1
|
Parameswarappa DC, Kulkarni A, Sahoo NK, Padhy SK, Singh SR, Héon E, Chhablani J. From Cellular to Metabolic: Advances in Imaging of Inherited Retinal Diseases. Diagnostics (Basel) 2024; 15:28. [PMID: 39795556 PMCID: PMC11720060 DOI: 10.3390/diagnostics15010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/19/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
Background: Inherited retinal diseases (IRDs) are a genetically complex group of disorders, usually resulting in progressive vision loss due to retinal degeneration. Traditional imaging methods help in structural assessments, but limitations exist in early functional cellular-level detection that are crucial for guiding new therapies. Methods: This review includes a systematic search of PubMed and Google Scholar for studies on advanced imaging techniques for IRDs. Results: Key modalities covered are adaptive optics, fluorescence lifetime imaging ophthalmoscopy, polarization-sensitive optical coherence tomography, optoretinography, mitochondrial imaging, flavoprotein fluorescence imaging, and retinal oximetry. Each imaging method covers its principles, acquisition techniques, data from healthy eyes, applications in IRDs with specific examples, and current challenges and future directions. Conclusions: Emerging technologies, including adaptive optics and metabolic imaging, offer promising potential for cellular-level imaging and functional correlation in IRDs, allowing for earlier intervention and improved therapeutic targeting. Their integration into clinical practice may significantly improve IRD management and patient outcomes.
Collapse
Affiliation(s)
- Deepika C. Parameswarappa
- Ophthalmology and Vision Sciences, Hospital for Sick Children, University of Toronto, Toronto, ON M5S 1E8, Canada
| | - Ashwini Kulkarni
- Anant Bajaj Retina Institute, LV Prasad Eye Institute, Vijayawada 521134, India
| | - Niroj Kumar Sahoo
- Anant Bajaj Retina Institute, LV Prasad Eye Institute, Vijayawada 521134, India
| | - Srikanta Kumar Padhy
- Anant Bajaj Retina Institute, LV Prasad Eye Institute, Bhubaneswar 751024, India
| | | | - Elise Héon
- Ophthalmology and Vision Sciences, Hospital for Sick Children, University of Toronto, Toronto, ON M5S 1E8, Canada
- Genetics and Genome Biology, SickKids Research Institute, Toronto, ON M5G 1E8, Canada
| | - Jay Chhablani
- UPMC Eye Centre and Choroidal Analysis and Research (CAR) Lab, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
2
|
Roberts AP, Orr A, Iliev V, Orr L, McFarlane S, Yang Z, Epifano I, Loney C, Rodriguez MC, Cliffe AR, Conn KL, Boutell C. Daxx mediated histone H3.3 deposition on HSV-1 DNA restricts genome decompaction and the progression of immediate-early transcription. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.15.608064. [PMID: 39185184 PMCID: PMC11343217 DOI: 10.1101/2024.08.15.608064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Herpesviruses are ubiquitous pathogens that cause a wide range of disease. Upon nuclear entry, their genomes associate with histones and chromatin modifying enzymes that regulate the progression of viral transcription and outcome of infection. While the composition and modification of viral chromatin has been extensively studied on bulk populations of infected cells by chromatin immunoprecipitation, this key regulatory process remains poorly defined at single-genome resolution. Here we use high-resolution quantitative imaging to investigate the spatial proximity of canonical and variant histones at individual Herpes Simplex Virus 1 (HSV-1) genomes within the first 90 minutes of infection. We identify significant population heterogeneity in the stable enrichment and spatial proximity of canonical histones (H2A, H2B, H3.1) at viral DNA (vDNA) relative to established promyelocytic leukaemia nuclear body (PML-NB) host factors that are actively recruited to viral genomes upon nuclear entry. We show the replication-independent histone H3.3/H4 chaperone Daxx to cooperate with PML to mediate the enrichment and spatial localization of variant histone H3.3 at vDNA that limits the rate of HSV-1 genome decompaction to restrict the progress of immediate-early (IE) transcription. This host response is counteracted by the viral ubiquitin ligase ICP0, which degrades PML to disperse Daxx and variant histone H3.3 from vDNA to stimulate the progression of viral genome expansion, IE transcription, and onset of HSV-1 replication. Our data support a model of intermediate and sequential histone assembly initiated by Daxx that limits the rate of HSV-1 genome decompaction independently of the stable enrichment of histones H2A and H2B at vDNA required to facilitate canonical nucleosome assembly. We identify HSV-1 genome decompaction upon nuclear infection to play a key role in the initiation and functional outcome of HSV-1 lytic infection, findings pertinent to the transcriptional regulation of many nuclear replicating herpesvirus pathogens.
