1
|
Darvish L, Bahreyni-Toossi MT, Aghaee-Bakhtiari SH, Akbari-Naserkiadeh A, Vaziri-Nezamdoust F, Azimian H. Increasing prostate cancer radiosensitivity by miR-7-5p knockdown of anti-apoptotic genes. Gene 2025; 933:148951. [PMID: 39303820 DOI: 10.1016/j.gene.2024.148951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Despite the success of radiotherapy for prostate cancer treatment, the recent discovery of radiation resistance prevents it from reaching its full potential. This study aims to use hsa-miR-7-5p for the expression of anti-apoptotic genes. The search for anti-apoptotic genes was carried out through databases. The selected genes included XIAP, MCL1, REL, and BIRC3. Our selection was based on the best miRNA because it has a greater impact on genes. The second step involved transfecting the miRNA into a prostate cancer cell line. Subsequently, radiosensitivity was tested using real-time PCR, clonogenic assay, and annexin V flow cytometry. The highest apoptosis rate in the transfected cells was at 0 Gy in hsa-miR-7-5p (28.88 ± 0.80), plenti III (18.81 ± 0.59), and the control group (4.10 ± 1.52) (P<0.001). Also, its rate was at 4 Gy in hsa-miR-7-5p (36.11 ± 1.93), plenti III (26.42 ± 0.42), and the control group (8.79 ± 2.29) (P<0.001). This study showed a decreasing trend in survival with increasing doses. Suppression of anti-apoptotic genes, including XIAP, MCL1, Birc3, and REL, enhanced radiosensitivity by increasing the expression of hsa-miR-7-5p in the PC3 and LNCaP cell lines. Hsa-miR-7-5p is a miRNA that can suppress the expression of anti-apoptotic genes and thus plays an essential role in the process of cell apoptosis. Targeting genes that are associated with apoptosis could potentially enhance the efficacy of treatments for patients with prostate cancer.
Collapse
Affiliation(s)
- Leili Darvish
- Mother and Child Welfare Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran; Department of Radiology, Faculty of Paramedicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | | | - Seyed Hamid Aghaee-Bakhtiari
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Bioinformatics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amin Akbari-Naserkiadeh
- Department of Clinical Nutrition, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fereshteh Vaziri-Nezamdoust
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hosein Azimian
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Fang J, Rao X, Wang C, Wang Y, Wu C, Zhou R. Role of exosomes in modulating non-small cell lung cancer radiosensitivity. Front Pharmacol 2024; 15:1471476. [PMID: 39737074 PMCID: PMC11683128 DOI: 10.3389/fphar.2024.1471476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 12/02/2024] [Indexed: 01/01/2025] Open
Abstract
Non-small cell lung cancer (NSCLC) constitutes a significant proportion of lung cancer cases, and despite advancements in treatment modalities, radiotherapy resistance remains a substantial hurdle in effective cancer management. Exosomes, which are small vesicles secreted by cells, have emerged as pivotal players in intercellular communication and influence various biological processes, including cancer progression and the response to therapy. This review discusses the intricate role of exosomes in the modulation of NSCLC radiosensitivity. The paper focuses on NSCLC and highlights how tumor-derived exosomes contribute to radioresistance by enhancing DNA repair, modulating immune responses, and altering the tumor microenvironment. We further explore the potential of mesenchymal stem cell-derived exosomes to overcome radiotherapy resistance and their potential as biomarkers for predicting therapeutic outcomes. Understanding the mechanisms by which exosomes affect radiotherapy can provide new avenues for enhancing treatment efficacy and improving the survival rates of patients with NSCLC.
Collapse
Affiliation(s)
- Jincheng Fang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinrui Rao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science, Wuhan, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China
| | - Changjian Wang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yangchenxi Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science, Wuhan, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China
| | - Chuangyan Wu
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Zhou
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science, Wuhan, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, China
| |
Collapse
|
3
|
Hao P, Li Q, Zhao H. Mucin 1 expression is regulated by hsa_circ_0055054/microRNA‑122‑5p and promotes hepatocellular carcinoma development. Oncol Lett 2024; 28:404. [PMID: 38983125 PMCID: PMC11228922 DOI: 10.3892/ol.2024.14537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/29/2024] [Indexed: 07/11/2024] Open
Abstract
The abnormal expression of mucin 1 (MUC1) is a major cause of poor prognosis in patients with hepatocellular carcinoma (HCC). Competitive endogenous RNA demonstrates a novel regulatory mechanism that can affect the biological behavior of tumors. In the present study, the regulatory functions of hsa_circ_0055054 as well as those of microRNA (miR/miRNA) 122-5p on MUC1 expression and its role in HCC cell proliferation, migration and invasion, were evaluated. MUC1 expression was assessed using western blotting and reverse transcription-quantitative PCR. The phenotypic functions of the HCC cell lines were evaluated following MUC1 knockdown using Cell Counting Kit-8, wound healing and Transwell assays. Bioinformatics tools were used to identify specific miRNAs and circular (circ)RNAs that interact with and can regulate MUC1. The stability of circRNAs was assessed using a Ribonuclease R assay. The binding of circRNA/miRNA/MUC1 was assessed using dual-luciferase reporter assays and cellular function tests. Finally, in vivo experiments were performed using animal models. The results demonstrated that in MHCC97L cells, MUC1 and hsa_circ_0055054 were expressed at high levels while miR-122-5p was downregulated. The proliferation, migration and invasion of MHCC97L cells were suppressed by low MUC1 expression. hsa_circ_0055054 knockdown or miR-122-5p overexpression both led to a decrease in MUC1 expression. In MHCC97L cells with a low MUC1 expression caused by hsa_circ_0055054 knockdown, miR-122-5p inhibition resulted in the increased proliferation, migration and invasion of MHCC97L cells. In combination, the results of the present study indicate that hsa_circ_0055054 knockdown in MHCC97L cells leads to an increased expression of miR-122-5p and decreased expression of MUC1, which results in the inhibition of MHCC97L cell proliferation, migration and invasion.
Collapse
Affiliation(s)
- Pengfei Hao
- Department of General Surgery, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi 030032, P.R. China
| | - Qi Li
- Department of General Surgery, Shanxi Provincial People's Hospital, Taiyuan, Shanxi 030001, P.R. China
| | - Haoliang Zhao
- Department of General Surgery, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi 030032, P.R. China
| |
Collapse
|
4
|
Sengupta P, Roy A, Roy L, Bose D, Halder S, Jana K, Mukherjee G, Chatterjee S. Long non-coding intergenic RNA, LINC00273 induces cancer metastasis and stemness via miRNA sponging in triple negative breast cancer. Int J Biol Macromol 2024; 274:132730. [PMID: 38857735 DOI: 10.1016/j.ijbiomac.2024.132730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/08/2024] [Accepted: 05/16/2024] [Indexed: 06/12/2024]
Abstract
LncRNAs and miRNAs, being the master regulators of gene expression, are crucial functional mediators in cancer. Our study unveils the critical regulatory role of the metastatic long non-coding RNA LINC00273 as the master regulator of oncogenes involved in cancer metastasis, stemness, and chemoresistance via its miRNA sponging mechanism. M2 (a salt of bis-Schiff base) mediated G quadruplex (G4) stabilization at the LINC00273 gene promoter remarkably inhibits LINC00273 transcription. Therefore, low-level LINC00273 transcripts are unable to efficiently sponge the miRNAs, which subsequently become available to bind and downregulate their target oncogenes. We have observed significantly different global transcriptomic scenarios in LINC00273 upregulated and downregulated circumstances in MDA-MB-231 triple-negative breast cancer model. Additionally, we have found the G4 sequence in the LINC00273 RNA to play a critical role in miRNA sequestration. miRNAs (miR-6789-5p, miR200b, miR-125b-5p, miR-4268, miR3978) have base pairing complementarity within the G4 region of LINC00273 RNA and the 3'-UTR (untranslated region) of MAPK12, TGF-β1, and SIX-1 transcripts. We have reported TGF-β1, SIX-1, and MAPK12 to be the direct downstream targets of LINC00273. The correlation between abnormal expression of lncRNA LINC00273 and TNBC aggressiveness strongly evidenced in our study shall accelerate the development of lncRNA-based anti-metastatic therapeutics.
Collapse
Affiliation(s)
- Pallabi Sengupta
- Department of Biophysics, Bose Institute (UAC campus), Kolkata, India
| | - Ananya Roy
- Department of Biophysics, Bose Institute (UAC campus), Kolkata, India
| | - Laboni Roy
- Department of Biophysics, Bose Institute (UAC campus), Kolkata, India
| | - Debopriya Bose
- Department of Biophysics, Bose Institute (UAC campus), Kolkata, India
| | - Satyajit Halder
- Department of Molecular Medicine, Bose Institute (Centenary campus), Kolkata, India
| | - Kuladip Jana
- Department of Molecular Medicine, Bose Institute (Centenary campus), Kolkata, India
| | | | | |
Collapse
|
5
|
Taeb S, Rostamzadeh D, Amini SM, Rahmati M, Eftekhari M, Safari A, Najafi M. MicroRNAs targeted mTOR as therapeutic agents to improve radiotherapy outcome. Cancer Cell Int 2024; 24:233. [PMID: 38965615 PMCID: PMC11229485 DOI: 10.1186/s12935-024-03420-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 06/22/2024] [Indexed: 07/06/2024] Open
Abstract
MicroRNAs (miRNAs) are small RNA molecules that regulate genes and are involved in various biological processes, including cancer development. Researchers have been exploring the potential of miRNAs as therapeutic agents in cancer treatment. Specifically, targeting the mammalian target of the rapamycin (mTOR) pathway with miRNAs has shown promise in improving the effectiveness of radiotherapy (RT), a common cancer treatment. This review provides an overview of the current understanding of miRNAs targeting mTOR as therapeutic agents to enhance RT outcomes in cancer patients. It emphasizes the importance of understanding the specific miRNAs that target mTOR and their impact on radiosensitivity for personalized cancer treatment approaches. The review also discusses the role of mTOR in cell homeostasis, cell proliferation, and immune response, as well as its association with oncogenesis. It highlights the different ways in which miRNAs can potentially affect the mTOR pathway and their implications in immune-related diseases. Preclinical findings suggest that combining mTOR modulators with RT can inhibit tumor growth through anti-angiogenic and anti-vascular effects, but further research and clinical trials are needed to validate the efficacy and safety of using miRNAs targeting mTOR as therapeutic agents in combination with RT. Overall, this review provides a comprehensive understanding of the potential of miRNAs targeting mTOR to enhance RT efficacy in cancer treatment and emphasizes the need for further research to translate these findings into improved clinical outcomes.
Collapse
Affiliation(s)
- Shahram Taeb
- Department of Radiology, School of Paramedical Sciences, Guilan University of Medical Sciences, Rasht, Iran
| | - Davoud Rostamzadeh
- Department of Immunology, University of Connecticut Health Center, Farmington, CT, USA
| | - Seyed Mohammad Amini
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Rahmati
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammad Eftekhari
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Arash Safari
- Department of Radiology, Ionizing and Non-Ionizing Radiation Protection Research Center (INIRPRC), School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, 71439-14693, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- Medical Biology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
6
|
Sarfraz M, Abida, Eltaib L, Asdaq SMB, Guetat A, Alzahrani AK, Alanazi SS, Aaghaz S, Singla N, Imran M. Overcoming chemoresistance and radio resistance in prostate cancer: The emergent role of non-coding RNAs. Pathol Res Pract 2024; 255:155179. [PMID: 38320439 DOI: 10.1016/j.prp.2024.155179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 02/08/2024]
Abstract
Prostate cancer (PCa) continues to be a major health concern worldwide, with its resistance to chemotherapy and radiation therapy presenting major hurdles in successful treatment. While patients with localized prostate cancer generally have a good survival rate, those with metastatic prostate cancer often face a grim prognosis, even with aggressive treatments using various methods. The high mortality rate in severe cases is largely due to the lack of treatment options that can offer lasting results, especially considering the significant genetic diversity found in tumors at the genomic level. This comprehensive review examines the intricate molecular mechanisms governing resistance in PCa, emphasising the pivotal contributions of non-coding RNAs (ncRNAs). We delve into the diverse roles of microRNAs, long ncRNAs, and other non-coding elements as critical regulators of key cellular processes involved in CR & RR. The review emphasizes the diagnostic potential of ncRNAs as predictive biomarkers for treatment response, offering insights into patient stratification and personalized therapeutic approaches. Additionally, we explore the therapeutic implications of targeting ncRNAs to overcome CR & RR, highlighting innovative strategies to restore treatment sensitivity. By synthesizing current knowledge, this review not only provides a comprehension of the chemical basis of resistance in PCa but also identifies gaps in knowledge, paving the way for future research directions. Ultimately, this exploration of ncRNA perspectives offers a roadmap for advancing precision medicine in PCa, potentially transforming therapeutic paradigms and improving outcomes for patients facing the challenges of treatment resistance.
