1
|
Zhao H, Wang Z, Yang S, Zhang R, Guo J, Yang D. Energy-storing DNA-based hydrogel remodels tumor microenvironments for laser-free photodynamic immunotherapy. Biomaterials 2024; 309:122620. [PMID: 38788456 DOI: 10.1016/j.biomaterials.2024.122620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/15/2024] [Accepted: 05/19/2024] [Indexed: 05/26/2024]
Abstract
Photodynamic therapy (PDT) is a promising modality for cancer treatment. However, limited tissue penetration of external radiation and complicated tumor microenvironments (TMEs) restrict the antitumor efficiency of PDT. Herein, we report an energy-storing DNA-based hydrogel, which enables tumor-selective PDT without external radiation and regulates TMEs to achieve boosted PDT-mediated tumor immunotherapy. The system is constructed with two ultralong single-stranded DNA chains, which programmed partial complementary sequences and repeated G-quadruplex forming AS1411 aptamer for photosensitizer loading via hydrophobic interactions and π-π stacking. Then, energy-storing persistent luminescent nanoparticles are incorporated to sensitize PDT selectively at tumor site without external irradiation, generating tumor antigen to agitate antitumor immune response. The system catalytically generates O2 to alleviate hypoxia and releases inhibitors to reverse the IDO-related immunosuppression, synergistically remodeling the TMEs. In the mouse model of breast cancer, this hydrogel shows a remarkable tumor suppression rate of 78.3 %. Our study represents a new paradigm of photodynamic immunotherapy against cancer by combining laser-free fashion and TMEs remodeling.
Collapse
Affiliation(s)
- Huaixin Zhao
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, PR China.
| | - Zhongyu Wang
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, PR China
| | - Sen Yang
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, PR China; Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, College of Chemistry and Materials, Fudan University, Shanghai, 200438, PR China
| | - Rui Zhang
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, PR China; Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, College of Chemistry and Materials, Fudan University, Shanghai, 200438, PR China
| | - Jianfeng Guo
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China
| | - Dayong Yang
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, PR China; Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, College of Chemistry and Materials, Fudan University, Shanghai, 200438, PR China.
| |
Collapse
|
2
|
Tsang CY, Zhang Y. Nanomaterials for light-mediated therapeutics in deep tissue. Chem Soc Rev 2024; 53:2898-2931. [PMID: 38265834 DOI: 10.1039/d3cs00862b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Light-mediated therapeutics, including photodynamic therapy, photothermal therapy and light-triggered drug delivery, have been widely studied due to their high specificity and effective therapy. However, conventional light-mediated therapies usually depend on the activation of light-sensitive molecules with UV or visible light, which have poor penetration in biological tissues. Over the past decade, efforts have been made to engineer nanosystems that can generate luminescence through excitation with near-infrared (NIR) light, ultrasound or X-ray. Certain nanosystems can even carry out light-mediated therapy through chemiluminescence, eliminating the need for external activation. Compared to UV or visible light, these 4 excitation modes penetrate more deeply into biological tissues, triggering light-mediated therapy in deeper tissues. In this review, we systematically report the design and mechanisms of different luminescent nanosystems excited by the 4 excitation sources, methods to enhance the generated luminescence, and recent applications of such nanosystems in deep tissue light-mediated therapeutics.
Collapse
Affiliation(s)
- Chung Yin Tsang
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore 117583, Singapore.
| | - Yong Zhang
- Department of Biomedical Engineering, The City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong.
| |
Collapse
|
3
|
Liang L, Wang Y, Zhang C, Chang Y, Wang Y, Xue J, Wang L, Zhang F, Niu K. Oxygen self-supplied nanoparticle for enhanced chemiexcited photodynamic therapy. Biomed Mater 2023; 19:015013. [PMID: 38096591 DOI: 10.1088/1748-605x/ad15e2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Photodynamic therapy (PDT) is a promising strategy for effective cancer treatment. However, it still faces severe challenges, including poor laser penetration and insufficient oxygen (O2) in solid tumors. Here, we constructed intelligent O2self-supplied nanoparticles (NPs) for tumor hypoxia relief as well as effective chemiexcited PDT. Oxygen-carrying NPs (BSA@TCPO NPs) were obtained via the self-assembly of bovine serum albumin (BSA), bis[3,4,6-trichloro2-(pentyloxycarbonyl)phenyl]oxalate (TCPO), perfluorohexane (PFH), and chlorin e6 (Ce6). In H2O2-overexpressed tumor cells, TCPO in the NPs reacted with H2O2, releasing energy to activate the photosensitizer Ce6 and generate cytotoxic singlet oxygen (1O2) to kill tumor cells in a laser irradiation-independent manner. Moreover, the O2carried by PFH not only reduced therapeutic resistance by alleviating tumor hypoxia but also increased1O2generation for enhanced chemiexcited PDT. The remarkable cytotoxicity to various cancer cell lines and A549 tumors demonstrated the advantage of BTPC in alleviating the hypoxic status and inhibiting tumor growth. Our results demonstrate that BTPC is a promising nanoplatform for cancer therapy.
