1
|
Khafaga DSR, El-Morsy MT, Faried H, Diab AH, Shehab S, Saleh AM, Ali GAM. Metal-organic frameworks in drug delivery: engineering versatile platforms for therapeutic applications. RSC Adv 2024; 14:30201-30229. [PMID: 39315019 PMCID: PMC11418013 DOI: 10.1039/d4ra04441j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/30/2024] [Indexed: 09/25/2024] Open
Abstract
Recently, metal-organic frameworks (MOFs) have attracted much attention as versatile materials for drug delivery and personalized medicine. MOFs are porous structures made up of metal ions coupled with organic ligands. This review highlights the synthesis techniques used to design MOFs with specific features such as surface area and pore size, and the drug encapsulation within MOFs not only improves their stability and solubility but also allows for controlled release kinetics, which improves therapeutic efficacy and minimizes adverse effects. Furthermore, it discusses the challenges and potential advantages of MOF-based drug delivery, such as MOF stability, biocompatibility, and scale-up production. With further advancements in MOF synthesis, functionalization techniques, and understanding of their interactions using biological systems, MOFs can have significant promise for expanding the area of personalized medicine and improving patient outcomes.
Collapse
Affiliation(s)
- Doaa S R Khafaga
- Health Sector, Faculty of Science, Galala University New Galala City 43511 Suez Egypt
| | - Manar T El-Morsy
- Bionanotechnology Department, Faculty of Nanotechnology, Cairo University Giza 12613 Egypt
| | - Habiba Faried
- Biotechnology Department, Faculty of Science, Cairo University Giza 12613 Egypt
| | - Ayah H Diab
- Biotechnology Department, Faculty of Science, Cairo University Giza 12613 Egypt
| | - Shaimaa Shehab
- Biotechnology Department, Faculty of Science, Cairo University Giza 12613 Egypt
| | - Ahmed M Saleh
- Bionanotechnology Department, Faculty of Nanotechnology, Cairo University Giza 12613 Egypt
| | - Gomaa A M Ali
- College of Marine Science and Aquatic Biology, University of Khorfakkan 18119 Sharjah United Arab Emirates
- Faculty of Science, Galala University 43511 Suez Egypt
- Chemistry Department, Faculty of Science, Al-Azhar University Assiut 71524 Egypt
| |
Collapse
|
2
|
Mandel RM, Lotlikar PS, Keasler KT, Chen EY, Wilson JJ, Milner PJ. Gas Delivery Relevant to Human Health using Porous Materials. Chemistry 2024; 30:e202402163. [PMID: 38949770 PMCID: PMC11443428 DOI: 10.1002/chem.202402163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/02/2024]
Abstract
Gases are essential for various applications relevant to human health, including in medicine, biomedical imaging, and pharmaceutical synthesis. However, gases are significantly more challenging to safely handle than liquids and solids. Herein, we review the use of porous materials, such as metal-organic frameworks (MOFs), zeolites, and silicas, to adsorb medicinally relevant gases and facilitate their handling as solids. Specific topics include the use of MOFs and zeolites to deliver H2S for therapeutic applications, 129Xe for magnetic resonance imaging, O2 for the treatment of cancer and hypoxia, and various gases for use in organic synthesis. This Perspective aims to bring together the organic, inorganic, medicinal, and materials chemistry communities to inspire the design of next-generation porous materials for the storage and delivery of medicinally relevant gases.
Collapse
Affiliation(s)
- Ruth M. Mandel
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, United States
| | - Piyusha S. Lotlikar
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, United States
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, 93106, United States
| | - Kaitlyn T. Keasler
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, United States
| | - Elena Y. Chen
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, United States
| | - Justin J. Wilson
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, United States
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, 93106, United States
| | - Phillip J. Milner
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, United States
| |
Collapse
|
3
|
Lohrasbi F, Naghdi Babaei F, Ghasemi-Kasman M, Sadeghi-Chahnasir F, Shirzad M, Zabihi E. Effect of sub-acute exposure of metal-organic framework-199 on cognitive function and oxidative stress level of brain tissue in rat. Food Chem Toxicol 2024; 191:114866. [PMID: 39002791 DOI: 10.1016/j.fct.2024.114866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/26/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024]
Abstract
Metal-Organic Framework-199 (MOF-199) is a subgroup of MOFs that is utilized in different medical fields such as drug delivery. In the current study, the effect of sub-acute exposure to MOF-199 on spatial memory, working memory, inflammatory mediators' expression, and oxidative stress level of brain tissue has been investigated. Thirty-two male Wistar rats were randomly divided into four groups as vehicle, MOF-199 at doses 0.3, 3, or 6 mg/kg. After four injections of relevant interventions via tail vein during 14 days, behavioral parameters were investigated using Y-maze and Morris Water Maze (MWM) tests. Oxidative stress was measured by ferric reducing antioxidant power (FRAP) and thiobarbituric acid-reacting substance (TBARS) tests. The expression levels of TNF-α and IL-1β were assessed by quantitative real-time reverse-transcription PCR (qRT-PCR). No significant differences were observed in working memory, spatial learning and memory of MOF-199 receiving rats. Additionally, the level of oxidative stress and inflammatory genes expression were not remarkably changed in the brain tissues of MOF-199 treated rats. Despite the lack of remarkable toxic effects of sub-acute exposure to MOF-199, more studies with a longer duration of administration are necessary to use this substance for drug delivery systems in diseases related to the nervous system.
