the diagnosis and treatment of brain diseases, including Alzheimer's disease, Parkinson's disease, and brain tumours.
Collapse
Affiliation(s)
- Hongru Wang
- Department of Neurology, Liaocheng People's Hospital Liaocheng Shandong 252000 China
- Department of Neurology, Qilu Hospital of Shandong University Jinan Shandong 250012 China
| | - Zheng Wei
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun 130022 China
| | - Yangyang Zhao
- Department of Chemistry, Tsinghua University Beijing 100084 China
| | - Shidong Wang
- Musculoskeletal Tumor Center, Peking University People's Hospital Beijing 100044 China
| | - Lili Cao
- Department of Neurology, Qilu Hospital of Shandong University Jinan Shandong 250012 China
| | - Fan Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun 130022 China
| | - Kai Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun 130022 China
- Department of Chemistry, Tsinghua University Beijing 100084 China
| | - Yanfei Sun
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun 130022 China
| |
Collapse
|
3
|
Kaur M, Maurizio SL, Mandl GA, Capobianco JA. Achieving photostability in dye-sensitized upconverting nanoparticles and their use in Fenton type photocatalysis. NANOSCALE 2023; 15:13583-13594. [PMID: 37552506 DOI: 10.1039/d3nr02845c] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Dye sensitization is a promising approach to enhance the luminescence of lanthanide-doped upconverting nanoparticles. However, the poor photostability of near-infrared dyes hampers their use in practical applications. To address this, commercial IR820 was modified for improved photostability and covalently bonded to amine-functionalized silica-coated LnUCNPs. Two methods of covalent linking were investigated: linking the dye to the surface of the silica shell, and embedding the dye within the silica shell. The photostability of the dyes when embedded in the silica shell exhibited upconversion emissions from NaGdF4:Er3+,Yb3+/NaGdF4:Yb3+ nanoparticles for over four hours of continuous excitation with no change in intensity. To highlight this improvement, the photostable dye-embedded system was successfully utilized for Fenton-type photocatalysis, emphasizing its potential for practical applications. Overall, this study presents a facile strategy to circumvent the overlooked limitations associated with photodegradation, opening up new possibilities for the use of dye-sensitized lanthanide-doped upconverting nanoparticles in a range of fields.
Collapse
Affiliation(s)
- Mannu Kaur
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, Concordia University, 7141 Sherbrooke St W., Montreal, QC, H4B 1R6, Canada.
| | - Steven L Maurizio
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, Concordia University, 7141 Sherbrooke St W., Montreal, QC, H4B 1R6, Canada.
| | - Gabrielle A Mandl
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, Concordia University, 7141 Sherbrooke St W., Montreal, QC, H4B 1R6, Canada.
| | - John A Capobianco
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, Concordia University, 7141 Sherbrooke St W., Montreal, QC, H4B 1R6, Canada.
| |
Collapse
|
4
|
Zhao X, He S, Li B, Liu B, Shi Y, Cong W, Gao F, Li J, Wang F, Liu K, Sheng C, Su J, Hu HG. DUCNP@Mn-MOF/FOE as a Highly Selective and Bioavailable Drug Delivery System for Synergistic Combination Cancer Therapy. NANO LETTERS 2023; 23:863-871. [PMID: 36651872 DOI: 10.1021/acs.nanolett.2c04042] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Heterostructures comprising lanthanide-doped upconversion nanoparticles (DUCNPs) and metal-organic frameworks (MOFs) are emerging as promising nanosystems for integrating medical diagnosis and treatment. Here, the DUCNP@Mn-MOF nanocarrier was developed, which showed good efficiency for loading and delivering a cytotoxic antitumor agent (3-F-10-OH-evodiamine, FOE). The combined advantages of the pH-responsive and peroxidase-like properties of Mn-MOF and the unique optical features of DUCNPs granted the DUCNP@Mn-MOF/FOE system synergistic chemodynamic and chemotherapeutic effects. The DUCNP@Mn-MOF nanocarrier effectively overcame the intrinsic limitations of FOE, such as its unfavorable physicochemical properties and limited in vivo potency. This complexed nanosystem was responsive to the tumor microenvironment and showed excellent tumor targeting capability. Thus, DUCNP@Mn-MOF/FOE exhibited highly selective and bioavailable drug delivery properties and is promising for cancer therapy. In a mouse breast cancer model, DUCNP@Mn-MOF/FOE inhibited tumor growth without significant toxicity. Therefore, the proposed nanosystem represents a promising theragnostic platform for multimodal combination diagnosis and therapy of tumors.
Collapse
Affiliation(s)
- Xiaoyuan Zhao
- Department of Physics, College of Sciences, Institute of Translational Medicine, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Shipeng He
- Department of Physics, College of Sciences, Institute of Translational Medicine, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Bo Li
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Bin Liu
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| | - Yejiao Shi
- Department of Physics, College of Sciences, Institute of Translational Medicine, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Wei Cong
- Department of Physics, College of Sciences, Institute of Translational Medicine, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Fei Gao
- Department of Physics, College of Sciences, Institute of Translational Medicine, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Jingjing Li
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| | - Fan Wang
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| | - Kai Liu
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Chunquan Sheng
- School of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Juanjuan Su
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong-Gang Hu
- Department of Physics, College of Sciences, Institute of Translational Medicine, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| |
Collapse
|
5
|
Mohanty S, Premcheska S, Verduijn J, Rijckaert H, Skirtach AG, Van Hecke K, Kaczmarek AM. Dual-mode vehicles with simultaneous thermometry and drug release properties based on hollow Y 2O 3:Er,Yb and Y 2O 2SO 4:Er,Yb spheres. RSC Adv 2022; 12:33239-33250. [PMID: 36425207 PMCID: PMC9677065 DOI: 10.1039/d2ra06162g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/14/2022] [Indexed: 07/28/2023] Open
Abstract
Employing luminescence thermometry in the biomedical field is undeniably appealing as many health conditions are accompanied by temperature changes. In this work, we show our ongoing efforts and results at designing novel vehicles for dual-mode thermometry and pH-dependent drug release based on hollow spheres. Hereby for that purpose, we exploit the hollow Y2O3 and Y2O2SO4 host materials. These two inorganic hollow phosphors were investigated and showed to have excellent upconversion Er3+-Yb3+ luminescence properties and could be effectively used as optical temperature sensors in the physiological temperature range when induced by near-infrared CW light (975 nm). Further, doxorubicin was exploited as a model anti-cancer drug to monitor the pH-dependent drug release of these materials showing that they can be used for simultaneous thermometry and drug delivery applications.