Collapse
Affiliation(s)
- Liman Liang
- College of Chemical Engineering, Hebei Normal University of Science and Technology, Qinhuangdao 066000, People's Republic of China
- Hebei Key Laboratory of Active Components and Functions in Natural Products, Hebei Normal University of Science and Technology, Qinhuangdao 066004, People's Republic of China
| | - Yueying Wang
- College of Chemical Engineering, Hebei Normal University of Science and Technology, Qinhuangdao 066000, People's Republic of China
- Hebei Key Laboratory of Active Components and Functions in Natural Products, Hebei Normal University of Science and Technology, Qinhuangdao 066004, People's Republic of China
| | - Chensa Zhang
- Hebei Key Laboratory of Active Components and Functions in Natural Products, Hebei Normal University of Science and Technology, Qinhuangdao 066004, People's Republic of China
| | - Yulu Chang
- College of Chemical Engineering, Hebei Normal University of Science and Technology, Qinhuangdao 066000, People's Republic of China
| | - Yuzi Wang
- College of Chemical Engineering, Hebei Normal University of Science and Technology, Qinhuangdao 066000, People's Republic of China
| | - Jinyan Xue
- College of Chemical Engineering, Hebei Normal University of Science and Technology, Qinhuangdao 066000, People's Republic of China
- Hebei Key Laboratory of Active Components and Functions in Natural Products, Hebei Normal University of Science and Technology, Qinhuangdao 066004, People's Republic of China
| | - Lu Wang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin 300192, People's Republic of China
| | - Fan Zhang
- Hebei Key Laboratory of Active Components and Functions in Natural Products, Hebei Normal University of Science and Technology, Qinhuangdao 066004, People's Republic of China
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin 300192, People's Republic of China
| | - Kui Niu
- College of Chemical Engineering, Hebei Normal University of Science and Technology, Qinhuangdao 066000, People's Republic of China
- Hebei Key Laboratory of Active Components and Functions in Natural Products, Hebei Normal University of Science and Technology, Qinhuangdao 066004, People's Republic of China
| |
Collapse
|
4
|
Shen A, Sun Y, Wang G, Meng X, Ren X, Wan Q, Lv Q, Wang X, Ni J, Li M, Ma X, Xu Y, Jiang Y, Wang F, Cheng Y, Wang P. An Adaptable Nanoprobe Integrated with Quantitative T 1 -Mapping MRI for Accurate Differential Diagnosis of Multidrug-Resistant Lung Cancer. Adv Healthc Mater 2023; 12:e2300684. [PMID: 37714524 DOI: 10.1002/adhm.202300684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Indexed: 09/17/2023]
Abstract
Multidrug resistance (MDR) is one of the major factors causing failure of non-small-cell lung cancer (NSCLC) chemotherapy. Real-time and accurate differentiation between drug-resistant and sensitive NSCLC is of primary importance for guiding the subsequent treatments and improving the therapeutic outcome. However, there is no effective method to provide such an accurate differentiation. This study creates an innovative strategy of integrating H2 O2 -responsive nanoprobes with the quantitative T1 -mapping magnetic resonance imaging (MRI) technique to achieve an accurate differential diagnosis between drug-resistant and sensitive NSCLC in light of differences in H2 O2 content in the tumor microenvironment (TME). The result demonstrates that the synthesized MIL-53(Fe)@MnO2 nanocomposites possess an excellent capability of shortening the cancer longitudinal relaxation time (T1 ) when meeting H2 O2 in TME. T1 -mapping MRI could sensitively detect this T1 variation (about 2.6-fold that of T1-weighted imaging (T1 WI)) to accurately differentiate the H2 O2 content between drug-resistant and sensitive NSCLC. In addition, the quantitative data provided by the T1 -mapping MRI dedicates correct comparison across imaging tests and is more reliable than T1 WI, thus giving it a chance for precise assessment of the anti-cancer effect. This innovative strategy of merging TME adaptable nanoprobes with the quantitative MRI technique provides a new approach for the precise diagnosis of multidrug-resistant NSCLC.
Collapse
Affiliation(s)
- Aijun Shen
- Department of Medical Imaging, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Yanhong Sun
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200438, China
| | - Gangmin Wang
- Department of Urology, Huashan Hospital, Fudan University, 200040, Shanghai, China
| | - Xianfu Meng
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Tongji University Cancer Center, Shanghai, 200072, China
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200438, China
| | - Xihui Ren
- Department of Medical Imaging, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Qingxuan Wan
- Department of Medical Imaging, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Qi Lv
- Department of Medical Imaging, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Xiangbin Wang
- Department of Medical Imaging, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Jiong Ni
- Department of Medical Imaging, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Minghua Li
- Department of Medical Imaging, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Xiaolong Ma
- Department of Medical Imaging, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Yun Xu
- Department of Medical Imaging, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Yutao Jiang
- Department of Medical Imaging, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Fang Wang
- Department of Medical Imaging, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - YingSheng Cheng
- Department of Medical Imaging, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Peijun Wang
- Department of Medical Imaging, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| |
Collapse
|
5
|
Li SH, Zhang GR, He YT, Yang L, Li HL, Long CY, Cui Y, Wang XQ. Emission Wavelength-Tunable Bicyclic Dioxetane Chemiluminescent Probes for Precise In Vitro and In Vivo Imaging. Anal Chem 2023; 95:13191-13200. [PMID: 37610431 DOI: 10.1021/acs.analchem.3c02126] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Chemiluminescent probes have become increasingly popular in various research areas including precise tumor imaging and immunofluorescence analysis. Nevertheless, previously developed chemiluminescence probes are mainly limited to studying oxidation reaction-associated biological events. This study presents the first example of bioimaging applicable bicyclic dioxetane chemiluminescent probes with tunable emission wavelengths that range from 525 to 800 nm. These newly developed probes were able to detect the analytes of β-Gal, H2O2, and superoxide with high specificity and a limit of detection of 77 mU L-1, 96, and 28 nM, respectively. The bioimaging application of the probes was verified in ovarian and liver cancer cells and macrophage cells, allowing the detection of the content of β-Gal, H2O2, and superoxide inside the cells. The high specificity allowed us to image the xenografted tumor in mice. We expect that our probes will receive extensive applications in recording complex biomolecular events using noninvasive imaging techniques.