Collapse
Affiliation(s)
- Muhammad Sarfraz
- College of Pharmacy, Al Ain University, Al Ain Campus, Al Ain 64141, United Arab Emirates
| | - Abida
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Lina Eltaib
- Department of Pharmaceutics, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | | | - Arbi Guetat
- Department of Biological Sciences, College of Sciences, Northern Border University, Arar 73213, Saudi Arabia
| | - A Khuzaim Alzahrani
- Department of Medical Laboratory Technology, Faculty of Medical Applied Science, Northern Border University, Arar 91431, Saudi Arabia
| | | | - Shams Aaghaz
- Department of Pharmacy, School of Medical & Allied Sciences, Galgotias University, Greater Noida 203201, India
| | - Neelam Singla
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur 302017, India
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia.
| |
Collapse
|
7
|
Soares S, Aires F, Monteiro A, Pinto G, Faria I, Sales G, Correa-Duarte MA, Guerreiro S, Fernandes R. Radiotherapy Metastatic Prostate Cancer Cell Lines Treated with Gold Nanorods Modulate miRNA Signatures. Int J Mol Sci 2024; 25:2754. [PMID: 38474003 DOI: 10.3390/ijms25052754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/21/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024] Open
Abstract
MicroRNA (miRNA) modulation has been identified as a promising strategy for improving the response of human prostate cancer (PCa) to radiotherapy (RT). Studies have shown that mimics or inhibitors of miRNAs could modulate the sensitivity of PCa cells to RT. In addition, pegylated gold nanoparticles have been studied as a therapeutic approach to treat PCa cells and/or vehicles for carrying miRNAs to the inside of cells. Therefore, we evaluated the capacity of hypofractionated RT and pegylated gold nanorods (AuNPr-PEG) to modulate the miRNA signature on PCa cells. Thus, RT-qPCR was used to analyze miRNA-95, miRNA-106-5p, miRNA-145-5p, and miRNA-541-3p on three human metastatic prostate cell lines (PC3, DU145, and LNCaP) and one human prostate epithelial cell line (HprEpiC, a non-tumor cell line) with and without treatment. Our results showed that miRNA expression levels depend on cell type and the treatment combination applied using RT and AuNPr-PEG. In addition, cells pre-treated with AuNPr-PEG and submitted to 2.5 Gy per day for 3 days decreased the expression levels of miRNA-95, miRNA-106, miRNA-145, and miRNA-541-3p. In conclusion, PCa patients submitted to hypofractionated RT could receive personalized treatment based on their metastatic cellular miRNA signature, and AuNPr-PEG could be used to increase metastatic cell radiosensitivity.
Collapse
Affiliation(s)
- Sílvia Soares
- (i3S), Instituto de Investigação e Inovação em Saúde, 4200-135 Porto, Portugal
- FP-I3ID, Instituto de Investigação, Inovação e Desenvolvimento, FP-BHS, Biomedical and Health Sciences, Universidade Fernando Pessoa (UFP), 4249-004 Porto, Portugal
- CECLIN, Centro de Estudos Clínicos, Hospital Escola Fernando Pessoa, 4420-096 Gondomar, Portugal
- Faculty of Chemistry, University of Vigo, 36310 Vigo, Spain
- CEB, Centre of Biological Engineering, Minho University, 4710-057 Braga, Portugal
- Biomark@UC/CEB-Centre of Biological Engineering of Minho University, Department of Chemical Engineering, Faculty of Sciences and Technology, Coimbra University, 3030-790 Coimbra, Portugal
- Radiotherapy Service, São João Hospital Center, 4200-319 Porto, Portugal
| | - Fátima Aires
- Radiotherapy Service, São João Hospital Center, 4200-319 Porto, Portugal
| | - Armanda Monteiro
- Radiotherapy Service, São João Hospital Center, 4200-319 Porto, Portugal
| | - Gabriela Pinto
- Radiotherapy Service, São João Hospital Center, 4200-319 Porto, Portugal
| | - Isabel Faria
- FP-I3ID, Instituto de Investigação, Inovação e Desenvolvimento, FP-BHS, Biomedical and Health Sciences, Universidade Fernando Pessoa (UFP), 4249-004 Porto, Portugal
- CECLIN, Centro de Estudos Clínicos, Hospital Escola Fernando Pessoa, 4420-096 Gondomar, Portugal
| | - Goreti Sales
- CEB, Centre of Biological Engineering, Minho University, 4710-057 Braga, Portugal
- Biomark@UC/CEB-Centre of Biological Engineering of Minho University, Department of Chemical Engineering, Faculty of Sciences and Technology, Coimbra University, 3030-790 Coimbra, Portugal
| | - Miguel A Correa-Duarte
- CINBIO, University of Vigo, 36310 Vigo, Spain
- Southern Galicia Institute of Health Research (IISGS), Biomedical Research Networking Center for Mental Health (CIBERSAM), 36310 Madrid, Spain
| | - Susana Guerreiro
- (i3S), Instituto de Investigação e Inovação em Saúde, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto-IPATIMUP, 4200-465 Porto, Portugal
- Department of Biomedicine, Biochemistry Unit, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Faculty of Nutrition and Food Sciences, University of Porto, 4150-180 Porto, Portugal
| | - Rúben Fernandes
- (i3S), Instituto de Investigação e Inovação em Saúde, 4200-135 Porto, Portugal
- FP-I3ID, Instituto de Investigação, Inovação e Desenvolvimento, FP-BHS, Biomedical and Health Sciences, Universidade Fernando Pessoa (UFP), 4249-004 Porto, Portugal
- CECLIN, Centro de Estudos Clínicos, Hospital Escola Fernando Pessoa, 4420-096 Gondomar, Portugal
- UFP@RISE, Rede de Investigação em Saúde, Universidade Fernando Pessoa, 4249-004 Porto, Portugal
| |
Collapse
|
8
|
Luo S, Meng X, Xu LP, Zhang X. Intracellular MicroRNA Imaging and Specific Discrimination of Prostate Cancer Circulating Tumor Cells Using Multifunctional Gold Nanoprobe-Based Thermophoretic Assay. Anal Chem 2024; 96:2217-2226. [PMID: 38262909 DOI: 10.1021/acs.analchem.3c05287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Circulating tumor cells (CTCs) have emerged as powerful biomarkers for diagnosis of prostate cancer. However, the effective identification and concurrently accurate imaging of CTCs for early screening of prostate cancer have been rarely explored. Herein, we reported a multifunctional gold nanoprobe-based thermophoretic assay for simultaneous specific distinguishing of prostate cancer CTCs and sensitive imaging of intracellular microRNA (miR-21), achieving the rapid and precise detection of prostate cancer. The multifunctional gold nanoprobe (GNP-DNA/Ab) was modified by two types of prostate-specific antibodies, anti-PSMA and anti-EpCAM, which could effectively recognize the targeting CTCs, and meanwhile linked double-stranded DNA for further visually imaging intracellular miR-21. Upon the specific internalization of GNP-DNA/Ab by PC-3 cells, target aberrant miR-21 could displace the signal strand to recover the fluorescence signal for sensitive detection at the single-cell level, achieving single PC-3 cell imaging benefiting from the thermophoresis-mediated signal amplification procedure. Taking advantage of the sensitive miR-21 imaging performance, GNP-DNA/Ab could be employed to discriminate the PC-3 and Jurkat cells because of the different expression levels of miR-21. Notably, PC-3 cells were efficiently recognized from white blood cells, exhibiting promising potential for the early diagnosis of prostate cancer. Furthermore, GNP-DNA/Ab possessed good biocompatibility and stability. Therefore, this work provides a great tool for aberrant miRNA-related detection and specific discrimination of CTCs, achieving the early and accurate diagnosis of prostate cancer.
Collapse
Affiliation(s)
- Shuiyou Luo
- Beijing Key Laboratory for Bioengineering and Sensing Technology Research Centre for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Xiangdan Meng
- Beijing Key Laboratory for Bioengineering and Sensing Technology Research Centre for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Li-Ping Xu
- Beijing Key Laboratory for Bioengineering and Sensing Technology Research Centre for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Xueji Zhang
- Beijing Key Laboratory for Bioengineering and Sensing Technology Research Centre for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
- Marshall Laboratory of Biomedical Engineering, Precision Medicine and Health Research Institute, Shenzhen Key Laboratory for Nano-Biosensing Technology, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Guangdong 518060, P. R. China
| |
Collapse
|
9
|
Feng D, Li L, Shi X, Zhu W, Wang J, Wu R, Li D, Wei W, Han P. Identification of senescence-related lncRNA prognostic index correlating with prognosis and radiosensitivity in prostate cancer patients. Aging (Albany NY) 2023; 15:9358-9376. [PMID: 37742230 PMCID: PMC10564441 DOI: 10.18632/aging.204888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/22/2023] [Indexed: 09/26/2023]
Abstract
BACKGROUND An increasing number of studies are shown how crucial a role cellular senescence plays in tumor development. In this study, we developed a senescence-related lncRNA prognostic index (SRLPI) to forecast radiosensitivity and the probability of biochemical recurrence (BCR) in patients with prostate cancer (PCa). METHODS PCa cohorts in TCGA and GEO databases were downloaded. Senescence-and prognosis-related lncRNA with differential expression in tumor and normal samples were identified and used to establish the SRLPI score. Mutation landscape, function pathway, tumor stemness and heterogeneity and tumor immune microenvironment were also analyzed. We performed the analysis using R 3.6.3 and the appropriate tools. RESULTS A SRLPI score was constructed based on SNHG1 and MIAT in the TCGA cohort. Our classification of PCa patients into high- and low-risk groups was based on the median SRLPI score. When compared to the low-SRLPI group, the high-SRLPI group was more vulnerable to BCR (HR: 3.33). In terms of BCR-free survival and metastasis-free survival, the GSE116918 showed similar findings. Surprisingly, the SRLPI score demonstrated a high level of radiosensitivity for diagnosis (AUC: 0.98). Age, Gleason score, T stage, N stage, positive lymph nodes, and residual tumor were all significantly greater in patients with high SRLPI scores. Furthermore, this score was significantly related to markers of senescence. Protein secretion and androgen response were found to be substantially enriched in the low-SRLPI group, whereas E2F targets were found to be strongly enriched in the high-SRLPI group for pathway analysis. For the tumor microenvironment assessment, B cells, CD8+ T cells, immune score and TIDE score were positively related to SRLPI score while endothelial level was negatively associated with SRLPI score with statistical significance. CONCLUSIONS We developed a SRLPI score that was related to prognosis and radiosensitivity and might be helpful in clinical practice.
Collapse
Affiliation(s)
- Dechao Feng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Li Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xu Shi
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Weizhen Zhu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jie Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ruicheng Wu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dengxiong Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wuran Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ping Han
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
10
|
Zhang H, Wang X, Ma Y, Zhang Q, Liu R, Luo H, Wang Z. Review of possible mechanisms of radiotherapy resistance in cervical cancer. Front Oncol 2023; 13:1164985. [PMID: 37692844 PMCID: PMC10484717 DOI: 10.3389/fonc.2023.1164985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/31/2023] [Indexed: 09/12/2023] Open
Abstract
Radiotherapy is one of the main treatments for cervical cancer. Early cervical cancer is usually considered postoperative radiotherapy alone. Radiotherapy combined with cisplatin is the standard treatment for locally advanced cervical cancer (LACC), but sometimes the disease will relapse within a short time after the end of treatment. Tumor recurrence is usually related to the inherent radiation resistance of the tumor, mainly involving cell proliferation, apoptosis, DNA repair, tumor microenvironment, tumor metabolism, and stem cells. In the past few decades, the mechanism of radiotherapy resistance of cervical cancer has been extensively studied, but due to its complex process, the specific mechanism of radiotherapy resistance of cervical cancer is still not fully understood. In this review, we discuss the current status of radiotherapy resistance in cervical cancer and the possible mechanisms of radiotherapy resistance, and provide favorable therapeutic targets for improving radiotherapy sensitivity. In conclusion, this article describes the importance of understanding the pathway and target of radioresistance for cervical cancer to promote the development of effective radiotherapy sensitizers.
Collapse
Affiliation(s)
- Hanqun Zhang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Department of Oncology, Guizhou Provincial People's Hospital, Guizhou, China
| | - Xiaohu Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Lanzhou Heavy Ion Hospital, Lanzhou, China
| | - Yan Ma
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Qiuning Zhang
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Lanzhou Heavy Ion Hospital, Lanzhou, China
| | - Ruifeng Liu
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Lanzhou Heavy Ion Hospital, Lanzhou, China
| | - Hongtao Luo
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Lanzhou Heavy Ion Hospital, Lanzhou, China
| | - Zi Wang
- Department of Oncology, Guizhou Provincial People's Hospital, Guizhou, China
| |
Collapse
|
11
|
Chakrabortty A, Patton DJ, Smith BF, Agarwal P. miRNAs: Potential as Biomarkers and Therapeutic Targets for Cancer. Genes (Basel) 2023; 14:1375. [PMID: 37510280 PMCID: PMC10378777 DOI: 10.3390/genes14071375] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/25/2023] [Accepted: 06/25/2023] [Indexed: 07/30/2023] Open
Abstract
MicroRNAs (miRNAs) are single-stranded, non-coding RNA molecules that regulate gene expression post-transcriptionally by binding to messenger RNAs. miRNAs are important regulators of gene expression, and their dysregulation is implicated in many human and canine diseases. Most cancers tested to date have been shown to express altered miRNA levels, which indicates their potential importance in the oncogenic process. Based on this evidence, numerous miRNAs have been suggested as potential cancer biomarkers for both diagnosis and prognosis. miRNA-based therapies have also been tested in different cancers and have provided measurable clinical benefits to patients. In addition, understanding miRNA biogenesis and regulatory mechanisms in cancer can provide important knowledge about resistance to chemotherapies, leading to more personalized cancer treatment. In this review, we comprehensively summarized the importance of miRNA in human and canine cancer research. We discussed the current state of development and potential for the miRNA as both a diagnostic marker and a therapeutic target.
Collapse
Affiliation(s)
- Atonu Chakrabortty
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | - Daniel J Patton
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | - Bruce F Smith
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | - Payal Agarwal
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
12
|
Wu Y, Song Y, Wang R, Wang T. Molecular mechanisms of tumor resistance to radiotherapy. Mol Cancer 2023; 22:96. [PMID: 37322433 PMCID: PMC10268375 DOI: 10.1186/s12943-023-01801-2] [Citation(s) in RCA: 107] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 06/03/2023] [Indexed: 06/17/2023] Open
Abstract
BACKGROUND Cancer is the most prevalent cause of death globally, and radiotherapy is considered the standard of care for most solid tumors, including lung, breast, esophageal, and colorectal cancers and glioblastoma. Resistance to radiation can lead to local treatment failure and even cancer recurrence. MAIN BODY In this review, we have extensively discussed several crucial aspects that cause resistance of cancer to radiation therapy, including radiation-induced DNA damage repair, cell cycle arrest, apoptosis escape, abundance of cancer stem cells, modification of cancer cells and their microenvironment, presence of exosomal and non-coding RNA, metabolic reprogramming, and ferroptosis. We aim to focus on the molecular mechanisms of cancer radiotherapy resistance in relation to these aspects and to discuss possible targets to improve treatment outcomes. CONCLUSIONS Studying the molecular mechanisms responsible for radiotherapy resistance and its interactions with the tumor environment will help improve cancer responses to radiotherapy. Our review provides a foundation to identify and overcome the obstacles to effective radiotherapy.
