1
|
Vieira CP, Lelis CA, Ochioni AC, Rosário DKA, Rosario ILS, Vieira IRS, Carvalho APA, Janeiro JM, da Costa MP, Lima FRS, Mariante RM, Alves LA, Foguel D, Junior CAC. Estimating the therapeutic potential of NSAIDs and linoleic acid-isomers supplementation against neuroinflammation. Biomed Pharmacother 2024; 177:116884. [PMID: 38889635 DOI: 10.1016/j.biopha.2024.116884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024] Open
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) regulate inflammation, which is associated with their role in preventing neurodegenerative diseases in epidemiological studies. It has sparked interest in their unconventional application for reducing neuroinflammation, opening up new avenues in biomedical research. However, given the pharmacological drawbacks of NSAIDs, the development of formulations with naturally antioxidant/anti-inflammatory dietary fatty acids has been demonstrated to be advantageous for the clinical translation of anti-inflammatory-based therapies. It includes improved blood-brain barrier (BBB) permeability and reduced toxicity. It permits us to speculate about the value of linoleic acid (LA)-isomers in preventing and treating neuroinflammatory diseases compared to NSAIDs. Our research delved into the impact of various factors, such as administration route, dosage, timing of intervention, and BBB permeability, on the efficacy of NSAIDs and LA-isomers in preclinical and clinical settings. We conducted a systematic comparison between NSAIDs and LA-isomers regarding their therapeutic effectiveness, BBB compatibility, and side effects. Additionally, we explored their underlying mechanisms in addressing neuroinflammation. Through our analysis, we've identified challenges and drawn conclusions that could propel advancements in treating neurodegenerative diseases and inform the development of future alternative therapeutic strategies.
Collapse
Affiliation(s)
- Carla Paulo Vieira
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-909, Brazil; Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-598, Brazil; Cellular Communication Laboratory, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, RJ 21040-900, Brazil
| | - Carini A Lelis
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-909, Brazil; Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-598, Brazil
| | - Alan Clavelland Ochioni
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-909, Brazil; Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-598, Brazil
| | - Denes Kaic A Rosário
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-909, Brazil; Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-598, Brazil
| | - Iuri L S Rosario
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-598, Brazil; Laboratory of Inspection and Technology of Milk and Derivatives (LaITLácteos), School of Veterinary Medicine and Zootechnies, Universidade Federal da Bahia (UFBA), Ondina, Salvador, BA 40170-110, Brazil
| | - Italo Rennan S Vieira
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-909, Brazil; Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-598, Brazil
| | - Anna Paula A Carvalho
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-909, Brazil; Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-598, Brazil
| | - José Marcos Janeiro
- Glial Cell Biology Laboratory, Institute of Biomedical Sciences, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-590, Brazil
| | - Marion P da Costa
- Laboratory of Inspection and Technology of Milk and Derivatives (LaITLácteos), School of Veterinary Medicine and Zootechnies, Universidade Federal da Bahia (UFBA), Ondina, Salvador, BA 40170-110, Brazil; Graduate Program in Food Science (PGAli), Faculty of Pharmacy, Universidade Federal da Bahia (UFBA), Ondina, Salvador, BA 40170-110, Brazil
| | - Flavia R S Lima
- Glial Cell Biology Laboratory, Institute of Biomedical Sciences, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-590, Brazil
| | - Rafael M Mariante
- Laboratory of Structural Biology, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ 21040-900, Brazil
| | - Luiz Anastácio Alves
- Cellular Communication Laboratory, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, RJ 21040-900, Brazil
| | - Debora Foguel
- Laboratory of Protein Aggregation and Amyloidosis, Institute of Medical Biochemistry, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-590, Brazil
| | - Carlos Adam Conte Junior
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-909, Brazil; Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-598, Brazil.