Collapse
Affiliation(s)
- Shen-Huan Li
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Guo-Rong Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Yu-Ting He
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Liu Yang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Han-Lu Li
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Cheng-Yu Long
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Yue Cui
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Xue-Qiang Wang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), The Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, People's Republic of China
| |
Collapse
|
6
|
Liu C, Bu H, Duan X, Li H, Bai Y. Host-Guest Interaction-Based Supramolecular Self-Assemblies for H 2O 2 Upregulation Augmented Chemiluminescence Resonance Energy Transfer-Induced Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:38264-38272. [PMID: 37537944 DOI: 10.1021/acsami.3c06353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Given that light is hard to reach deep tumor tissue, how to enhance photodynamic therapy (PDT) efficacy is a big challenge. Herein, we proposed the supramolecular polymer self-assemblies (HACP) with bis[2,4,5-trichloro-6 (pentyloxycar-bonyl) phenyl] oxalate as the cargos (HACP@CPPO) to realize the chemiluminescence resonance energy transfer (CRET)-induced generation of 1O2 in situ. HACP was prepared by cinnamaldehyde-modified hyaluronic acid (HA-CA) and β-cyclodextrin-modified protoporphyrin IX (β-CD-PPIX) via host-guest interactions. The CA moiety could elevate H2O2 levels for the enhanced production of chemical energy and macrocyclic CD could enhance the stacking distance of PPIX for enhanced 1O2 yield. Thus, HACP@CPPO exhibited excellent antitumor performance without light irradiation.
Collapse
Affiliation(s)
- Caiping Liu
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Huaitian Bu
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xiao Duan
- Department of Pharmacy, Changzhi Medical University, Changzhi 046000, China
| | - Hui Li
- School of Metallurgical and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Yang Bai
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|
7
|
Teng X, Ling Q, Liu T, Li L, Lu C. Nanomaterial-based chemiluminescence systems for tracing of reactive oxygen species in biosensors. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.117020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
8
|
Zhang X, Li C, Chen W, Wang G, Zou H, Liu H. Chemiluminescent polymeric nanoprobes for tumor diagnosis: A mini review. Front Chem 2023; 10:1106791. [PMID: 36700072 PMCID: PMC9870064 DOI: 10.3389/fchem.2022.1106791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 12/28/2022] [Indexed: 01/11/2023] Open
Abstract
Chemiluminescence (CL), a distinct luminescent process by taking advantage of chemical reactions rather than external light source, has recently attracted considerable research interests due to its high sensitivity and low background signal. The sensitivity and specificity of chemiluminescent signals in complex tumor microenvironment provide a sound basis for accurate detection of tumors. Various chemiluminescent nanoprobes with superior performance have been obtained by structural modification of chemiluminescent units or introduction of fluorescent dyes. In this review, we focused on the recent progress of chemiluminescent polymeric systems based on various chromophore substrates, including luminol, peroxyoxalates, 1, 2-dioxetanes and their derivatives for tumor detecting. And we also emphasized the design strategies, mechanisms and diagnostic applications of representative chemiluminescent polymeric nanoprobes. Finally, the critical challenges and perspectives of chemiluminescent systems usage in tumor diagnosis were also discussed.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- Central Laboratory, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, China,Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, China,*Correspondence: Xiaoyan Zhang, ; Hao Liu,
| | - Cong Li
- Central Laboratory, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, China,Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, China
| | - Wenjuan Chen
- Central Laboratory, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, China,Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, China
| | - Guanhua Wang
- Central Laboratory, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, China,Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, China
| | - Huiru Zou
- Central Laboratory, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, China,Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, China
| | - Hao Liu
- Central Laboratory, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, China,Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, China,*Correspondence: Xiaoyan Zhang, ; Hao Liu,
| |
Collapse
|
9
|
Sonkaya Ö, Soylukan C, Pamuk Algi M, Algi F. Aza-BODIPY-based Fluorescent and Colorimetric Sensors and Probes. Curr Org Synth 2023; 20:20-60. [PMID: 35170414 DOI: 10.2174/1570179419666220216123033] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/30/2021] [Accepted: 12/18/2021] [Indexed: 12/16/2022]
Abstract
Aza-boron-dipyrromethenes (Aza-BODIPYs) represent an important class of chromophores absorbing and emitting in the near-infrared (NIR) region. They have unique optical and electronic features and higher physiological and photo stability than other NIR dyes. Especially after the development of facile synthetic routes, Aza-BODIPYs have become indispensable fluors that can find various applications ranging from chemosensors, bioimaging, phototherapy, solar energy materials, photocatalysis, photon upconversion, lasers, and optoelectronics. Herein, we review Aza-BODIPY based fluorescent and colorimetric chemosensors. We show the potential and untapped toolbox of Aza-BODIPY based fluorescent and colorimetric chemosensors. Hence, we divide the fluorescent and colorimetric chemosensors and probes into five sections according to the target analytes. The first section begins with the chemosensors developed for pH. Next, we discuss Aza-BODIPY based ion sensors, including metal ions and anions. Finally, we present the chemosensors and probes concerning reactive oxygen (ROS) and nitrogen species (RNS) along with biologically relevant species in the last two sections. We believe that Aza-BODIPYs are still in their infancy, and they have a promising future for translation from the bench to real biomedical and materials science applications. After two decades of intensive research, it seems that there are many more to come in this already fertile field. Overall, we hope that future work will further expand the applications of Aza-BODIPY in many areas.