Collapse
Affiliation(s)
- Sonali Mohanty
- NanoSensing Group, Department of Chemistry, Ghent University Krijgslaan 281-S3, 9000 Ghent Belgium
- XStruct, Department of Chemistry, Ghent University Krijgslaan 281-S3, 9000 Ghent Belgium
| | - Simona Premcheska
- NanoSensing Group, Department of Chemistry, Ghent University Krijgslaan 281-S3, 9000 Ghent Belgium
- NanoBiotechnology Group, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University Proeftuinstraat 86, 9000 Ghent Belgium
| | - Joost Verduijn
- NanoBiotechnology Group, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University Proeftuinstraat 86, 9000 Ghent Belgium
| | - Hannes Rijckaert
- SCRiPTS, Department of Chemistry, Ghent University Krijgslaan 281-S3, 9000 Ghent Belgium
| | - Andre G Skirtach
- NanoBiotechnology Group, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University Proeftuinstraat 86, 9000 Ghent Belgium
| | - Kristof Van Hecke
- XStruct, Department of Chemistry, Ghent University Krijgslaan 281-S3, 9000 Ghent Belgium
| | - Anna M Kaczmarek
- NanoSensing Group, Department of Chemistry, Ghent University Krijgslaan 281-S3, 9000 Ghent Belgium
| |
Collapse
|
6
|
Ma Y, Xiao F, Lu C, Wen L. Multifunctional Nanosystems Powered Photodynamic Immunotherapy. Front Pharmacol 2022; 13:905078. [PMID: 35645842 PMCID: PMC9130658 DOI: 10.3389/fphar.2022.905078] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 04/25/2022] [Indexed: 12/19/2022] Open
Abstract
Photodynamic Therapy (PDT) with the intrinsic advantages including non-invasiveness, spatiotemporal selectivity, low side-effects, and immune activation ability has been clinically approved for the treatment of head and neck cancer, esophageal cancer, pancreatic cancer, prostate cancer, and esophageal squamous cell carcinoma. Nevertheless, the PDT is only a strategy for local control of primary tumor, that it is hard to remove the residual tumor cells and inhibit the tumor metastasis. Recently, various smart nanomedicine-based strategies are developed to overcome the barriers of traditional PDT including the drawbacks of traditional photosensitizers, limited tissue penetrability of light, inefficient induction of tumor cell death and tumor resistance to the therapy. More notably, a growing number of studies have focused on improving the therapeutic efficiency by eliciting host immune system with versatile nanoplatforms, which heralds a broader clinical application prospect of PDT in the future. Herein, the pathways of PDT induced-tumor destruction, especially the host immune response is summarized, and focusing on the recent progress of nanosystems-enhanced PDT through eliciting innate immunity and adaptive immunity. We expect it will provide some insights for conquering the drawbacks current PDT and expand the range of clinical application through this review.
Collapse
Affiliation(s)
- Yunong Ma
- Medical College, Guangxi University, Nanning, China
- Zhuhai Precision Medical Center, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated With Jinan University), Jinan University, Zhuhai, China
| | - Fengfeng Xiao
- Zhuhai Precision Medical Center, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated With Jinan University), Jinan University, Zhuhai, China
| | - Cuixia Lu
- Medical College, Guangxi University, Nanning, China
- *Correspondence: Cuixia Lu, ; Liewei Wen,
| | - Liewei Wen
- Zhuhai Precision Medical Center, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated With Jinan University), Jinan University, Zhuhai, China
- *Correspondence: Cuixia Lu, ; Liewei Wen,
| |
Collapse
|
7
|
Ebrahimnejad P, Sodagar Taleghani A, Asare-Addo K, Nokhodchi A. An updated review of folate-functionalized nanocarriers: A promising ligand in cancer. Drug Discov Today 2021; 27:471-489. [PMID: 34781032 DOI: 10.1016/j.drudis.2021.11.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/27/2021] [Accepted: 11/09/2021] [Indexed: 12/18/2022]
Abstract
The uncontrolled release of drugs in conventional drug delivery systems has led to the introduction of new nanotechnology-based drug delivery systems and the use of targeted nanocarriers for cancer treatment. These targeted nanocarriers, which consist of intelligent nanoparticles modified with targeting ligands, can deliver drugs to specified locations at the right time and reduce drug doses to prevent side effects. Folate is a suitable targeting ligand for folate receptors overexpressed on cancer cells and has shown promising results in the diagnosis and treatment of cancer. In this review, we highlight the latest developments on the use of folate-conjugated nanoparticles in cancer diagnosis and treatment. Moreover, the toxicity, biocompatibility and efficacy of these nanocarriers are discussed.