Collapse
Affiliation(s)
- Fatemeh Lohrasbi
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | | | - Maryam Ghasemi-Kasman
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Department of Physiology, School of Medicine, Babol University of Medical Sciences, Babol, Iran.
| | | | - Moein Shirzad
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Ebrahim Zabihi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Department of Pharmacology and Toxicology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
4
|
Xu Y, Gu L, Zhu L, Miao Y, Cui X. A novel anti-CD47 protein antibody and toll-like receptor agonist complex detects tumor surface CD-47 changes in early stage lung cancer by in vivo imaging. Int J Biol Macromol 2024; 274:133322. [PMID: 38908646 DOI: 10.1016/j.ijbiomac.2024.133322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/05/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
CD47, a cell surface protein known for inhibiting phagocytosis, plays a critical role in the tumor microenvironment (TME) and is a potential biomarker for cancer. However, directly applying αCD47, a hydrophilic macromolecular antibody that targets CD47, in vivo for cancer detection can have adverse effects on normal cells, cause systemic toxicities, and lead to resistance against anti-cancer therapies. In this study, we developed a novel complex incorporating aluminum-based metal-organic frameworks (Al-MOF) loaded with indocyanine green (ICG), αCD47, and resiquimod (R848), a hydrophobic small molecule Toll-like receptor 7/8 (TLR7/8) agonist. Upon activation with an infrared 808 nm laser, the nanocomposites exhibited photothermal effects that triggered the release of the loaded reagents, induced ROS production, and induced changes in the TME. This led to the polarization of immune-suppressive M2 macrophages towards an immune-stimulatory M1 phenotype, promoted dendritic cell (DC) maturation, and enabled mature DCs to facilitate antigen presentation, T-cell activation, and critical roles in tumor immunity. Furthermore, in vivo imaging successfully detected the specific binding of αCD47 with CD47 on tumor cells. Overall, the complex composed of αCD47 antibody and toll-like receptor agonist showed promising efficacy in both tumor diagnosis and therapy, providing a potential strategy for detecting early lung cancer and modulating the tumor microenvironment for improved treatment outcomes.
Collapse
Affiliation(s)
- Yunhua Xu
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China.
| | - Linping Gu
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Li Zhu
- Department of Radiology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yayou Miao
- Department of Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xueying Cui
- Department of Nutrition, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| |
Collapse
|
5
|
Bigham A, Islami N, Khosravi A, Zarepour A, Iravani S, Zarrabi A. MOFs and MOF-Based Composites as Next-Generation Materials for Wound Healing and Dressings. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311903. [PMID: 38453672 DOI: 10.1002/smll.202311903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/09/2024] [Indexed: 03/09/2024]
Abstract
In recent years, there has been growing interest in developing innovative materials and therapeutic strategies to enhance wound healing outcomes, especially for chronic wounds and antimicrobial resistance. Metal-organic frameworks (MOFs) represent a promising class of materials for next-generation wound healing and dressings. Their high surface area, pore structures, stimuli-responsiveness, antibacterial properties, biocompatibility, and potential for combination therapies make them suitable for complex wound care challenges. MOF-based composites promote cell proliferation, angiogenesis, and matrix synthesis, acting as carriers for bioactive molecules and promoting tissue regeneration. They also have stimuli-responsivity, enabling photothermal therapies for skin cancer and infections. Herein, a critical analysis of the current state of research on MOFs and MOF-based composites for wound healing and dressings is provided, offering valuable insights into the potential applications, challenges, and future directions in this field. This literature review has targeted the multifunctionality nature of MOFs in wound-disease therapy and healing from different aspects and discussed the most recent advancements made in the field. In this context, the potential reader will find how the MOFs contributed to this field to yield more effective, functional, and innovative dressings and how they lead to the next generation of biomaterials for skin therapy and regeneration.
Collapse
Affiliation(s)
- Ashkan Bigham
- Institute of Polymers, Composites and Biomaterials, National Research Council (IPCB-CNR), Naples, 80125, Italy
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale V. Tecchio 80, Naples, 80125, Italy
| | - Negar Islami
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Arezoo Khosravi
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul, 34959, Turkiye
| | - Atefeh Zarepour
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600 077, India
| | - Siavash Iravani
- Independent Researcher, W Nazar ST, Boostan Ave, Isfahan, Iran
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, 34396, Turkiye
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan, 320315, Taiwan
| |
Collapse
|
6
|
Hamarawf RF. Antibacterial, antibiofilm, and antioxidant activities of two novel metal-organic frameworks (MOFs) based on 4,6-diamino-2-pyrimidinethiol with Zn and Co metal ions as coordination polymers. RSC Adv 2024; 14:9080-9098. [PMID: 38500614 PMCID: PMC10945374 DOI: 10.1039/d4ra00545g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 03/04/2024] [Indexed: 03/20/2024] Open
Abstract
In the present era, the increase in free radical species (FRs) and multidrug-resistant (MDR) bacteria represents a major worldwide concern for public health. Biofilm development and the overuse and misuse of antibiotics could lead to the adaptation of bacteria to antimicrobial agents. Consequently, finding novel multifunctional species with antibacterial, antioxidant, and antibiofilm properties has become crucial in the fight against challenging bacterial infections and chronic inflammatory conditions. Metal-organic frameworks (MOFs) with zinc and cobalt metal centers are widely utilized in biological and environmental remediation owing to their versatility. In this study, multifunctional Zn-MOFs and Co-MOFs were successfully synthesized with zinc and cobalt as metal centers and 4,6-diamino-2-pyrimidinethiol as an organic linker using a hydrothermal technique. Numerous characterization techniques were used to fully examine the MOF structure, functionality, chemical makeup, crystalline structure, surface appearance, thermal behavior, and magnetic characteristics; the techniques included XPS, PXRD, FTIR, FESEM, EDX, UV-visible, BET, BJH, TGA/DTG, DSC, and magnetic susceptibility measurement. The antioxidant, antibacterial, and antibiofilm activities of the MOFs were examined, and they demonstrated potent activity in each of these aspects. The proposed mechanisms of antibacterial activity suggest that bacterial cell death results from multiple toxic effects, including electrostatic interaction and lipid peroxidation, when MOFs are attached to bacteria, leading to the formation of reactive oxygen species (ROSs). Zn-MOFs exhibit high antibacterial and antibiofilm efficacy owing to their large surface-to-volume ratio and porous nature, while Co-MOFs exhibit high antioxidant capacity owing to their redox properties.