Collapse
Affiliation(s)
- Ömer Sonkaya
- Department of Chemistry, Aksaray University, TR-68100 Aksaray, Turkey
- ASUBTAM Memduh Bilmez BioNanoTech Lab., Aksaray University, TR-68100 Aksaray, Turkey
| | - Caner Soylukan
- ASUBTAM Memduh Bilmez BioNanoTech Lab., Aksaray University, TR-68100 Aksaray, Turkey
- Department of Biotechnology & ASUBTAM Memduh Bilmez BioNanoTech Lab., Aksaray University, TR-68100 Aksaray, Turkey
| | - Melek Pamuk Algi
- Department of Chemistry, Aksaray University, TR-68100 Aksaray, Turkey
- ASUBTAM Memduh Bilmez BioNanoTech Lab., Aksaray University, TR-68100 Aksaray, Turkey
| | - Fatih Algi
- ASUBTAM Memduh Bilmez BioNanoTech Lab., Aksaray University, TR-68100 Aksaray, Turkey
- Department of Biotechnology & ASUBTAM Memduh Bilmez BioNanoTech Lab., Aksaray University, TR-68100 Aksaray, Turkey
| |
Collapse
|
10
|
Gao J, Chen Z, Li X, Yang M, Lv J, Li H, Yuan Z. Chemiluminescence in Combination with Organic Photosensitizers: Beyond the Light Penetration Depth Limit of Photodynamic Therapy. Int J Mol Sci 2022; 23:ijms232012556. [PMID: 36293406 PMCID: PMC9604449 DOI: 10.3390/ijms232012556] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/05/2022] [Accepted: 10/18/2022] [Indexed: 12/01/2022] Open
Abstract
Photodynamic therapy (PDT) is a promising noninvasive medical technology that has been approved for the treatment of a variety of diseases, including bacterial and fungal infections, skin diseases, and several types of cancer. In recent decades, many photosensitizers have been developed and applied in PDT. However, PDT is still limited by light penetration depth, although many near-infrared photosensitizers have emerged. The chemiluminescence-mediated PDT (CL-PDT) system has recently received attention because it does not require an external light source to achieve targeted PDT. This review focuses on the rational design of organic CL-PDT systems. Specifically, PDT types, light wavelength, the chemiluminescence concept and principle, and the design of CL-PDT systems are introduced. Furthermore, chemiluminescent fraction examples, strategies for combining chemiluminescence with PDT, and current cellular and animal applications are highlighted. Finally, the current challenges and possible solutions to CL-PDT systems are discussed.
Collapse
Affiliation(s)
- Jie Gao
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi 563000, China
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi 563000, China
- Guizhou International Scientific and Technological Cooperation Base for Medical Photo-Theranostics Technology and Innovative Drug Development, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi 563000, China
- Correspondence: (J.G.); (Z.Y.)
| | - Zhengjun Chen
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi 563000, China
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi 563000, China
- Guizhou International Scientific and Technological Cooperation Base for Medical Photo-Theranostics Technology and Innovative Drug Development, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi 563000, China
| | - Xinmin Li
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi 563000, China
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi 563000, China
- Guizhou International Scientific and Technological Cooperation Base for Medical Photo-Theranostics Technology and Innovative Drug Development, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi 563000, China
| | - Mingyan Yang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi 563000, China
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi 563000, China
- Guizhou International Scientific and Technological Cooperation Base for Medical Photo-Theranostics Technology and Innovative Drug Development, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi 563000, China
| | - Jiajia Lv
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi 563000, China
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi 563000, China
- Guizhou International Scientific and Technological Cooperation Base for Medical Photo-Theranostics Technology and Innovative Drug Development, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi 563000, China
| | - Hongyu Li
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi 563000, China
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi 563000, China
- Guizhou International Scientific and Technological Cooperation Base for Medical Photo-Theranostics Technology and Innovative Drug Development, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi 563000, China
| | - Zeli Yuan
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi 563000, China
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi 563000, China
- Guizhou International Scientific and Technological Cooperation Base for Medical Photo-Theranostics Technology and Innovative Drug Development, Zunyi Medical University, No.6 West Xuefu Road, Xinpu District, Zunyi 563000, China
- Correspondence: (J.G.); (Z.Y.)