Collapse
Affiliation(s)
- Ashley P.E. Roberts
- MRC-University of Glasgow Centre for Virus Research (CVR), Sir Michael Stoker Building, Garscube Campus, Glasgow, Scotland, UK
- School of Life and Environmental Sciences, College of Health and Science, Joseph Banks laboratories, University of Lincoln, Brayford Pool Campus, Lincoln, LN6 7TS, UK
| | - Anne Orr
- MRC-University of Glasgow Centre for Virus Research (CVR), Sir Michael Stoker Building, Garscube Campus, Glasgow, Scotland, UK
| | - Victor Iliev
- MRC-University of Glasgow Centre for Virus Research (CVR), Sir Michael Stoker Building, Garscube Campus, Glasgow, Scotland, UK
| | - Lauren Orr
- MRC-University of Glasgow Centre for Virus Research (CVR), Sir Michael Stoker Building, Garscube Campus, Glasgow, Scotland, UK
| | - Steven McFarlane
- MRC-University of Glasgow Centre for Virus Research (CVR), Sir Michael Stoker Building, Garscube Campus, Glasgow, Scotland, UK
| | - Zhousiyu Yang
- MRC-University of Glasgow Centre for Virus Research (CVR), Sir Michael Stoker Building, Garscube Campus, Glasgow, Scotland, UK
| | - Ilaria Epifano
- MRC-University of Glasgow Centre for Virus Research (CVR), Sir Michael Stoker Building, Garscube Campus, Glasgow, Scotland, UK
| | - Colin Loney
- MRC-University of Glasgow Centre for Virus Research (CVR), Sir Michael Stoker Building, Garscube Campus, Glasgow, Scotland, UK
| | - Milagros Collados Rodriguez
- MRC-University of Glasgow Centre for Virus Research (CVR), Sir Michael Stoker Building, Garscube Campus, Glasgow, Scotland, UK
| | - Anna R. Cliffe
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Kristen L. Conn
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, CAN
| | - Chris Boutell
- MRC-University of Glasgow Centre for Virus Research (CVR), Sir Michael Stoker Building, Garscube Campus, Glasgow, Scotland, UK
| |
Collapse
|
3
|
Mo Y, Zhou H, Xu J, Chen X, Li L, Zhang S. Genetically encoded fluorescence lifetime biosensors: overview, advances, and opportunities. Analyst 2023; 148:4939-4953. [PMID: 37721109 DOI: 10.1039/d3an01201h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Genetically encoded biosensors based on fluorescent proteins (FPs) are powerful tools for tracking analytes and cellular events with high spatial and temporal resolution in living cells and organisms. Compared with intensiometric readout and ratiometric readout, fluorescence lifetime readout provides absolute measurements, independent of the biosensor expression level and instruments. Thus, genetically encoded fluorescence lifetime biosensors play a vital role in facilitating accurate quantitative assessments within intricate biological systems. In this review, we first provide a concise description of the categorization and working mechanism of genetically encoded fluorescence lifetime biosensors. Subsequently, we elaborate on the combination of the fluorescence lifetime imaging technique and lifetime analysis methods with fluorescence lifetime biosensors, followed by their application in monitoring the dynamics of environment parameters, analytes and cellular events. Finally, we discuss worthwhile considerations for the design, optimization and development of fluorescence lifetime-based biosensors from three representative cases.
Collapse
Affiliation(s)
- Yidan Mo
- State Key Laboratory of Precision Spectroscopy, East China Normal University, No. 500, Dongchuan Rd, Shanghai 200241, China
| | - Huangmei Zhou
- State Key Laboratory of Precision Spectroscopy, East China Normal University, No. 500, Dongchuan Rd, Shanghai 200241, China
| | - Jinming Xu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, No. 500, Dongchuan Rd, Shanghai 200241, China
| | - Xihang Chen
- State Key Laboratory of Precision Spectroscopy, East China Normal University, No. 500, Dongchuan Rd, Shanghai 200241, China
| | - Lei Li
- School of Science, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China.
| | - Sanjun Zhang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, No. 500, Dongchuan Rd, Shanghai 200241, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
- NYU-ECNU Institute of Physics at NYU Shanghai, No. 3663, North Zhongshan Rd, Shanghai 200062, China.
| |
Collapse
|
4
|
Li X, An Z, Zhang W, Li F. Phase Separation: Direct and Indirect Driving Force for High-Order Chromatin Organization. Genes (Basel) 2023; 14:499. [PMID: 36833426 PMCID: PMC9956262 DOI: 10.3390/genes14020499] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
The multi-level spatial chromatin organization in the nucleus is closely related to chromatin activity. The mechanism of chromatin organization and remodeling attract much attention. Phase separation describes the biomolecular condensation which is the basis for membraneless compartments in cells. Recent research shows that phase separation is a key aspect to drive high-order chromatin structure and remodeling. In addition, chromatin functional compartmentalization in the nucleus which is formed by phase separation also plays an important role in overall chromatin structure. In this review, we summarized the latest work about the role of phase separation in spatial chromatin organization, focusing on direct and indirect effects of phase separation on 3D chromatin organization and its impact on transcription regulation.
Collapse
Affiliation(s)
- Xiaoli Li
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou 510006, China
- Department of Cell Biology and Genetics, Core Facility of Developmental Biology, Chongqing Medical University, Chongqing 400016, China
| | - Ziyang An
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Wenqing Zhang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Feifei Li
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
5
|
Fluorescence and phosphorescence lifetime imaging reveals a significant cell nuclear viscosity and refractive index changes upon DNA damage. Sci Rep 2023; 13:422. [PMID: 36624137 PMCID: PMC9829731 DOI: 10.1038/s41598-022-26880-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/20/2022] [Indexed: 01/11/2023] Open
Abstract
Cytoplasmic viscosity is a crucial parameter in determining rates of diffusion-limited reactions. Changes in viscosity are associated with several diseases, whilst nuclear viscosity determines gene integrity, regulation and expression. Yet how drugs including DNA-damaging agents affect viscosity is unknown. We demonstrate the use of a platinum complex, Pt[L]Cl, that localizes efficiently mostly in the nucleus as a probe for nuclear viscosity. The phosphorescence lifetime of Pt[L]Cl is sensitive to viscosity and provides an excellent tool to investigate the impact of DNA damage. We show using Fluorescence Lifetime Imaging (FLIM) that the lifetime of both green and red fluorescent proteins (FP) are also sensitive to changes in cellular viscosity and refractive index. However, Pt[L]Cl proved to be a more sensitive viscosity probe, by virtue of microsecond phosphorescence lifetime versus nanosecond fluorescence lifetime of FP, hence greater sensitivity to bimolecular reactions. DNA damage was inflicted by either a two-photon excitation, one-photon excitation microbeam and X-rays. DNA damage of live cells causes significant increase in the lifetime of either Pt[L]Cl (HeLa cells, 12.5-14.1 µs) or intracellularly expressed mCherry (HEK293 cells, 1.54-1.67 ns), but a decrease in fluorescence lifetime of GFP from 2.65 to 2.29 ns (in V15B cells). These values represent a viscosity change from 8.59 to 20.56 cP as well as significant changes in the refractive index (RI), according to independent calibration. Interestingly DNA damage localized to a submicron region following a laser microbeam induction showed a whole cell viscosity change, with those in the nucleus being greater than the cytoplasm. We also found evidence of a by-stander effect, whereby adjacent un-irradiated cells also showed nuclear viscosity change. Finally, an increase in viscosity following DNA damage was also observed in bacterial cells with an over-expressed mNeonGreen FP, evidenced by the change in its lifetime from 2.8 to 2.4 ns.