Collapse
Affiliation(s)
- Pedram Ebrahimnejad
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran; Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Arezoo Sodagar Taleghani
- Department of Petroleum and Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Kofi Asare-Addo
- Department of Pharmacy, University of Huddersfield, Huddersfield, UK
| | - Ali Nokhodchi
- Pharmaceutics Research Laboratory, School of Life Sciences, University of Sussex, Brighton, UK.
| |
Collapse
|
8
|
Wang X, She M, Gu W, Bu Y, Yan X. Structures, plasmon-enhanced luminescence, and applications of heterostructure phosphors. Phys Chem Chem Phys 2021; 23:20765-20794. [PMID: 34545869 DOI: 10.1039/d1cp01860d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Heterostructure phosphor composites have been used widely in the fields of targeted bio-probes and bio-imaging, hyperthermia treatment, photocatalysis, solar cells, and fingerprint identification. The structures, plasmon-enhanced luminescence and mechanism of metal/fluorophore heterostructure composites, such as core-shell nanocrystals, multilayers, adhesion, islands, arrays, and composite optical glass, are reviewed in detail. Their extended applications were explored widely since the surface plasmon resonance effect increased the up-conversion efficiency of fluorophores significantly. We summarize their synthesis methods, size and shape control, absorption and excitation spectra, plasmon-enhanced up-conversion luminescence, and specific applications. The most important results acquired in each case are summarized, and the main challenges that need to be overcome are discussed.
Collapse
Affiliation(s)
- Xiangfu Wang
- College of Electronic and Optical Engineering & College of Microelectronics, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China. .,State Key Laboratory of Green Building Materials, China Building Materials Academy, No. 1 Guanzhuang Dongli, Chaoyang District, Beijing 100024, China
| | - Min She
- College of Electronic and Optical Engineering & College of Microelectronics, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China.
| | - Wenqin Gu
- College of Electronic and Optical Engineering & College of Microelectronics, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China.
| | - Yanyan Bu
- College of Electronic and Optical Engineering & College of Microelectronics, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China. .,College of Science, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China.
| | - Xiaohong Yan
- College of Electronic and Optical Engineering & College of Microelectronics, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China.
| |
Collapse
|
9
|
Liu YQ, Qin LY, Li HJ, Wang YX, Zhang R, Shi JM, Wu JH, Dong GX, Zhou P. Application of lanthanide-doped upconversion nanoparticles for cancer treatment: a review. Nanomedicine (Lond) 2021; 16:2207-2242. [PMID: 34533048 DOI: 10.2217/nnm-2021-0214] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
With the excellent ability to transform near-infrared light to localized visible or UV light, thereby achieving deep tissue penetration, lanthanide ion-doped upconversion nanoparticles (UCNP) have emerged as one of the most striking nanoscale materials for more effective and safer cancer treatment. Up to now, UCNPs combined with photosensitive components have been widely used in the delivery of chemotherapy drugs, photodynamic therapy and photothermal therapy. Applications in these directions are reviewed in this article. We also highlight microenvironmental tumor monitoring and precise targeted therapies. Then we briefly summarize some new trends and the existing challenges for UCNPs. We hope this review can provide new ideas for future cancer treatment based on UCNPs.
Collapse
Affiliation(s)
- Yu-Qi Liu
- School & Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, PR China
| | - Li-Ying Qin
- School & Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, PR China
| | - Hong-Jiao Li
- School & Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, PR China
| | - Yi-Xi Wang
- School & Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, PR China
| | - Rui Zhang
- School & Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, PR China
| | - Jia-Min Shi
- School & Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, PR China
| | - Jin-Hua Wu
- Department of Materials Science, School of Physical Science & Technology, Key Laboratory of Special Function Materials & Structure Design of Ministry of Education, Lanzhou University, Lanzhou, 730000, PR China
| | - Gen-Xi Dong
- School & Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, PR China
| | - Ping Zhou
- School & Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, PR China
| |
Collapse
|
10
|
Dash BS, Das S, Chen JP. Photosensitizer-Functionalized Nanocomposites for Light-Activated Cancer Theranostics. Int J Mol Sci 2021; 22:6658. [PMID: 34206318 PMCID: PMC8268703 DOI: 10.3390/ijms22136658] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 12/16/2022] Open
Abstract
Photosensitizers (PSs) have received significant attention recently in cancer treatment due to its theranostic capability for imaging and phototherapy. These PSs are highly responsive to light source of a suitable wavelength for image-guided cancer therapy from generated singlet oxygen and/or thermal heat. Various organic dye PSs show tremendous attenuation of tumor cells during cancer treatment. Among them, porphyrin and chlorophyll-based ultraviolet-visible (UV-Vis) dyes are employed for photodynamic therapy (PDT) by reactive oxygen species (ROS) and free radicals generated with 400-700 nm laser lights, which have poor tissue penetration depth. To enhance the efficacy of PDT, other light sources such as red light laser and X-ray have been suggested; nonetheless, it is still a challenging task to improve the light penetration depth for deep tumor treatment. To overcome this deficiency, near infrared (NIR) (700-900 nm) PSs, indocyanine green (ICG), and its derivatives like IR780, IR806 and IR820, have been introduced for imaging and phototherapy. These NIR PSs have been used in various cancer treatment modality by combining photothermal therapy (PTT) and/or PDT with chemotherapy or immunotherapy. In this review, we will focus on the use of different PSs showing photothermal/photodynamic response to UV-Vis or NIR-Vis light. The emphasis is a comprehensive review of recent smart design of PS-loaded nanocomposites for targeted delivery of PSs in light-activated combination cancer therapy.
Collapse
Affiliation(s)
- Banendu Sunder Dash
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan; (B.S.D.); (S.D.)
| | - Suprava Das
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan; (B.S.D.); (S.D.)
| | - Jyh-Ping Chen
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan; (B.S.D.); (S.D.)