| |
Collapse
|
2
|
Kong X, Luo S, Wu SY, Zhang J, Yang GF, Lu GM, Zhang LJ. The effect of rifaximin and lactulose treatments to chronic hepatic encephalopathy rats: An [ 18F]PBR146 in-vivo neuroinflammation imaging study. Brain Behav 2024; 14:e3621. [PMID: 38970239 PMCID: PMC11226542 DOI: 10.1002/brb3.3621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 05/31/2024] [Accepted: 06/20/2024] [Indexed: 07/08/2024] Open
Abstract
INTRODUCTION Hepatic encephalopathy (HE) is a severe neuropsychiatric complication of liver diseases characterized by neuroinflammation. The efficacies of nonabsorbable rifaximin (RIF) and lactulose (LAC) have been well documented in the treatment of HE. [18F]PBR146 is a translocator protein (TSPO) radiotracer used for in vivo neuroinflammation imaging. This study investigated anti-neuroinflammation effect of RIF or/and LAC in chronic HE rats by [18F]PBR146 micro-PET/CT. METHODS Bile duct ligation (BDL) operation induced chronic HE models, and this study included Sham+normal saline (NS), BDL+NS, BDL+RIF, BDL+LAC, and BDL+RIF+LAC groups. Behavioral assessment was performed to analyze the motor function, and fecal samples were collected after successfully established the chronic HE model (more than 28 days post-surgery). In addition, fecal samples collection and micro-PET/CT scans were performed sequentially. And we also collected the blood plasma, liver, intestinal, and brain samples after sacrificing the rats for further biochemical and pathological analyses. RESULTS The RIF- and/or LAC-treated BDL rats showed similar behavioral results with Sham+NS group, while the treatment could not reverse the biliary obstruction resulting in sustained liver injury. The RIF or/and LAC treatments can inhibit IFN-γ and IL-10 productions. The global brain uptake values of [18F]PBR146 in BDL+NS group was significantly higher than other groups (p < .0001). The brain regions analysis showed that the basal ganglia, hippocampus, and cingulate cortex had radiotracer uptake differences among groups (all p < .05), which were consistent with the brain immunohistochemistry results. Sham+NS group was mainly enriched in Christensenella, Coprobacillus, and Pseudoflavonifractor. BDL+NS group was mainly enriched in Barnesiella, Alloprevotella, Enterococcus, and Enterorhabdus. BDL+RIF+LAC group was enriched in Parabacteroides, Bacteroides, Allobaculum, Bifidobacterium, and Parasutterella. CONCLUSIONS RIF or/and LAC had anti-neuroinflammation in BDL-induced chronic HE rats with gut microbiota alterations. The [18F]PBR146 could be used for monitoring RIF or/and LAC treatment efficacy of chronic HE rats.
Collapse
Affiliation(s)
- Xiang Kong
- Department of RadiologyJinling HospitalAffiliated Hospital of Medical School, Nanjing UniversityNanjingJiangsuChina
| | - Song Luo
- Department of RadiologyJinling HospitalAffiliated Hospital of Medical School, Nanjing UniversityNanjingJiangsuChina
| | - Shi Yao Wu
- Department of Nuclear MedicineJinling HospitalAffiliated Hospital of Medical SchoolNanjing UniversityNanjingJiangsuChina
| | - Jun Zhang
- Department of RadiologyJinling HospitalAffiliated Hospital of Medical School, Nanjing UniversityNanjingJiangsuChina
| | - Gui Fen Yang
- Department of Nuclear MedicineJinling HospitalAffiliated Hospital of Medical SchoolNanjing UniversityNanjingJiangsuChina
| | - Guang Ming Lu
- Department of RadiologyJinling HospitalAffiliated Hospital of Medical School, Nanjing UniversityNanjingJiangsuChina
| | - Long Jiang Zhang
- Department of RadiologyJinling HospitalAffiliated Hospital of Medical School, Nanjing UniversityNanjingJiangsuChina
| |
Collapse
|
3
|
Ye P, Bi L, Yang M, Qiu Y, Huang G, Liu Y, Hou Y, Li Z, Tong HHY, Cui M, Jin H. Activated Microglia in the Early Stage of a Rat Model of Parkinson's Disease: Revealed by PET-MRI Imaging by [ 18F]DPA-714 Targeting TSPO. ACS Chem Neurosci 2023. [PMID: 37146429 DOI: 10.1021/acschemneuro.3c00080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023] Open
Abstract
In the past decades, translocator protein (TSPO) has been considered as an in vivo biomarker to measure the presence of neuroinflammatory reactions. In this study, expression of TSPO was quantified via [18F]DPA-714 positron emission tomography-magnetic resonance imaging (PET-MRI) imaging to investigate the effects of microglial activation associated with motor behavioral impairments in the 6-hydroxydopamine (6-OHDA)-treated rodent model of Parkinson's disease (PD). [18F]FDG PET-MRI (for non-specific inflammation), [18F]D6-FP-(+)-DTBZ PET-MRI (for damaged dopaminergic neurons), post-PET immunofluorescence, and Pearson's correlation analyses were also performed. The time course of the striatal [18F]DPA-714 binding ratio elevated in 6-OHDA-treated rats during 1-3 weeks post-treatment, with the peak TSPO binding in the 1st week. No differences between bilateral striatum in [18F]FDG PET imaging were found. Moreover, an obvious correlation between [18F]DPA-714 SUVRR/L and rotation numbers was found (r = 0.434, *p = 0.049). No correlation between [18F]FDG SUVRR/L and rotation behavior was found. [18F]DPA-714 appeared to be a potential PET tracer for imaging the microglia-mediated neuroinflammation in the early stage of PD.