Collapse
|
6
|
Lecinski S, Shepherd JW, Bunting K, Dresser L, Quinn SD, MacDonald C, Leake MC. Correlating viscosity and molecular crowding with fluorescent nanobeads and molecular probes: in vitro and in vivo. Interface Focus 2022; 12:20220042. [PMID: 36330320 PMCID: PMC9560789 DOI: 10.1098/rsfs.2022.0042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/05/2022] [Indexed: 02/02/2023] Open
Abstract
In eukaryotes, intracellular physico-chemical properties like macromolecular crowding and cytoplasmic viscoelasticity influence key processes such as metabolic activities, molecular diffusion and protein folding. However, mapping crowding and viscoelasticity in living cells remains challenging. One approach uses passive rheology in which diffusion of exogenous fluorescent particles internalized in cells is tracked and physico-chemical properties inferred from derived mean square displacement relations. Recently, the crGE2.3 Förster resonance energy transfer biosensor was developed to quantify crowding in cells, though it is unclear how this readout depends on viscoelasticity and the molecular weight of the crowder. Here, we present correlative, multi-dimensional data to explore diffusion and molecular crowding characteristics of molecular crowding agents using super-resolved fluorescence microscopy and ensemble time-resolved spectroscopy. We firstly characterize in vitro and then apply these insights to live cells of budding yeast Saccharomyces cerevisiae. It is to our knowledge the first time this has been attempted. We demonstrate that these are usable both in vitro and in the case of endogenously expressed sensors in live cells. Finally, we present a method to internalize fluorescent beads as in situ viscoelasticity markers in the cytoplasm of live yeast cells and discuss limitations of this approach including impairment of cellular function.
Collapse
Affiliation(s)
- Sarah Lecinski
- Department of Physics, University of York, York YO10 5DD, UK
| | - Jack W. Shepherd
- Department of Physics, University of York, York YO10 5DD, UK
- Department of Biology, University of York, York YO10 5DD, UK
| | - Kate Bunting
- Department of Biology, University of York, York YO10 5DD, UK
| | - Lara Dresser
- Department of Physics, University of York, York YO10 5DD, UK
| | - Steven D. Quinn
- Department of Physics, University of York, York YO10 5DD, UK
| | - Chris MacDonald
- Department of Biology, University of York, York YO10 5DD, UK
| | - Mark C. Leake
- Department of Physics, University of York, York YO10 5DD, UK
- Department of Biology, University of York, York YO10 5DD, UK
| |
Collapse
|
7
|
Dyer OT, Ball RC. Surfactancy in a tadpole model of proteins. J R Soc Interface 2022; 19:20220172. [PMID: 36195115 PMCID: PMC9532023 DOI: 10.1098/rsif.2022.0172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 09/16/2022] [Indexed: 11/07/2022] Open
Abstract
We model the environment of eukaryotic nuclei by representing macromolecules by only their entropic properties, with globular molecules represented by spherical colloids and flexible molecules by polymers. We put particular focus on proteins with both globular and intrinsically disordered regions, which we represent with 'tadpole' constructed by grafting single polymers and colloids together. In Monte Carlo simulations, we find these tadpoles support phase separation via depletion flocculation, and demonstrate several surfactant behaviours, including being found preferentially at interfaces and forming micelles in single phase solution. Furthermore, the model parameters can be tuned to give a tadpole a preference for either bulk phase. However, we find entropy too weak to drive these behaviours by itself at likely biological concentrations.
Collapse
Affiliation(s)
- O. T. Dyer
- Department of Physics, University of Warwick, Coventry CV4 7AL, UK
| | - R. C. Ball
- Department of Physics, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
8
|
Li Y, Shen B, Lu Y, Shi J, Zhao Z, Li H, Hu R, Qu J, Liu L. Multidimensional quantitative characterization of the tumor microenvironment by multicontrast nonlinear microscopy. BIOMEDICAL OPTICS EXPRESS 2022; 13:5517-5532. [PMID: 36425619 PMCID: PMC9664882 DOI: 10.1364/boe.470104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Characterization of the microenvironment features of tumors, such as its microstructures, biomolecular metabolism, and functional dynamics, may provide essential pathologic information about the tumor, tumor margin, and adjacent normal tissue for early and intraoperative diagnosis. However, it can be particularly challenging to obtain faithful and comprehensive pathological information simultaneously from unperturbed tissues due to the complexity of the microenvironment in organisms. Super-multiplex nonlinear optical imaging system emerged and matured as an attractive tool for acquisition and elucidation of the nonlinear properties correlated with tumor microenvironment. Here, we introduced a nonlinear effects-based multidimensional optical imaging platform and methodology to simultaneously and efficiently capture contrasting and complementary nonlinear optical signatures of freshly excised human skin tissues. The qualitative and quantitative analysis of autofluorescence (FAD), collagen fiber, and intracellular components (lipids and proteins) illustrated the differences about morphological changes and biomolecular metabolic processes of the epidermis and dermis in different skin carcinogenic types. Interpretation of multi-parameter stain-free histological findings complements conventional H&E-stained slides for investigating basal cell carcinoma and pigmented nevus, validates the platform's versatility and efficiency for classifying subtypes of skin carcinoma, and provides the potential to translate endogenous molecule into biomarker for assisting in rapid cancer screening and diagnosis.