Collapse
Affiliation(s)
- Rebaz F Hamarawf
- Department of Chemistry, College of Science, University of Sulaimani Kirkuk Road Sulaymaniyah City 46001 Kurdistan Region Iraq
- Department of Medical Laboratory Science, Komar University of Science and Technology (KUST) Qliasan St Sulaymaniyah City 46002 Kurdistan Region Iraq
| |
Collapse
|
7
|
Li B, Ashrafizadeh M, Jiao T. Biomedical application of metal-organic frameworks (MOFs) in cancer therapy: Stimuli-responsive and biomimetic nanocomposites in targeted delivery, phototherapy and diagnosis. Int J Biol Macromol 2024; 260:129391. [PMID: 38242413 DOI: 10.1016/j.ijbiomac.2024.129391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/12/2023] [Accepted: 01/08/2024] [Indexed: 01/21/2024]
Abstract
The nanotechnology is an interdisciplinary field that has become a hot topic in cancer therapy. Metal-organic frameworks (MOFs) are porous materials and hybrid composites consisted of organic linkers and metal cations. Despite the wide application of MOFs in other fields, the potential of MOFs for purpose of cancer therapy has been revealed by the recent studies. High surface area and porosity, significant drug loading and encapsulation efficiency are among the benefits of using MOFs in drug delivery. MOFs can deliver genes/drugs with selective targeting of tumor cells that can be achieved through functionalization with ligands. The photosensitizers and photo-responsive nanostructures including carbon dots and gold nanoparticles can be loaded in/on MOFs to cause phototherapy-mediated tumor ablation. The immunogenic cell death induction and increased infiltration of cytotoxic CD8+ and CD4+ T cells can be accelerated by MOF platforms in providing immunotherapy of tumor cells. The stimuli-responsive MOF platforms responsive to pH, redox, enzyme and ion can accelerate release of therapeutics in tumor site. Moreover, MOF nanocomposites can be modified ligands and green polymers to improve their selectivity and biocompatibility for cancer therapy. The application of MOFs for the detection of cancer-related biomarkers can participate in the early diagnosis of patients.
Collapse
Affiliation(s)
- Beixu Li
- School of Policing Studies, Shanghai University of Political Science and Law, Shanghai 201701, China; Shanghai Fenglin Forensic Center, Shanghai 200231, China; State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; Department of Pathology, University of Maryland, Baltimore, MD 21201, USA
| | - Milad Ashrafizadeh
- Department of General Surgery, Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong 518055, China; International Association for Diagnosis and Treatment of Cancer, Shenzhen, Guangdong 518055, China; Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China.
| | - Taiwei Jiao
- Department of Gastroenterology and Endoscopy, The First Hospital of China Medical University, 155 North Nanjing St, Shenyang 110001, China.
| |
Collapse
|
8
|
Guo L, Kong W, Che Y, Liu C, Zhang S, Liu H, Tang Y, Yang X, Zhang J, Xu C. Research progress on antibacterial applications of metal-organic frameworks and their biomacromolecule composites. Int J Biol Macromol 2024; 261:129799. [PMID: 38296133 DOI: 10.1016/j.ijbiomac.2024.129799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/03/2024]
Abstract
With the extensive use of antibiotics, resulting in increasingly serious problems of bacterial resistance, antimicrobial therapy has become a global concern. Metal-organic frameworks (MOFs) are low-density porous coordination materials composed of metal ions and organic ligands, which can form composite materials with biomacromolecules such as proteins and polysaccharides. In recent years, MOFs and their derivatives have been widely used in the antibacterial field as efficient antibacterial agents. This review offers a detailed summary of the antibacterial applications of MOFs and their composites, and the different synthesis methods and antibacterial mechanisms of MOFs and MOF-based composites are briefly introduced. Finally, the challenges and prospects of MOFs-based antibacterial materials in the rapidly developing medical field were briefly discussed. We hope this review will provide new strategies for the medical application of MOFs-based antibacterial materials.
Collapse
Affiliation(s)
- Lei Guo
- College of Basic Medical Sciences, Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, Jilin, China
| | - Wei Kong
- Radiation Medicine, School of Public Health, Jilin University, Changchun 130021, Jilin, China
| | - Yilin Che
- Radiation Medicine, School of Public Health, Jilin University, Changchun 130021, Jilin, China
| | - Chang Liu
- College of Basic Medical Sciences, Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, Jilin, China; Department of Neurology and Neuroscience Center, First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Shichen Zhang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun 130021, Jilin, China
| | - Heshi Liu
- Department of Gastrocolorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Yixin Tang
- College of Basic Medical Sciences, Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, Jilin, China
| | - Xi Yang
- College of Basic Medical Sciences, Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, Jilin, China
| | - Jizhou Zhang
- College of Basic Medical Sciences, Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, Jilin, China
| | - Caina Xu
- College of Basic Medical Sciences, Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, Jilin, China.
| |
Collapse
|
9
|
Li D, Yadav A, Zhou H, Roy K, Thanasekaran P, Lee C. Advances and Applications of Metal-Organic Frameworks (MOFs) in Emerging Technologies: A Comprehensive Review. GLOBAL CHALLENGES (HOBOKEN, NJ) 2024; 8:2300244. [PMID: 38356684 PMCID: PMC10862192 DOI: 10.1002/gch2.202300244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/19/2023] [Indexed: 02/16/2024]
Abstract
Metal-organic frameworks (MOFs) that are the wonder material of the 21st century consist of metal ions/clusters coordinated to organic ligands to form one- or more-dimensional porous structures with unprecedented chemical and structural tunability, exceptional thermal stability, ultrahigh porosity, and a large surface area, making them an ideal candidate for numerous potential applications. In this work, the recent progress in the design and synthetic approaches of MOFs and explore their potential applications in the fields of gas storage and separation, catalysis, magnetism, drug delivery, chemical/biosensing, supercapacitors, rechargeable batteries and self-powered wearable sensors based on piezoelectric and triboelectric nanogenerators are summarized. Lastly, this work identifies present challenges and outlines future opportunities in this field, which can provide valuable references.
