1
|
Galindo EJ, Flores RR, Mejia-Alvarez R, Willis AM, Tartis MS. Simultaneous High-Frame-Rate Acoustic Plane-Wave and Optical Imaging of Intracranial Cavitation in Polyacrylamide Brain Phantoms during Blunt Force Impact. Bioengineering (Basel) 2024; 11:132. [PMID: 38391618 DOI: 10.3390/bioengineering11020132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/20/2024] [Accepted: 01/25/2024] [Indexed: 02/24/2024] Open
Abstract
Blunt and blast impacts occur in civilian and military personnel, resulting in traumatic brain injuries necessitating a complete understanding of damage mechanisms and protective equipment design. However, the inability to monitor in vivo brain deformation and potential harmful cavitation events during collisions limits the investigation of injury mechanisms. To study the cavitation potential, we developed a full-scale human head phantom with features that allow a direct optical and acoustic observation at high frame rates during blunt impacts. The phantom consists of a transparent polyacrylamide material sealed with fluid in a 3D-printed skull where windows are integrated for data acquisition. The model has similar mechanical properties to brain tissue and includes simplified yet key anatomical features. Optical imaging indicated reproducible cavitation events above a threshold impact energy and localized cavitation to the fluid of the central sulcus, which appeared as high-intensity regions in acoustic images. An acoustic spectral analysis detected cavitation as harmonic and broadband signals that were mapped onto a reconstructed acoustic frame. Small bubbles trapped during phantom fabrication resulted in cavitation artifacts, which remain the largest challenge of the study. Ultimately, acoustic imaging demonstrated the potential to be a stand-alone tool, allowing observations at depth, where optical techniques are limited.
Collapse
Affiliation(s)
- Eric J Galindo
- Department of Chemical Engineering, New Mexico Institute of Mining and Technology, Socorro, NM 87801, USA
| | - Riley R Flores
- Department of Chemical Engineering, New Mexico Institute of Mining and Technology, Socorro, NM 87801, USA
| | - Ricardo Mejia-Alvarez
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Adam M Willis
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI 48824, USA
- 59th Medical Wing, Office of the Chief Scientist, Lackland AFB, San Antonio, TX 78236, USA
| | - Michaelann S Tartis
- Department of Chemical Engineering, New Mexico Institute of Mining and Technology, Socorro, NM 87801, USA
| |
Collapse
|
2
|
Keyvani V, Mollazadeh S, Riahi E, Mahmoudian RA, Tabari M, Lagzian E, Ghorbani E, Akbarzade H, Gholami AS, Gataa IS, Hassanian SM, Ferns GA, Khazaei M, Avan A, Anvari K. The Application of Nanotechnological Therapeutic Platforms against Gynecological Cancers. Curr Pharm Des 2024; 30:975-987. [PMID: 38500284 DOI: 10.2174/0113816128291955240306112558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/20/2024] [Indexed: 03/20/2024]
Abstract
Gynecological cancers (GCs), ovarian, cervical, and endometrial/uterine cancers, are often associated with poor outcomes. Despite the development of several therapeutic modalities against GCs, the effectiveness of the current therapeutic approaches is limited due to their side effects, low therapeutic index, short halflife, and resistance to therapy. To overcome these limitations, nano delivery-based approaches have been introduced with the potential of targeted delivery, reduced toxicity, controlled release, and improved bioavailability of various cargos. This review summarizes the application of different nanoplatforms, such as lipid-based, metal- based, and polymeric nanoparticles, to improve the chemo/radio treatments of GC. In the following work, the use of nanoformulated agents to fight GCs has been mentioned in various clinical trials. Although nanosystems have their own challenges, the knowledge highlighted in this article could provide deep insight into translations of NPs approaches to overcome GCs.