Collapse
Affiliation(s)
- Yanping Li
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Binglin Shen
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yuan Lu
- The Sixth People’s Hospital of Shenzhen, Shenzhen 518052, China
| | - Jinhui Shi
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Zewei Zhao
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Huixian Li
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Rui Hu
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Liwei Liu
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
9
|
Caragliano E, Brune W, Bosse JB. Herpesvirus Replication Compartments: Dynamic Biomolecular Condensates? Viruses 2022; 14:960. [PMID: 35632702 PMCID: PMC9147375 DOI: 10.3390/v14050960] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/29/2022] [Accepted: 05/01/2022] [Indexed: 02/01/2023] Open
Abstract
Recent progress has provided clear evidence that many RNA-viruses form cytoplasmic biomolecular condensates mediated by liquid-liquid phase separation to facilitate their replication. In contrast, seemingly contradictory data exist for herpesviruses, which replicate their DNA genomes in nuclear membrane-less replication compartments (RCs). Here, we review the current literature and comment on nuclear condensate formation by herpesviruses, specifically with regard to RC formation. Based on data obtained with human cytomegalovirus (human herpesvirus 5), we propose that liquid and homogenous early RCs convert into more heterogeneous RCs with complex properties over the course of infection. We highlight how the advent of DNA replication leads to the maturation of these biomolecular condensates, likely by adding an additional DNA scaffold.
Collapse
Affiliation(s)
- Enrico Caragliano
- Leibniz Institute for Experimental Virology (HPI), 20251 Hamburg, Germany;
- Centre for Structural Systems Biology, 22607 Hamburg, Germany
- Institute of Virology, Hannover Medical School, 30625 Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30625 Hannover, Germany
| | - Wolfram Brune
- Leibniz Institute for Experimental Virology (HPI), 20251 Hamburg, Germany;
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, 38124 Braunschweig, Germany
| | - Jens B. Bosse
- Leibniz Institute for Experimental Virology (HPI), 20251 Hamburg, Germany;
- Centre for Structural Systems Biology, 22607 Hamburg, Germany
- Institute of Virology, Hannover Medical School, 30625 Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
10
|
Levchenko SM, Pliss A, Peng X, Prasad PN, Qu J. Fluorescence lifetime imaging for studying DNA compaction and gene activities. LIGHT, SCIENCE & APPLICATIONS 2021; 10:224. [PMID: 34728612 PMCID: PMC8563720 DOI: 10.1038/s41377-021-00664-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 10/04/2021] [Accepted: 10/18/2021] [Indexed: 05/04/2023]
Abstract
Optical imaging is a most useful and widespread technique for the investigation of the structure and function of the cellular genomes. However, an analysis of immensely convoluted and irregularly compacted DNA polymer is highly challenging even by modern super-resolution microscopy approaches. Here we propose fluorescence lifetime imaging (FLIM) for the advancement of studies of genomic structure including DNA compaction, replication as well as monitoring of gene expression. The proposed FLIM assay employs two independent mechanisms for DNA compaction sensing. One mechanism relies on the inverse quadratic relation between the fluorescence lifetimes of fluorescence probes incorporated into DNA and their local refractive index, variable due to DNA compaction density. Another mechanism is based on the Förster resonance energy transfer (FRET) process between the donor and the acceptor fluorophores, both incorporated into DNA. Both these proposed mechanisms were validated in cultured cells. The obtained data unravel a significant difference in compaction of the gene-rich and gene-poor pools of genomic DNA. We show that the gene-rich DNA is loosely compacted compared to the dense DNA domains devoid of active genes.
Collapse
Affiliation(s)
- Svitlana M Levchenko
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
- Department of Cell Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387, Krakow, Poland
| | - Artem Pliss
- Institute for Lasers, Photonics and Biophotonics, University at Buffalo, State University of New York, Buffalo, NY, 14260-3000, USA
| | - Xiao Peng
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Paras N Prasad
- Institute for Lasers, Photonics and Biophotonics, University at Buffalo, State University of New York, Buffalo, NY, 14260-3000, USA.
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China.
| |
Collapse
|
11
|
Pliss A, Kuzmin AN, Lita A, Kumar R, Celiku O, Atilla-Gokcumen GE, Gokcumen O, Chandra D, Larion M, Prasad PN. A Single-Organelle Optical Omics Platform for Cell Science and Biomarker Discovery. Anal Chem 2021; 93:8281-8290. [PMID: 34048235 DOI: 10.1021/acs.analchem.1c01131] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Research in fundamental cell biology and pathology could be revolutionized by developing the capacity for quantitative molecular analysis of subcellular structures. To that end, we introduce the Ramanomics platform, based on confocal Raman microspectrometry coupled to a biomolecular component analysis algorithm, which together enable us to molecularly profile single organelles in a live-cell environment. This emerging omics approach categorizes the entire molecular makeup of a sample into about a dozen of general classes and subclasses of biomolecules and quantifies their amounts in submicrometer volumes. A major contribution of our study is an attempt to bridge Raman spectrometry with big-data analysis in order to identify complex patterns of biomolecules in a single cellular organelle and leverage discovery of disease biomarkers. Our data reveal significant variations in organellar composition between different cell lines. We also demonstrate the merits of Ramanomics for identifying diseased cells by using prostate cancer as an example. We report large-scale molecular transformations in the mitochondria, Golgi apparatus, and endoplasmic reticulum that accompany the development of prostate cancer. Based on these findings, we propose that Ramanomics datasets in distinct organelles constitute signatures of cellular metabolism in healthy and diseased states.