- Craniofacial Research Center, Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Linkou, Kwei-San, Taoyuan 33305, Taiwan
- Research Center for Food and Cosmetic Safety, Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33305, Taiwan
- Department of Materials Engineering, Ming Chi University of Technology, Tai-Shan, New Taipei City 24301, Taiwan
| |
Collapse
|
11
|
Bao G, Wen S, Lin G, Yuan J, Lin J, Wong KL, Bünzli JCG, Jin D. Learning from lanthanide complexes: The development of dye-lanthanide nanoparticles and their biomedical applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213642] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
12
|
Paliwal SR, Kenwat R, Maiti S, Paliwal R. Nanotheranostics for Cancer Therapy and Detection: State of the Art. Curr Pharm Des 2020; 26:5503-5517. [PMID: 33200696 DOI: 10.2174/1381612826666201116120422] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 08/09/2020] [Indexed: 11/22/2022]
Abstract
Nanotheranostics, an approach of combining both diagnosis and therapy, is one of the latest advances in cancer therapy particularly. Nanocarriers designed and derived from inorganic materials such as like gold nanoparticles, silica nanoparticles, magnetic nanoparticles and carbon nanotubes have been explored for tremendous applications in this area. Similarly, nanoparticles composed of some organic material alone or in combination with inorganic nano-cargos have been developed pre-clinically and possess excellent features desired. Photothermal therapy, MRI, simultaneous imaging and delivery, and combination chemotherapy with a diagnosis are a few of the known methods exploring cancer therapy and detection at organ/tissue/molecular/sub-cellular level. This review comprises an overview of the recent reports meant for nano theranostics purposes. Targeted cancer nanotheranostics have been included for understating tumor micro-environment or cell-specific targeting approach employed. A brief account of various strategies is also included for the readers highlighting the mechanism of cancer therapy.
Collapse
Affiliation(s)
- Shivani Rai Paliwal
- SLT Institute of Pharmaceutical Sciences, Guru Ghasidas University, Bilapsur, CG, India
| | - Rameshroo Kenwat
- Nanomedicine and Bioengineering Research Laboratory, Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, MP, India
| | - Sabyasachi Maiti
- Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, MP, India
| | - Rishi Paliwal
- Nanomedicine and Bioengineering Research Laboratory, Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, MP, India
| |
Collapse
|
13
|
Lim K, Kim HK, Le XT, Nguyen NT, Lee ES, Oh KT, Choi HG, Youn YS. Highly Red Light-Emitting Erbium- and Lutetium-Doped Core-Shell Upconverting Nanoparticles Surface-Modified with PEG-Folic Acid/TCPP for Suppressing Cervical Cancer HeLa Cells. Pharmaceutics 2020; 12:E1102. [PMID: 33212942 PMCID: PMC7698343 DOI: 10.3390/pharmaceutics12111102] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 12/21/2022] Open
Abstract
Photodynamic therapy (PDT) combined with upconverting nanoparticles (UCNPs) are viewed together as an effective method of ablating tumors. After absorbing highly tissue-penetrating near-infrared (NIR) light, UCNPs emit a shorter wavelength light (~660 nm) suitable for PDT. In this study, we designed and prepared highly red fluorescence-emitting silica-coated core-shell upconverting nanoparticles modified with polyethylene glycol (PEG5k)-folic acid and tetrakis(4-carboxyphenyl)porphyrin (TCPP) (UCNPs@SiO2-NH2@FA/PEG/TCPP) as an efficient photodynamic agent for killing tumor cells. The UCNPs consisted of two simple lanthanides, erbium and lutetium, as the core and shell, respectively. The unique core-shell combination enabled the UCNPs to emit red light without green light. TCPP, folic acid, and PEG were conjugated to the outer silica layer of UCNPs as a photosensitizing agent, a ligand for tumor attachment, and a dispersing stabilizer, respectively. The prepared UCNPs of ~50 nm diameter and -34.5 mV surface potential absorbed 808 nm light and emitted ~660 nm red light. Most notably, these UCNPs were physically well dispersed and stable in the aqueous phase due to PEG attachment and were able to generate singlet oxygen (1O2) with a high efficacy. The HeLa cells were treated with each UCNP sample (0, 1, 5, 10, 20, 30 μg/mL as a free TCPP). The results showed that the combination of UCNPs@SiO2-NH2@FA/PEG/TCPP and the 808 nm laser was significantly cytotoxic to HeLa cells, almost to the same degree as naïve TCPP plus the 660 nm laser based on MTT and Live/Dead assays. Furthermore, the UCNPs@SiO2-NH2@FA/PEG/TCPP was well internalized into HeLa cells and three-dimensional HeLa spheroids, presumably due to the surface folic acid and small size in conjunction with endocytosis and the nonspecific uptake. We believe that our UCNPs@SiO2-NH2@FA/PEG/TCPP will serve as a new platform for highly efficient and deep-penetrating photodynamic agents suitable for various tumor treatments.
Collapse
Affiliation(s)
- Kyungseop Lim
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Korea; (K.L.); (H.K.K.); (X.T.L.); (N.T.N.)
| | - Hwang Kyung Kim
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Korea; (K.L.); (H.K.K.); (X.T.L.); (N.T.N.)
| | - Xuan Thien Le
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Korea; (K.L.); (H.K.K.); (X.T.L.); (N.T.N.)
| | - Nguyen Thi Nguyen
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Korea; (K.L.); (H.K.K.); (X.T.L.); (N.T.N.)
| | - Eun Seong Lee
- Division of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon, Gyeonggi-do 14662, Korea;
| | - Kyung Taek Oh
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Korea;
| | - Han-Gon Choi
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, Korea;
| | - Yu Seok Youn
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Korea; (K.L.); (H.K.K.); (X.T.L.); (N.T.N.)