Collapse
Affiliation(s)
- Vahideh Keyvani
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samaneh Mollazadeh
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Espanta Riahi
- Blood Borne Infections Research Center, Academic Center for Education, Culture and Research (ACECR), Mashhad, Iran
- Department of Biology, Islamic Azad University, Mashhad Branch, Mashhad, Iran
| | - Reihaneh Alsadat Mahmoudian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Masoomeh Tabari
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elmira Lagzian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elnaz Ghorbani
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamed Akbarzade
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir-Sadra Gholami
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton & Sussex Medical School, Falmer, Brighton, Sussex BN1 9PH, UK
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane 4059, Australia
| | - Kazem Anvari
- Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Kaykanat SI, Uguz AK. The role of acoustofluidics and microbubble dynamics for therapeutic applications and drug delivery. BIOMICROFLUIDICS 2023; 17:021502. [PMID: 37153864 PMCID: PMC10162024 DOI: 10.1063/5.0130769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 03/18/2023] [Indexed: 05/10/2023]
Abstract
Targeted drug delivery is proposed to reduce the toxic effects of conventional therapeutic methods. For that purpose, nanoparticles are loaded with drugs called nanocarriers and directed toward a specific site. However, biological barriers challenge the nanocarriers to convey the drug to the target site effectively. Different targeting strategies and nanoparticle designs are used to overcome these barriers. Ultrasound is a new, safe, and non-invasive drug targeting method, especially when combined with microbubbles. Microbubbles oscillate under the effect of the ultrasound, which increases the permeability of endothelium, hence, the drug uptake to the target site. Consequently, this new technique reduces the dose of the drug and avoids its side effects. This review aims to describe the biological barriers and the targeting types with the critical features of acoustically driven microbubbles focusing on biomedical applications. The theoretical part covers the historical developments in microbubble models for different conditions: microbubbles in an incompressible and compressible medium and bubbles encapsulated by a shell. The current state and the possible future directions are discussed.
Collapse
Affiliation(s)
- S. I. Kaykanat
- Department of Chemical Engineering, Boğaziçi University, 34342 Bebek, Istanbul, Türkiye
| | | |
Collapse
|
4
|
Armenia I, Cuestas Ayllón C, Torres Herrero B, Bussolari F, Alfranca G, Grazú V, Martínez de la Fuente J. Photonic and magnetic materials for on-demand local drug delivery. Adv Drug Deliv Rev 2022; 191:114584. [PMID: 36273514 DOI: 10.1016/j.addr.2022.114584] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/26/2022] [Accepted: 10/16/2022] [Indexed: 02/06/2023]
Abstract
Nanomedicine has been considered a promising tool for biomedical research and clinical practice in the 21st century because of the great impact nanomaterials could have on human health. The generation of new smart nanomaterials, which enable time- and space-controlled drug delivery, improve the limitations of conventional treatments, such as non-specific targeting, poor biodistribution and permeability. These smart nanomaterials can respond to internal biological stimuli (pH, enzyme expression and redox potential) and/or external stimuli (such as temperature, ultrasound, magnetic field and light) to further the precision of therapies. To this end, photonic and magnetic nanoparticles, such as gold, silver and iron oxide, have been used to increase sensitivity and responsiveness to external stimuli. In this review, we aim to report the main and most recent systems that involve photonic or magnetic nanomaterials for external stimulus-responsive drug release. The uniqueness of this review lies in highlighting the versatility of integrating these materials within different carriers. This leads to enhanced performance in terms of in vitro and in vivo efficacy, stability and toxicity. We also point out the current regulatory challenges for the translation of these systems from the bench to the bedside, as well as the yet unresolved matter regarding the standardization of these materials.
Collapse
Affiliation(s)
- Ilaria Armenia
- BioNanoSurf Group, Instituto de Nanociencia y Materiales de Aragón (INMA,CSIC-UNIZAR), Edificio I +D, 50018 Zaragoza, Spain.
| | - Carlos Cuestas Ayllón
- BioNanoSurf Group, Instituto de Nanociencia y Materiales de Aragón (INMA,CSIC-UNIZAR), Edificio I +D, 50018 Zaragoza, Spain
| | - Beatriz Torres Herrero
- BioNanoSurf Group, Instituto de Nanociencia y Materiales de Aragón (INMA,CSIC-UNIZAR), Edificio I +D, 50018 Zaragoza, Spain
| | - Francesca Bussolari
- BioNanoSurf Group, Instituto de Nanociencia y Materiales de Aragón (INMA,CSIC-UNIZAR), Edificio I +D, 50018 Zaragoza, Spain
| | - Gabriel Alfranca
- BioNanoSurf Group, Instituto de Nanociencia y Materiales de Aragón (INMA,CSIC-UNIZAR), Edificio I +D, 50018 Zaragoza, Spain
| | - Valeria Grazú
- BioNanoSurf Group, Instituto de Nanociencia y Materiales de Aragón (INMA,CSIC-UNIZAR), Edificio I +D, 50018 Zaragoza, Spain; Centro de Investigación Biomédica em Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Avenida Monforte de Lemos, 3-5, 28029 Madrid, Spain.