Collapse
Affiliation(s)
- Yu Wu
- Department of Radiotherapy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, No.44 Xiaoheyan Road, Dadong District, Shenyang, 110042 Liaoning Province China
- School of Graduate, Dalian Medical University, Dalian, 116044 China
| | - Yingqiu Song
- Department of Radiotherapy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, No.44 Xiaoheyan Road, Dadong District, Shenyang, 110042 Liaoning Province China
| | - Runze Wang
- Department of Radiotherapy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, No.44 Xiaoheyan Road, Dadong District, Shenyang, 110042 Liaoning Province China
- School of Graduate, Dalian Medical University, Dalian, 116044 China
| | - Tianlu Wang
- Department of Radiotherapy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, No.44 Xiaoheyan Road, Dadong District, Shenyang, 110042 Liaoning Province China
- Faculty of Medicine, Dalian University of Technology, Dalian, 116024 China
| |
Collapse
|
13
|
Huang ZC, Huang J, Huang CK, Hou Y, Zhu B. Euchromatic histone lysine methyltransferase 2 facilitates radioresistance in prostate cancer by repressing endoplasmic reticulum protein 29 transcription. Kaohsiung J Med Sci 2023. [PMID: 36825520 DOI: 10.1002/kjm2.12661] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/12/2023] [Accepted: 01/31/2023] [Indexed: 02/25/2023] Open
Abstract
Prostate cancer is one of the most common cancers in men. This study was conducted to investigate the role of euchromatic histone lysine methyltransferase 2 (EHMT2) and endoplasmic reticulum protein 29 (ERP29) in the progression of radioresistance in prostate cancer. The expression of EHMT2 and ERP29 in prostate cancer cells and during the progression of radioresistance was detected using quantitative reverse transcription-polymerase chain reaction and western blotting, and the interaction between EHMT2 and ERP29 was investigated. The proliferation of transfected cells under x-ray irradiation was determined using the methyl thiazolyl tetrazolium and colony formation assays. Flow cytometry was used to analyze the apoptosis of the transfected cells under x-ray irradiation. Nude mice were subcutaneously injected with prostate cancer (DU145) cells stably transfected with sh-ERP29 or sh-NC. The effect of ERP29 expression on radioresistance in nude mice was assessed by x-ray irradiation. The expression of EHMT2 was upregulated and that of ERP29 was downregulated in prostate cancer cells during radioresistance progression. EHMT2 downregulation suppressed radioresistance in DU145 and androgen-sensitive prostate cancer (LNCaP) cells. In irradiated DU145 cells, EHMT2 inhibition decreased the number of colonies and accelerated apoptosis. The transcription of ERP29 was suppressed by EHMT2 by upregulating H3K9me2 and downregulating H3K4me3, thereby regulating radioresistance in prostate cancer cells. In addition, the downregulation of ERP29 promoted the progression of radioresistance in prostate cancer cells in nude mice. EHMT2 promotes radioresistance in prostate cancer cells by repressing ERP29 transcription.
Collapse
Affiliation(s)
- Zhi-Chao Huang
- Department of Urology, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Jun Huang
- Department of Urology, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Chang-Kun Huang
- Department of Urology, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Yi Hou
- Department of Urology, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Bin Zhu
- Department of Urology, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| |
Collapse
|
14
|
Li R, Li F, Zhang Y, He Y, Wang Y, Wang F. Miniature Hierarchical DNA Hybridization Circuit for Amplified Multiplexed MicroRNA Imaging. Anal Chem 2023; 95:3848-3855. [PMID: 36745869 DOI: 10.1021/acs.analchem.2c05373] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Accurate diagnosis requires the development of multiple-guaranteed DNA circuits. Nevertheless, for reliable multiplexed molecular imaging, existing DNA circuits are limited by poor cell-delivering homogeneity due to their cumbersome and dispersive reactants. Herein, we developed a compact-yet-efficient hierarchical DNA hybridization (HDH) circuit for in situ simultaneous analysis of multiple miRNAs, which could be further exploited for specifically discriminating cancer cells from normal ones. By integrating the traditional hybridization chain reaction and catalytic hairpin assembly reactants into two highly organized hairpins, the HDH circuit is fitted with condensed components and multiple response domains, thus permitting the programmable multiple microRNA-guaranteed sequential activations and the localized cascaded signal amplification. The synergistic multi-recognition and amplification features of the HDH circuit facilitate the magnified detection of multiplex endogenous miRNAs in living cells. The in vitro and cellular imaging experimental results revealed that the HDH circuit displayed a reliable sensing performance with high selective cell-identification capacity. We anticipate that this compact design can provide a powerful toolkit for accurate diagnostics and pathological evolution.
Collapse
Affiliation(s)
- Ruomeng Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P.R. China
| | - Fengzhe Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P.R. China
| | - Yanping Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P.R. China
| | - Yuqiu He
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P.R. China
| | - Yushi Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P.R. China
| | - Fuan Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P.R. China.,Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan 430072, P.R. China
| |
Collapse
|
15
|
Shang Y, Zhu Z, Zhang Y, Ji F, Zhu L, Liu M, Deng Y, Lv G, Li D, Zhou Z, Lu B, Fu CG. MiR-7-5p/KLF4 signaling inhibits stemness and radioresistance in colorectal cancer. Cell Death Dis 2023; 9:42. [PMID: 36732504 PMCID: PMC9894908 DOI: 10.1038/s41420-023-01339-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 02/04/2023]
Abstract
Resistance to radiotherapy remains a major unmet clinical obstacle in the treatment of locally advanced rectal cancer. Cancer stem cells (CSCs) are considered to mediate tumor development and radioresistance. However, the role of CSCs in regulating resistance to radiotherapy in colorectal cancer (CRC) remains largely unknown. We established two radioresistant CRC cell lines, HCT116-R and RKO-R, using fractionated irradiation. Analysis using miRNA sequencing and quantitative real-time PCR confirmed lower levels of miR-7-5p in both of the radioresistant cells compared to their parental cells. Subsequently, we validated that miR-7-5p expression was decreased in cancerous tissues from radiotherapy-resistant rectal cancer patients. The Cancer Genome Atlas (TCGA) database analyses revealed that low miR-7-5p expression was significantly correlated with poor prognosis in CRC patients. Overexpression of miR-7-5p led to a rescue of radioresistance and an increase in radiation-induced apoptosis, and attenuated the stem cell-like properties in HCT116-R and RKO-R cells. Conversely, knocking down miR-7-5p in parental HCT116 and RKO cells suppressed the sensitivity to radiation treatment and enhance cancer cell stemness. Stemness-associated transcription factor KLF4 was demonstrated as a target of miR-7-5p. Rescue experiments revealed that miR-7-5p/KLF4 axis could induce radiosensitivity by regulating CSCs in colorectal cancer cells. Furthermore, we used CRC tumor tissues which exhibited resistance to neoadjuvant radiotherapy to establish a patient-derived xenograft (PDX) mouse model. Tail vein injection of magnetic nanoparticles carrying miR-7-5p mimics into the PDX mice significantly inhibited tumor growth with or without irradiation treatment in vivo. Our current studies not only demonstrate an anti-cancer function of miR-7-5p in regulating CSC properties and radiosensitivity in colorectal cancer, but also provide a novel potential strategy for delaying or reverse radiation resistance in preoperative radiotherapy of CRC patients.
Collapse
Affiliation(s)
- Yuanyuan Shang
- grid.24516.340000000123704535Department of Colorectal Surgery, Department of General Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120 China
| | - Zhe Zhu
- grid.24516.340000000123704535Department of Colorectal Surgery, Department of General Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120 China
| | - Yuanyuan Zhang
- grid.24516.340000000123704535Department of Colorectal Surgery, Department of General Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120 China
| | - Fang Ji
- grid.24516.340000000123704535Department of Colorectal Surgery, Department of General Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120 China
| | - Lian Zhu
- grid.24516.340000000123704535Department of Radiation Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120 China
| | - Mengcheng Liu
- grid.24516.340000000123704535Department of Colorectal Surgery, Department of General Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120 China
| | - Yewei Deng
- grid.24516.340000000123704535Department of Colorectal Surgery, Department of General Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120 China
| | - Guifen Lv
- grid.24516.340000000123704535Department of Colorectal Surgery, Department of General Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120 China
| | - Dan Li
- grid.24516.340000000123704535Department of Colorectal Surgery, Department of General Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120 China
| | - Zhuqing Zhou
- grid.24516.340000000123704535Department of Colorectal Surgery, Department of General Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120 China
| | - Bing Lu
- grid.24516.340000000123704535Department of Colorectal Surgery, Department of General Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120 China
| | - Chuan-gang Fu
- grid.24516.340000000123704535Department of Colorectal Surgery, Department of General Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120 China
| |
Collapse
|
16
|
Chowdhury SG, Ray R, Karmakar P. Exosomal miRNAs-a diagnostic biomarker acting as a guiding light in the diagnosis of prostate cancer. Funct Integr Genomics 2022; 23:23. [PMID: 36574059 DOI: 10.1007/s10142-022-00951-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
Prostate cancer, one of the major causes of mortality globally is regarded as the second leading cause of mortality among men. It is known to affect the stromal cells surrounding it. Through the use of exosomes, the affected stromal cells can promote the growth and spread of the cancer. Exosomes are known to play a role not only in the development and progression of cancer but also contribute to the drug-resistance character of cancer cells. Recently, the discovery of the small non-coding RNAs or miRNA has attracted attention of cancer researchers as they can regulate the expression of different genes. Therefore, exosomal miRNA can be used as a novel and reliable biomarker for the diagnosis and treatment of prostate cancer. In addition, exosomal miRNAs can also be used as a potential treatment for prostate cancer. The goal of this review is to provide a comprehensive analysis of the current knowledge about the role of exosomal miRNAs in the treatment of patients with prostate cancer and their potential role in monitoring the disease.
Collapse
Affiliation(s)
| | - Rachayeeta Ray
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, 700032, India
| | - Parimal Karmakar
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, 700032, India.
| |
Collapse
|
17
|
Yang Z, Zhong W, Yang L, Wen P, Luo Y, Wu C. The emerging role of exosomes in radiotherapy. Cell Commun Signal 2022; 20:171. [PMCID: PMC9620591 DOI: 10.1186/s12964-022-00986-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/01/2022] [Indexed: 11/10/2022] Open
Abstract
Presently, more than half of cancer patients receive radiotherapy to cure localized cancer, palliate symptoms, or control the progression of cancer. However, radioresistance and radiation-induced bystander effects (RIBEs) are still challenging problems in cancer treatment. Exosomes, as a kind of extracellular vesicle, have a significant function in mediating and regulating intercellular signaling pathways. An increasing number of studies have shown that radiotherapy can increase exosome secretion and alter exosome cargo. Furthermore, radiation-induced exosomes are involved in the mechanism of radioresistance and RIBEs. Therefore, exosomes hold great promise for clinical application in radiotherapy. In this review, we not only focus on the influence of radiation on exosome biogenesis, secretion and cargoes but also on the mechanism of radiation-induced exosomes in radioresistance and RIBEs, which may expand our insight into the cooperative function of exosomes in radiotherapy.
Video abstract
Collapse
Affiliation(s)
- Zhenyi Yang
- grid.412644.10000 0004 5909 0696Fourth Affiliated Hospital of China Medical University, Liaoning, China
| | - Wen Zhong
- grid.412644.10000 0004 5909 0696Fourth Affiliated Hospital of China Medical University, Liaoning, China
| | - Liang Yang
- grid.412644.10000 0004 5909 0696Fourth Affiliated Hospital of China Medical University, Liaoning, China
| | - Ping Wen
- grid.412644.10000 0004 5909 0696Fourth Affiliated Hospital of China Medical University, Liaoning, China
| | - Yixuan Luo
- grid.412644.10000 0004 5909 0696Fourth Affiliated Hospital of China Medical University, Liaoning, China
| | - Chunli Wu
- grid.412644.10000 0004 5909 0696Fourth Affiliated Hospital of China Medical University, Liaoning, China
| |
Collapse
|
18
|
Mechanism and Function of Circular RNA in Regulating Solid Tumor Radiosensitivity. Int J Mol Sci 2022; 23:ijms231810444. [PMID: 36142355 PMCID: PMC9499630 DOI: 10.3390/ijms231810444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/30/2022] [Accepted: 09/07/2022] [Indexed: 11/29/2022] Open
Abstract
Radiotherapy is an important tool in the treatment of malignant tumors, and exploring how to make radiotherapy more effective is a new way to break through the current bottleneck in the development of radiation oncology. Circular RNAs (circRNAs) are a special class of endogenous non-coding RNAs. Numerous studies have shown that circRNAs have shown great potential in regulating the biological functions of tumors, including proliferation, migration, invasion, and treatment resistance, and that differences in their expression levels are closely related to the clinical prognosis of tumor patients. This review systematically compares the mechanisms of circRNAs in the process of tumor development and radiosensitivity and provides insight into the clinical translation of circRNAs in radiotherapy.