Collapse
Affiliation(s)
- Peizhen Ye
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Lei Bi
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Min Yang
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Yifan Qiu
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Guolong Huang
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Yongshan Liu
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Yuyi Hou
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Zhijun Li
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Henry Hoi Yee Tong
- Faculty of Health Sciences and Sports, Macao Polytechnic University, Macao SAR 999078, China
| | - Mengchao Cui
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Hongjun Jin
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| |
Collapse
|
4
|
Ye P, Bi L, Yang M, Qiu Y, Huang G, Liu Y, Hou Y, Li Z, Yee Tong HH, Cui M, Jin H. Activated Microglia in the Early Stage of a Rat Model of Parkinson's Disease: Revealed by PET-MRI Imaging by [ 18F]DPA-714 Targeting TSPO. ACS Chem Neurosci 2023. [PMID: 37134001 DOI: 10.1021/acschemneuro.3c00202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023] Open
Abstract
In the past decades, translocator protein (TSPO) has been considered as an in vivo biomarker to measure the presence of neuroinflammatory reactions. In this study, expression of TSPO was quantified via [18F]DPA-714 positron emission tomography-magnetic resonance imaging (PET-MRI) to investigate the effects of microglial activation associated with motor behavioral impairments in the 6-hydroxydopamine (6-OHDA)-treated rodent model of Parkinson's disease (PD). [18F]FDG PET-MRI (for non-specific inflammation), [18F]D6-FP-(+)-DTBZ PET-MRI (for damaged dopaminergic (DA) neurons), post-PET immunofluorescence, and Pearson's correlation analyses were also performed. The time course of striatal [18F]DPA-714 binding ratio was elevated in 6-OHDA-treated rats during 1-3 weeks post-treatments, with peak TSPO binding in the 1st week. No difference between the bilateral striatum in [18F]FDG PET imaging were found. Moreover, an obvious correlation between [18F]DPA-714 SUVRR/L and rotation numbers was found (r = 0.434, *p = 0.049). No correlation between [18F]FDG SUVRR/L and rotation behavior was found. [18F]DPA-714 appeared to be a potential PET tracer for imaging the microglia-mediated neuroinflammation in the early stage of PD.
Collapse
Affiliation(s)
- Peizhen Ye
- Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai City 519000, Guangdong Province, China
| | - Lei Bi
- Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai City 519000, Guangdong Province, China
| | - Min Yang
- Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai City 519000, Guangdong Province, China
| | - Yifan Qiu
- Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai City 519000, Guangdong Province, China
| | - Guolong Huang
- Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai City 519000, Guangdong Province, China
| | - Yongshan Liu
- Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai City 519000, Guangdong Province, China
| | - Yuyi Hou
- Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai City 519000, Guangdong Province, China
| | - Zhijun Li
- Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai City 519000, Guangdong Province, China
| | - Henry Hoi Yee Tong
- Faculty of Health Sciences and Sports, Macao Polytechnic University, Macao SAR 999078, China
| | - Mengchao Cui
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Hongjun Jin
- Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai City 519000, Guangdong Province, China
| |
Collapse
|
5
|
Zhang Q, Li Q, Liu S, Zheng H, Ji L, Yi N, Bao W, Zhu X, Sun W, Liu X, Zhang S, Zuo C, Li Y, Xiong Q, Lu B. Glucagon-like peptide-1 receptor agonist attenuates diabetic neuropathic pain via inhibition of NOD-like receptor protein 3 inflammasome in brain microglia. Diabetes Res Clin Pract 2022; 186:109806. [PMID: 35240228 DOI: 10.1016/j.diabres.2022.109806] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 02/24/2022] [Indexed: 12/26/2022]
Abstract
AIMS We aimed to explore the evidence of brain microglia activation in diabetic neuropathic pain (DNP) and the effect and mechanism of glucagon-like peptide-1 receptor agonist (GLP-RA) on DNP via brain microglia. METHODS Brain microglia activation was observed in DNP rats by positron emission tomography/computed tomography. The behavior of neuropathic pain was assessed in DNP rats after intracerebroventricular administration of GLP-1RA or microglial inhibitor minocycline. RNA sequencing was performed to explore the target of GLP-1RA on brain microglia. NOD-like receptor protein 3 (NLRP3) expression in brain microglia was evaluated in mentioned-above DNP rats, and the activation of NLRP3 inflammasome was analyzed in microglia treated with GLP-1RA. RESULTS Microglia were activated in the cortex and thalamus of DNP rats. The thermal and mechanical allodynia were alleviated in DNP rats via intracerebroventricular administration of GLP-1RA or minocycline. And the activation of brain microglia was attenuated in DNP rats by intracerebroventricular administration of GLP-1RA. The expression of NLRP3 in brain microglia, which was found by RNA sequencing, was reduced in DNP rats by administration of GLP-1RA. Furthermore, GLP-1RA attenuated NLRP3 inflammasome activation in microglia triggered by LPS. CONCLUSION GLP-1RA could alleviate DNP, possibly mediated by the suppression of brain microglia NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Qingchun Li
- Jing'an District Central Hospital, Fudan University, Jing'an Branch, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Siying Liu
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Hangping Zheng
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Lijin Ji
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Na Yi
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Weiqi Bao
- PET Center, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xiaoming Zhu
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Wanwan Sun
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xiaoxia Liu
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Shuo Zhang
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Chuantao Zuo
- PET Center, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yiming Li
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Qian Xiong
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Bin Lu
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200040, China.