| | - Jesús Martínez de la Fuente
- BioNanoSurf Group, Instituto de Nanociencia y Materiales de Aragón (INMA,CSIC-UNIZAR), Edificio I +D, 50018 Zaragoza, Spain; Centro de Investigación Biomédica em Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Avenida Monforte de Lemos, 3-5, 28029 Madrid, Spain.
| |
Collapse
|
5
|
Bhattacharjee R, Dey T, Kumar L, Kar S, Sarkar R, Ghorai M, Malik S, Jha NK, Vellingiri B, Kesari KK, Pérez de la Lastra JM, Dey A. Cellular landscaping of cisplatin resistance in cervical cancer. Biomed Pharmacother 2022; 153:113345. [PMID: 35810692 DOI: 10.1016/j.biopha.2022.113345] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 12/11/2022] Open
Abstract
Cervical cancer (CC) caused by human papillomavirus (HPV) is one of the largest causes of malignancies in women worldwide. Cisplatin is one of the widely used drugs for the treatment of CC is rendered ineffective owing to drug resistance. This review highlights the cause of resistance and the mechanism of cisplatin resistance cells in CC to develop therapeutic ventures and strategies that could be utilized to overcome the aforementioned issue. These strategies would include the application of nanocarries, miRNA, CRIPSR/Cas system, and chemotherapeutics in synergy with cisplatin to not only overcome the issues of drug resistance but also enhance its anti-cancer efficiency. Moreover, we have also discussed the signaling network of cisplatin resistance cells in CC that would provide insights to develop therapeutic target sites and inhibitors. Furthermore, we have discussed the role of CC metabolism on cisplatin resistance cells and the physical and biological factors affecting the tumor microenvironments.
Collapse
Affiliation(s)
- Rahul Bhattacharjee
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar 751024, Odisha, India
| | - Tanima Dey
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar 751024, Odisha, India
| | - Lamha Kumar
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram 695551, Kerala, India
| | - Sulagna Kar
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar 751024, Odisha, India
| | - Ritayan Sarkar
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar 751024, Odisha, India
| | - Mimosa Ghorai
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, West Bengal, India
| | - Sumira Malik
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, Jharkhand 834001, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida, Uttar Pradesh 201310, India; Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun 248007, India; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali 140413, India.
| | - Balachandar Vellingiri
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641-046, India
| | - Kavindra Kumar Kesari
- Department of Applied Physics, School of Science, Aalto University, Espoo 00076, Finland; Department of Bio-products and Bio-systems, School of Chemical Engineering, Aalto University, Espoo 00076, Finland
| | - José M Pérez de la Lastra
- Biotechnology of Macromolecules, Instituto de Productos Naturales y Agrobiología, IPNA (CSIC), Avda. Astrofísico Francisco Sánchez, 3, 38206 San Cristóbal de la Laguna (Santa Cruz de Tenerife), Spain.
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, West Bengal, India.
| |
Collapse
|
6
|
Huang L, Yang J, Wang T, Gao J, Xu D. Engineering of small-molecule lipidic prodrugs as novel nanomedicines for enhanced drug delivery. J Nanobiotechnology 2022; 20:49. [PMID: 35073914 PMCID: PMC8785568 DOI: 10.1186/s12951-022-01257-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/10/2022] [Indexed: 12/31/2022] Open
Abstract
AbstractA widely established prodrug strategy can effectively optimize the unappealing properties of therapeutic agents in cancer treatment. Among them, lipidic prodrugs extremely uplift the physicochemical properties, site-specificity, and antitumor activities of therapeutic agents while reducing systemic toxicity. Although great perspectives have been summarized in the progress of prodrug-based nanoplatforms, no attention has been paid to emphasizing the rational design of small-molecule lipidic prodrugs (SLPs). With the aim of outlining the prospect of the SLPs approach, the review will first provide an overview of conjugation strategies that are amenable to SLPs fabrication. Then, the rational design of SLPs in response to the physiological barriers of chemotherapeutic agents is highlighted. Finally, their biomedical applications are also emphasized with special functions, followed by a brief introduction of the promising opportunities and potential challenges of SLPs-based drug delivery systems (DDSs) in clinical application.