Collapse
Affiliation(s)
- Dongxiao Li
- Department of Electrical and Computer EngineeringNational University of SingaporeSingapore117583Singapore
- Center for Intelligent Sensors and MEMSNational University of SingaporeSingapore117608Singapore
| | - Anurag Yadav
- Department of ChemistryPondicherry UniversityPuducherry605014India
| | - Hong Zhou
- Department of Electrical and Computer EngineeringNational University of SingaporeSingapore117583Singapore
- Center for Intelligent Sensors and MEMSNational University of SingaporeSingapore117608Singapore
| | - Kaustav Roy
- Department of Electrical and Computer EngineeringNational University of SingaporeSingapore117583Singapore
- Center for Intelligent Sensors and MEMSNational University of SingaporeSingapore117608Singapore
| | | | - Chengkuo Lee
- Department of Electrical and Computer EngineeringNational University of SingaporeSingapore117583Singapore
- Center for Intelligent Sensors and MEMSNational University of SingaporeSingapore117608Singapore
| |
Collapse
|
10
|
Chai W, Chen X, Liu J, Zhang L, Liu C, Li L, Honiball JR, Pan H, Cui X, Wang D. Recent progress in functional metal-organic frameworks for bio-medical application. Regen Biomater 2023; 11:rbad115. [PMID: 38313824 PMCID: PMC10838214 DOI: 10.1093/rb/rbad115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/01/2023] [Accepted: 12/17/2023] [Indexed: 02/06/2024] Open
Abstract
Metal-organic frameworks (MOFs) have a high specific surface area, adjustable pores and can be used to obtain functional porous materials with diverse and well-ordered structures through coordination and self-assembly, which has intrigued wide interest in a broad range of disciplines. In the arena of biomedical engineering, the functionalized modification of MOFs has produced drug carriers with excellent dispersion and functionalities such as target delivery and response release, with promising applications in bio-detection, disease therapy, tissue healing, and other areas. This review summarizes the present state of research on the functionalization of MOFs by physical binding or chemical cross-linking of small molecules, polymers, biomacromolecules, and hydrogels and evaluates the role and approach of MOFs functionalization in boosting the reactivity of materials. On this basis, research on the application of functionalized MOFs composites in biomedical engineering fields such as drug delivery, tissue repair, disease treatment, bio-detection and imaging is surveyed, and the development trend and application prospects of functionalized MOFs as an important new class of biomedical materials in the biomedical field are anticipated, which may provide some inspiration and reference for further development of MOF for bio-medical applications.
Collapse
Affiliation(s)
- Wenwen Chai
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Xiaochen Chen
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jing Liu
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Liyan Zhang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Chunyu Liu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Li Li
- Department of Orthopaedics & Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - John Robert Honiball
- Department of Orthopaedics & Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Haobo Pan
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xu Cui
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Deping Wang
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| |
Collapse
|
11
|
Padya BS, Fernandes G, Hegde S, Kulkarni S, Pandey A, Deshpande PB, Ahmad SF, Upadhya D, Mutalik S. Targeted Delivery of 5-Fluorouracil and Sonidegib via Surface-Modified ZIF-8 MOFs for Effective Basal Cell Carcinoma Therapy. Pharmaceutics 2023; 15:2594. [PMID: 38004573 PMCID: PMC10675485 DOI: 10.3390/pharmaceutics15112594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/23/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
The therapeutic effectiveness of the most widely used anticancer drug 5-fluorouracil (5-FU) is constrained by its high metabolism, short half-life, and rapid drug resistance after chemotherapy. Although various nanodrug delivery systems have been reported for skin cancer therapy, their retention, penetration and targeting are still a matter of concern. Hence, in the current study, a topical gel formulation that contains a metal-organic framework (zeolitic imidazole framework; ZIF-8) loaded with 5-FU and a surface modified with sonidegib (SDG; acting as a therapeutic agent as well as a targeting ligand) (5-FU@ZIF-8 MOFs) is developed against DMBA-UV-induced BCC skin cancer in rats. The MOFs were prepared using one-pot synthesis followed by post drug loading and SDG conjugation. The optimized MOFs were incorporated into hyaluronic acid-hydroxypropyl methyl cellulose gel and further subjected to characterization. Enhanced skin deposition of the 5-FU@ZIF-8-SDG MOFs was observed using ex vivo skin permeation studies. Confocal laser microscopy studies showed that 5-FU@ZIF-8-SDG MOFs permeated the skin via the transfollicular pathway. The 5-FU@ZIF-8-SDG MOFs showed stronger cell growth inhibition in A431 cells and good biocompatibility with HaCaT cells. Histopathological studies showed that the efficacy of the optimized MOF gels improved as the epithelial cells manifested modest hyperplasia, nuclear pleomorphism, and dyskeratosis. Additionally, immunohistochemistry and protein expression studies demonstrated the improved effectiveness of the 5-FU@ZIF-8-SDG MOFs, which displayed a considerable reduction in the expression of Bcl-2 protein. Overall, the developed MOF gels showed good potential for the targeted delivery of multifunctional MOFs in topical formulations for treating BCC cancer.
Collapse
Affiliation(s)
- Bharath Singh Padya
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; (B.S.P.); (G.F.); (S.K.); (A.P.)
- Department of Pharmaceutics Sciences, Vignan Foundation for Science, Technology and Research, Vadlamudi, Guntur 522213, Andhra Pradesh, India
| | - Gasper Fernandes
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; (B.S.P.); (G.F.); (S.K.); (A.P.)
| | - Sumukha Hegde
- Centre for Molecular Neurosciences, Kasturba Medical College Manipal, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; (S.H.); (D.U.)
| | - Sanjay Kulkarni
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; (B.S.P.); (G.F.); (S.K.); (A.P.)
| | - Abhijeet Pandey
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; (B.S.P.); (G.F.); (S.K.); (A.P.)
| | - Praful Balavant Deshpande
- Respiratory R&D, Teva Pharmaceuticals Ireland, Unit 301, IDA Business Park, X91 WK68 Waterford, Ireland;
| | - Sheikh F. Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Dinesh Upadhya
- Centre for Molecular Neurosciences, Kasturba Medical College Manipal, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; (S.H.); (D.U.)