| |
Collapse
|
11
|
Chen YC, Liu YJ, Lee CL, Pham KY, Manoharan D, Thangudu S, Su CH, Yeh CS. Engineering H 2 O 2 and O 2 Self-Supplying Nanoreactor to Conduct Synergistic Chemiexcited Photodynamic and Calcium-Overloaded Therapy in Orthotopic Hepatic Tumors. Adv Healthc Mater 2022; 11:e2201613. [PMID: 35879269 DOI: 10.1002/adhm.202201613] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Indexed: 01/28/2023]
Abstract
Photodynamic therapy (PDT) is traditionally ineffective for deeply embedded tumors due to the poor penetration depth of the excitation light. Chemiluminescence resonance energy transfer (CRET) has emerged as a promising mode of PDT without external light. To date, related research has frequently used endogenous hydrogen peroxide (H2 O2 ) and oxygen (O2 ) inside the solid tumor microenvironment to trigger CRET-mediated PDT. Unfortunately, this significantly restricts treatment efficacy and the development of further biomedical applications because of the limited amounts of endogenous H2 O2 and O2 . Herein, a nanohybrid (mSiO2 /CaO2 /CPPO/Ce6: mSCCC) nanoparticle (NP) is designed to achieve synergistic CRET-mediated PDT and calcium (Ca2+ )-overload-mediated therapy. The calcium peroxide (CaO2 ) formed inside mesoporous SiO2 (mSC) with the inclusion of the chemiluminescent agent (CPPO) and photosensitizer (Ce6) self-supplies H2 O2 , O2 , and Ca2+ allowing for the subsequent treatments. The Ce6 in mSCCC NPs is excited by chemical energy in situ following the supply of H2 O2 and O2 to produce singlet oxygen (1 O2 ). The nanohybrid NPs are coated with stearic acid to avoid decomposition during blood circulation through contact with aqueous environment. This nanohybrid shows promising performance in the generation of 1 O2 for external light-free PDT and the release of Ca2+ ions for Ca2+ -overloaded therapy against orthotopic hepatocellular carcinoma.
Collapse
Affiliation(s)
- Ying-Chi Chen
- Department of Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
| | - Yu-Ju Liu
- Department of Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
| | - Chin-Lai Lee
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 833, Taiwan
| | - Khang-Yen Pham
- Department of Chemistry, University of Education, Hue University, Hue City, 530000, Vietnam
| | - Divinah Manoharan
- Department of Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
| | - Suresh Thangudu
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 833, Taiwan
| | - Chia-Hao Su
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 833, Taiwan.,Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan.,Center for General Education, Chang Gung University, Taoyuan, 333, Taiwan
| | - Chen-Sheng Yeh
- Department of Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
| |
Collapse
|
12
|
Yang XY, Yuan B, Xiong H, Zhao Y, Wang L, Zhang SQ, Mao S. Allyl phenyl selenides as H 2O 2 acceptors to develop ROS-responsive theranostic prodrugs. Bioorg Chem 2022; 129:106154. [PMID: 36137311 DOI: 10.1016/j.bioorg.2022.106154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/16/2022] [Accepted: 09/12/2022] [Indexed: 11/02/2022]
Abstract
Reactive oxygen species (ROS)-responsive prodrugs have received significant attention due to their capacity to target tumors to relieve the side effects caused by chemotherapy. Herein, a series of novel H2O2-activated theranostic prodrugs (CPTSe1-CPTSe7) were developed containing allyl phenyl selenide moieties as H2O2 acceptors. Compared with conventional boronate ester-based prodrug CPT-B, CPTSe1 was more stable in human plasma and showed a more complete release of camptothecin (CPT) in H2O2 inducing experiment. The selectively activated fluorescence signals of CPTSe1 in tumor cells make it useful for real-time monitoring of CPT release and H2O2 detection. Furthermore, excellent selectivity of CPTSe1 was achieved for tumor cells over normal cells. Our results provide a new platform for the development of H2O2-responsive theranostic prodrugs.
Collapse
Affiliation(s)
- Xue-Yan Yang
- Department of Medicinal Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Bo Yuan
- Department of Medicinal Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Hai Xiong
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, PR China.
| | - Yahao Zhao
- Department of Medicinal Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Lu Wang
- College of Pharmacy, University of Michigan, NCRC, 1600 Huron Pkwy, Ann Arbor, 48109, USA
| | - San-Qi Zhang
- Department of Medicinal Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China.
| | - Shuai Mao
- Department of Medicinal Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China; College of Pharmacy, University of Michigan, NCRC, 1600 Huron Pkwy, Ann Arbor, 48109, USA.