Graphical Abstract
Collapse
|
7
|
Honda Y, Nomoto T, Matsui M, Takemoto H, Miura Y, Nishiyama N. Sequentially Self-Assembled Nanoreactor Comprising Tannic Acid and Phenylboronic Acid-Conjugated Polymers Inducing Tumor-Selective Enzymatic Activity. ACS APPLIED MATERIALS & INTERFACES 2021; 13:54850-54859. [PMID: 34756033 DOI: 10.1021/acsami.1c20188] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The construction of enzyme delivery systems, which can control enzymatic activity at a target site, is important for efficient enzyme-prodrug therapy/diagnosis. Herein we report a facile technique to construct a systemically applicable β-galactosidase (β-Gal)-loaded ternary complex comprising tannic acid (TA) and phenylboronic acid-conjugated polymers through sequential self-assembly in aqueous solution. At physiological conditions, the ternary complex exhibited a hydrodynamic diameter of ∼40 nm and protected the loaded β-Gal from unfavorable degradation by proteinase. Upon cellular internalization, the ternary complex recovered β-Gal activity by releasing the loaded β-Gal. The intravenously injected ternary complex thereby delivered β-Gal to the target tumor in a subcutaneous tumor model and exerted enhanced and selective enzymatic activity at the tumor site. Sequential self-assembly with TA and phenylboronic acid-conjugated polymers may offer a novel approach for enzyme-prodrug theragnosis.
Collapse
Affiliation(s)
- Yuto Honda
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Takahiro Nomoto
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Makoto Matsui
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Hiroyasu Takemoto
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Yutaka Miura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Nobuhiro Nishiyama
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
- Innovation Center of Nanomedicine (iCONM), Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| |
Collapse
|
8
|
Gao J, Logan KA, Nesbitt H, Callan B, McKaig T, Taylor M, Love M, McHale AP, Griffith DM, Callan JF. A single microbubble formulation carrying 5-fluorouridine, Irinotecan and oxaliplatin to enable FOLFIRINOX treatment of pancreatic and colon cancer using ultrasound targeted microbubble destruction. J Control Release 2021; 338:358-366. [PMID: 34481018 DOI: 10.1016/j.jconrel.2021.08.050] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/23/2021] [Accepted: 08/30/2021] [Indexed: 01/05/2023]
Abstract
FOLFIRINOX and FOLFOXIRI are combination chemotherapy treatments that incorporate the same drug cocktail (folinic acid, 5-fluorouracil, oxaliplatin and irinotecan) but exploit an altered dosing regimen when used in the management of pancreatic and colorectal cancer, respectively. Both have proven effective in extending life when used to treat patients with metastatic disease but are accompanied by significant adverse effects. To facilitate improved tumour-targeting of this drug combination, an ultrasound responsive microbubble formulation loaded with 5-fluorouridine, irinotecan and oxaliplatin (FIRINOX MB) was developed and its efficacy tested, together with the non-toxic folinic acid, in preclinical murine models of pancreatic and colorectal cancer. A significant improvement in tumour growth delay was observed in both models following ultrasound targeted microbubble destruction (UTMD) mediated FIRINOX treatment with pancreatic tumours 189% and colorectal tumours 82% smaller at the conclusion of the study when compared to animals treated with a standard dose of FOLFIRINOX. Survival prospects were also improved for animals in the UTMD mediated FIRINOX treatment group with an average survival of 22.17 ± 12.19 days (pancreatic) and 44.40 ± 3.85 days (colorectal) compared to standard FOLFIRINOX treatment (15.83 ± 4.17 days(pancreatic) and 37.50 ± 7.72 days (colon)). Notably, this improved efficacy was achieved using FIRINOX MB that contained 5-fluorouricil, irinotecan and oxaliplatin loadings that were 13.44-fold, 9.19-fold and 1.53-fold lower than used for the standard FOLFIRINOX treatment. These results suggest that UTMD enhances delivery of FIRINOX chemotherapy, making it significantly more effective at a substantially lower dose. In addition, the reduced systemic levels of 5-fluorouracil, irinotecan and oxaliplatin should also make the treatment more tolerable and reduce the adverse effects often associated with this treatment.