Collapse
Affiliation(s)
- Artem Pliss
- Institute for Lasers, Photonics and Biophotonics and Department of Chemistry, Natural Science Complex, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Andrey N Kuzmin
- Institute for Lasers, Photonics and Biophotonics and Department of Chemistry, Natural Science Complex, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Adrian Lita
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Rahul Kumar
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263, United States
| | - Orieta Celiku
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - G Ekin Atilla-Gokcumen
- Department of Chemistry, Natural Science Complex, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Omer Gokcumen
- Department of Biological Sciences, Cooke Hall, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Dhyan Chandra
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14263, United States
| | - Mioara Larion
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Paras N Prasad
- Institute for Lasers, Photonics and Biophotonics and Department of Chemistry, Natural Science Complex, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| |
Collapse
|
12
|
Luminescent probes for luminescence lifetime sensing and imaging in live cells: a narrative review. JOURNAL OF BIO-X RESEARCH 2020. [DOI: 10.1097/jbr.0000000000000081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
13
|
Brodwolf R, Volz-Rakebrand P, Stellmacher J, Wolff C, Unbehauen M, Haag R, Schäfer-Korting M, Zoschke C, Alexiev U. Faster, sharper, more precise: Automated Cluster-FLIM in preclinical testing directly identifies the intracellular fate of theranostics in live cells and tissue. Theranostics 2020; 10:6322-6336. [PMID: 32483455 PMCID: PMC7255044 DOI: 10.7150/thno.42581] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 04/01/2020] [Indexed: 12/25/2022] Open
Abstract
Fluorescence microscopy is widely used for high content screening in 2D cell cultures and 3D models. In particular, 3D tissue models are gaining major relevance in modern drug development. Enabling direct multiparametric evaluation of complex samples, fluorescence lifetime imaging (FLIM) adds a further level to intensity imaging by the sensitivity of the fluorescence lifetime to the microenvironment. However, the use of FLIM is limited amongst others by the acquisition of sufficient photon numbers without phototoxic effects in live cells. Herein, we developed a new cluster-based analysis method to enhance insight, and significantly speed up analysis and measurement time for the accurate translation of fluorescence lifetime information into pharmacological pathways. Methods: We applied a fluorescently-labeled dendritic core-multishell nanocarrier and its cargo Bodipy as molecules of interest (MOI) to human cells and reconstructed human tissue. Following the sensitivity and specificity assessment of the fitting-free Cluster-FLIM analysis of data in silico and in vitro, we evaluated the dynamics of cellular molecule uptake and intracellular interactions. For 3D live tissue investigations, we applied multiphoton (mp) FLIM. Owing to Cluster-FLIM's statistics-based fitting-free analysis, we utilized this approach for automatization. Results: To discriminate the fluorescence lifetime signatures of 5 different fluorescence species in a single color channel, the Cluster-FLIM method requires only 170, respectively, 90 counts per pixel to obtain 95% sensitivity (hit rate) and 95% specificity (correct rejection rate). Cluster-FLIM revealed cellular interactions of MOIs, representing their spatiotemporal intracellular fate. In a setting of an automated workflow, the assessment of lysosomal trapping of the MOI revealed relevant differences between normal and tumor cells, as well as between 2D and 3D models. Conclusion: The automated Cluster-FLIM tool is fitting-free, providing images with enhanced information, contrast, and spatial resolution at short exposure times and low fluorophore concentrations. Thereby, Cluster-FLIM increases the applicability of FLIM in high content analysis of target molecules in drug development and beyond.
Collapse
|
14
|
Pliss A, Prasad PN. High resolution mapping of subcellular refractive index by Fluorescence Lifetime Imaging: a next frontier in quantitative cell science? Methods Appl Fluoresc 2020; 8:032001. [PMID: 32235079 DOI: 10.1088/2050-6120/ab8571] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Intracellular refractive index (RI) is an essential biophysical parameter, which best represents the mass and the distribution of proteins in the cell interior, including high-density accumulations in membraneless organelles. For RI measurements, a number of sophisticated techniques have been developed; however most of the new approaches are either insufficiently sensitive to intracellular variations of proteins distribution or are not compatible with live cell studies. Here, we outline the fluorescence lifetime imaging (FLIM) strategy for high resolution mapping of subcellular RI. We provide an example of our recent studies in which we utilize FLIM for measurements and monitoring of local RI in the major membraneless organelles within live cultured cells.
Collapse
|
15
|
Hung ST, Mukherjee S, Jimenez R. Enrichment of rare events using a multi-parameter high throughput microfluidic droplet sorter. LAB ON A CHIP 2020; 20:834-843. [PMID: 31974539 PMCID: PMC7135947 DOI: 10.1039/c9lc00790c] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
High information content analysis, enrichment, and selection of rare events from a large population are of great importance in biological and biomedical research. The fluorescence lifetime of a fluorophore, a photophysical property which is independent of and complementary to fluorescence intensity, has been incorporated into various imaging and sensing techniques through microscopy, flow cytometry and droplet microfluidics. However, the throughput of fluorescence lifetime activated droplet sorting is orders of magnitude lower than that of fluorescence activated cell sorting, making it unattractive for applications such as directed evolution of enzymes, despite its highly effective compartmentalization of library members. We developed a microfluidic sorter capable of selecting fluorophores based on fluorescence lifetime and brightness at two excitation and emission colors at a maximum droplet rate of 2.5 kHz. We also present a novel selection strategy for efficiently analyzing and/or enriching rare fluorescent members from a large population which capitalizes on the Poisson distribution of analyte encapsulation into droplets. The effectiveness of the droplet sorter and the new selection strategy are demonstrated by enriching rare populations from a ∼108-member site-directed mutagenesis library of fluorescent proteins expressed in bacteria. This selection strategy can in principle be employed on many droplet sorting platforms, and thus can potentially impact broad areas of science where analysis and enrichment of rare events is needed.