Collapse
|
19
|
Zhang H, Fang C, Feng Z, Xia T, Lu L, Luo M, Chen Y, Liu Y, Li Y. The Role of LncRNAs in the Regulation of Radiotherapy Sensitivity in Cervical Cancer. Front Oncol 2022; 12:896840. [PMID: 35692795 PMCID: PMC9178109 DOI: 10.3389/fonc.2022.896840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/02/2022] [Indexed: 12/24/2022] Open
Abstract
Cervical cancer (CC) is one of the three majors gynecological malignancies, which seriously threatens women’s health and life. Radiotherapy (RT) is one of the most common treatments for cervical cancer, which can reduce local recurrence and prolong survival in patients with cervical cancer. However, the resistance of cancer cells to Radiotherapy are the main cause of treatment failure in patients with cervical cancer. Long non-coding RNAs (LncRNAs) are a group of non-protein-coding RNAs with a length of more than 200 nucleotides, which play an important role in regulating the biological behavior of cervical cancer. Recent studies have shown that LncRNAs play a key role in regulating the sensitivity of radiotherapy for cervical cancer. In this review, we summarize the structure and function of LncRNAs and the molecular mechanism of radiosensitivity in cervical cancer, list the LncRNAs associated with radiosensitivity in cervical cancer, analyze their potential mechanisms, and discuss the potential clinical application of these LncRNAs in regulating radiosensitivity in cervical cancer.
Collapse
Affiliation(s)
- Hanqun Zhang
- Department of Oncology, Guizhou Provincial People’s Hospital, Guizhou, China
| | - Chunju Fang
- Department of Oncology, Guizhou Provincial People’s Hospital, Guizhou, China
| | - Zhiyu Feng
- Department of Oncology, Guizhou Provincial People’s Hospital, Guizhou, China
| | - Tingting Xia
- Department of Nephrology, Guizhou Provincial People’s Hospital, Guizhou, China
| | - Liang Lu
- Department of Oncology, Guizhou Provincial People’s Hospital, Guizhou, China
| | - Min Luo
- Department of Oncology, Guizhou Provincial People’s Hospital, Guizhou, China
| | - Yanping Chen
- Department of Oncology, Guizhou Provincial People’s Hospital, Guizhou, China
| | - Yuncong Liu
- Department of Oncology, Guizhou Provincial People’s Hospital, Guizhou, China
- *Correspondence: Yuncong Liu, ; Yong Li,
| | - Yong Li
- Department of Oncology, Guizhou Provincial People’s Hospital, Guizhou, China
- *Correspondence: Yuncong Liu, ; Yong Li,
| |
Collapse
|
20
|
He D, Zhao Z, Fu B, Li X, Zhao L, Chen Y, Liu L, Liu R, Li J. Exosomes Participate in the Radiotherapy Resistance of Cancers. Radiat Res 2022; 197:559-565. [PMID: 35588472 DOI: 10.1667/rade-21-00115.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 12/21/2021] [Indexed: 02/05/2023]
Affiliation(s)
- Dan He
- Department of Head and Neck Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R.China
| | | | - Bo Fu
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan, P.R.China
| | - Xiaofei Li
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan, P.R.China
| | - Long Zhao
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan, P.R.China
| | - Yongbin Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650223, China
| | - Lei Liu
- Department of Head and Neck Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R.China
| | - Rui Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sich
| | - Jingyi Li
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan, P.R.China
| |
Collapse
|
21
|
Rana S, Valbuena GN, Curry E, Bevan CL, Keun HC. MicroRNAs as biomarkers for prostate cancer prognosis: a systematic review and a systematic reanalysis of public data. Br J Cancer 2022; 126:502-513. [PMID: 35022525 PMCID: PMC8810870 DOI: 10.1038/s41416-021-01677-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 11/16/2021] [Accepted: 12/10/2021] [Indexed: 02/07/2023] Open
Abstract
Background Reliable prognostic biomarkers to distinguish indolent from aggressive prostate cancer (PCa) are lacking. Many studies investigated microRNAs (miRs) as PCa prognostic biomarkers, often reporting inconsistent findings. We present a systematic review of these; also systematic reanalysis of public miR-profile datasets to identify tissue-derived miRs prognostic of biochemical recurrence (BCR) in patients undergoing radical prostatectomy. Methods Independent PubMed searches were performed for relevant articles from January 2007 to December 2019. For the review, 128 studies were included. Pooled-hazard-ratios (HRs) for miRs in multiple studies were calculated using a random-effects model (REM). For the reanalysis, five studies were included and Cox proportional-hazard models, testing miR association with BCR, performed for miRs profiled in all. Results Systematic review identified 120 miRs as prognostic. Five (let-7b-5p, miR-145-5p, miR152-3p, miR-195-5p, miR-224-5p) were consistently associated with progression in multiple cohorts/studies. In the reanalysis, ten (let-7a-5p, miR-148a-3p, miR-203a-3p, miR-26b-5p, miR30a-3p, miR-30c-5p, miR-30e-3p, miR-374a-5p, miR-425-3p, miR-582-5p) were significantly prognostic of BCR. Of these, miR-148a-3p (HR = 0.80/95% CI = 0.68-0.94) and miR-582-5p (HR = 0.73/95% CI = 0.61-0.87) were also reported in prior publication(s) in the review. Conclusions Fifteen miRs were consistently associated with disease progression in multiple publications or datasets. Further research into their biological roles is warranted to support investigations into their performance as prognostic PCa biomarkers.
Collapse
|
22
|
Kalhori MR, Soleimani M, Arefian E, Alizadeh AM, Mansouri K, Echeverria J. The potential role of miR-1290 in cancer progression, diagnosis, prognosis, and treatment: An oncomiR or onco-suppressor microRNA? J Cell Biochem 2021; 123:506-531. [PMID: 34897783 DOI: 10.1002/jcb.30191] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/20/2021] [Accepted: 11/24/2021] [Indexed: 12/11/2022]
Abstract
Cancer is one of the leading causes of death in humans because of the lack of early diagnosis, distant metastases, and the resistance to adjuvant therapies, including chemotherapy and radiotherapy. In addition to playing an essential role in tumor progression and development, microRNAs (miRNAs) can be used as a robust biomarker in the early detection of cancer. MiR-1290 was discovered for the first time in human embryonic stem cells, and under typical physiological situations, plays an essential role in neuronal differentiation and neural stem cell proliferation. Its coding sequence is located at the 1p36.13 regions in the first intron of the aldehyde dehydrogenase 4 gene member A1. miR-1290 is out of control in many cancers such as breast cancer, colorectal cancer, esophageal squamous cell carcinoma, gastric cancer, lung cancer, pancreatic cancer, and plays a vital role in their development. Therefore, it is suggested that miR-1290 can be considered as a potential diagnostic and therapeutic target in many cancers. In addition to the importance of miR-1290 in the noninvasive diagnosis of various cancers, this systematic review study discussed the role of miR-1290 in altering the expression of different genes involved in cancer development and chemo-radiation resistance. Moreover, it considered the regulatory effect of natural products on miR-1290 expression and the interaction of lncRNAs by miR-1290.
Collapse
Affiliation(s)
- Mohammad Reza Kalhori
- Regenerative Medicine Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Masoud Soleimani
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ehsan Arefian
- Department of Microbiology, Molecular Virology Lab, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Ali Mohammad Alizadeh
- Cancer Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Kamran Mansouri
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Javier Echeverria
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
23
|
Cargill M, Venkataraman R, Lee S. DEAD-Box RNA Helicases and Genome Stability. Genes (Basel) 2021; 12:1471. [PMID: 34680866 PMCID: PMC8535883 DOI: 10.3390/genes12101471] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 02/06/2023] Open
Abstract
DEAD-box RNA helicases are important regulators of RNA metabolism and have been implicated in the development of cancer. Interestingly, these helicases constitute a major recurring family of RNA-binding proteins important for protecting the genome. Current studies have provided insight into the connection between genomic stability and several DEAD-box RNA helicase family proteins including DDX1, DDX3X, DDX5, DDX19, DDX21, DDX39B, and DDX41. For each helicase, we have reviewed evidence supporting their role in protecting the genome and their suggested mechanisms. Such helicases regulate the expression of factors promoting genomic stability, prevent DNA damage, and can participate directly in the response and repair of DNA damage. Finally, we summarized the pathological and therapeutic relationship between DEAD-box RNA helicases and cancer with respect to their novel role in genome stability.
Collapse
Affiliation(s)
- Michael Cargill
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA;
| | - Rasika Venkataraman
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA;
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Stanley Lee
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA;
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
24
|
Petrović N, Stanojković TP, Nikitović M. MicroRNAs in prostate cancer following radiotherapy: Towards predicting response to radiation treatment. Curr Med Chem 2021; 29:1543-1560. [PMID: 34348602 DOI: 10.2174/0929867328666210804085135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 06/10/2021] [Accepted: 06/19/2021] [Indexed: 12/24/2022]
Abstract
Prostate cancer (PCa) is the second most frequently diagnosed male cancer worldwide. Early diagnosis of PCa, response to therapy and prognosis still represent a challenge. Nearly 60% of PCa patients undergo radiation therapy (RT) which might cause side effects. In spite of numerous researches in this field, predictive biomarkers for radiation toxicity are still not elucidated. MicroRNAs as posttranscriptional regulators of gene expression are shown to be changed during and after irradiation. Manipulation with miRNA levels might be used to modulate response to RT-to reverse radioresistance-to induce radiosensitivity, or if needed, to reduce sensitivity to treatment to avoid side effects. In this review we have listed and described miRNAs involved in response to RT in PCa, and highlighted potential candidates for future biological tests predicting radiation response to RT, with the special focus on side effects of RT. Individual radiation response is a result of the interactions between physical characteristics of radiation treatment and biological background of each patient, and miRNA expression changes among others. According to described literature we concluded that let-7, miR-21, miR-34a, miR-146a, miR-155, and members of miR-17/92 cluster might be promising candidates for biological tests predicting radiosensitivity of PCa patients undergoing radiation treatment, and as future agents for modulation of radiation response. Predictive miRNA panels, especially for acute and late side effects of RT can serve as a starting point for decisions for individualized RT planning. We believe that this review might be one step closer to understanding molecular mechanisms underlying individual radiation response of patients with PCa.
Collapse
Affiliation(s)
- Nina Petrović
- Laboratory for Radiobiology and Molecular Genetics, Department of Health and Environment, "VINČA" Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12-14, 11001 Belgrade. Serbia
| | - Tatjana P Stanojković
- Department for Experimental Oncology, Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade. Serbia
| | - Marina Nikitović
- Department of Radiation Oncology, Institute for Oncology and Radiology of Serbia, Belgrade, Serbia, Pasterova 14, 11000 Belgrade. Serbia
| |
Collapse
|
25
|
Jin F, Liu D, Xu X, Ji J, Du Y. Nanomaterials-Based Photodynamic Therapy with Combined Treatment Improves Antitumor Efficacy Through Boosting Immunogenic Cell Death. Int J Nanomedicine 2021; 16:4693-4712. [PMID: 34267518 PMCID: PMC8275223 DOI: 10.2147/ijn.s314506] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/21/2021] [Indexed: 12/12/2022] Open
Abstract
Benefiting from the rapid development of nanotechnology, photodynamic therapy (PDT) is arising as a novel non-invasive clinical treatment for specific cancers, which exerts direct efficacy in destroying primary tumors by generating excessive cytotoxic reactive oxygen species (ROS). Notably, PDT-induced cell death is related to T cell-mediated antitumor immune responses through induction of immunogenic cell death (ICD). However, ICD elicited via PDT is not strong enough and is limited by immunosuppressive tumor microenvironment (ITM). Therefore, it is necessary to improve PDT efficacy through enhancing ICD with the combination of synergistic tumor therapies. Herein, the recent progress of nanomaterials-based PDT combined with chemotherapy, photothermal therapy, radiotherapy, and immunotherapy, employing ICD-boosted treatments is reviewed. An outlook about the future application in clinics of nanomaterials-based PDT strategies is also mentioned.
Collapse
Affiliation(s)
- Feiyang Jin
- Institute of Pharmaceutics, College of Pharmaceutics Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Di Liu
- Institute of Pharmaceutics, College of Pharmaceutics Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Xiaoling Xu
- Institute of Pharmaceutics, College of Pharmaceutics Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Jiansong Ji
- Department of Radiology, Lishui Hospital of Zhejiang University, Lishui, 323000, People's Republic of China
| | - Yongzhong Du
- Institute of Pharmaceutics, College of Pharmaceutics Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| |
Collapse
|
26
|
Doldi V, El Bezawy R, Zaffaroni N. MicroRNAs as Epigenetic Determinants of Treatment Response and Potential Therapeutic Targets in Prostate Cancer. Cancers (Basel) 2021; 13:2380. [PMID: 34069147 PMCID: PMC8156532 DOI: 10.3390/cancers13102380] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/07/2021] [Accepted: 05/13/2021] [Indexed: 12/15/2022] Open
Abstract
Prostate cancer (PCa) is the second most common tumor in men worldwide, and the fifth leading cause of male cancer-related deaths in western countries. PC is a very heterogeneous disease, meaning that optimal clinical management of individual patients is challenging. Depending on disease grade and stage, patients can be followed in active surveillance protocols or undergo surgery, radiotherapy, hormonal therapy, and chemotherapy. Although therapeutic advancements exist in both radiatiotherapy and chemotherapy, in a considerable proportion of patients, the treatment remains unsuccessful, mainly due to tumor poor responsiveness and/or recurrence and metastasis. microRNAs (miRNAs), small noncoding RNAs that epigenetically regulate gene expression, are essential actors in multiple tumor-related processes, including apoptosis, cell growth and proliferation, autophagy, epithelial-to-mesenchymal transition, invasion, and metastasis. Given that these processes are deeply involved in cell response to anti-cancer treatments, miRNAs have been considered as key determinants of tumor treatment response. In this review, we provide an overview on main PCa-related miRNAs and describe the biological mechanisms by which specific miRNAs concur to determine PCa response to radiation and drug therapy. Additionally, we illustrate whether miRNAs can be considered novel therapeutic targets or tools on the basis of the consequences of their expression modulation in PCa experimental models.