| |
Collapse
|
6
|
Kong X, Luo S, Wang YF, Yang GF, Lu GM, Zhang LJ. [ 18F]PBR146 and [ 18F]DPA-714 in vivo Imaging of Neuroinflammation in Chronic Hepatic Encephalopathy Rats. Front Neurosci 2021; 15:678144. [PMID: 34483820 PMCID: PMC8415356 DOI: 10.3389/fnins.2021.678144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 07/28/2021] [Indexed: 11/22/2022] Open
Abstract
Neuroinflammation is an important pathogenesis of hepatic encephalopathy (HE). The upregulation of translocator protein (TSPO) during neuroinflammation provides an imaging molecular target to evaluate the severity of neuroinflammation in chronic HE rats. [18F]DPA-714 and [18F]PBR146 targeting TSPO are often used for neuroinflammation imaging. This study performed bile duct ligation (BDL) in rats to simulate chronic HE model, tested the behavioral experiments, and conducted [18F]PBR146 and [18F]DPA-714 micro-PET/CT scans followed analyzing the average %ID/g values of the whole brain, brain regions and main organs of subjects. After sacrifice the rats, the blood plasma samples were taken for blood biochemical indexes and plasma inflammatory factor levels examination, the liver and brain specimens were obtained for pathological analysis. The BDL rats showed chronic liver failure with defects in cognition, motor coordination ability and mental state. [18F]PBR146 and [18F]DPA-714 micro-PET/CT imaging results were similar in whole brain of BDL group and Sham group. Besides, some regional brain areas in BDL rats were found abnormal uptakes mainly located in basal ganglia area, auditory cortex, motor cortex, cingulate gyrus, somatosensory cortex, hippocampus, thalamus, midbrain, and medulla oblongata, and these regions also correlated with behavioral alterations. In conclusion, both [18F]PBR146 and [18F]DPA-714 had the similar imaging effects in hepatic encephalopathy models could quantitatively evaluate neuroinflammation load and distribution. The difference brain regions with higher uptake values of radiotracers in BDL rats were correlated with behavioral alterations.
Collapse
Affiliation(s)
- Xiang Kong
- Department of Diagnostic Radiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Song Luo
- Department of Diagnostic Radiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yun Fei Wang
- Department of Diagnostic Radiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Gui Fen Yang
- Department of Nuclear Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Guang Ming Lu
- Department of Diagnostic Radiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Long Jiang Zhang
- Department of Diagnostic Radiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
7
|
Joya A, Ardaya M, Montilla A, Garbizu M, Plaza-García S, Gómez-Vallejo V, Padro D, Gutiérrez JJ, Rios X, Ramos-Cabrer P, Cossío U, Pulagam KR, Higuchi M, Domercq M, Cavaliere F, Matute C, Llop J, Martín A. In vivo multimodal imaging of adenosine A 1 receptors in neuroinflammation after experimental stroke. Theranostics 2021; 11:410-425. [PMID: 33391483 PMCID: PMC7681082 DOI: 10.7150/thno.51046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 09/24/2020] [Indexed: 01/21/2023] Open
Abstract
Adenosine A1 receptors (A1ARs) are promising imaging biomarkers and targets for the treatment of stroke. Nevertheless, the role of A1ARs on ischemic damage and its subsequent neuroinflammatory response has been scarcely explored so far. Methods: In this study, the expression of A1ARs after transient middle cerebral artery occlusion (MCAO) was evaluated by positron emission tomography (PET) with [18F]CPFPX and immunohistochemistry (IHC). In addition, the role of A1ARs on stroke inflammation using pharmacological modulation was assessed with magnetic resonance imaging (MRI), PET imaging with [18F]DPA-714 (TSPO) and [18F]FLT (cellular proliferation), as well as IHC and neurofunctional studies. Results: In the ischemic territory, [18F]CPFPX signal and IHC showed the overexpression of A1ARs in microglia and infiltrated leukocytes after cerebral ischemia. Ischemic rats treated with the A1AR agonist ENBA showed a significant decrease in both [18F]DPA-714 and [18F]FLT signal intensities at day 7 after cerebral ischemia, a feature that was confirmed by IHC results. Besides, the activation of A1ARs promoted the reduction of the brain lesion, as measured with T2W-MRI, and the improvement of neurological outcome including motor, sensory and reflex responses. These results show for the first time the in vivo PET imaging of A1ARs expression after cerebral ischemia in rats and the application of [18F]FLT to evaluate glial proliferation in response to treatment. Conclusion: Notably, these data provide evidence for A1ARs playing a key role in the control of both the activation of resident glia and the de novo proliferation of microglia and macrophages after experimental stroke in rats.