Collapse
Affiliation(s)
- Sheng-Ting Hung
- JILA, NIST and University of Colorado, Boulder, Colorado 80309, USA.
| | - Srijit Mukherjee
- JILA, NIST and University of Colorado, Boulder, Colorado 80309, USA. and Department of Chemistry, University of Colorado, Boulder, Colorado 80309, USA
| | - Ralph Jimenez
- JILA, NIST and University of Colorado, Boulder, Colorado 80309, USA. and Department of Chemistry, University of Colorado, Boulder, Colorado 80309, USA
| |
Collapse
|
16
|
Lin F, Das P, Zhao Y, Shen B, Hu R, Zhou F, Liu L, Qu J. Monitoring the endocytosis of bovine serum albumin based on the fluorescence lifetime of small squaraine dye in living cells. BIOMEDICAL OPTICS EXPRESS 2020; 11:149-159. [PMID: 32010506 PMCID: PMC6968756 DOI: 10.1364/boe.11.000149] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/20/2019] [Accepted: 11/26/2019] [Indexed: 05/22/2023]
Abstract
Bovine serum albumin (BSA) has a wide range of physiological functions involving the binding, transportation, and delivery of fatty acids, porphyrins, bilirubin, steroids, etc. In the present study, we prepared a small squaraine dye (SD), which can selectively detect BSA using fluorescence lifetime imaging microscopy (FLIM), to monitor the endocytosis of BSA in live cultured cells in real time. This approach revealed that BSA uptake is concentration-dependent in living cells. Furthermore, we used paclitaxel (PTX), a chemotherapeutic drug, to influence the endocytosis of BSA in living cells. The results demonstrated that the endocytic rate was clearly reduced after pretreatment with 0.4 µM PTX for 2 h. The present study demonstrates the potential value of using the fluorescence lifetime of SD to detect BSA concentration and study the physiological mechanism of chemotherapeutic drugs.
Collapse
Affiliation(s)
- Fangrui Lin
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province & Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong Province 518060, China
| | - Pintu Das
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province & Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong Province 518060, China
| | - Yihua Zhao
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province & Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong Province 518060, China
| | - Binglin Shen
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province & Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong Province 518060, China
| | - Rui Hu
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province & Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong Province 518060, China
| | - Feifan Zhou
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province & Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong Province 518060, China
| | - Liwei Liu
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province & Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong Province 518060, China
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province & Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong Province 518060, China
| |
Collapse
|
17
|
Shen B, Yan J, Wang S, Zhou F, Zhao Y, Hu R, Qu J, Liu L. Label-free whole-colony imaging and metabolic analysis of metastatic pancreatic cancer by an autoregulating flexible optical system. Am J Cancer Res 2020; 10:1849-1860. [PMID: 32042340 PMCID: PMC6993220 DOI: 10.7150/thno.40869] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 11/14/2019] [Indexed: 12/17/2022] Open
Abstract
Cancer metastasis is a Gordian knot for tumor diagnosis and therapy. Many studies have demonstrated that metastatic processes are inevitably affected by the tumor microenvironment. Histopathology is used universally as the gold standard for cancer diagnosis despite the lengthy preparation process and invasiveness. Methods: Here, we introduced a supercontinuum and super-wide-tuning integrated multimodal platform, which combines the confocal, nonlinear and fluorescence lifetime microscopy with autoregulations, for label-free evaluation of fresh tissue and pathological sections. Based on various automated tunable lasers, synchronized and self-adjusting components and eight fast switching detection channels, the system features fast, large-field and subcellular-scale imaging of exogenous and endogenous fluorophores, nonlinear coherent scattering and lifetime contrast. Results: With such an integrated multi-dimensional system, we searched the metastatic region by two-photon and three-photon excited autofluorescence, analyzed the cancer invasion by second harmonic generation and revealed the affected cellular metabolism by phasor-lifetime. We demonstrated the flexible measurement of multiple nonlinear modalities at NIR I and II excitation with a pre-compensation for group delay dispersion of ~7,000 fs2 and low power of <40 mW, and of dual autofluorescence lifetime decays for phasor approach to decompose cancer-associated and disassociated components. This significantly revealed the metastatic and metabolic optical signatures of the whole colony of pancreatic cancers. Conclusion: The synergistic effect of the system demonstrates the great potential to translate this technique into routine clinical applications, particularly for large-scale and quantitative studies of metastatic colonization.
Collapse
|
18
|
Cycles of protein condensation and discharge in nuclear organelles studied by fluorescence lifetime imaging. Nat Commun 2019; 10:455. [PMID: 30692529 PMCID: PMC6349932 DOI: 10.1038/s41467-019-08354-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 01/03/2019] [Indexed: 02/07/2023] Open
Abstract
Nuclear organelles are viscous droplets, created by concentration-dependent condensation and liquid–liquid phase separation of soluble proteins. Nuclear organelles have been actively investigated for their role in cellular regulation and disease. However, these studies are highly challenging to perform in live cells, and therefore, their physico-chemical properties are still poorly understood. In this study, we describe a fluorescence lifetime imaging approach for real-time monitoring of protein condensation in nuclear organelles of live cultured cells. This approach unravels surprisingly large cyclic changes in concentration of proteins in major nuclear organelles including nucleoli, nuclear speckles, Cajal bodies, as well as in the clusters of heterochromatin. Remarkably, protein concentration changes are synchronous for different organelles of the same cells. We propose a molecular mechanism responsible for synchronous accumulations of proteins in the nuclear organelles. This mechanism can serve for general regulation of cellular metabolism and contribute to coordination of gene expression. Studying the condensation of proteins into membraneless organelles in live cells is highly challenging. Here the authors develop a fluorescence lifetime imaging approach to monitor the condensation of proteins in nuclear organelles and report coordinated and cyclic changes in several nuclear organelles.