Collapse
Affiliation(s)
| | | | - Nadia Zaffaroni
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy; (V.D.); (R.E.B.)
| |
Collapse
|
27
|
CircHECTD1 up-regulates mucin 1 expression to accelerate hepatocellular carcinoma development by targeting microRNA-485-5p via a competing endogenous RNA mechanism. Chin Med J (Engl) 2021; 133:1774-1785. [PMID: 32675746 PMCID: PMC7469999 DOI: 10.1097/cm9.0000000000000917] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Background: Non-coding RNAs have attracted considerable attention for their vital role in cancer. The purpose of this study was to determine the effects of non-coding RNAs on hepatocellular carcinoma (HCC) and reveal their regulatory mechanism in the pathophysiological process. Methods: We measured the expression of mucin 1 (MUC1) and miR-485-5p in tissues from 15 HCC patients and in liver cancer cell lines by quantitative real-time polymerase chain reaction and Western blot, screened for aberrantly expressed microRNAs (miRNAs) by miRNA microarrays. Bioinformatics tools were used to find the miRNA and circular RNA that regulated MUC1, which were validated by RNA immunoprecipitation assay and luciferase reporter assay. Cell counting kit-8, Transwell assays, and flow cytometry were used to conduct functional experiments. Proteins were examined by western blot and immunohistochemical staining assays. Significant differences between groups were estimated using the one-way analysis of variance. A P < 0.05 was considered statistically significant. Results: MUC1 was overexpressed in HCC tissues compared with that in paratumor tissues (normal vs. tumor, 1.007 ± 0.215 vs. 75.213 ± 18.403, t = 18.401, P < 0.001) while miR-485-5p was down-regulated (normal vs. tumor, 4.894 ± 0.684 vs. 1.586 ± 0.398, t = 16.191, P < 0.001). Inhibition of miR-485-5p promoted cell proliferation (73.33% ± 5.13% vs. 41.33% ± 3.51%, t = 8.913, P < 0.001), migration (102 ± 8 cells vs. 46 ± 8 cells, t = 8.681, P < 0.001), invasion (59 ± 7 cells vs. 28 ± 2 cells, t = 8.034, P < 0.01), and suppressed apoptosis (22.64% ± 6.97% vs. 36.33% ± 3.96%, t = 2.958, P < 0.05) of HepG2 cells with which MUC1 is knocked down. Mechanically, miR-485-5p binds to MUC1, while circHECTD1 binds to miR-485-5p, resulting in the indirect up-regulation of the MUC1 level. Conclusions: Our findings reveal that circHECTD1 facilitates HCC progression by sponging miR-485-5p to up-regulate MUC1.
Collapse
|
28
|
Du R, Jiang F, Yin Y, Xu J, Li X, Hu L, Wang X. Knockdown of lncRNA X inactive specific transcript (XIST) radiosensitizes non-small cell lung cancer (NSCLC) cells through regulation of miR-16-5p/WEE1 G2 checkpoint kinase (WEE1) axis. Int J Immunopathol Pharmacol 2021; 35:2058738420966087. [PMID: 33583218 PMCID: PMC7890721 DOI: 10.1177/2058738420966087] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Long non-coding RNA (lncRNA) X inactive specific transcript (XIST) is reported to play an oncogenic role in non-small cell lung cancer (NSCLC). However, the role of XIST in regulating the radiosensitivity of NSCLC cells remains unclear. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect the expressions of XIST and miR-16-5p in NSCLC in tissues and cells, and Western blot was used to assess the expression of WEE1 G2 checkpoint kinase (WEE1). Cell counting kit-8 (CCK-8), colony formation and flow cytometry assays were used to determine cell viability and apoptosis after NSCLC cells were exposed to different doses of X-rays. The interaction between XIST and miR-16-5p was confirmed by StarBase database, qRT-PCR and dual-luciferase reporter gene assays. TargetScan database was used to predict WEE1 as a target of miR-16-5p, and their targeting relationship was further validated by Western blot, qRT-PCR and dual-luciferase reporter gene assays. XIST was highly expressed in both NSCLC tissue and cell lines, and knockdown of XIST repressed NSCLC cell viability and cell survival, and facilitated apoptosis under the irradiation. MiR-16-5p was a target of XIST, and rescue experiments demonstrated that miR-16-5p inhibitors could reverse the role of XIST knockdown on radiosensitivity in NSCLC cells. WEE1 was validated as a target gene of miR-16-5p, and WEE1 could be negatively regulated by XIST. XIST promotes the radioresistance of NSCLC cells by regulating the expressions of miR-16-5p and WEE1, which can be a novel target for NSCLC therapy.
Collapse
Affiliation(s)
- Ran Du
- Department of Pathology, Liaocheng People's Hospital, Liaocheng, Shandong, China
| | - Feng Jiang
- Department of Thoracic surgery, Liaocheng Tumor Hospital, Liaocheng, Shandong, China
| | - Yanhua Yin
- Department of Pathology, Liaocheng People's Hospital, Liaocheng, Shandong, China
| | - Jinfen Xu
- Department of Oncology, Laigang Hospital Affiliated to Taishan Medical University, Laiwu, Shandong, China
| | - Xia Li
- Department of Oncology, Laigang Hospital Affiliated to Taishan Medical University, Laiwu, Shandong, China
| | - Likuan Hu
- Department of Radiation and Oncology, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Xiuyu Wang
- Department of Pathology, Liaocheng People's Hospital, Liaocheng, Shandong, China
| |
Collapse
|
29
|
Wen X, Zhang J, Yang W, Nie X, Gui R, Shan D, Huang R, Deng H. CircRNA-016901 silencing attenuates irradiation-induced injury in bone mesenchymal stem cells via regulating the miR-1249-5p/HIPK2 axis. Exp Ther Med 2021; 21:355. [PMID: 33732328 PMCID: PMC7903417 DOI: 10.3892/etm.2021.9786] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 08/19/2020] [Indexed: 12/18/2022] Open
Abstract
Currently, bone marrow transplantation remains the basic treatment for various hematological tumors and irradiation is one of the most important pretreatment methods. However, irradiation pretreatment may result in damage to bone mesenchymal stem cells (BMSCs). The present study aimed to investigate the effect of circular RNA-016901 (circ-016901) on the injury of irradiation-induced BMSCs and the underlying mechanism. The expression levels of circ-016901, microRNA-1249-5p (miR-1249-5p) and homeodomain interacting protein kinase 2 (HIPK2) in irradiation-induced mouse BMSCs at various irradiation doses were detected via reverse transcription-quantitative PCR (RT-qPCR). The effect of circ-016901 on cell proliferation was examined using Cell Counting Kit-8 assays following silencing or overexpression of circ-016901. Cell apoptosis was detected by flow cytometry and caspase-3/7 activity. The expression of autophagy-related markers, including Beclin-1 and LC3-II/I, was detected at the mRNA and protein levels by RT-qPCR and western blotting, respectively. Irradiation treatment upregulated the expression of circ-016901 and HIPK2 and downregulated miR-1249-5p expression. The expression levels of LC3-II/I and Beclin-1 in BMSCs were downregulated in a dose-dependent manner. Silencing of circ-016901 promoted proliferation of irradiation-induced BMSCs and attenuated irradiation-induced apoptosis. Moreover, silencing of circ-016901 elevated the expressions of LC3-II/I and Beclin-1 in irradiation-induced BMSCs. Similar results were obtained with miR-1249-5p overexpression and HIPK2 silencing. These results demonstrated that circ-016901 silencing attenuated injury in irradiation-induced mouse BMSCs by regulating the miR-1249-5p/HIPK2 axis, providing a novel target for future research on the mechanism of radiation resistance in BMSCs.
Collapse
Affiliation(s)
- Xianhui Wen
- Department of Blood Transfusion, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China.,Department of Clinical Laboratory, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Junhua Zhang
- Department of Blood Transfusion, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Wenjuan Yang
- Key Laboratory of Translational Radiation Oncology, Department of Radiation Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha, Hunan 410013, P.R. China
| | - Xinmin Nie
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Rong Gui
- Department of Blood Transfusion, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Dongyong Shan
- Department of Oncology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Rong Huang
- Department of Blood Transfusion, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Hongyu Deng
- Department of Laboratory Medicine, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
30
|
Konoshenko MY, Bryzgunova OE, Laktionov PP. miRNAs and radiotherapy response in prostate cancer. Andrology 2020; 9:529-545. [PMID: 33053272 DOI: 10.1111/andr.12921] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Gaining insight into microRNAs (miRNAs) and genes that regulate the therapeutic response of cancer diseases in general and prostate cancer (PCa) in particular is an important issue in current molecular biomedicine and allows the discovery of predictive miRNA targets. OBJECTIVES The aim of this study was to analyze the available data on the influence of radiotherapy (RT) on miRNA expression and on miRNA involved in radiotherapy response in PCa. MATERIALS AND METHODS The data used in this review were extracted from research papers and the DIANA, STRING, and other databases with a special focus on the mechanisms of radiotherapy PCa response and the miRNA involved and associated genes. RESULTS AND DISCUSSION A search for miRNA prognostic and therapeutic effectiveness markers should rely on both the data of recent experimental studies on the influence of RT on miRNA expression and miRNAs involved in regulation of radiosensitivity in PCa and on bioinformatics resources. miRNA panels and genes targeted by them and involved in radioresponse regulation highlighted by meta-analysis and cross-analysis of the data in the present review have. CONCLUSION Selected miRNA and gene panel has good potential as prognostic and radiotherapy effectiveness markers for PCa and, moreover, as radiotherapy effectiveness markers in other types of cancer, as the proposed model is not specific to PCa, which opens up opportunities for the development of a universal diagnostic system (or several intersecting systems) for oncology radiotherapy in general.
Collapse
Affiliation(s)
- Maria Yu Konoshenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia.,Meshalkin National Medical Research Center, Ministry of Health of the Russian Federation, Novosibirsk, Russia
| | - Olga E Bryzgunova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia.,Meshalkin National Medical Research Center, Ministry of Health of the Russian Federation, Novosibirsk, Russia
| | - Pavel P Laktionov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia.,Meshalkin National Medical Research Center, Ministry of Health of the Russian Federation, Novosibirsk, Russia
| |
Collapse
|
31
|
MicroRNA-107 enhances radiosensitivity by suppressing granulin in PC-3 prostate cancer cells. Sci Rep 2020; 10:14584. [PMID: 32883962 PMCID: PMC7471693 DOI: 10.1038/s41598-020-71128-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 07/30/2020] [Indexed: 11/20/2022] Open
Abstract
Prostate cancer is the second leading cause of cancer-related death worldwide. Radiotherapy is often applied for the treatment, but radioresistance is a challenge in some patients. MicroRNAs have been reported to be involved in the DNA damage response induced by ionizing radiation and recent studies have reported microRNA-mediated radiosensitivity. In the present study, we found microRNA-107 (miR-107) enhanced radiosensitivity by regulating granulin (GRN) in prostate cancer (PC-3) cells. MiR-107 was downregulated and GRN was upregulated in response to ionizing radiation in PC-3 cells. Overexpression of miR-107 and knockdown of GRN promoted the sensitivity of PC3 cells to ionizing radiation. By rescue experiments of GRN, we revealed that radiosensitivity enhanced by miR-107 can be attenuated by GRN overexpression in PC-3 cells. Furthermore, we showed miR-107 enhanced radiation-induced G1/S phase arrest and G2/M phase transit, and identify delayed apoptosis by suppressing p21 and phosphorylation of CHK2. Collectively, these results highlight an unrecognized mechanism of miR-107-mediated GRN regulation in response to ionizing radiation and may advance therapeutic strategies for the treatment of prostate cancer.
Collapse
|
32
|
Wei J, Hao Q, Chen C, Li J, Han X, Lei Z, Wang T, Wang Y, You X, Chen X, Li H, Ding Y, Huang W, Hu Y, Lin S, Shen H, Lin Y. Epigenetic repression of miR-17 contributed to di(2-ethylhexyl) phthalate-triggered insulin resistance by targeting Keap1-Nrf2/miR-200a axis in skeletal muscle. Theranostics 2020; 10:9230-9248. [PMID: 32802189 PMCID: PMC7415800 DOI: 10.7150/thno.45253] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 07/13/2020] [Indexed: 12/15/2022] Open
Abstract
Rationale: Skeletal muscle insulin resistance is detectable before type 2 diabetes is diagnosed. Exposure to di(2-ethylhexyl) phthalate (DEHP), a typical environmental endocrine-disrupting chemical, is a novel risk factor for insulin resistance and type 2 diabetes. This study aimed to explore insulin signaling regulatory pathway in skeletal muscle of the DEHP-induced insulin-resistant mice and to investigate potential therapeutic strategies for treating insulin resistance. Methods: C57BL/6J male mice were exposed to 2 mg/kg/day DEHP for 15 weeks. Whole-body glucose homeostasis, oxidative stress and deregulated miRNA-mediated molecular transduction in skeletal muscle were examined. microRNA (miRNA) interventions based on lentiviruses and adeno-associated viruses 9 (AAV9) were performed. Results: Dnmt3a-dependent promoter methylation and lncRNA Malat1-related sponge functions cooperatively downregulated miR-17 in DEHP-exposed skeletal muscle cells. DEHP suppressed miR-17 to disrupt the Keap1-Nrf2 redox system and to activate oxidative stress-responsive Txnip in skeletal muscle. Oxidative stress upregulated miR-200a, which directly targets the 3'UTR of Insr and Irs1, leading to hindered insulin signaling and impaired insulin-dependent glucose uptake in skeletal muscle, ultimately promoting the development of insulin resistance. AAV9-induced overexpression of miR-17 and lentivirus-mediated silencing of miR-200a in skeletal muscle ameliorated whole-body insulin resistance in DEHP-exposed mice. Conclusions: The miR-17/Keap1-Nrf2/miR-200a axis contributed to DEHP-induced insulin resistance. miR-17 is a positive regulator, whereas miR-200a is a negative regulator of insulin signaling in skeletal muscle, and both miRNAs have the potential to become therapeutic targets for preventing and treating insulin resistance or type 2 diabetes.