Collapse
|
8
|
Lin W, Chen X, Gao YQ, Yang ZT, Yang W, Chen HJ. Hippocampal atrophy and functional connectivity disruption in cirrhotic patients with minimal hepatic encephalopathy. Metab Brain Dis 2019; 34:1519-1529. [PMID: 31363985 DOI: 10.1007/s11011-019-00457-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 07/03/2019] [Indexed: 12/21/2022]
Abstract
The hippocampus is a crucial pathological node for minimal hepatic encephalopathy (MHE) and it is associated with various cognitive impairments. Investigations on alterations involving hippocampal morphology and functional connectivity (FC) in MHE are limited. This study aimed to simultaneously evaluate hippocampal volume and FC alterations and their association with cognitive decline in MHE. Twenty-two cirrhotic patients with MHE, 31 cirrhotic patients without MHE (NHE), and 43 healthy controls underwent high-resolution T1-weighted imaging, resting-state functional magnetic resonance imaging, and cognition assessment based on Psychometric Hepatic Encephalopathy Score (PHES). The structural images were preprocessed using a voxel-based morphometry method, during which hippocampal volume was measured. The hippocampal connectivity network was identified using seed-based correlation analysis. Hippocampal volume and FC strength were compared across the three groups and correlated against the PHES results of the cirrhotic patients. Compared to the controls, MHE patients exhibited a significantly lower bilateral hippocampal volume. A slight decrease in hippocampal volume was obtained from NHE to MHE, but it did not reach statistically significance. In addition, the average FC strength of the bilateral hippocampal connectivity network was significantly lower in the MHE patients. In particular, the MHE patients showed a decrease in FC involving the left hippocampus to bilateral posterior cingulate gyrus and left angular gyrus. The MHE patients also showed FC reduction between the right hippocampus and bilateral medial frontal cortex. A progressive reduction in hippocampal FC from NHE to MHE was also observed. The bilateral hippocampal FC strength (but not hippocampal volume) was positively correlated with the PHES results of the cirrhotic patients. Our assessment of MHE patients revealed decreased hippocampal volume, which suggests regional atrophy, and reduced hippocampal connectivity with regions that are primarily involved in the default-mode network, thereby suggesting a functional disconnection syndrome. These alterations reveal the mechanisms underlying cognitive deterioration with disease progression.
Collapse
Affiliation(s)
- Weiwen Lin
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Xuhui Chen
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | | | - Zhe-Ting Yang
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Weizhu Yang
- Department of Interventional Radiology, Fujian Medical University Union Hospital, Fuzhou, 350001, China.
| | - Hua-Jun Chen
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, 350001, China.
| |
Collapse
|
9
|
Cabrera‐Pastor A, Llansola M, Montoliu C, Malaguarnera M, Balzano T, Taoro‐Gonzalez L, García‐García R, Mangas‐Losada A, Izquierdo‐Altarejos P, Arenas YM, Leone P, Felipo V. Peripheral inflammation induces neuroinflammation that alters neurotransmission and cognitive and motor function in hepatic encephalopathy: Underlying mechanisms and therapeutic implications. Acta Physiol (Oxf) 2019; 226:e13270. [PMID: 30830722 DOI: 10.1111/apha.13270] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/01/2019] [Accepted: 03/01/2019] [Indexed: 12/11/2022]
Abstract
Several million patients with liver cirrhosis suffer minimal hepatic encephalopathy (MHE), with mild cognitive and coordination impairments that reduce their quality of life and life span. Hyperammonaemia and peripheral inflammation act synergistically to induce these neurological alterations. We propose that MHE appearance is because of the changes in peripheral immune system, which are transmitted to brain, leading to neuroinflammation that alters neurotransmission leading to cognitive and motor alterations. We summarize studies showing that MHE in cirrhotic patients is associated with alterations in the immune system and that patients died with HE show neuroinflammation in cerebellum, with microglial and astrocytic activation and Purkinje cell loss. We also summarize studies in animal models of MHE on the role of peripheral inflammation in neuroinflammation induction, how neuroinflammation alters neurotransmission and how this leads to cognitive and motor alterations. These studies identify therapeutic targets and treatments that improve cognitive and motor function. Rats with MHE show neuroinflammation in hippocampus and altered NMDA and AMPA receptor membrane expression, which impairs spatial learning and memory. Neuroinflammation in cerebellum is associated with altered GABA transporters and extracellular GABA, which impair motor coordination and learning in a Y maze. These alterations are reversed by treatments that reduce peripheral inflammation (anti-TNFα, ibuprofen), neuroinflammation (sulphoraphane, p38 inhibitors), GABAergic tone (bicuculline, pregnenolone sulphate) or increase extracellular cGMP (sildenafil or cGMP). The mechanisms identified would also occur in other chronic diseases associated with inflammation, aging and some mental and neurodegenerative diseases. Treatments that improve MHE may also be beneficial to treat these pathologies.