Collapse
|
19
|
BCAbox Algorithm Expands Capabilities of Raman Microscope for Single Organelles Assessment. BIOSENSORS-BASEL 2018; 8:bios8040106. [PMID: 30423849 PMCID: PMC6316203 DOI: 10.3390/bios8040106] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/02/2018] [Accepted: 11/08/2018] [Indexed: 02/06/2023]
Abstract
Raman microspectroscopy is a rapidly developing technique, which has an unparalleled potential for in situ proteomics, lipidomics, and metabolomics, due to its remarkable capability to analyze the molecular composition of live cells and single cellular organelles. However, the scope of Raman spectroscopy for bio-applications is limited by a lack of software tools for express-analysis of biomolecular composition based on Raman spectra. In this study, we have developed the first software toolbox for immediate analysis of intracellular Raman spectra using a powerful biomolecular component analysis (BCA) algorithm. Our software could be easily integrated with commercial Raman spectroscopy instrumentation, and serve for precise analysis of molecular content in major cellular organelles, including nucleoli, endoplasmic reticulum, Golgi apparatus, and mitochondria of either live or fixed cells. The proposed software may be applied in broad directions of cell science, and serve for further advancement and standardization of Raman spectroscopy.
Collapse
|
20
|
Esadze A, Stivers JT. Facilitated Diffusion Mechanisms in DNA Base Excision Repair and Transcriptional Activation. Chem Rev 2018; 118:11298-11323. [PMID: 30379068 DOI: 10.1021/acs.chemrev.8b00513] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Preservation of the coding potential of the genome and highly regulated gene expression over the life span of a human are two fundamental requirements of life. These processes require the action of repair enzymes or transcription factors that efficiently recognize specific sites of DNA damage or transcriptional regulation within a restricted time frame of the cell cycle or metabolism. A failure of these systems to act results in accumulated mutations, metabolic dysfunction, and disease. Despite the multifactorial complexity of cellular DNA repair and transcriptional regulation, both processes share a fundamental physical requirement that the proteins must rapidly diffuse to their specific DNA-binding sites that are embedded within the context of a vastly greater number of nonspecific DNA-binding sites. Superimposed on the needle-in-the-haystack problem is the complex nature of the cellular environment, which contains such high concentrations of macromolecules that the time frame for diffusion is expected to be severely extended as compared to dilute solution. Here we critically review the mechanisms for how these proteins solve the needle-in-the-haystack problem and how the effects of cellular macromolecular crowding can enhance facilitated diffusion processes. We restrict the review to human proteins that use stochastic, thermally driven site-recognition mechanisms, and we specifically exclude systems involving energy cofactors or circular DNA clamps. Our scope includes ensemble and single-molecule studies of the past decade or so, with an emphasis on connecting experimental observations to biological function.
Collapse
Affiliation(s)
- Alexandre Esadze
- Department of Pharmacology and Molecular Sciences , Johns Hopkins University School of Medicine , 725 North Wolfe Street , WBSB 314, Baltimore , Maryland 21205 , United States
| | - James T Stivers
- Department of Pharmacology and Molecular Sciences , Johns Hopkins University School of Medicine , 725 North Wolfe Street , WBSB 314, Baltimore , Maryland 21205 , United States
| |
Collapse
|
21
|
Zhou S, Peng X, Xu H, Qin Y, Jiang D, Qu J, Chen HY. Fluorescence Lifetime-Resolved Ion-Selective Nanospheres for Simultaneous Imaging of Calcium Ion in Mitochondria and Lysosomes. Anal Chem 2018; 90:7982-7988. [DOI: 10.1021/acs.analchem.8b00735] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Shuai Zhou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Xiao Peng
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Haiyan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Yu Qin
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Dechen Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| |
Collapse
|
22
|
Shi H, Luo Q. Biophotonics in China. JOURNAL OF BIOPHOTONICS 2017; 10:1572-1579. [PMID: 29205900 DOI: 10.1002/jbio.201790012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 11/08/2017] [Indexed: 06/07/2023]
Abstract
Biophotonics is a highly interdisciplinary field where physicists, chemists, biologists, physicians and engineers work together to solve the problems appearing in biology and medicine. In China, the Biophotonics discipline is often referred to as Biomedical Photonics, under the first-level disciplines Biomedical Engineering or Optical Engineering, and was initiated in the late 1990s. Over the past 20 years, biophotonics research in China expanded extraordinarily and has reached the frontiers of the world-level sciences. This white paper introduces the research groups in the biophotonics field in China, and their representative contributions.