| |
Collapse
|
13
|
Menilli L, Milani C, Reddi E, Moret F. Overview of Nanoparticle-Based Approaches for the Combination of Photodynamic Therapy (PDT) and Chemotherapy at the Preclinical Stage. Cancers (Basel) 2022; 14:cancers14184462. [PMID: 36139623 PMCID: PMC9496990 DOI: 10.3390/cancers14184462] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The present review represents the outstanding and promising recent literature reports (2017–2022) on nanoparticle-based formulations developed for anticancer therapy with photodynamic therapy (PDT), photosensitizers, and chemotherapeutics. Besides brief descriptions of chemotherapeutics’ classification and of PDT mechanisms and limitations, several examples of nanosystems endowed with different responsiveness (e.g., acidic pH and reactive oxygen species) and peculiarity (e.g., tumor oxygenation capacity, active tumor targeting, and biomimetic features) are described, and for each drug combination, in vitro and in vivo results on preclinical cancer models are reported. Abstract The widespread diffusion of photodynamic therapy (PDT) as a clinical treatment for solid tumors is mainly limited by the patient’s adverse reaction (skin photosensivity), insufficient light penetration in deeply seated neoplastic lesions, unfavorable photosensitizers (PSs) biodistribution, and photokilling efficiency due to PS aggregation in biological environments. Despite this, recent preclinical studies reported on successful combinatorial regimes of PSs with chemotherapeutics obtained through the drugs encapsulation in multifunctional nanometric delivery systems. The aim of the present review deals with the punctual description of several nanosystems designed not only with the objective of co-transporting a PS and a chemodrug for combination therapy, but also with the goal of improving the therapeutic efficacy by facing the main critical issues of both therapies (side effects, scarce tumor oxygenation and light penetration, premature drug clearance, unspecific biodistribution, etc.). Therefore, particular attention is paid to the description of bio-responsive drugs and nanoparticles (NPs), targeted nanosystems, biomimetic approaches, and upconverting NPs, including analyzing the therapeutic efficacy of the proposed photo-chemotherapeutic regimens in in vitro and in vivo cancer models.
Collapse
Affiliation(s)
- Luca Menilli
- Department of Biology, University of Padova, 35100 Padova, Italy
| | - Celeste Milani
- Department of Biology, University of Padova, 35100 Padova, Italy
- Institute of Organic Synthesis and Photoreactivity, ISOF-CNR, 40129 Bologna, Italy
| | - Elena Reddi
- Department of Biology, University of Padova, 35100 Padova, Italy
- Correspondence: (E.R.); (F.M.)
| | - Francesca Moret
- Department of Biology, University of Padova, 35100 Padova, Italy
- Correspondence: (E.R.); (F.M.)
| |
Collapse
|
14
|
Tian H, Zhang T, Qin S, Huang Z, Zhou L, Shi J, Nice EC, Xie N, Huang C, Shen Z. Enhancing the therapeutic efficacy of nanoparticles for cancer treatment using versatile targeted strategies. J Hematol Oncol 2022; 15:132. [PMID: 36096856 PMCID: PMC9469622 DOI: 10.1186/s13045-022-01320-5] [Citation(s) in RCA: 117] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/20/2022] [Indexed: 12/24/2022] Open
Abstract
Poor targeting of therapeutics leading to severe adverse effects on normal tissues is considered one of the obstacles in cancer therapy. To help overcome this, nanoscale drug delivery systems have provided an alternative avenue for improving the therapeutic potential of various agents and bioactive molecules through the enhanced permeability and retention (EPR) effect. Nanosystems with cancer-targeted ligands can achieve effective delivery to the tumor cells utilizing cell surface-specific receptors, the tumor vasculature and antigens with high accuracy and affinity. Additionally, stimuli-responsive nanoplatforms have also been considered as a promising and effective targeting strategy against tumors, as these nanoplatforms maintain their stealth feature under normal conditions, but upon homing in on cancerous lesions or their microenvironment, are responsive and release their cargoes. In this review, we comprehensively summarize the field of active targeting drug delivery systems and a number of stimuli-responsive release studies in the context of emerging nanoplatform development, and also discuss how this knowledge can contribute to further improvements in clinical practice.
Collapse
Affiliation(s)
- Hailong Tian
- Department of Otorhinolaryngology and Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, 315040, Ningbo, Zhejiang, China.,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Tingting Zhang
- Department of Otorhinolaryngology and Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, 315040, Ningbo, Zhejiang, China.,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Siyuan Qin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Zhao Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Li Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Jiayan Shi
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, 3800, VIC, Australia
| | - Edouard C Nice
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan university, Chengdu, 610041, China
| | - Na Xie
- Department of Otorhinolaryngology and Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, 315040, Ningbo, Zhejiang, China. .,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China. .,West China School of Basic Medical Sciences and Forensic Medicine, Sichuan university, Chengdu, 610041, China.
| | - Canhua Huang
- Department of Otorhinolaryngology and Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, 315040, Ningbo, Zhejiang, China. .,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| | - Zhisen Shen
- Department of Otorhinolaryngology and Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, 315040, Ningbo, Zhejiang, China.
| |
Collapse
|
15
|
Choi J, Sun IC, Sook Hwang H, Yeol Yoon H, Kim K. Light-triggered photodynamic nanomedicines for overcoming localized therapeutic efficacy in cancer treatment. Adv Drug Deliv Rev 2022; 186:114344. [PMID: 35580813 DOI: 10.1016/j.addr.2022.114344] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/27/2022] [Accepted: 05/09/2022] [Indexed: 12/14/2022]
Abstract
Photodynamic nanomedicines have significantly enhanced the therapeutic efficacy of photosensitizers (PSs) by overcoming critical limitations of PSs such as poor water solubility and low tumor accumulation. Furthermore, functional photodynamic nanomedicines have enabled overcoming oxygen depletion during photodynamic therapy (PDT) and tissue light penetration limitation by supplying oxygen or upconverting light in targeted tumor tissues, resulting in providing the potential to overcome biological therapeutic barriers of PDT. Nevertheless, their localized therapeutic effects still remain a huddle for the effective treatment of metastatic- or recurrent tumors. Recently, newly designed photodynamic nanomedicines and their combination chemo- or immune checkpoint inhibitor therapy enable the systemic treatment of various metastatic tumors by eliciting antitumor immune responses via immunogenic cell death (ICD). This review introduces recent advances in photodynamic nanomedicines and their applications, focusing on overcoming current limitations. Finally, the challenges and future perspectives of the clinical translation of photodynamic nanomedicines in cancer PDT are discussed.