Collapse
Affiliation(s)
- Jie Wei
- Department of Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Qiongyu Hao
- Division of Cancer Research and Training, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, David Geffen UCLA School of Medicine, and UCLA Jonsson Comprehensive Cancer Center, 1748 E. 118th Street, Los Angeles, CA, 90059, USA
| | - Chengkun Chen
- Department of Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Juan Li
- Department of Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Xikui Han
- Department of Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Zhao Lei
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Tao Wang
- The First Affiliated Hospital of Xiamen University, Xiamen, 361003, China
| | - Yinan Wang
- Department of Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Xiang You
- Department of Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Xiaoxuan Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Huasheng Li
- Department of Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Yuxin Ding
- Department of Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Weihao Huang
- Department of Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Yangyang Hu
- Department of Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Shuirong Lin
- Department of Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Heqing Shen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yi Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| |
Collapse
|
33
|
Cai F, Li J, Zhang J, Huang S. Knockdown of Circ_CCNB2 Sensitizes Prostate Cancer to Radiation Through Repressing Autophagy by the miR-30b-5p/KIF18A Axis. Cancer Biother Radiopharm 2020; 37:480-493. [PMID: 32716640 DOI: 10.1089/cbr.2019.3538] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background: Circular RNAs (circRNAs) have recently emerged as crucial regulatory molecules in prostate cancer (PCa), but few researches focus on the effects of circRNAs on PCa radiosensitivity. The issue will be addressed in this study using circRNA Cyclin B2 (circ_CCNB2) as an object. Materials and Methods: All RNA and protein levels were severally examined using quantitative real-time polymerase chain reaction and Western blot. Colony formation assay and flow cytometry were implemented for detecting cell colony capacity and apoptotic cells, respectively. Cellular migration and invasion abilities were evaluated by transwell assay. The combination between potential target molecules was analyzed by dual-luciferase reporter and RNA immunoprecipitation (RIP) assays. The effect of circ_CCNB2 on PCa radiosensitivity in vivo was explored using xenograft models in mice. Results: Circ_CCNB2 was upregulated in irradiation-resistant PCa tissues and cells. Circ_CCNB2 knockdown had promoted effect on the radiosensitivity of irradiation-resistant PCa cells by inhibiting autophagy. Besides, circ_CCNB2 could directly sponge miR-30b-5p, and the promotion of circ_CCNB2 knockdown on PCa radiosensitivity was achieved by elevating miR-30b-5p. MiR-30b-5p enhanced the radiosensitivity of irradiation-resistant PCa cells through repressing the expression of its target kinesin family member 18A (KIF18A). Furthermore, circ_CCNB2 regulated the KIF18A level through targeting miR-30b-5p. Circ_CCNB2 downregulation facilitated PCa radiosensitivity in vivo through inhibiting autophagy by miR-30b-5p/KIF18A. Conclusions: In this study, knockdown of circ_CCNB2 was shown to promote PCa radiosensitivity through autophagy repression by miR-30b-5p/KIF18A axis, developing a molecular resistance mechanism of PCa radiotherapy and a feasible strategy to increase radiosensitivity.
Collapse
Affiliation(s)
- Fangzhen Cai
- Department of Urology Surgery, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Jianwei Li
- Department of Urology Surgery, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Jianyu Zhang
- Department of Urology Surgery, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Sihuai Huang
- Department of Urology Surgery, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| |
Collapse
|
34
|
Zheng WP, Meng FL, Wang LY. miR-544a Stimulates endometrial carcinoma growth via targeted inhibition of reversion-inducing cysteine-rich protein with Kazal motifs. Mol Cell Probes 2020; 53:101572. [PMID: 32525042 DOI: 10.1016/j.mcp.2020.101572] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/31/2020] [Accepted: 04/07/2020] [Indexed: 10/24/2022]
Abstract
Endometrial carcinoma (EC) is a female-specific malignant tumor. Although current treatments can achieve good outcomes and improve patient survival, there remains a high incidence of treatment-induced infertility, a serious side effect that is unacceptable to those of childbearing age. Studies have demonstrated that micro ribonucleic acids (microRNAs or miRNAs) such as miR-544a regulate tumor-related gene expression. However, whether miR-544a is involved in the progression of EC is unknown. This study aimed to investigate the biological functions and underlying mechanisms of miR-544a in EC in vivo and in vitro. Quantitative real-time polymerase chain reaction (qRT-PCR) revealed miR-544a overexpression in EC tissue and cell lines, which was associated with a decreased in overall survival as revealed by Kaplan-Meier analysis. Functionally, the miR-544a inhibitor restricted the proliferation [detected by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay], invasion, and migration (detected by transwell assay) of human endometrial adenocarcinoma cells (HEC-1B and Ishikawa) and facilitated cell apoptosis (detected by flow cytometry assay). Western blotting analysis revealed that the miR-544a inhibitor decreased the expressions of matrix metalloproteinase (MMP)-2 and MMP-9 and elevated the levels of cleaved caspase3 and cleaved poly (ADP-ribose) polymerase. Furthermore, animal experiments indicated that the miR-544a antagonist (antagomir-544a) suppressed tumor growth significantly in a mouse xenograft model. The mechanistic, qRT-PCR, and immunohistochemical indications were that a reversion-inducing cysteine-rich protein with Kazal motifs (RECK) and miR-544a had inverse expression changes in EC. Bioinformatics analysis revealed RECK as a potential target for miR-544a, and this was verified by the dual-luciferase reporter assay. Subsequently, in vitro experiments, including transwell assay, MTT assay, flow cytometry assay, and Western blotting analysis, demonstrated that RECK exerted antitumor effects on EC, which were negatively regulated by miR-544a. Taken together, our study findings suggested miR-544a as a valuable target in EC therapy.
Collapse
Affiliation(s)
- Wei-Ping Zheng
- Department of Gynecology, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, PR China
| | - Fan-Long Meng
- Department of Obstetrics and Gynecology, Changxing County Hospital, Changxing, PR China
| | - Lian-Yun Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, PR China.
| |
Collapse
|
35
|
Negative associations between the has-miR-27a and hsa-miR-125a gene variations and prostate cancer susceptibility. Mol Biol Rep 2020; 47:4209-4214. [DOI: 10.1007/s11033-020-05548-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/23/2020] [Indexed: 11/28/2022]
|
36
|
Abramovic I, Ulamec M, Katusic Bojanac A, Bulic-Jakus F, Jezek D, Sincic N. miRNA in prostate cancer: challenges toward translation. Epigenomics 2020; 12:543-558. [PMID: 32267174 DOI: 10.2217/epi-2019-0275] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Prostate cancer (PCa) represents the most commonly diagnosed neoplasm among men. miRNAs, as biomarkers, could further improve reliability in distinguishing malignant versus nonmalignant, and aggressive versus nonaggressive PCa. However, conflicting data was reported for certain miRNAs, and there was a lack of consistency and reproducibility, which has been attributed to diverse (pre)analytical factors. In order to address current challenges in miRNA clinical research on PCa, a PubMed-based literature search was conducted with the last update in May 2019. After identifying critical variations in designs and protocols that undermined clear-cut evidence acquisition, and reliable translation into clinical practice, we propose guidelines for most critical steps that should be considered in future research of miRNA as biomarkers, especially in PCa.
Collapse
Affiliation(s)
- Irena Abramovic
- Department of Medical Biology, University of Zagreb School of Medicine, Zagreb 10000, Croatia.,Scientific Group for Research on Epigenetic Biomarkers, University of Zagreb School of Medicine, Zagreb 10000, Croatia.,Scientific Centre of Excellence for Reproductive & Regenerative Medicine, University of Zagreb School of Medicine, Zagreb 10000, Croatia
| | - Monika Ulamec
- Scientific Group for Research on Epigenetic Biomarkers, University of Zagreb School of Medicine, Zagreb 10000, Croatia.,Ljudevit Jurak Clinical Department of Pathology & Cytology, University Clinical Hospital Center Sestre Milosrdnice, Zagreb 10000, Croatia.,Scientific Centre of Excellence for Reproductive & Regenerative Medicine, University of Zagreb School of Medicine, Zagreb 10000, Croatia.,Department of Pathology, University of Zagreb, School of Dental Medicine & School of Medicine, Zagreb 10000, Croatia
| | - Ana Katusic Bojanac
- Department of Medical Biology, University of Zagreb School of Medicine, Zagreb 10000, Croatia.,Scientific Centre of Excellence for Reproductive & Regenerative Medicine, University of Zagreb School of Medicine, Zagreb 10000, Croatia
| | - Floriana Bulic-Jakus
- Department of Medical Biology, University of Zagreb School of Medicine, Zagreb 10000, Croatia.,Scientific Centre of Excellence for Reproductive & Regenerative Medicine, University of Zagreb School of Medicine, Zagreb 10000, Croatia
| | - Davor Jezek
- Scientific Centre of Excellence for Reproductive & Regenerative Medicine, University of Zagreb School of Medicine, Zagreb 10000, Croatia.,Department of Histology & Embryology, University of Zagreb School of Medicine, Zagreb 10000, Croatia
| | - Nino Sincic
- Department of Medical Biology, University of Zagreb School of Medicine, Zagreb 10000, Croatia.,Scientific Group for Research on Epigenetic Biomarkers, University of Zagreb School of Medicine, Zagreb 10000, Croatia.,Scientific Centre of Excellence for Reproductive & Regenerative Medicine, University of Zagreb School of Medicine, Zagreb 10000, Croatia
| |
Collapse
|
37
|
Labbé M, Hoey C, Ray J, Potiron V, Supiot S, Liu SK, Fradin D. microRNAs identified in prostate cancer: Correlative studies on response to ionizing radiation. Mol Cancer 2020; 19:63. [PMID: 32293453 PMCID: PMC7087366 DOI: 10.1186/s12943-020-01186-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 03/12/2020] [Indexed: 12/13/2022] Open
Abstract
As the most frequently diagnosed non-skin cancer in men and a leading cause of cancer-related death, understanding the molecular mechanisms that drive treatment resistance in prostate cancer poses a significant clinical need. Radiotherapy is one of the most widely used treatments for prostate cancer, along with surgery, hormone therapy, and chemotherapy. However, inherent radioresistance of tumor cells can reduce local control and ultimately lead to poor patient outcomes, such as recurrence, metastasis and death. The underlying mechanisms of radioresistance have not been fully elucidated, but it has been suggested that miRNAs play a critical role. miRNAs are small non-coding RNAs that regulate gene expression in every signaling pathway of the cell, with one miRNA often having multiple targets. By fine-tuning gene expression, miRNAs are important players in modulating DNA damage response, cell death, tumor aggression and the tumor microenvironment, and can ultimately affect a tumor's response to radiotherapy. Furthermore, much interest has focused on miRNAs found in biofluids and their potential utility in various clinical applications. In this review, we summarize the current knowledge on miRNA deregulation after irradiation and the associated functional outcomes, with a focus on prostate cancer. In addition, we discuss the utility of circulating miRNAs as non-invasive biomarkers to diagnose, predict response to treatment, and prognosticate patient outcomes.
Collapse
Affiliation(s)
- Maureen Labbé
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France
| | - Christianne Hoey
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Biological Sciences, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Jessica Ray
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Biological Sciences, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Vincent Potiron
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France
- Institut de Cancérologie de L'Ouest René Gauducheau, Saint-Herblain, France
| | - Stéphane Supiot
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France
- Institut de Cancérologie de L'Ouest René Gauducheau, Saint-Herblain, France
| | - Stanley K Liu
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
- Biological Sciences, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada.
- Department of Radiation Oncology, University of Toronto and Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada.
| | - Delphine Fradin
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France.
| |
Collapse
|
38
|
Conte R, Valentino A, Di Cristo F, Peluso G, Cerruti P, Di Salle A, Calarco A. Cationic Polymer Nanoparticles-Mediated Delivery of miR-124 Impairs Tumorigenicity of Prostate Cancer Cells. Int J Mol Sci 2020; 21:ijms21030869. [PMID: 32013257 PMCID: PMC7038067 DOI: 10.3390/ijms21030869] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) play a pivotal role in regulating the expression of genes involved in tumor development, invasion, and metastasis. In particular, microRNA-124 (miR-124) modulates the expression of carnitine palmitoyltransferase 1A (CPT1A) at the post-transcriptional level, impairing the ability of androgen-independent prostate cancer (PC3) cells to completely metabolize lipid substrates. However, the clinical translation of miRNAs requires the development of effective and safe delivery systems able to protect nucleic acids from degradation. Herein, biodegradable polyethyleneimine-functionalized polyhydroxybutyrate nanoparticles (PHB-PEI NPs) were prepared by aminolysis and used as cationic non-viral vectors to complex and deliver miR-124 in PC3 cells. Notably, the PHB-PEI NPs/miRNA complex effectively protected miR-124 from RNAse degradation, resulting in a 30% increase in delivery efficiency in PC3 cells compared to a commercial transfection agent (Lipofectamine RNAiMAX). Furthermore, the NPs-delivered miR-124 successfully impaired hallmarks of tumorigenicity, such as cell proliferation, motility, and colony formation, through CPT1A modulation. These results demonstrate that the use of PHB-PEI NPs represents a suitable and convenient strategy to develop novel nanomaterials with excellent biocompatibility and high transfection efficiency for cancer therapy.
Collapse
Affiliation(s)
- Raffaele Conte
- Research Institute on Terrestrial Ecosystems (IRET)—CNR, Via Pietro Castellino 111, 80131 Naples, Italy; (R.C.); (G.P.); (A.D.S.)
| | - Anna Valentino
- Elleva Pharma s.r.l. via P. Castellino, 111 – 80131 Naples, Italy; (A.V.); (F.D.C.)
| | - Francesca Di Cristo
- Elleva Pharma s.r.l. via P. Castellino, 111 – 80131 Naples, Italy; (A.V.); (F.D.C.)
| | - Gianfranco Peluso
- Research Institute on Terrestrial Ecosystems (IRET)—CNR, Via Pietro Castellino 111, 80131 Naples, Italy; (R.C.); (G.P.); (A.D.S.)
| | - Pierfrancesco Cerruti
- Institute for Polymers, Composites and Biomaterials (IPCB-CNR) Via Campi Flegrei, 34, 80078 Pozzuoli (NA), Italy
- Correspondence: (P.C.); (A.C.)
| | - Anna Di Salle
- Research Institute on Terrestrial Ecosystems (IRET)—CNR, Via Pietro Castellino 111, 80131 Naples, Italy; (R.C.); (G.P.); (A.D.S.)
| | - Anna Calarco
- Research Institute on Terrestrial Ecosystems (IRET)—CNR, Via Pietro Castellino 111, 80131 Naples, Italy; (R.C.); (G.P.); (A.D.S.)