Collapse
Affiliation(s)
- Hua Shi
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
- MoE Key Laboratory of Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Qingming Luo
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
- MoE Key Laboratory of Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| |
Collapse
|
23
|
Galganski L, Urbanek MO, Krzyzosiak WJ. Nuclear speckles: molecular organization, biological function and role in disease. Nucleic Acids Res 2017; 45:10350-10368. [PMID: 28977640 PMCID: PMC5737799 DOI: 10.1093/nar/gkx759] [Citation(s) in RCA: 331] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 08/18/2017] [Indexed: 12/13/2022] Open
Abstract
The nucleoplasm is not homogenous; it consists of many types of nuclear bodies, also known as nuclear domains or nuclear subcompartments. These self-organizing structures gather machinery involved in various nuclear activities. Nuclear speckles (NSs) or splicing speckles, also called interchromatin granule clusters, were discovered as sites for splicing factor storage and modification. Further studies on transcription and mRNA maturation and export revealed a more general role for splicing speckles in RNA metabolism. Here, we discuss the functional implications of the localization of numerous proteins crucial for epigenetic regulation, chromatin organization, DNA repair and RNA modification to nuclear speckles. We highlight recent advances suggesting that NSs facilitate integrated regulation of gene expression. In addition, we consider the influence of abundant regulatory and signaling proteins, i.e. protein kinases and proteins involved in protein ubiquitination, phosphoinositide signaling and nucleoskeletal organization, on pre-mRNA synthesis and maturation. While many of these regulatory proteins act within NSs, direct evidence for mRNA metabolism events occurring in NSs is still lacking. NSs contribute to numerous human diseases, including cancers and viral infections. In addition, recent data have demonstrated close relationships between these structures and the development of neurological disorders.
Collapse
Affiliation(s)
- Lukasz Galganski
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Martyna O Urbanek
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Wlodzimierz J Krzyzosiak
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| |
Collapse
|
24
|
Kuzmin AN, Levchenko SM, Pliss A, Qu J, Prasad PN. Molecular profiling of single organelles for quantitative analysis of cellular heterogeneity. Sci Rep 2017; 7:6512. [PMID: 28747639 PMCID: PMC5529525 DOI: 10.1038/s41598-017-06936-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 06/21/2017] [Indexed: 12/18/2022] Open
Abstract
Recent developments in Raman spectroscopy instrumentation and data processing algorithms have led to the emergence of Ramanomics - an independent discipline with unprecedented capabilities to map the distribution of distinct molecular groups in live cells. Here, we introduce a method for probing the absolute concentrations of proteins, RNA and lipids in single organelles of live cultured cells by biomolecular component analysis using microRaman data. We found significant cell-to-cell variations in the molecular profiles of organelles, thus providing a physiologically relevant set of markers of cellular heterogeneity. At the same cell the molecular profiles of different organelles can strongly correlate, reflecting tight coordination of their functions. This correlation was significant in WI-38 diploid fibroblasts and weak in HeLa cells, indicating profound differences in the regulation of biochemical processes in these cell lines.
Collapse
Affiliation(s)
- Andrey N Kuzmin
- Advanced Cytometry Instrumentation Systems, LLC, 640 Ellicott Street - Suite 499, Buffalo, 14203, NY, USA.
- Institute for Lasers, Photonics and Biophotonics, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA.
| | - Svitlana M Levchenko
- Institute for Lasers, Photonics and Biophotonics, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA
- College of Optoelectronic Engineering, Shenzhen University, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen, Guangdong, 518060, China
| | - Artem Pliss
- Advanced Cytometry Instrumentation Systems, LLC, 640 Ellicott Street - Suite 499, Buffalo, 14203, NY, USA
- Institute for Lasers, Photonics and Biophotonics, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA
| | - Junle Qu
- College of Optoelectronic Engineering, Shenzhen University, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen, Guangdong, 518060, China.
| | - Paras N Prasad
- Institute for Lasers, Photonics and Biophotonics, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA.
- College of Optoelectronic Engineering, Shenzhen University, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen, Guangdong, 518060, China.
| |
Collapse
|
25
|
Chen E, Kliger DS. Time-Resolved Linear Dichroism Measurements of Carbonmonoxy Myoglobin as a Probe of the Microviscosity in Crowded Environments. J Phys Chem B 2017; 121:7064-7074. [PMID: 28703591 DOI: 10.1021/acs.jpcb.7b04107] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The distribution of viscosities in living cells is heterogeneous because of the different sizes and natures of macromolecular components. When thinking about protein folding/function processes in such an environment, the relevant (micro)viscosity at the micrometer length scale is necessarily distinguished from the bulk (macro)viscosity. The concentration dependencies of microviscosities are determined by a number of factors, such as electrostatic interactions, van der Waals forces, and excluded volume effects. To explore such factors, the rotational diffusion time of myoglobin in the presence of varying concentrations of macromolecules that differ in molecular weight (dextran 6000, 10 000, and 70 000), shape (dextran versus Ficoll), size, and surface charge is measured with time-resolved linear dichroism spectroscopy. The results of these studies offer simple empirically determined linear and exponential functions useful for predicting microviscosities as a function of concentration for these macromolecular crowders that are typically used to study crowding effects on protein folding. To understand how relevant these microviscosity measurements are to intracellular environments, the TRLD results are discussed in the context of studies that measure viscosity in cells.
Collapse
Affiliation(s)
- Eefei Chen
- Department of Chemistry and Biochemistry, University of California , Santa Cruz, California 95064, United States
| | - David S Kliger
- Department of Chemistry and Biochemistry, University of California , Santa Cruz, California 95064, United States
| |
Collapse
|
26
|
Wang D, Liu S, Chen Y, Song J, Liu W, Xiong M, Wang G, Peng X, Qu J. Breaking the diffraction barrier using coherent anti-Stokes Raman scattering difference microscopy. OPTICS EXPRESS 2017; 25:10276-10286. [PMID: 28468401 DOI: 10.1364/oe.25.010276] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We propose a method to improve the resolution of coherent anti-Stokes Raman scattering microscopy (CARS), and present a theoretical model. The proposed method, coherent anti-Stokes Raman scattering difference microscopy (CARS-D), is based on the intensity difference between two differently acquired images. One being the conventional CARS image, and the other obtained when the sample is illuminated by a doughnut shaped spot. The final super-resolution CARS-D image is constructed by intensity subtraction of these two images. However, there is a subtractive factor between them, and the theoretical model sets this factor to obtain the best imaging effect.
Collapse
|