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; (B.S.P.); (G.F.); (S.K.); (A.P.)
| |
Collapse
|
12
|
Khan S, Falahati M, Cho WC, Vahdani Y, Siddique R, Sharifi M, Jaragh-Alhadad LA, Haghighat S, Zhang X, Ten Hagen TLM, Bai Q. Core-shell inorganic NP@MOF nanostructures for targeted drug delivery and multimodal imaging-guided combination tumor treatment. Adv Colloid Interface Sci 2023; 321:103007. [PMID: 37812992 DOI: 10.1016/j.cis.2023.103007] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 08/16/2023] [Accepted: 09/23/2023] [Indexed: 10/11/2023]
Abstract
It is well known that metal-organic framework (MOF) nanostructures have unique characteristics such as high porosity, large surface areas and adjustable functionalities, so they are ideal candidates for developing drug delivery systems (DDSs) as well as theranostic platforms in cancer treatment. Despite the large number of MOF nanostructures that have been discovered, conventional MOF-derived nanosystems only have a single biofunctional MOF source with poor colloidal stability. Accordingly, developing core-shell MOF nanostructures with good colloidal stability is a useful method for generating efficient drug delivery, multimodal imaging and synergistic therapeutic systems. The preparation of core-shell MOF nanostructures has been done with a variety of materials, but inorganic nanoparticles (NPs) are highly effective for drug delivery and imaging-guided tumor treatment. Herein, we aimed to overview the synthesis of core-shell inorganic NP@MOF nanostructures followed by the application of core-shell MOFs derived from magnetic, quantum dots (QDs), gold (Au), and gadolinium (Gd) NPs in drug delivery and imaging-guided tumor treatment. Afterward, we surveyed different factors affecting prolonged drug delivery and cancer therapy, cellular uptake, biocompatibility, biodegradability, and enhanced permeation and retention (EPR) effect of core-shell MOFs. Last but not least, we discussed the challenges and the prospects of the field. We envision this article may hold great promise in providing valuable insights regarding the application of hybrid nanostructures as promising and potential candidates for multimodal imaging-guided combination cancer therapy.
Collapse
Affiliation(s)
- Suliman Khan
- Medical Research Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mojtaba Falahati
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, the Netherlands; Nanomedicine Innovation Center Erasmus (NICE), Erasmus MC, Rotterdam, the Netherlands.
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong SAR, China
| | - Yasaman Vahdani
- Department of Biochemistry and Molecular Medicine, University of Montreal, Canada
| | - Rabeea Siddique
- Medical Research Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Majid Sharifi
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran; Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | | | - Setareh Haghighat
- Department of Microbiology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Xiaoju Zhang
- Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital, Zhengzhou, China
| | - Timo L M Ten Hagen
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, the Netherlands; Nanomedicine Innovation Center Erasmus (NICE), Erasmus MC, Rotterdam, the Netherlands.
| | - Qian Bai
- Medical Research Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
13
|
Lee J, Lee J, Kim JY, Kim M. Covalent connections between metal-organic frameworks and polymers including covalent organic frameworks. Chem Soc Rev 2023; 52:6379-6416. [PMID: 37667818 DOI: 10.1039/d3cs00302g] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Hybrid composite materials combining metal-organic frameworks (MOFs) and polymers have emerged as a versatile platform for a broad range of applications. The crystalline, porous nature of MOFs and the flexibility and processability of polymers are synergistically integrated in MOF-polymer composite materials. Covalent bonds, which form between two distinct materials, have been extensively studied as a means of creating strong molecular connections to facilitate the dispersion of "hard" MOF particles in "soft" polymers. Numerous organic transformations have been applied to post-synthetically connect MOFs with polymeric species, resulting in a variety of covalently connected MOF-polymer systems with unique properties that are dependent on the characteristics of the MOFs, polymers, and connection modes. In this review, we provide a comprehensive overview of the development and strategies involved in preparing covalently connected MOFs and polymers, including recently developed MOF-covalent organic framework composites. The covalent bonds, grafting strategies, types of MOFs, and polymer backbones are summarized and categorized, along with their respective applications. We highlight how this knowledge can serve as a basis for preparing macromolecular composites with advanced functionality.
Collapse
Affiliation(s)
- Jonghyeon Lee
- Department of Chemistry, Chungbuk National University, Cheongju 28644, Republic of Korea.
| | - Jooyeon Lee
- Department of Chemistry, Chungbuk National University, Cheongju 28644, Republic of Korea.
| | - Jin Yeong Kim
- Department of Chemistry Education, Seoul National University, Seoul 08826, Republic of Korea.
| | - Min Kim
- Department of Chemistry, Chungbuk National University, Cheongju 28644, Republic of Korea.
| |
Collapse
|
14
|
Niu H, Bu H, Zhao J, Zhu Y. Metal-Organic Frameworks-Based Nanoplatforms for the Theranostic Applications of Neurological Diseases. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206575. [PMID: 36908079 DOI: 10.1002/smll.202206575] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/19/2023] [Indexed: 06/08/2023]
Abstract
Neurological diseases are the foremost cause of disability and the second leading cause of death worldwide. Owing to the special microenvironment of neural tissues and biological characteristics of neural cells, a considerable number of neurological disorders are currently incurable. In the past few years, the development of nanoplatforms based on metal-organic frameworks (MOFs) has broadened opportunities for offering sensitive diagnosis/monitoring and effective therapy of neurology-related diseases. In this article, the obstacles for neurotherapeutics, including delayed diagnosis and misdiagnosis, the existence of blood brain barrier (BBB), off-target treatment, irrepressible inflammatory storm/oxidative stress, and irreversible nerve cell death are summarized. Correspondingly, MOFs-based diagnostic/monitoring strategies such as neuroimaging and biosensors (electrochemistry, fluorometry, colorimetry, electrochemiluminescence, etc.) and MOFs-based therapeutic strategies including higher BBB permeability, targeting specific lesion sites, attenuation of neuroinflammation/oxidative stress as well as regeneration of nerve cells, are extensively highlighted for the management of neurological diseases. Finally, the challenges of the present research from perspective of clinical translation are discussed, hoping to facilitate interdisciplinary studies at the intersections between MOFs-based nanoplatforms and neurotheranostics.