Collapse
Affiliation(s)
- Andrea Cabrera‐Pastor
- Laboratory of Neurobiology Centro de Investigación Principe Felipe Valencia Spain
- Fundacion Investigacion Hospital Clinico Valencia, INCLIVA Valencia Spain
| | - Marta Llansola
- Laboratory of Neurobiology Centro de Investigación Principe Felipe Valencia Spain
| | - Carmina Montoliu
- Fundacion Investigacion Hospital Clinico Valencia, INCLIVA Valencia Spain
| | - Michele Malaguarnera
- Laboratory of Neurobiology Centro de Investigación Principe Felipe Valencia Spain
| | - Tiziano Balzano
- Laboratory of Neurobiology Centro de Investigación Principe Felipe Valencia Spain
| | - Lucas Taoro‐Gonzalez
- Laboratory of Neurobiology Centro de Investigación Principe Felipe Valencia Spain
| | - Raquel García‐García
- Laboratory of Neurobiology Centro de Investigación Principe Felipe Valencia Spain
| | - Alba Mangas‐Losada
- Fundacion Investigacion Hospital Clinico Valencia, INCLIVA Valencia Spain
| | | | - Yaiza M. Arenas
- Laboratory of Neurobiology Centro de Investigación Principe Felipe Valencia Spain
| | - Paola Leone
- Laboratory of Neurobiology Centro de Investigación Principe Felipe Valencia Spain
| | - Vicente Felipo
- Laboratory of Neurobiology Centro de Investigación Principe Felipe Valencia Spain
| |
Collapse
|
10
|
Vetel S, Sérrière S, Vercouillie J, Vergote J, Chicheri G, Deloye JB, Dollé F, Bodard S, Tronel C, Nadal-Desbarats L, Lefèvre A, Emond P, Chalon S. Extensive exploration of a novel rat model of Parkinson's disease using partial 6-hydroxydopamine lesion of dopaminergic neurons suggests new therapeutic approaches. Synapse 2018; 73:e22077. [DOI: 10.1002/syn.22077] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/12/2018] [Accepted: 10/15/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Steven Vetel
- UMR 1253, iBrain, Université de Tours, Inserm; Tours France
| | | | - Johnny Vercouillie
- UMR 1253, iBrain, Université de Tours, Inserm; Tours France
- INSERM CIC 1415, University Hospital; Tours France
| | - Jackie Vergote
- UMR 1253, iBrain, Université de Tours, Inserm; Tours France
| | | | | | - Frédéric Dollé
- CEA, Institut des Sciences du Vivant Frédéric Joliot, Service hospitalier Frédéric Joliot, Université Paris-Saclay; Orsay France
| | - Sylvie Bodard
- UMR 1253, iBrain, Université de Tours, Inserm; Tours France
| | - Claire Tronel
- UMR 1253, iBrain, Université de Tours, Inserm; Tours France
| | | | | | - Patrick Emond
- UMR 1253, iBrain, Université de Tours, Inserm; Tours France
- CHRU Tours; Tours France
| | - Sylvie Chalon
- UMR 1253, iBrain, Université de Tours, Inserm; Tours France
| |
Collapse
|
11
|
Huang S, Li C, Guo J, Zhang L, Wu S, Wang H, Liang S. Monitoring the Progression of Chronic Liver Damage in Rats Using [18F]PBR06. Mol Imaging Biol 2018; 21:669-675. [DOI: 10.1007/s11307-018-1282-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
12
|
Luo S, Kong X, Wu JR, Wang CY, Tian Y, Zheng G, Su YY, Lu GM, Zhang LJ, Yang GF. Neuroinflammation in acute hepatic encephalopathy rats: imaging and therapeutic effectiveness evaluation using 11C-PK11195 and 18F-DPA-714 micro-positron emission tomography. Metab Brain Dis 2018; 33:1733-1742. [PMID: 29968208 DOI: 10.1007/s11011-018-0282-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 06/27/2018] [Indexed: 02/06/2023]
Abstract
Neuroinflammation has an important influence in pathogenesis of acute hepatic encephalopathy (AHE). 11C-PK11195 and 18F-DPA-714 targeted to translocator protein (TSPO) have potential application in positron emission tomography (PET) as a molecular probe of neuroinflammation. The aim of this study was to compare these two radiotracers and their effectiveness in detecting neuroinflammation for the imaging of AHE rat models. Furthermore, using the new radiotracer 18F-DPA-714, we analyzed the effectiveness of therapeutic treatment for neuroinflammation in AHE. First, we performed a comparative study of 11C-PK1195 and 18F-DPA-714 PET to image neuroinflammation in AHE rats induced by thioacetamide. Twenty-four rats were divided into either control group (n = 12) or AHE group (n = 12). Next, each group was subdivided depending on the radiotracer used during PET imaging (n = 6). Radiotracer uptake values encompassing the whole brain were compared. Lastly, we used the optimized tracer to monitor anti-neuroinflammation effects in AHE-induced rats. Forty-six rats were divided into four groups: [normal saline (NS) group (n = 13), minocycline (MINO) group (n = 11), dexamethasone (DEXA) group (n = 11), MINO+DEXA group (n = 11)]. 18F-DPA-714 PET was performed and the uptake values were calculated. The rotarod test, biochemical indices, and histopathological examinations were quantitatively measured and compared. AHE rats showed reduced motor ability, elevated ammonia levels, and higher liver function indices (all P < 0.05) with unchanged inflammatory factors (all P > 0.05), compared to control group. Both 11C-PK11195 and 18F-DPA-714 PET can detect neuroinflammation of AHE rats. Behavioral studies showed that MINO and/or DEXA improved the motor ability in AHE rats (P < 0.05); however, no differences were found for liver function or inflammatory markers among the four groups (all P > 0.05). The average uptake values of whole brain and multiple brain areas in the MINO+DEXA group were lower compared to all other groups (all P < 0.05), which was demonstrated by CD11b stains of microglia. Our results show that both 11C-PK11195 and 18F-DPA-714 PET can detect neuroinflammation in AHE-induced rat models. Additionally, the combined use of minocycline and dexamethasone can effectively inhibit neuroinflammation in AHE-induced rats, which can be sensitively monitored by 18F-DPA-714 PET.