| |
Collapse
|
14
|
Lin SL, Chen HC, Chang CA. Enhancing Förster Resonance Energy Transfer (FRET) Efficiency of Titania-Lanthanide Hybrid Upconversion Nanomaterials by Shortening the Donor-Acceptor Distance. NANOMATERIALS 2020; 10:nano10102035. [PMID: 33076441 PMCID: PMC7602594 DOI: 10.3390/nano10102035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/09/2020] [Accepted: 10/13/2020] [Indexed: 12/14/2022]
Abstract
Several robust titania (TiO2) coated core/multishell trivalent lanthanide (Ln) upconversion nanoparticles (UCNPs) hybrid architecture designs have been reported for use in photodynamic therapy (PDT) against cancer, utilizing the near-infrared (NIR) excited energy down-shifting and up-conversion chain of Nd3+ (λ793-808 nm) → Yb3+ (λ980 nm) → Tm3+(λ475 nm) → TiO2 to produce reactive oxygen species (ROS) for deep tissue-penetrating oxidative cytotoxicity, e.g., NaLnF4:Yb,Tm (Ln = Y, Gd). Herein, we demonstrate that by doping the Tm3+ emitter ions in the outer shell and the Nd3+ sensitizer ions in the core, the newly designed NaYF4:Nd,Yb@Yb@Yb,Tm@TiO2 hybrid UCNPs exert more ROS production than the reference NaYF4:Yb,Tm@Yb@Nd,Yb@ TiO2 with the Tm3+ ions in the core and the Nd3+ ions in the outer shell, upon 793 nm laser irradiation, primarily due to the shortening of the Tm3+-TiO2 distance of the former with greater Förster resonance energy transfer (FRET) efficiency. After coating with polyallylamine hydrochloride (PAH)/polyethylene glycol folate (PEG-FA), the resulting NaYF4:Nd,Yb@Yb@Yb,Tm@TiO2-PAH-PEG-FA hybrid nanocomposites could be internalized in MDA-MB-231 cancer cells, which also show low dark cytotoxicity and effective photocytotoxicity upon 793 nm excitation. These nanocomposites could be further optimized and are potentially good candidates as nanotheranostics, as well as for other light-conversion applications.
Collapse
Affiliation(s)
- Syue-Liang Lin
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei 112, Taiwan;
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei 112, Taiwan
- Department of Biomedical Engineering, National Yang-Ming University, Taipei 112, Taiwan
- Biomedical Engineering Research and Development Center, National Yang-Ming University, Taipei 112, Taiwan
- Correspondence: (S.-L.L.); (C.A.C.)
| | - Han-Chun Chen
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei 112, Taiwan;
| | - Cheng Allen Chang
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei 112, Taiwan;
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei 112, Taiwan
- Biomedical Engineering Research and Development Center, National Yang-Ming University, Taipei 112, Taiwan
- Correspondence: (S.-L.L.); (C.A.C.)
| |
Collapse
|
15
|
Liu B, Sun J, Zhu J, Li B, Ma C, Gu X, Liu K, Zhang H, Wang F, Su J, Yang Y. Injectable and NIR-Responsive DNA-Inorganic Hybrid Hydrogels with Outstanding Photothermal Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2004460. [PMID: 32830376 DOI: 10.1002/adma.202004460] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/21/2020] [Indexed: 06/11/2023]
Abstract
Surgical excision is one of the main treatments for malignant tumors. However, high risk of tumour recurrence is a major challenge. Near-infrared (NIR)-light-induced tumor photothermal therapy has been studied, while its clinical applications are still restricted due to the limited therapeutic effects. To address this, here, a novel NIR-light-responsive and injectable DNA-mediated upconversion and Au nanoparticle hybrid (DNA-UCNP-Au) hydrogel is developed. Due to the confined and concentrated environment induced by the interaction between adjacent DNA strands and UCNP-Au NPs, an ultrastrong photothermal effect is observed. A photothermal efficiency as high as 42.7% is realized in the hydrogel, which is superior to pristine inorganic particles. Upon direct peritumoral injection of the hydrogel and with the treatment of 808 nm laser irradiation, tumors are eradicated and no recurrence is observed. Meanwhile, there are no side effects on normal tissues due to the local treatment. Taking advantage of the high phototherapeutic effect, biocompatibility, and flexible operability in this system, a novel approach for malignant tumor therapy is demonstrated.
Collapse
Affiliation(s)
- Bin Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- Department of Urology, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Jing Sun
- Institute of Organic Chemistry I, University of Ulm, Albert-Einstein-Allee 11, Ulm, 89081, Germany
| | - Junjie Zhu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, 200433, China
| | - Bo Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Chao Ma
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Xinquan Gu
- Department of Urology, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Kai Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Fan Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Juanjuan Su
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | - Yang Yang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, 200433, China
| |
Collapse
|
16
|
Yang X, Liu Y, Chen H, Wang L. Sensitive detection of sulfide ions in red region based on luminescence resonance energy transfer between upconversion nanoparticles and dye-670. LUMINESCENCE 2020; 36:110-116. [PMID: 32725690 DOI: 10.1002/bio.3927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 07/17/2020] [Accepted: 07/24/2020] [Indexed: 11/10/2022]
Abstract
Many sulfides are toxic substances that easily harm the respiratory tract, therefore affecting respiratory function or damaging other organs of the body, leading to its failure. Therefore, there is a pressing need to develop methods for sensitive detection of sulfur ions (S2- ). Based on luminescence resonance energy transfer (LRET) theory, we report the construction of a near-infrared (NIR) excitation luminescence probe using NaGdF4 :Yb3+ ,Er3+ @NaYF4 upconversion nanoparticles (UCNPs) as the donor and dye-670 as the receptor for detection of S2- . When UCNPs and dye-670 molecules were combined using ligand exchange and electrostatic attraction, LRET occurred and UCNP luminescence was quenched. When S2- was added to the system, sulfide ions were able to destroy the double bond of the dye, inhibiting LRET and restoring UCNP luminescence. Under optimum condition, the linear range of S2- detection was 0.65-18.2 μM, and the detection limit was 34.2 nM. This method was applied for determination of S2- in water with satisfactory results.