Collapse
Affiliation(s)
- Huicong Niu
- Department of Neurology, Minhang Hospital, Fudan University, Shanghai, 200032, P. R. China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Hui Bu
- The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, P. R. China
| | - Jing Zhao
- Department of Neurology, Minhang Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Yufang Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
15
|
Yu S, Xu K, Wang Z, Zhang Z, Zhang Z. Bibliometric and visualized analysis of metal-organic frameworks in biomedical application. Front Bioeng Biotechnol 2023; 11:1190654. [PMID: 37234479 PMCID: PMC10206306 DOI: 10.3389/fbioe.2023.1190654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Background: Metal-organic frameworks (MOFs) are hybrid materials composed of metal ions or clusters and organic ligands that spontaneously assemble via coordination bonds to create intramolecular pores, which have recently been widely used in biomedicine due to their porosity, structural, and functional diversity. They are used in biomedical applications, including biosensing, drug delivery, bioimaging, and antimicrobial activities. Our study aims to provide scholars with a comprehensive overview of the research situations, trends, and hotspots in biomedical applications of MOFs through a bibliometric analysis of publications from 2002 to 2022. Methods: On 19 January 2023, the Web of Science Core Collection was searched to review and analyze MOFs applications in the biomedical field. A total of 3,408 studies published between 2002 and 2022 were retrieved and examined, with information such as publication year, country/region, institution, author, journal, references, and keywords. Research hotspots were extracted and analyzed using the Bibliometrix R-package, VOSviewer, and CiteSpace. Results: We showed that researchers from 72 countries published articles on MOFs in biomedical applications, with China producing the most publications. The Chinese Academy of Science was the most prolific contributor to these publications among 2,209 institutions that made contributions. Reference co-citation analysis classifies references into 8 clusters: synergistic cancer therapy, efficient photodynamic therapy, metal-organic framework encapsulation, selective fluorescence, luminescent probes, drug delivery, enhanced photodynamic therapy, and metal-organic framework-based nanozymes. Keyword co-occurrence analysis divided keywords into 6 clusters: biosensors, photodynamic therapy, drug delivery, cancer therapy and bioimaging, nanoparticles, and antibacterial applications. Research frontier keywords were represented by chemodynamic therapy (2020-2022) and hydrogen peroxide (2020-2022). Conclusion: Using bibliometric methods and manual review, this review provides a systematic overview of research on MOFs in biomedical applications, filling an existing gap. The burst keyword analysis revealed that chemodynamic therapy and hydrogen peroxide are the prominent research frontiers and hot spots. MOFs can catalyze Fenton or Fenton-like reactions to generate hydroxyl radicals, making them promising materials for chemodynamic therapy. MOF-based biosensors can detect hydrogen peroxide in various biological samples for diagnosing diseases. MOFs have a wide range of research prospects for biomedical applications.
Collapse
Affiliation(s)
- Sanyang Yu
- The VIP Department, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Kaihao Xu
- The VIP Department, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Zhenhua Wang
- Department of Physiology, School of Life Sciences, China Medical University, Shenyang, China
| | - Zhichang Zhang
- Department of Computer, School of Intelligent Medicine, China Medical University, Shenyang, China
| | - Zhongti Zhang
- The VIP Department, School and Hospital of Stomatology, China Medical University, Shenyang, China
| |
Collapse
|
16
|
Liu J, Rickel A, Smith S, Hong Z, Wang C. "Non-cytotoxic" doses of metal-organic framework nanoparticles increase endothelial permeability by inducing actin reorganization. J Colloid Interface Sci 2023; 634:323-335. [PMID: 36535168 PMCID: PMC9840705 DOI: 10.1016/j.jcis.2022.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/28/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Cytotoxicity of nanoparticles is routinely characterized by biochemical assays such as cell viability and membrane integrity assays. However, these approaches overlook cellular biophysical properties including changes in the actin cytoskeleton, cell stiffness, and cell morphology, particularly when cells are exposed to "non-cytotoxic" doses of nanoparticles. Zeolitic imidazolate framework-8 nanoparticles (ZIF-8 NPs), a member of metal-organic framework family, has received increasing interest in various fields such as environmental and biomedical sciences. ZIF-8 NPs may enter the blood circulation system after unintended oral and inhalational exposure or intended intravenous injection for diagnostic and therapeutic applications, yet the effect of ZIF-8 NPs on vascular endothelial cells is not well understood. Here, the biophysical impact of "non-cytotoxic" dose ZIF-8 NPs on human aortic endothelial cells (HAECs) is investigated. We demonstrate that "non-cytotoxic" doses of ZIF-8 NPs, pre-defined by a series of biochemical assays, can increase the endothelial permeability of HAEC monolayers by causing cell junction disruption and intercellular gap formation, which can be attributed to actin reorganization within adjacent HAECs. Nanomechanical atomic force microscopy and super resolution fluorescence microscopy further confirm that "non-cytotoxic" doses of ZIF-8 NPs change the actin structure and cell morphology of HAECs at the single cell level. Finally, the underlying mechanism of actin reorganization induced by the "non-cytotoxic" dose ZIF-8 NPs is elucidated. Together, this study indicates that the "non-cytotoxic" doses of ZIF-8 NPs, intentionally or unintentionally introduced into blood circulation, may still pose a threat to human health, considering increased endothelial permeability is essential to the progression of a variety of diseases. From a broad view of cytotoxicity evaluation, it is important to consider the biophysical properties of cells, since they can serve as novel and more sensitive markers to assess nanomaterial's cytotoxicity.