Collapse
Affiliation(s)
- Song Luo
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, 305 Zhongshan East Road, Nanjing, 210002, Jiangsu, China
| | - Xiang Kong
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, 305 Zhongshan East Road, Nanjing, 210002, Jiangsu, China
| | - Jin Rong Wu
- Department of Pathology, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Chun Yan Wang
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, 305 Zhongshan East Road, Nanjing, 210002, Jiangsu, China
| | - Ying Tian
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, 305 Zhongshan East Road, Nanjing, 210002, Jiangsu, China
| | - Gang Zheng
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, 305 Zhongshan East Road, Nanjing, 210002, Jiangsu, China
| | - Yun Yan Su
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, 305 Zhongshan East Road, Nanjing, 210002, Jiangsu, China
| | - Guang Ming Lu
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, 305 Zhongshan East Road, Nanjing, 210002, Jiangsu, China
| | - Long Jiang Zhang
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, 305 Zhongshan East Road, Nanjing, 210002, Jiangsu, China.
| | - Gui Fen Yang
- Department of Nuclear Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu, China.
| |
Collapse
|
13
|
Wang J, Li J, Wang Q, Kong Y, Zhou F, Li Q, Li W, Sun Y, Wang Y, Guan Y, Wu M, Wen T. Dcf1 Deficiency Attenuates the Role of Activated Microglia During Neuroinflammation. Front Mol Neurosci 2018; 11:256. [PMID: 30104955 PMCID: PMC6077288 DOI: 10.3389/fnmol.2018.00256] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 07/06/2018] [Indexed: 12/14/2022] Open
Abstract
Microglia serve as the principal immune cells and play crucial roles in the central nervous system, responding to neuroinflammation via migration and the execution of phagocytosis. Dendritic cell-derived factor 1 (Dcf1) is known to play an important role in neural stem cell differentiation, glioma apoptosis, dendritic spine formation, and Alzheimer’s disease (AD), nevertheless, the involvement of the Dcf1 gene in the brain immune response has not yet been reported. In the present paper, the RNA-sequencing and function enrichment analysis suggested that the majority of the down-regulated genes in Dcf1-/- (Dcf1-KO) mice are immune-related. In vivo experiments showed that Dcf1 deletion produced profound effects on microglial function, increased the expression of microglial activation markers, such as ionized calcium binding adaptor molecule 1 (Iba1), Cluster of Differentiation 68 (CD68) and translocator protein (TSPO), as well as certain proinflammatory cytokines (Cxcl1, Ccl7, and IL17D), but decreased the migratory and phagocytic abilities of microglial cells, and reduced the expression levels of some other proinflammatory cytokines (Cox-2, IL-1β, IL-6, TNF-α, and Csf1) in the mouse hippocampus. Furthermore, in vitro experiments revealed that in the absence of lipopolysaccharide (LPS), the majority of microglia were ramified and existed in a resting state, with only approximately 10% of cells exhibiting an amoeboid-like morphology, indicative of an activated state. LPS treatment dramatically increased the ratio of activated to resting cells, and Dcf1 downregulation further increased this ratio. These data indicated that Dcf1 deletion mediates neuroinflammation and induces dysfunction of activated microglia, preventing migration and the execution of phagocytosis. These findings support further investigation into the biological mechanisms underlying microglia-related neuroinflammatory diseases, and the role of Dcf1 in the immune response.
Collapse
Affiliation(s)
- Jiao Wang
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Jie Li
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Qian Wang
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Yanyan Kong
- Positron Emission Computed Tomography Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Fangfang Zhou
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Qian Li
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Weihao Li
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Yangyang Sun
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Yanli Wang
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, China
| | - Yihui Guan
- Positron Emission Computed Tomography Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Minghong Wu
- Shanghai Applied Radiation Institute, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, China
| | - Tieqiao Wen
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
14
|
Zhang XD, Zhang LJ. Multimodal MR imaging in hepatic encephalopathy: state of the art. Metab Brain Dis 2018; 33:661-671. [PMID: 29374342 DOI: 10.1007/s11011-018-0191-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 01/17/2018] [Indexed: 02/07/2023]
Abstract
Hepatic encephalopathy (HE) is a neurological or neuropsychological complication due to liver failure or portosystemic shunting. The clinical manifestation is highly variable, which can exhibit mild cognitive or motor impairment initially, or gradually progress to a coma, even death, without treatment. Neuroimaging plays a critical role in uncovering the neural mechanism of HE. In particular, multimodality MR imaging is able to assess both structural and functional derangements of the brain with HE in focal or neural network perspectives. In recent years, there has been rapid development in novel MR technologies and applications to investigate the pathophysiological mechanism of HE. Therefore, it is necessary to update the latest MR findings regarding HE by use of multimodality MRI to refine and deepen our understanding of the neural traits in HE. Herein, this review highlights the latest MR imaging findings in HE to refresh our understanding of MRI application in HE.