Collapse
Affiliation(s)
- Jiwoong Choi
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea; Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - In-Cheol Sun
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Hee Sook Hwang
- Department of Pharmaceutical Engineering, Dankook University, Cheonan 31116, Republic of Korea
| | - Hong Yeol Yoon
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea.
| | - Kwangmeyung Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea; Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea.
| |
Collapse
|
16
|
Deep-Tissue Activation of Photonanomedicines: An Update and Clinical Perspectives. Cancers (Basel) 2022; 14:cancers14082004. [PMID: 35454910 PMCID: PMC9032169 DOI: 10.3390/cancers14082004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Photodynamic therapy (PDT) is a light-activated treatment modality, which is being clinically used and further developed for a number of premalignancies, solid tumors, and disseminated cancers. Nanomedicines that facilitate PDT (photonanomedicines, PNMs) have transformed its safety, efficacy, and capacity for multifunctionality. This review focuses on the state of the art in deep-tissue activation technologies for PNMs and explores how their preclinical use can evolve towards clinical translation by harnessing current clinically available instrumentation. Abstract With the continued development of nanomaterials over the past two decades, specialized photonanomedicines (light-activable nanomedicines, PNMs) have evolved to become excitable by alternative energy sources that typically penetrate tissue deeper than visible light. These sources include electromagnetic radiation lying outside the visible near-infrared spectrum, high energy particles, and acoustic waves, amongst others. Various direct activation mechanisms have leveraged unique facets of specialized nanomaterials, such as upconversion, scintillation, and radiosensitization, as well as several others, in order to activate PNMs. Other indirect activation mechanisms have leveraged the effect of the interaction of deeply penetrating energy sources with tissue in order to activate proximal PNMs. These indirect mechanisms include sonoluminescence and Cerenkov radiation. Such direct and indirect deep-tissue activation has been explored extensively in the preclinical setting to facilitate deep-tissue anticancer photodynamic therapy (PDT); however, clinical translation of these approaches is yet to be explored. This review provides a summary of the state of the art in deep-tissue excitation of PNMs and explores the translatability of such excitation mechanisms towards their clinical adoption. A special emphasis is placed on how current clinical instrumentation can be repurposed to achieve deep-tissue PDT with the mechanisms discussed in this review, thereby further expediting the translation of these highly promising strategies.
Collapse
|
17
|
Zhao H, Li L, Li F, Liu C, Huang M, Li J, Gao F, Ruan X, Yang D. An Energy-Storing DNA-Based Nanocomplex for Laser-Free Photodynamic Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109920. [PMID: 35060673 DOI: 10.1002/adma.202109920] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/19/2022] [Indexed: 06/14/2023]
Abstract
Photodynamic therapy (PDT) is a therapeutic strategy that is dependent on external light irradiation that faces a major challenge in cancer treatment due to the poor tissue-penetration depths of light irradiation. Herein, a DNA nanocomplex that integrates persistent-luminescence nanoparticles (PLNPs) is developed, which realizes tumor-site glutathione-activated PDT for breast cancer without exogenous laser excitation. The scaffold of the nanocomplex is AS1411-aptamer-encoded ultralong single-stranded DNA chain with two functions: i) providing sufficient intercalation sites for the photosensitizer, and ii) recognizing nucleolin that specifically overexpresses on the surface of cancer cells. The PLNPs in the nanocomplex are energy-charged to act as a self-illuminant and coated with a shell of MnO2 for blocking energy degradation. In response to the overexpressed glutathione in cancer cells, the MnO2 shell decomposes to provide Mn2+ to catalytically produce O2 , which is essential to PDT. Meanwhile, PLNPs are released and act as a self-illuminant to activate the photosensitizer to convert O2 into cytotoxic 1 O2 . Significant tumor inhibition effects are demonstrated in breast tumor xenograft models without exogenous laser excitation. It is envisioned that a laser-excitation-free PDT strategy enabled by the PLNP-DNA nanocomplex promotes the development of PDT and provides a new local therapeutic approach.