Collapse
Affiliation(s)
- Xueping Yang
- Anhui Key Laboratory of Chemo-Biosensing, Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, China
| | - Yunchun Liu
- Anhui Key Laboratory of Chemo-Biosensing, Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, China
| | - Hongqi Chen
- Anhui Key Laboratory of Chemo-Biosensing, Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, China
| | - Lun Wang
- Anhui Key Laboratory of Chemo-Biosensing, Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, China
| |
Collapse
|
17
|
Turn-on detection of glutathione S-transferase based on luminescence resonance energy transfer between near-infrared to near-infrared core-shell upconversion nanoparticles and organic dye. Anal Bioanal Chem 2020; 412:5843-5851. [PMID: 32691084 DOI: 10.1007/s00216-020-02808-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 06/24/2020] [Accepted: 07/06/2020] [Indexed: 10/23/2022]
Abstract
Glutathione S-transferase (GST) is a detoxification enzyme of the liver and kidney. Based on the toxicological effect of GST, it is of great significance to develop a rapid and sensitive detection method for GST. In this work, a new luminescence resonance energy transfer (LRET) system has been designed to detect glutathione S-transferase in the near-infrared (NIR) region by utilizing NaGdF4:Yb3+,Tm3+@NaYF4 upconversion nanoparticles (UCNPs) as the donor and NIR dye-806@Glutathione (IR806@GSH) as the acceptor. NaGdF4:Yb3+,Tm3+@NaYF4 UCNPs were synthesized by a coprecipitation method and surface modification of NOBF4. The donor (positively charged) interacted with the acceptor (negatively charged) via electrostatic interactions to bring them into close proximity; then, LRET occurred and the luminescence was quenched. In the presence of GST, GST can specifically interact with the GSH of IR806@GSH molecule, making IR806@GSH far away from the donor surface, inhibiting the LRET, and restoring the luminescence of the UCNPs. There was a good linear relationship between the luminescence recovery intensity of UCNPs and GST concentration, ranging from 0.11 to 14.19 nM, and the detection of limit was 0.06 nM. The method has been used in the detection of GST in human serum samples and is expected to have potential applications in the biological field. Graphical abstract A luminescence resonance energy transfer system was developed for determination of glutathione S-transferase in the near-infrared region by utilizing NaGdF4:Yb3+,Tm3+@NaYF4 upconversion nanoparticles as the donor and NIR dye-806@Glutathione as the acceptor.
Collapse
|
18
|
Jogdand A, Alvi SB, Rajalakshmi PS, Rengan AK. NIR-dye based mucoadhesive nanosystem for photothermal therapy in breast cancer cells. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 208:111901. [PMID: 32480202 DOI: 10.1016/j.jphotobiol.2020.111901] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 03/27/2020] [Accepted: 05/15/2020] [Indexed: 12/19/2022]
Abstract
Breast cancer is one of the leading causes of mortality in women, worldwide. The average survival rate of patients suffering from advanced breast cancer is about 27% for five years. Photothermal therapy employing biodegradable nanoparticle are extensively researched for enhanced anticancer therapy in breast cancer treatment. In the current study, we report a chitosan based mucoadherant and biodegradable niosome nanoparticle entrapping near infrared (NIR) dye (IR 806) for the treatment of breast cancer. Niosome entrapping IR 806 (NioIR) showed encapsulation efficacy of about 56 ± 2%. The prepared nanoparticles (NioIR) were further coated with chitosan (NioIR-C) to impart mucoadhesive property to the nanosystem. NioIR-C showed minimal degradation following NIR laser irradiation, thus enhancing its photothermal stability. They also exhibited efficient photothermal transduction, when compared with IR 806 dye. NioIR-C were biocompatible when treated with normal cell lines (NIH 3T3 and L929) and showed cytotoxicity towards breast cancer cell lines (MCF-7 and MDA-MB 231). When triggered with NIR laser, NioIR-C showed photothermal cell death (approximately 93%). The presence of chitosan coating on NioIR led to mucoadherence potential that further enhances the therapeutic effect on breast cancer cells when compared with IR 806 dye and NioIR. Thus NioIR-C can be a promising nanosystem for effective treatment of breast cancer using photothermal therapy.
Collapse
Affiliation(s)
- Anil Jogdand
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Telangana 502285, India
| | - Syed Baseeruddin Alvi
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Telangana 502285, India
| | - P S Rajalakshmi
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Telangana 502285, India
| | - Aravind Kumar Rengan
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Telangana 502285, India.
| |
Collapse
|
19
|
Fan Q, Cui X, Guo H, Xu Y, Zhang G, Peng B. Application of rare earth-doped nanoparticles in biological imaging and tumor treatment. J Biomater Appl 2020; 35:237-263. [DOI: 10.1177/0885328220924540] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Rare earth-doped nanoparticles have been widely used in disease diagnosis, drug delivery, tumor therapy, and bioimaging. Among various bioimaging methods, the fluorescence imaging technology based on the rare earth-doped nanoparticles can visually display the cell activity and lesion evolution in living animals, which is a powerful tool in biological technology and has being widely applied in medical and biological fields. Especially in the band of near infrared (700–1700 nm), the emissions show the characteristics of deep penetration due to low absorption, low photon scattering, and low autofluorescence interference. Furthermore, the rare earth-doped nanoparticles can be endowed with the water solubility, biocompatibility, drug-loading ability, and the targeting ability for different tumors by surface functionalization. This confirms its potential in the cancer diagnosis and treatment. In this review, we summarized the recent progress in the application of rare earth-doped nanoparticles in the field of bioimaging and tumor treatment. The luminescent mechanism, properties, and structure design were also discussed.