Collapse
Affiliation(s)
- Xiao Dong Zhang
- Department of Radiology, Tianjin First Central Hospital, Clinical School of Tianjin Medical University, Tianjin, 300192, People's Republic of China
| | - Long Jiang Zhang
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, No. 305 Zhongshan East Road, Nanjing, 210002, Jiangsu Province, People's Republic of China.
| |
Collapse
|
15
|
Dadsetan S, Balzano T, Forteza J, Agusti A, Cabrera-Pastor A, Taoro-Gonzalez L, Hernandez-Rabaza V, Gomez-Gimenez B, ElMlili N, Llansola M, Felipo V. Infliximab reduces peripheral inflammation, neuroinflammation, and extracellular GABA in the cerebellum and improves learning and motor coordination in rats with hepatic encephalopathy. J Neuroinflammation 2016; 13:245. [PMID: 27623772 PMCID: PMC5022234 DOI: 10.1186/s12974-016-0710-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 09/06/2016] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Peripheral inflammation contributes to the neurological alterations in hepatic encephalopathy (HE). Neuroinflammation and altered GABAergic neurotransmission mediate cognitive and motor alterations in rats with HE. It remains unclear (a) if neuroinflammation and neurological impairment in HE are a consequence of peripheral inflammation and (b) how neuroinflammation impairs GABAergic neurotransmission. The aims were to assess in rats with HE whether reducing peripheral inflammation with anti-TNF-α (1) prevents cognitive impairment and motor in-coordination, (2) normalizes neuroinflammation and extracellular GABA in the cerebellum and also (3) advances the understanding of mechanisms linking neuroinflammation and increased extracellular GABA. METHODS Rats with HE due to portacaval shunt (PCS) were treated with infliximab. Astrocytes and microglia activation and TNF-α and IL-1β were analyzed by immunohistochemistry. Membrane expression of the GABA transporters GAT-3 and GAT-1 was analyzed by cross-linking with BS3. Extracellular GABA was analyzed by microdialysis. Motor coordination was tested using the beam walking and learning ability using the Y maze task. RESULTS PCS rats show peripheral inflammation, activated astrocytes, and microglia and increased levels of TNF-α and IL-1β. Membrane expression of GAT-3 and extracellular GABA are increased, leading to impaired motor coordination and learning ability. Infliximab reduces peripheral inflammation, microglia, and astrocyte activation and neuroinflammation and normalizes GABAergic neurotransmission, motor coordination, and learning ability. CONCLUSIONS Neuroinflammation is associated with altered GABAergic neurotransmission and increased GAT-3 membrane expression and extracellular GABA (a); peripheral inflammation is a main contributor to the impairment of motor coordination and of the ability to learn the Y maze task in PCS rats (b); and reducing peripheral inflammation using safe procedures could be a new therapeutic approach to improve cognitive and motor function in patients with HE
Collapse
Affiliation(s)
- Sherry Dadsetan
- Laboratorio de Neurobiología, Centro Investigación Príncipe Felipe de Valencia, Eduardo Primo Yufera, 3, 46012 Valencia, Spain
| | - Tiziano Balzano
- Laboratorio de Neurobiología, Centro Investigación Príncipe Felipe de Valencia, Eduardo Primo Yufera, 3, 46012 Valencia, Spain
| | - Jerónimo Forteza
- Instituto Valenciano de Patología, Unidad Mixta de Patología Molecular, Centro de Investigación Príncipe Felipe/Universidad Católica de Valencia, Valencia, Spain
| | - Ana Agusti
- Laboratorio de Neurobiología, Centro Investigación Príncipe Felipe de Valencia, Eduardo Primo Yufera, 3, 46012 Valencia, Spain
| | - Andrea Cabrera-Pastor
- Laboratorio de Neurobiología, Centro Investigación Príncipe Felipe de Valencia, Eduardo Primo Yufera, 3, 46012 Valencia, Spain
| | - Lucas Taoro-Gonzalez
- Laboratorio de Neurobiología, Centro Investigación Príncipe Felipe de Valencia, Eduardo Primo Yufera, 3, 46012 Valencia, Spain
| | - Vicente Hernandez-Rabaza
- Laboratorio de Neurobiología, Centro Investigación Príncipe Felipe de Valencia, Eduardo Primo Yufera, 3, 46012 Valencia, Spain
| | - Belen Gomez-Gimenez
- Laboratorio de Neurobiología, Centro Investigación Príncipe Felipe de Valencia, Eduardo Primo Yufera, 3, 46012 Valencia, Spain
| | - Nisrin ElMlili
- Laboratorio de Neurobiología, Centro Investigación Príncipe Felipe de Valencia, Eduardo Primo Yufera, 3, 46012 Valencia, Spain
| | - Marta Llansola
- Laboratorio de Neurobiología, Centro Investigación Príncipe Felipe de Valencia, Eduardo Primo Yufera, 3, 46012 Valencia, Spain
| | - Vicente Felipo
- Laboratorio de Neurobiología, Centro Investigación Príncipe Felipe de Valencia, Eduardo Primo Yufera, 3, 46012 Valencia, Spain
| |
Collapse
|