- Correspondence: (P.C.); (A.C.)
| |
Collapse
|
39
|
Jeyaraman S, Hanif EAM, Ab Mutalib NS, Jamal R, Abu N. Circular RNAs: Potential Regulators of Treatment Resistance in Human Cancers. Front Genet 2020; 10:1369. [PMID: 32047511 PMCID: PMC6997550 DOI: 10.3389/fgene.2019.01369] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 12/16/2019] [Indexed: 01/06/2023] Open
Abstract
Circular RNAs (circRNAs) which were once considered as "junk" are now in the spotlight as a potential player in regulating human diseases, especially cancer. With the development of high throughput technologies in recent years, the full potential of circRNAs is being uncovered. CircRNAs possess some unique characteristics and advantageous properties that could benefit medical research and clinical applications. CircRNAs are stable with covalently closed loops that are resistant to ribonucleases, have disease stage-specific expressions and are selectively abundant in different types of tissues. Interestingly, the presence of circRNAs in different types of treatment resistance in human cancers was recently observed with the involvement of a few key pathways. The activation of certain pathways by circRNAs may give new insights to treatment resistance management. The potential usage of circRNAs from this aspect is very much in its infancy stage and has not been fully validated. This mini-review attempts to highlight the possible role of circRNAs as regulators of treatment resistance in human cancers based on its intersection molecules and cancer-related regulatory networks.
Collapse
Affiliation(s)
- Shivapriya Jeyaraman
- UKM Medical Molecular Biology Institute (UMBI), UKM Medical Center, Kuala Lumpur, Malaysia
| | | | | | - Rahman Jamal
- UKM Medical Molecular Biology Institute (UMBI), UKM Medical Center, Kuala Lumpur, Malaysia
| | - Nadiah Abu
- UKM Medical Molecular Biology Institute (UMBI), UKM Medical Center, Kuala Lumpur, Malaysia
| |
Collapse
|
40
|
Fu Q, Sun Z, Yang F, Mao T, Gao Y, Wang H. SOX30, a target gene of miR-653-5p, represses the proliferation and invasion of prostate cancer cells through inhibition of Wnt/β-catenin signaling. Cell Mol Biol Lett 2019; 24:71. [PMID: 31889959 PMCID: PMC6929505 DOI: 10.1186/s11658-019-0195-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 11/29/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Sex-determining region Y-box containing gene 30 (SOX30) is a newly identified tumor-associated gene in several types of cancer. However, whether SOX30 is involved in the development and progression of prostate cancer remains unknown. This study investigated the potential role of SOX30 in prostate cancer. METHODS Prostate cancer cell lines and a normal prostate epithelial cell line were used for the experiments. The expression of SOX30 was determined using quantitative real-time PCR and western blot analysis. The malignant cellular behaviors of prostate cancer were assessed using the Cell Counting Kit-8, colony formation and Matrigel invasion assays. The miRNA-mRNA interaction was validated using the dual-luciferase reporter assay. RESULTS SOX30 expression was lower in cells of prostate cancer lines than in cells of the normal prostate epithelial line. Its overexpression repressed the proliferation and invasion of prostate cancer cells. SOX30 was identified as a target gene of microRNA-653-5p (miR-653-5p), which is upregulated in prostate cancer tissues. MiR-653-5p overexpression decreased SOX30 expression, while its inhibition increased SOX30 expression in prostate cancer cells. MiR-653-5p inhibition also markedly restricted prostate cancer cell proliferation and invasion. SOX30 overexpression or miR-653-5p inhibition significantly reduced β-catenin expression and downregulated the activation of Wnt/β-catenin signaling. SOX30 knockdown significantly reversed the miR-653-5p inhibition-mediated inhibitory effect on the proliferation, invasion and Wnt/β-catenin signaling in prostate cancer cells. CONCLUSIONS These results reveal a tumor suppressive function for SOX30 in prostate cancer and confirmed the gene as a target of miR-653-5p. SOX30 upregulation due to miR-653-5p inhibition restricted the proliferation and invasion of prostate cancer cells, and this was associated with Wnt/β-catenin signaling suppression. These findings highlight the importance of the miR-653-5p-SOX30-Wnt/β-catenin signaling axis in prostate cancer progression.
Collapse
Affiliation(s)
- Qiang Fu
- Department of Urology, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi’an, 710038 Shaanxi China
| | - Zhenye Sun
- Department of Urology, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi’an, 710038 Shaanxi China
| | - Fan Yang
- Department of Urology, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi’an, 710038 Shaanxi China
| | - Tianci Mao
- Department of Urology, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi’an, 710038 Shaanxi China
| | - Yanyao Gao
- Department of Urology, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi’an, 710038 Shaanxi China
| | - He Wang
- Department of Urology, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi’an, 710038 Shaanxi China
| |
Collapse
|
41
|
Toraih EA, El-Wazir A, Abdallah HY, Tantawy MA, Fawzy MS. Deregulated MicroRNA Signature Following Glioblastoma Irradiation. Cancer Control 2019; 26:1073274819847226. [PMID: 31046428 PMCID: PMC6501491 DOI: 10.1177/1073274819847226] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Glioblastoma (GBM), the most common and aggressive brain tumor in adults, shows resistance to treatment, particularly radiotherapy. One method for effective treatment is using a group of radiosensitizers that make tumor cells responsive to radiotherapy. A class of molecules whose expression is affected by radiotherapy is the microRNAs (miRNAs) that present promising regulators of the radioresponse. Eighteen miRNAs (miR-26a, -124, -128, -135b, -145, -153, -181a/b, -203, -21, -210, -212, -221/222, -223, -224, -320, and -590), involved in the pathogenesis of GBM and its radioresponsive state, were reviewed to identify their role in GBM and their potential as radiosensitizing agents. MicroRNAs-26a, -124, -128, -145, -153, -181a/b, -203, -221/222, -223, -224, -320, and -590 promoted GBM radiosensitivity, while microRNAs-135b, -21, -210, and -212 encouraged radioresistance. Ectopic overexpression of the radiosensitivity promoting miRNAs and knockdown of the radioresistant miRNAs represent a prospective radiotherapy enhancement opportunity. This offers a glimmer of hope for a group of the most unfortunate patients known to medicine.
Collapse
Affiliation(s)
- Eman A Toraih
- 1 Genetics Unit, Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.,2 Center of Excellence of Molecular and Cellular Medicine, Suez Canal University, Ismailia, Egypt
| | - Aya El-Wazir
- 1 Genetics Unit, Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.,2 Center of Excellence of Molecular and Cellular Medicine, Suez Canal University, Ismailia, Egypt
| | - Hoda Y Abdallah
- 1 Genetics Unit, Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.,2 Center of Excellence of Molecular and Cellular Medicine, Suez Canal University, Ismailia, Egypt
| | - Mohamed A Tantawy
- 3 Department of Hormones, Medical Research Division, National Research Centre, Cairo, Egypt
| | - Manal S Fawzy
- 4 Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.,5 Department of Biochemistry, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia
| |
Collapse
|
42
|
Oehler C, Zimmermann M, Adam L, Curschmann J, Sumila M, Strebel RT, Cathomas R, Li Q, Schneider U, Zwahlen DR. Predictive factors for response to salvage stereotactic body radiotherapy in oligorecurrent prostate cancer limited to lymph nodes: a single institution experience. BMC Urol 2019; 19:84. [PMID: 31500621 PMCID: PMC6734440 DOI: 10.1186/s12894-019-0515-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/29/2019] [Indexed: 12/25/2022] Open
Abstract
Background In patients presenting with limited nodal recurrence following radical prostatectomy (RP), stereotactic body radiotherapy (SBRT) results might improve with a better case selection. Methods Single-institution retrospective analysis of patients presenting with 1–3 lymph node (LN) recurrences (N1 or M1a) on 18F-Choline PET/CT. Prior therapy included radical prostatectomy (RP) ± salvage radiotherapy (RT), in absence of any systemic therapy. Outcome parameters were biochemical response (BR), time to biochemical recurrence (TBR) and time interval between SBRT and androgen deprivation therapy start (TADT). Time to event endpoints was analysed using Kaplan-Meier method. Potential prognostic factors were examined using univariate proportional hazards regression for TADT and logistic regression for BR. The optimal cut-off point for LN size was calculated using the Contal and O’Quigley method. Results 25 patients fulfilling study criteria were treated with SBRT from January 2010 to January 2015 and retrospectively analysed. Median follow up was 18 months and median LN diameter 10.5 mm. SBRT was delivered to a median dose of 36 Gy in three fractions (range: 30–45 Gy). BR was reached in 52% of cases. Median TBR was 11.9 months and significantly longer in patients with larger LN (Hazard ratio [HR] = 0.87, P = 0.03). Using 14 mm as cut off for LN, median TBR was 10.8 months for patients with small LN (18 patients), and 21.2 months for patients with large LN (6 patients) (P unadjusted = 0.009; P adjusted = 0.099). ADT was started in 32% of patients after a median follow-up of 18 months. Conclusions For PCa patients with 1–3 LN recurrence after RP (± salvage RT), SBRT might result in a better biochemical control when delivered to larger sized (≥ 14 mm) LN metastases. This study is hypothesis generating and results should be tested in a larger prospective trial. Electronic supplementary material The online version of this article (10.1186/s12894-019-0515-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Christoph Oehler
- Department of Radiation Oncology, Kantonsspital Graubünden, Loëstrasse 170, 7000, Chur, Switzerland.
| | - Michel Zimmermann
- Department of Radiation Oncology, Kantonsspital Graubünden, Loëstrasse 170, 7000, Chur, Switzerland
| | - Lukas Adam
- Department of Radiation Oncology, Kantonsspital Graubünden, Loëstrasse 170, 7000, Chur, Switzerland
| | | | - Marcin Sumila
- Center for Radiation Oncology, Hirslanden Klinik, Zürich, Switzerland
| | - Räto T Strebel
- Department of Urology, Kantonsspital Graubünden, Chur, Switzerland
| | - Richard Cathomas
- Division of Medical Oncology, Kantonsspital Graubünden, Chur, Switzerland
| | - Qiyu Li
- Statistics Unit, SAKK Coordinating Center, Bern, Switzerland
| | - Uwe Schneider
- Center for Radiation Oncology, Hirslanden Klinik, Zürich, Switzerland
| | - Daniel R Zwahlen
- Department of Radiation Oncology, Kantonsspital Graubünden, Loëstrasse 170, 7000, Chur, Switzerland
| |
Collapse
|
43
|
Ni J, Bucci J, Malouf D, Knox M, Graham P, Li Y. Exosomes in Cancer Radioresistance. Front Oncol 2019; 9:869. [PMID: 31555599 PMCID: PMC6742697 DOI: 10.3389/fonc.2019.00869] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 08/21/2019] [Indexed: 01/08/2023] Open
Abstract
Radiation is a mainstay of cancer therapy. Radioresistance is a significant challenge in the treatment of locally advanced, recurrent and metastatic cancers. The mechanisms of radioresistance are complicated and still not completely understood. Exosomes are 40–150 nm vesicles released by cancer cells that contain pathogenic components, such as proteins, mRNAs, DNA fragments, non-coding RNAs, and lipids. Exosomes play a critical role in cancer progression, including cell-cell communication, tumor-stromal interactions, activation of signaling pathways, and immunomodulation. Emerging data indicate that radiation-derived exosomes increase tumor burden, decrease survival, cause radiation-induced bystander effects and promote radioresistance. In addition, radiation can change the contents of exosomes, which allows exosomes to be used as a prognostic and predictive biomarker to monitor radiation response. Therefore, understanding the roles and mechanisms of exosomes in radiation response may shed light on how exosomes play a role in radioresistance and open a new way in radiotherapy and translational medicine. In this review, we discuss recent advances in radiation-induced exosome changes in components, focus on the roles of exosome in radiation-induced bystander effect in cancer and emphasize the importance of exosomes in cancer progression and radioresistance for developing novel therapy.
Collapse
Affiliation(s)
- Jie Ni
- Cancer Care Centre, St. George Hospital, Sydney, NSW, Australia.,St. George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, NSW, Australia
| | - Joseph Bucci
- Cancer Care Centre, St. George Hospital, Sydney, NSW, Australia.,St. George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, NSW, Australia
| | - David Malouf
- Cancer Care Centre, St. George Hospital, Sydney, NSW, Australia.,Department of Urology, St. George Hospital, Sydney, NSW, Australia
| | - Matthew Knox
- Cancer Care Centre, St. George Hospital, Sydney, NSW, Australia.,St. George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, NSW, Australia
| | - Peter Graham
- Cancer Care Centre, St. George Hospital, Sydney, NSW, Australia.,St. George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, NSW, Australia
| | - Yong Li
- Cancer Care Centre, St. George Hospital, Sydney, NSW, Australia.,St. George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Kensington, NSW, Australia.,School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
44
|
Sun W, Luo L, Feng Y, Cai Y, Zhuang Y, Xie RJ, Chen X, Chen H. Aggregation-Induced Emission Gold Clustoluminogens for Enhanced Low-Dose X-ray-Induced Photodynamic Therapy. Angew Chem Int Ed Engl 2019; 59:9914-9921. [PMID: 31418982 DOI: 10.1002/anie.201908712] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Indexed: 11/11/2022]
Abstract
The use of gold nanoparticles as radiosensitizers is an effective way to boost the killing efficacy of radiotherapy while drastically limiting the received dose and reducing the possible damage to normal tissues. Herein, we designed aggregation-induced emission gold clustoluminogens (AIE-Au) to achieve efficient low-dose X-ray-induced photodynamic therapy (X-PDT) with negligible side effects. The aggregates of glutathione-protected gold clusters (GCs) assembled through a cationic polymer enhanced the X-ray-excited luminescence by 5.2-fold. Under low-dose X-ray irradiation, AIE-Au strongly absorbed X-rays and efficiently generated hydroxyl radicals, which enhanced the radiotherapy effect. Additionally, X-ray-induced luminescence excited the conjugated photosensitizers, resulting in a PDT effect. The in vitro and in vivo experiments demonstrated that AIE-Au effectively triggered the generation of reactive oxygen species with an order-of-magnitude reduction in the X-ray dose, enabling highly effective cancer treatment.