Collapse
Affiliation(s)
- Qi Fan
- State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Science (CAS), Xi’an, Shaanxi, PR China
- University of Chinese Academy of Sciences (UCAS), Beijing, PR China
| | - Xiaoxia Cui
- State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Science (CAS), Xi’an, Shaanxi, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, PR China
| | - Haitao Guo
- State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Science (CAS), Xi’an, Shaanxi, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, PR China
| | - Yantao Xu
- State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Science (CAS), Xi’an, Shaanxi, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, PR China
| | - Guangwei Zhang
- Zhejiang Fountain Aptitude Technology Inc., Hangzhou, Zhejiang, PR China
| | - Bo Peng
- State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Science (CAS), Xi’an, Shaanxi, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, PR China
| |
Collapse
|
20
|
Lin SL, Chang CA. Optimising FRET-efficiency of Nd 3+-sensitised upconversion nanocomposites by shortening the emitter-photosensitizer distance. NANOSCALE 2020; 12:8742-8749. [PMID: 32307477 DOI: 10.1039/d0nr01821j] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Nd3+-Sensitised luminescent upconversion nanoparticles (UCNPs) have gained interest recently as theranostics due to their near-infrared (NIR) light excitation with a better tissue penetration depth. One example is the core/shell design NaYF4:Yb,Er@Nd,Yb. When harvesting the upconversion energy in such architectures, the long emitter-photosensitizer (i.e. Er3+-PS) distances lead to inefficient Förster resonance energy transfer (FRET). Herein, we report a new nanocomposite NaYF4:Nd,Yb@Yb@Yb,Er@Y with Nd3+ ions in the core and Er3+ ions in the shell to shorten the Er-PS distance to achieve better FRET. Furthermore, an outer non-emitting protective Y3+ shell and a conducting Yb3+ shell reduced surface quenching and Er3+-to-Nd3+ energy back transfer effects, respectively. The upconversion FRET and downshifting emission efficiencies were simultaneously optimised by adjusting the thickness of the Y3+ shell, and the FRET efficiency was at least 3.7 times that of the reference NaYF4:Yb,Er@Yb@Nd,Yb@Y in a photodynamic therapy (PDT) model.
Collapse
Affiliation(s)
- Syue-Liang Lin
- Department of Biotechnology and Laboratory Science in Medicine, Department of Biomedical Imaging and Radiological Sciences, Biomedical Engineering Research and Development Center, Biophotonics & Molecular Imaging Research Center. National Yang-Ming University, Taipei 122, Taiwan.
| | | |
Collapse
|
21
|
Jiang X, Wang Y, Xu D, Lin B, Yang F, Lv R. Lanthanide-Based Nanocomposites for Photothermal Therapy under Near-Infrared Laser: Relationship between Light and Heat, Biostability, and Reaction Temperature. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:4033-4043. [PMID: 32188251 DOI: 10.1021/acs.langmuir.0c00343] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In this research, typical organic/inorganic photothermal therapy (PTT) agents were designed with a combination of upconversion luminescent (UCL) or near-infrared (NIR) II imaging rare-earth nanomaterials for photo-acoustic (PA)/UCL/NIR II imaging-guided PTT under NIR laser irradiation. The results show the following: (1) The PTT effect mainly comes from NIR absorption and partly from UCL light conversion. (2) Visible UCL emission is mainly quenched by NIR absorption of the coated PTT agent and partly quenched by visible absorption, indicating that excitation may play a more important role than in the UCL emission process. (3) The biostability of the composite might be decided by the synthesis reaction temperature. Among the five inorganic/organic nanocomposites, UCNP@MnO2 is the most suitable candidate for cancer diagnosis and treatment because of its stimuli-response ability to the micro-acid environment of tumor cells and highest biostability. The composites generate heat for PTT after entering the tumor cells, and then, the visible light emission gradually regains as MnO2 is reduced to colorless Mn2+ ions, thereby illuminating the cancer cells after the therapy.
Collapse
Affiliation(s)
- Xue Jiang
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, P.R. China
| | - Yanxing Wang
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, P.R. China
| | - Danyang Xu
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, P.R. China
| | - Bi Lin
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, P.R. China
| | - Fan Yang
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, P.R. China
| | - Ruichan Lv
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, P.R. China
| |
Collapse
|
22
|
Chen CC, Chang DY, Li JJ, Chan HW, Chen JT, Chang CH, Liu RS, Chang CA, Chen CL, Wang HE. Investigation of biodistribution and tissue penetration of PEGylated gold nanostars and their application for photothermal cancer treatment in tumor-bearing mice. J Mater Chem B 2020; 8:65-77. [DOI: 10.1039/c9tb02194a] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PEGylated gold nanostars (pAuNSs) and their radioactive surrogate (111In–DTPA–pAuNS), with unique physiochemical properties, are thought to be a promising agent for image-guided photothermal therapy (PTT).