Collapse
Affiliation(s)
- Jinyuan Liu
- Nanoscience and Nanoengineering, South Dakota School of Mines and Technology, 501 East Saint Joseph Street, Rapid City, SD 57701, USA; BioSystems, Networks & Translational Research (BioSNTR), 501 East Saint Joseph Street, Rapid City, SD 57701, USA
| | - Alex Rickel
- Biomedical Engineering, University of South Dakota, 4800 N Career Avenue, Sioux Falls, SD 57107, USA; BioSystems, Networks & Translational Research (BioSNTR), 501 East Saint Joseph Street, Rapid City, SD 57701, USA
| | - Steve Smith
- Nanoscience and Nanoengineering, South Dakota School of Mines and Technology, 501 East Saint Joseph Street, Rapid City, SD 57701, USA; BioSystems, Networks & Translational Research (BioSNTR), 501 East Saint Joseph Street, Rapid City, SD 57701, USA
| | - Zhongkui Hong
- Biomedical Engineering, University of South Dakota, 4800 N Career Avenue, Sioux Falls, SD 57107, USA; BioSystems, Networks & Translational Research (BioSNTR), 501 East Saint Joseph Street, Rapid City, SD 57701, USA; Mechanical Engineering, Texas Tech University, 805 Boston Ave, Lubbock, TX 79409, USA.
| | - Congzhou Wang
- Nanoscience and Nanoengineering, South Dakota School of Mines and Technology, 501 East Saint Joseph Street, Rapid City, SD 57701, USA; BioSystems, Networks & Translational Research (BioSNTR), 501 East Saint Joseph Street, Rapid City, SD 57701, USA.
| |
Collapse
|
17
|
Lim JYC, Goh L, Otake KI, Goh SS, Loh XJ, Kitagawa S. Biomedically-relevant metal organic framework-hydrogel composites. Biomater Sci 2023; 11:2661-2677. [PMID: 36810436 DOI: 10.1039/d2bm01906j] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Metal organic frameworks (MOFs) are incredibly versatile three-dimensional porous materials with a wide range of applications that arise from their well-defined coordination structures, high surface areas and porosities, as well as ease of structural tunability due to diverse compositions achievable. In recent years, following advances in synthetic strategies, development of water-stable MOFs and surface functionalisation techniques, these porous materials have found increasing biomedical applications. In particular, the combination of MOFs with polymeric hydrogels creates a class of new composite materials that marries the high water content, tissue mimicry and biocompatibility of hydrogels with the inherent structural tunability of MOFs in various biomedical contexts. Additionally, the MOF-hydrogel composites can transcend each individual component such as by providing added stimuli-responsiveness, enhancing mechanical properties and improving the release profile of loaded drugs. In this review, we discuss the recent key advances in the design and applications of MOF-hydrogel composite materials. Following a summary of their synthetic methodologies and characterisation, we discuss the state-of-the-art in MOF-hydrogels for biomedical use - cases including drug delivery, sensing, wound treatment and biocatalysis. Through these examples, we aim to demonstrate the immense potential of MOF-hydrogel composites for biomedical applications, whilst inspiring further innovations in this exciting field.
Collapse
Affiliation(s)
- Jason Y C Lim
- Laboratory for Green Porous Materials, Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 136834, Republic of Singapore. .,Department of Materials Science and Engineering, National University of Singapore (NUS), 9 Engineering Drive, Singapore 117576, Republic of Singapore
| | - Leonard Goh
- Laboratory for Green Porous Materials, Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 136834, Republic of Singapore.
| | - Ken-Ichi Otake
- Laboratory for Green Porous Materials, Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 136834, Republic of Singapore. .,Institute for Integrated Cell-Material Sciences, Kyoto University Institute for Advanced Study, Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shermin S Goh
- Laboratory for Green Porous Materials, Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 136834, Republic of Singapore.
| | - Xian Jun Loh
- Laboratory for Green Porous Materials, Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 136834, Republic of Singapore. .,Department of Materials Science and Engineering, National University of Singapore (NUS), 9 Engineering Drive, Singapore 117576, Republic of Singapore
| | - Susumu Kitagawa
- Laboratory for Green Porous Materials, Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 136834, Republic of Singapore. .,Institute for Integrated Cell-Material Sciences, Kyoto University Institute for Advanced Study, Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
18
|
Xia N, Chang Y, Zhou Q, Ding S, Gao F. An Overview of the Design of Metal-Organic Frameworks-Based Fluorescent Chemosensors and Biosensors. BIOSENSORS 2022; 12:bios12110928. [PMID: 36354436 PMCID: PMC9688172 DOI: 10.3390/bios12110928] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 06/12/2023]
Abstract
Taking advantage of high porosity, large surface area, tunable nanostructures and ease of functionalization, metal-organic frameworks (MOFs) have been popularly applied in different fields, including adsorption and separation, heterogeneous catalysis, drug delivery, light harvesting, and chemical/biological sensing. The abundant active sites for specific recognition and adjustable optical and electrical characteristics allow for the design of various sensing platforms with MOFs as promising candidates. In this review, we systematically introduce the recent advancements of MOFs-based fluorescent chemosensors and biosensors, mainly focusing on the sensing mechanisms and analytes, including inorganic ions, small organic molecules and biomarkers (e.g., small biomolecules, nucleic acids, proteins, enzymes, and tumor cells). This review may provide valuable references for the development of novel MOFs-based sensing platforms to meet the requirements of environment monitoring and clinical diagnosis.
Collapse
|
19
|
Zhao Y, Jiang X, Liu X, Liu X, Liu Z, Liu X. Application of photo-responsive metal-organic framework in cancer therapy and bioimaging. Front Bioeng Biotechnol 2022; 10:1031986. [PMID: 36338113 PMCID: PMC9633982 DOI: 10.3389/fbioe.2022.1031986] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/11/2022] [Indexed: 11/30/2022] Open
Abstract
Metal-organic frameworks (MOFs) are a class of hybrid porous crystalline materials that are assembled with metal ions/clusters and organic linkers. The fungibility of organic ligands and metal centers endow MOFs that are easy to design and synthesize. Based on their unique structure, multifarious MOFs with diverse functionalities have recently been widely applied in various research areas. Particularly striking is the application of photo-responsive MOFs in biological sensing and imaging. Notably, the photoelectronic properties make photo-responsive MOFs an ideal platform for cancer phototherapy. Moreover, ultrahigh porosities and tunable pore sizes allow MOFs to load anticancer drugs, further enhancing the antitumor efficiency. In this review, the categories and developing strategies of MOFs are briefly introduced. The application fields of MOFs in bioimaging, such as up-conversion fluorescence imaging, single/two-photon fluorescence bioimaging, magnetic resonance imaging, etc., are summarized. The working mechanism of MOFs in photo-responsive, photothermal therapy (PTT), and photodynamic therapy (PDT) are expounded. Examples of using MOFs for cancer treatment, including PTT, PDT, chemotherapy, and radiotherapy, are also demonstrated. Lastly, current limitations, challenges, and future perspectives for bioimaging and cancer treatment of MOFs are discussed. We believe that the versatile MOF will bring the dawn to the next generation of cancer treatment.