Collapse
Affiliation(s)
- Wenjing Sun
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Li Luo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Yushuo Feng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Yuting Cai
- College of Materials, Xiamen University, Xiamen, 361005, China
| | - Yixi Zhuang
- College of Materials, Xiamen University, Xiamen, 361005, China
| | - Rong-Jun Xie
- College of Materials, Xiamen University, Xiamen, 361005, China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Hongmin Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
45
|
Sun W, Luo L, Feng Y, Cai Y, Zhuang Y, Xie R, Chen X, Chen H. Aggregation‐Induced Emission Gold Clustoluminogens for Enhanced Low‐Dose X‐ray‐Induced Photodynamic Therapy. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908712] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Wenjing Sun
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen University Xiamen 361102 China
| | - Li Luo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen University Xiamen 361102 China
| | - Yushuo Feng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen University Xiamen 361102 China
| | - Yuting Cai
- College of MaterialsXiamen University Xiamen 361005 China
| | - Yixi Zhuang
- College of MaterialsXiamen University Xiamen 361005 China
| | - Rong‐Jun Xie
- College of MaterialsXiamen University Xiamen 361005 China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and NanomedicineNational Institute of Biomedical Imaging and Bioengineering (NIBIB)National Institutes of Health (NIH) Bethesda MD 20892 USA
| | - Hongmin Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen University Xiamen 361102 China
| |
Collapse
|
46
|
Khafaei M, Rezaie E, Mohammadi A, Shahnazi Gerdehsang P, Ghavidel S, Kadkhoda S, Zorrieh Zahra A, Forouzanfar N, Arabameri H, Tavallaie M. miR-9: From function to therapeutic potential in cancer. J Cell Physiol 2019; 234:14651-14665. [PMID: 30693512 DOI: 10.1002/jcp.28210] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 01/10/2019] [Indexed: 01/24/2023]
Abstract
Malignant neoplasms are regarded as the main cause of death around the world; hence, many research studies were conducted to further perceive molecular mechanisms, treatment, and cancer prognosis. Cancer is known as a major factor for health-related problems in the world. The main challenges associated with these diseases are prompt diagnosis, disease remission classification and treatment status forecast. Therefore, progressing in such areas by developing new and optimized methods with the help of minimally invasive biological markers such as circular microRNAs (miRNAs) can be considered important. miRNA interactions with target genes have specified their role in development, apoptosis, differentiation, and proliferation and also, confirm direct miRNA function in cancer. Different miRNAs expression levels in various types of malignant neoplasms have been observed to be associated with prognosis of various carcinomas. miR-9 seems to implement opposite practices in different tissues or under various cancer incidences by influencing different genes. Aberrant miR-9 levels have been observed in many cancer types. Therefore, we intended to investigate the precise role of miR-9 in patients with malignant neoplasms. To this end, in this study, we attempted to examine different studies to clarify the overall role of miR-9 as a prognostic marker in several human tumors. The presented data in this study can help us to find the novel therapeutic avenues for treatment of human cancers.
Collapse
Affiliation(s)
- Mostafa Khafaei
- Human Genetics Research Center, Baqiyatallah Medical Science University, Tehran, Iran
| | - Ehsan Rezaie
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Science, Tehran, Iran
| | - Ali Mohammadi
- Human Genetics Research Center, Baqiyatallah Medical Science University, Tehran, Iran
| | | | - Sara Ghavidel
- Department Cell and Molecular Biology, Tonekabon Branch, Islamic Azad University, Tehran, Iran
| | - Sepideh Kadkhoda
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Atieh Zorrieh Zahra
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Narjes Forouzanfar
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Arabameri
- Human Genetics Research Center, Baqiyatallah Medical Science University, Tehran, Iran
| | - Mahmood Tavallaie
- Human Genetics Research Center, Baqiyatallah Medical Science University, Tehran, Iran
| |
Collapse
|
47
|
Ha Thi HT, Kim HY, Kim YM, Hong S. MicroRNA-130a modulates a radiosensitivity of rectal cancer by targeting SOX4. Neoplasia 2019; 21:882-892. [PMID: 31387015 PMCID: PMC6690642 DOI: 10.1016/j.neo.2019.07.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 07/17/2019] [Indexed: 12/13/2022] Open
Abstract
Radioresistance poses a major challenge in the treatment of advanced rectal cancer. Therefore, understanding the detailed mechanisms of radioresistance may improve patient response to irradiation and the survival rate. To identify the novel targets that modulate the radiosensitivity of rectal cancer, we performed small RNA sequencing with human rectal cancer cell lines. Through bioinformatics analysis, we selected microRNA-310a (miR-130a) as a promising candidate to elucidate radioresistance. miR-130a was dramatically upregulated in radiosensitive rectal cancer cells and overexpression of miR-130a promotes rectal cancer cell radiosensitivity. Mechanically, miR-130a reversed the epithelial-mesenchymal transition phenotype of rectal cancer cells following inhibition of cell invasion upon irradiation. Moreover, miR-130a also inhibited the repair of irradiation-induced DNA damage followed by cell death. We identified that SOX4 was a direct target of miR-130a. Overexpression of SOX4 reversed the promotion activity of miR-130a on radiosensitivity. Together, our findings suggest that miR-130a functions as a radiosensitizer in rectal cancer and reveals a potential therapeutic target and preoperative prognostic marker for radiotherapy.
Collapse
Affiliation(s)
- Huyen Trang Ha Thi
- Laboratory of Cancer Cell Biology, Department of Biochemistry, Gachon University School of Medicine, Incheon 21999, Republic of Korea
| | - Hye-Yeon Kim
- Laboratory of Cancer Cell Biology, Department of Biochemistry, Gachon University School of Medicine, Incheon 21999, Republic of Korea
| | - Young-Mi Kim
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea
| | - Suntaek Hong
- Laboratory of Cancer Cell Biology, Department of Biochemistry, Gachon University School of Medicine, Incheon 21999, Republic of Korea; Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea.
| |
Collapse
|
48
|
Jiang Y, Jin S, Tan S, Shen Q, Xue Y. MiR-203 acts as a radiosensitizer of gastric cancer cells by directly targeting ZEB1. Onco Targets Ther 2019; 12:6093-6104. [PMID: 31440062 PMCID: PMC6679680 DOI: 10.2147/ott.s197539] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 03/29/2019] [Indexed: 12/11/2022] Open
Abstract
Objective: Gastric cancer (GC) is a common tumor malignancy with high incidence and poor prognosis. Radiotherapy is one of the main strategies for GC treatment, while development of radioresistance limits the effectiveness. microRNA-203 (miR-203) has been reported to participate in progression of GC, whereas its interaction with radiosensitivity of GC and the related mechanism remain largely unclear. Methods: The expressions of miR-203 and zinc finger E-box binding homeobox 1 (ZEB1) were measured in GC tissues and cells by quantitative real-time polymerase chain reaction or western blot. Survival fraction, cell viability and apoptosis were measured in GC cells after treatment of radiation by colony formation, 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay or flow cytometry, respectively. Tumor volume and weight were detected in murine xenograft model after radiation treatment. The interaction between miR-203 and ZEB1 was explored by bioinformatics analysis and luciferase activity assay. Results: miR-203 expression was down-regulated and ZEB1 mRNA level was up-regulated in GC. The expression of miR-203 was associated with radiosensitivity of GC cells. Moreover, overexpression of miR-203 decreased survival fraction, cell viability and tumor growth but promoted cell apoptosis in radiation-treated GC cells. However, knockdown of miR-203 played an opposite effect. ZEB1 was validated as a target of miR-203, and it was involved in miR-203-mediated radiosensitivity of GC cells in vitro and in vivo. Conclusion: miR-203 promoted radiosensitivity of GC cells by targeting ZEB1, indicating miR-203 as a promising radiosensitizer for GC treatment.
Collapse
Affiliation(s)
- Ying Jiang
- Department of Oncology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, People's Republic of China
| | - Shan Jin
- Department of Oncology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, People's Republic of China
| | - Shisheng Tan
- Department of Oncology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, People's Republic of China
| | - Qi Shen
- Department of Oncology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, People's Republic of China
| | - Yingbo Xue
- Department of Oncology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, People's Republic of China
| |
Collapse
|
49
|
Richardsen E, Andersen S, Al-Saad S, Rakaee M, Nordby Y, Pedersen MI, Ness N, Ingebriktsen LM, Fassina A, Taskén KA, Mills IG, Donnem T, Bremnes RM, Busund LT. Low Expression of miR-424-3p is Highly Correlated with Clinical Failure in Prostate Cancer. Sci Rep 2019; 9:10662. [PMID: 31337863 PMCID: PMC6650397 DOI: 10.1038/s41598-019-47234-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 07/15/2019] [Indexed: 01/16/2023] Open
Abstract
Prostate cancer (PC) is a highly heterogenous disease and one of the leading causes of mortality in developed countries. Recently, studies have shown that expression of immune checkpoint proteins are directly or indirectly repressed by microRNAs (miRs) in many types of cancers. The great advantages of using miRs based therapy is the capacity of these short transcripts to target multiple molecules for the same- or different pathways with synergistic immune inhibition effects. miR-424 has previously been described as a biomarker of poor prognosis in different types of cancers. miR-424 is also found to target both the CTLA-4/CD80- and PD-1/PD-L1 axis. In the present study, the clinical significance of miR-424-3p expression in PC tissue was evaluated. Naïve radical prostatectomy specimens from 535 patients was used for tissue microarray construction. In situ hybridization was used to evaluate the expression of miR-424-3p and immunohistochemistry was used for CTLA-4 protein detection. In univariate- and multivariate analyses, low expression of miR-424-3p was significant associated with clinical failure-free survival, (p = 0.004) and p = 0.018 (HR:0.44, CI95% 0.22-0.87). Low expression of miR-424-3p also associated strongly with aggressive phenotype of PC. This highlight the importance of miR-424-3p as potential target for therapeutic treatment in prostate cancer.
Collapse
Affiliation(s)
- E Richardsen
- Translational Cancer Research Group, Institute of Medical Biology, UiT The Arctic University of Norway, Tromso, Norway. .,Department of Clinical Pathology, University Hospital of North Norway, Tromso, Norway.
| | - S Andersen
- Translational Cancer Research Group, Institute of Clinical Medicine, UiT The Arctic University of Norway, Tromso, Norway.,Department of Oncology, University Hospital of North Norway, Tromso, Norway
| | - S Al-Saad
- Translational Cancer Research Group, Institute of Medical Biology, UiT The Arctic University of Norway, Tromso, Norway.,Department of Clinical Pathology, University Hospital of North Norway, Tromso, Norway
| | - M Rakaee
- Translational Cancer Research Group, Institute of Medical Biology, UiT The Arctic University of Norway, Tromso, Norway
| | - Y Nordby
- Translational Cancer Research Group, Institute of Clinical Medicine, UiT The Arctic University of Norway, Tromso, Norway.,Department of Urology, University Hospital of North Norway, Tromso, Norway
| | - M I Pedersen
- Translational Cancer Research Group, Institute of Medical Biology, UiT The Arctic University of Norway, Tromso, Norway
| | - N Ness
- Translational Cancer Research Group, Institute of Medical Biology, UiT The Arctic University of Norway, Tromso, Norway
| | - L M Ingebriktsen
- Translational Cancer Research Group, Institute of Medical Biology, UiT The Arctic University of Norway, Tromso, Norway
| | - A Fassina
- Department of Medicine, University of Padua, 35121, Padova, Italy
| | - K A Taskén
- Institute of Cancer Research, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - I G Mills
- Centre for Cancer Research and Cell Biology, Queen's University of Belfast, Belfast, UK.,Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - T Donnem
- Translational Cancer Research Group, Institute of Clinical Medicine, UiT The Arctic University of Norway, Tromso, Norway.,Department of Oncology, University Hospital of North Norway, Tromso, Norway
| | - R M Bremnes
- Translational Cancer Research Group, Institute of Clinical Medicine, UiT The Arctic University of Norway, Tromso, Norway.,Department of Oncology, University Hospital of North Norway, Tromso, Norway
| | - L T Busund
- Translational Cancer Research Group, Institute of Medical Biology, UiT The Arctic University of Norway, Tromso, Norway.,Department of Clinical Pathology, University Hospital of North Norway, Tromso, Norway
| |
Collapse
|
50
|
Duan X, Liu X, Li Y, Cao Y, Silayiding A, Zhang R, Wang J. MicroRNA‐498 promotes proliferation, migration, and invasion of prostate cancer cells and decreases radiation sensitivity by targeting PTEN. Kaohsiung J Med Sci 2019; 35:659-671. [PMID: 31332950 DOI: 10.1002/kjm2.12108] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 06/23/2019] [Indexed: 12/27/2022] Open
Affiliation(s)
- Xiu‐Mei Duan
- Department of PathologyThe First Hospital, Jilin University China
| | - Xiao‐Na Liu
- Department of PathologyThe First Hospital, Jilin University China
| | - Yu‐Xin Li
- Department of PathologyThe First Hospital, Jilin University China
| | - Yu‐Qing Cao
- Department of PathologyThe First Hospital, Jilin University China
| | | | - Rong‐Kui Zhang
- Department of RadiologyThe First Hospital, Jilin University China
| | - Ji‐Ping Wang
- Department of RadiologyThe First Hospital, Jilin University China
| |
Collapse
|