Collapse
Affiliation(s)
- Chao-Cheng Chen
- National Yang-Ming University
- Department of Biomedical Imaging and Radiological Sciences
- Taipei
- Taiwan
| | - Deng-Yuan Chang
- National Yang-Ming University
- Department of Biomedical Imaging and Radiological Sciences
- Taipei
- Taiwan
| | - Jia-Je Li
- National Yang-Ming University
- Department of Biomedical Imaging and Radiological Sciences
- Taipei
- Taiwan
| | - Hui-Wen Chan
- National Yang-Ming University
- Department of Biomedical Imaging and Radiological Sciences
- Taipei
- Taiwan
| | | | | | - Ren-Shyan Liu
- National Yang-Ming University
- Department of Biomedical Imaging and Radiological Sciences
- Taipei
- Taiwan
- National Yang-Ming University
| | - C. Allen Chang
- National Yang-Ming University
- Department of Biomedical Imaging and Radiological Sciences
- Taipei
- Taiwan
- National Yang-Ming University
| | - Chuan-Lin Chen
- National Yang-Ming University
- Department of Biomedical Imaging and Radiological Sciences
- Taipei
- Taiwan
| | - Hsin-Ell Wang
- National Yang-Ming University
- Department of Biomedical Imaging and Radiological Sciences
- Taipei
- Taiwan
| |
Collapse
|
23
|
Zhang X, Chen W, Xie X, Li Y, Chen D, Chao Z, Liu C, Ma H, Liu Y, Ju H. Boosting Luminance Energy Transfer Efficiency in Upconversion Nanoparticles with an Energy‐Concentrating Zone. Angew Chem Int Ed Engl 2019; 58:12117-12122. [DOI: 10.1002/anie.201906380] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/28/2019] [Indexed: 12/25/2022]
Affiliation(s)
- Xiaobo Zhang
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| | - Weiwei Chen
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| | - Xiaoyu Xie
- Institute of Theoretical and Computational Chemistry DepartmentSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| | - Yuyi Li
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| | - Desheng Chen
- School of Chemistry and Chemical EngineeringShaanxi Normal University Xi'an 710062 China
| | - Zhicong Chao
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| | - Chenghui Liu
- School of Chemistry and Chemical EngineeringShaanxi Normal University Xi'an 710062 China
| | - Haibo Ma
- Institute of Theoretical and Computational Chemistry DepartmentSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| | - Ying Liu
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| |
Collapse
|
24
|
Zhang X, Chen W, Xie X, Li Y, Chen D, Chao Z, Liu C, Ma H, Liu Y, Ju H. Boosting Luminance Energy Transfer Efficiency in Upconversion Nanoparticles with an Energy‐Concentrating Zone. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906380] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Xiaobo Zhang
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| | - Weiwei Chen
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| | - Xiaoyu Xie
- Institute of Theoretical and Computational Chemistry DepartmentSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| | - Yuyi Li
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| | - Desheng Chen
- School of Chemistry and Chemical EngineeringShaanxi Normal University Xi'an 710062 China
| | - Zhicong Chao
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| | - Chenghui Liu
- School of Chemistry and Chemical EngineeringShaanxi Normal University Xi'an 710062 China
| | - Haibo Ma
- Institute of Theoretical and Computational Chemistry DepartmentSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| | - Ying Liu
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 China
| |
Collapse
|
25
|
Wang Y, Zhang W, Sun P, Cai Y, Xu W, Fan Q, Hu Q, Han W. A Novel Multimodal NIR-II Nanoprobe for the Detection of Metastatic Lymph Nodes and Targeting Chemo-Photothermal Therapy in Oral Squamous Cell Carcinoma. Theranostics 2019; 9:391-404. [PMID: 30809282 PMCID: PMC6376191 DOI: 10.7150/thno.30268] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 12/09/2018] [Indexed: 12/13/2022] Open
Abstract
Current surgical treatment for oral squamous cell carcinoma (OSCC) must be as precise as possible to fully resect tumors and preserve functional tissues. Thus, it is urgent to develop efficient fluorescent probes to clearly identify tumor delineation, as well as metastatic lymph nodes. Chemo-photothermal therapy combination attracted a growing attention to increase anti-tumor effect in various types of cancer, including OSCC. In the present study, we designed a multimodal NIR-II probe that involves combining photothermal therapy with chemotherapy, imaging OSCC tumors and detecting metastatic lymph nodes. Methods: In this study, we synthesized a novel near infrared (NIR)-II probe named TQTPA [4,4'-((6,7-bis(4-(hexyloxy)phenyl)-[1,2,5]thiadiazolo [3,4-g]quinoxaline-4,9-diyl)bis(thiophene-5,2-diyl))bis(N,N-diphenylaniline)] via the Suzuki reaction and prepared multimodal nanoparticles (NPs) loading TQTPA and cis-dichlorodiammine platinum (CDDP) (HT@CDDP) by hyaluronic acid. The characteristics of the NPs, including their photothermal and imaging capabilities were investigated in vitro and in vivo. Their anti-tumor efficacy was evaluated using orthotopic, tongue tumor-bearing, nude mice. Results: The NPs possessed good stability and water solubility and were pH/hyaluronidase sensitive. The good tissue penetration quality and active targeting ability enabled the NPs to draw the outline of orthotopic tongue tumors and metastatic lymph nodes as small as 1 mm in nude mice by IR-808 under NIR exposure. In vitro and in vivo experiments validated the biocompatibility and low systematic toxicity of the NPs. At the same time, the NPs acted as multimodal therapy agents, combining photothermal therapy with chemotherapy. Conclusion: With a good imaging capability and anti-tumor efficacy, our NPs successfully outlined orthotopic tongue tumors and metastatic lymph nodes as well as enabled chemo-photothermal therapy combination. Our study established a solid foundation for the application of new clinical diagnosis and treatment patterns in the future.
Collapse
Affiliation(s)
- Yufeng Wang
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, No 30 Zhongyang Road, Nanjing 210008, China
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, No 22 Hankou Road, Nanjing 210093, China
| | - Wansu Zhang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, No 9 Wenyuan Road, Nanjing 210023, China
| | - Pengfei Sun
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, No 9 Wenyuan Road, Nanjing 210023, China
| | - Yu Cai
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, No 22 Hankou Road, Nanjing 210093, China
| | - Wenguang Xu
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, No 30 Zhongyang Road, Nanjing 210008, China
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, No 22 Hankou Road, Nanjing 210093, China
| | - Quli Fan
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, No 9 Wenyuan Road, Nanjing 210023, China
| | - Qingang Hu
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, No 30 Zhongyang Road, Nanjing 210008, China
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, No 22 Hankou Road, Nanjing 210093, China
| | - Wei Han
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, No 30 Zhongyang Road, Nanjing 210008, China
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, No 22 Hankou Road, Nanjing 210093, China
| |
Collapse
|