Collapse
Affiliation(s)
- Yujie Zhao
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xian Jiang
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xu Liu
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Head, Neck and Mammary Gland Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xinyu Liu
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhihui Liu
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaowei Liu
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- *Correspondence: Xiaowei Liu,
| |
Collapse
|
20
|
Significance of Capping Agents of Colloidal Nanoparticles from the Perspective of Drug and Gene Delivery, Bioimaging, and Biosensing: An Insight. Int J Mol Sci 2022; 23:ijms231810521. [PMID: 36142435 PMCID: PMC9505579 DOI: 10.3390/ijms231810521] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/01/2022] [Accepted: 09/07/2022] [Indexed: 11/19/2022] Open
Abstract
The over-growth and coagulation of nanoparticles is prevented using capping agents by the production of stearic effect that plays a pivotal role in stabilizing the interface. This strategy of coating the nanoparticles’ surface with capping agents is an emerging trend in assembling multipurpose nanoparticles that is beneficial for improving their physicochemical and biological behavior. The enhancement of reactivity and negligible toxicity is the outcome. In this review article, an attempt has been made to introduce the significance of different capping agents in the preparation of nanoparticles. Most importantly, we have highlighted the recent progress, existing roadblocks, and upcoming opportunities of using surface modified nanoparticles in nanomedicine from the drug and gene delivery, bioimaging, and biosensing perspectives.
Collapse
|
21
|
Pourmadadi M, Eshaghi MM, Ostovar S, Shamsabadipour A, Safakhah S, Mousavi MS, Rahdar A, Pandey S. UiO-66 metal-organic framework nanoparticles as gifted MOFs to the biomedical application: A comprehensive review. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
22
|
Ma Y, Mao J, Qin H, Liang P, Huang W, Liu C, Gao J. Nano-Metal-Organic Framework Decorated With Pt Nanoparticles as an Efficient Theranostic Nanoprobe for CT/MRI/PAI Imaging-Guided Radio-Photothermal Synergistic Cancer Therapy. Front Bioeng Biotechnol 2022; 10:927461. [PMID: 35875484 PMCID: PMC9298652 DOI: 10.3389/fbioe.2022.927461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 05/23/2022] [Indexed: 11/21/2022] Open
Abstract
The multifunctional theranostic nanoplatforms, which can realize changing the contrasts of medical images and enhance cancer therapies simultaneously, have attracted tremendous attention from chemists and medicine in past decades. Herein, a nanoscale metal-organic framework-based material was first synthesized and then decorated with platinum (NMOF545@Pt) successfully for multimodal imaging-guided synergistic cancer therapy. The obtained NMOF545@Pt is advantageous in shortening the longitudinal relaxation time (T1), enhancing photoacoustic effects, and elevating X-ray absorption efficiently. Thus, the enchantments of tripe imaging modalities, computed tomography (CT)/magnetic resonance imaging (MRI)/photoacoustic imaging (PAI), were realized with NMOF545@Pt administration simultaneously and can be cleared from the mice. Meanwhile, in vitro and in vivo experiments demonstrate that the synthesized NMOF545@Pt can dramatically increase photothermal therapy (PTT) and radiotherapy (RT) efficacy. Convincing evidence proves that tumor growth can be wholly inhibited without noticeable side effects or organ damage. The results demonstrated the promise of multifunctional nanocomposites NMOF545@Pt to improve biomedical imaging and synergistic tumor treatments.
Collapse
Affiliation(s)
- Yingjian Ma
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Jing Mao
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, China
| | - Haojie Qin
- Forensic Medicine School of Henan University of Science and Technology, Luoyang, China
| | - Pan Liang
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenpeng Huang
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chenchen Liu
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jianbo Gao
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
23
|
Li S, Zhou Y, Yan B. Zirconium Metal Organic Framework-Based Hybrid Sensors with Chiral and Luminescent Centers Fabricated by Postsynthetic Modification for the Detection and Recognition of Tryptophan Enantiomers. Inorg Chem 2022; 61:9615-9622. [PMID: 35687818 DOI: 10.1021/acs.inorgchem.2c00991] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
By immobilizing the chiral center l-histidine (l-His) into a Zr-based metal-organic framework (MOF) through post-synthetic ligand exchange, a chiral compound MOF-His has been prepared. On this basis, MOF-His is hybridized with Eu3+ ions to obtain the final responsive compound Eu@MOF-His. It is worth noting that the bifunctional material exhibits enantioselective luminescence properties for tryptophan enantiomers. The experimental results demonstrate that tryptophan enantiomers can effectively quench the red-light emission of Eu3+ ions, and also, the quenching rates are various, which may originate from the differences in the interaction between analytes and chiral recognition sites. In addition, Eu@MOF-His can realize the sensing of tryptophan enantiomers in serum. Concurrently, the compound possesses reusability, high sensitivity, and fast response speed, which means that it has the potential to serve as an excellent fluorescent sensor for detecting and identifying tryptophan enantiomers.
Collapse
Affiliation(s)
- Shengnan Li
- School of Chem. Sci. and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China
| | - Yiping Zhou
- School of Chem. Sci. and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China
| | - Bing Yan
- School of Chem. Sci. and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China.,School of Materials Science and Engineering, Liaocheng University, Liaocheng 252000, China
| |
Collapse
|