Collapse
Affiliation(s)
- Jinhui Gao
- Biomedical Sciences Research Institute, University of Ulster, Coleraine, Northern Ireland BT14 6AB, UK
| | - Keiran A Logan
- Biomedical Sciences Research Institute, University of Ulster, Coleraine, Northern Ireland BT14 6AB, UK
| | - Heather Nesbitt
- Biomedical Sciences Research Institute, University of Ulster, Coleraine, Northern Ireland BT14 6AB, UK
| | - Bridgeen Callan
- Biomedical Sciences Research Institute, University of Ulster, Coleraine, Northern Ireland BT14 6AB, UK
| | - Thomas McKaig
- Biomedical Sciences Research Institute, University of Ulster, Coleraine, Northern Ireland BT14 6AB, UK
| | - Mark Taylor
- Department of HPB Surgery, Mater Hospital, Belfast, Northern Ireland, UK
| | - Mark Love
- Imaging Centre, The Royal Victoria Hospital, Grosvenor Road, Belfast, Northern Ireland BT12 6BA, UK
| | - Anthony P McHale
- Biomedical Sciences Research Institute, University of Ulster, Coleraine, Northern Ireland BT14 6AB, UK.
| | - Darren M Griffith
- Department of Chemistry, RCSI, 123 St Stephens Green, Dublin 2, Ireland; SSPC, Synthesis and Solid State Pharmaceutical Centre, Ireland.
| | - John F Callan
- Biomedical Sciences Research Institute, University of Ulster, Coleraine, Northern Ireland BT14 6AB, UK.
| |
Collapse
|
9
|
Nicolson F, Kircher MF. Theranostics: Agents for Diagnosis and Therapy. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00040-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
10
|
Nicolson F, Ali A, Kircher MF, Pal S. DNA Nanostructures and DNA-Functionalized Nanoparticles for Cancer Theranostics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001669. [PMID: 33304747 PMCID: PMC7709992 DOI: 10.1002/advs.202001669] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/27/2020] [Indexed: 05/12/2023]
Abstract
In the last two decades, DNA has attracted significant attention toward the development of materials at the nanoscale for emerging applications due to the unparalleled versatility and programmability of DNA building blocks. DNA-based artificial nanomaterials can be broadly classified into two categories: DNA nanostructures (DNA-NSs) and DNA-functionalized nanoparticles (DNA-NPs). More importantly, their use in nanotheranostics, a field that combines diagnostics with therapy via drug or gene delivery in an all-in-one platform, has been applied extensively in recent years to provide personalized cancer treatments. Conveniently, the ease of attachment of both imaging and therapeutic moieties to DNA-NSs or DNA-NPs enables high biostability, biocompatibility, and drug loading capabilities, and as a consequence, has markedly catalyzed the rapid growth of this field. This review aims to provide an overview of the recent progress of DNA-NSs and DNA-NPs as theranostic agents, the use of DNA-NSs and DNA-NPs as gene and drug delivery platforms, and a perspective on their clinical translation in the realm of oncology.
Collapse
Affiliation(s)
- Fay Nicolson
- Department of ImagingDana‐Farber Cancer Institute & Harvard Medical SchoolBostonMA02215USA
- Center for Molecular Imaging and NanotechnologyMemorial Sloan Kettering Cancer CenterNew YorkNY10065USA
| | - Akbar Ali
- Department of ChemistryIndian Institute of Technology‐ BhilaiRaipurChhattisgarh492015India
| | - Moritz F. Kircher
- Department of ImagingDana‐Farber Cancer Institute & Harvard Medical SchoolBostonMA02215USA
- Center for Molecular Imaging and NanotechnologyMemorial Sloan Kettering Cancer CenterNew YorkNY10065USA
- Department of RadiologyBrigham and Women's Hospital & Harvard Medical SchoolBostonMA02215USA
| | - Suchetan Pal
- Department of ChemistryIndian Institute of Technology‐ BhilaiRaipurChhattisgarh492015India
| |
Collapse
|