Collapse
Affiliation(s)
- Huaixin Zhao
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Institute of Biomolecular and Biomedical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
| | - Linghui Li
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Institute of Biomolecular and Biomedical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
| | - Feng Li
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Institute of Biomolecular and Biomedical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
| | - Chunxia Liu
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Institute of Biomolecular and Biomedical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
| | - Mengxue Huang
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Institute of Biomolecular and Biomedical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
| | - Jiao Li
- School of Precision Instruments and Optoelectronics Engineering, China Tianjin Key Laboratory of Biomedical Detecting Techniques and Instruments, Tianjin University, Tianjin, 300072, P. R. China
| | - Feng Gao
- School of Precision Instruments and Optoelectronics Engineering, China Tianjin Key Laboratory of Biomedical Detecting Techniques and Instruments, Tianjin University, Tianjin, 300072, P. R. China
| | - Xinhua Ruan
- Department of Cardiac Surgery, Tianjin Union Medical Centre, Tianjin, 300121, P. R. China
| | - Dayong Yang
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Institute of Biomolecular and Biomedical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
| |
Collapse
|
18
|
Sun N, Wen X, Zhang S. Strategies to Improve Photodynamic Therapy Efficacy of Metal-Free Semiconducting Conjugated Polymers. Int J Nanomedicine 2022; 17:247-271. [PMID: 35082494 PMCID: PMC8786367 DOI: 10.2147/ijn.s337599] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/23/2021] [Indexed: 01/12/2023] Open
Abstract
Photodynamic therapy (PDT) is a noninvasive therapy for cancer and bacterial infection. Metal-free semiconducting conjugated polymers (SCPS) with good stability and optical and electrical properties are promising photosensitizers (PSs) for PDT compared with traditional small-molecule PSs. This review analyzes the latest progress of strategies to improve PDT effect of linear, planar, and three-dimensional SCPS, including improving solubility, adjusting conjugated structure, enhancing PS-doped SCPs, and combining therapies. Moreover, the current issues, such as hypoxia, low penetration, targeting and biosafety of SCPS, and corresponding strategies, are discussed. Furthermore, the challenges and potential opportunities on further improvement of PDT for SCPs are presented.
Collapse
Affiliation(s)
- Na Sun
- Department of Nuclear Medicine, XinQiao Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Xue Wen
- School of Electronics, Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Song Zhang
- Department of Nuclear Medicine, XinQiao Hospital, Army Medical University, Chongqing, People's Republic of China
| |
Collapse
|
19
|
Guo J, Feng K, Wu W, Ruan Y, Liu H, Han X, Shao G, Sun X. Smart
131
I‐Labeled Self‐Illuminating Photosensitizers for Deep Tumor Therapy. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jingru Guo
- State Key Laboratory of Natural Medicines Key Laboratory of Drug Quality Control and Pharmacovigilance Department of Pharmaceutical Analysis China Pharmaceutical University Nanjing 210009 China
| | - Kai Feng
- State Key Laboratory of Natural Medicines Key Laboratory of Drug Quality Control and Pharmacovigilance Department of Pharmaceutical Analysis China Pharmaceutical University Nanjing 210009 China
| | - Wenyu Wu
- Department of Nuclear Medicine Nanjing First Hospital Nanjing Medical University Nanjing 210006 China
| | - Yiling Ruan
- State Key Laboratory of Natural Medicines Key Laboratory of Drug Quality Control and Pharmacovigilance Department of Pharmaceutical Analysis China Pharmaceutical University Nanjing 210009 China
| | - Huihui Liu
- State Key Laboratory of Natural Medicines Key Laboratory of Drug Quality Control and Pharmacovigilance Department of Pharmaceutical Analysis China Pharmaceutical University Nanjing 210009 China
| | - Xiuping Han
- Department of Nuclear Medicine Nanjing First Hospital Nanjing Medical University Nanjing 210006 China
| | - Guoqiang Shao
- Department of Nuclear Medicine Nanjing First Hospital Nanjing Medical University Nanjing 210006 China
| | - Xiaolian Sun
- State Key Laboratory of Natural Medicines Key Laboratory of Drug Quality Control and Pharmacovigilance Department of Pharmaceutical Analysis China Pharmaceutical University Nanjing 210009 China
| |
Collapse
|
20
|
Guo J, Feng K, Wu W, Ruan Y, Liu H, Han X, Shao G, Sun X. Smart 131 I-Labeled Self-Illuminating Photosensitizers for Deep Tumor Therapy. Angew Chem Int Ed Engl 2021; 60:21884-21889. [PMID: 34374188 DOI: 10.1002/anie.202107231] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Indexed: 12/14/2022]
Abstract
Stimulating photosensitizers (PS) by Cerenkov radiation (CR) can overcome the light penetration limitation in traditional photodynamic therapy. However, separate injection of radiopharmaceuticals and PS cannot guarantee their efficient interaction in tumor areas, while co-delivery of radionuclides and PS face the problem of nonnegligible phototoxicity in normal tissues. Here, we describe a 131 I-labeled smart photosensitizer, composed of pyropheophorbide-a (photosensitizer), a diisopropylamino group (pH-sensitive group), an 131 I-labeled tyrosine group (CR donor), and polyethylene glycol, which can self-assemble into nanoparticles (131 I-sPS NPs). The 131 I-sPS NPs showed low phototoxicity in normal tissues due to aggregation-caused quenching effect, but could self-produce reactive oxygen species in tumor sites upon disassembly. Upon intravenous injection, 131 I-sPS NPs showed great tumor inhibition capability in subcutaneous 4T1-tumor-bearing Balb/c mice and orthotopic VX2 liver tumor bearing rabbits. We believed 131 I-sPS NPs could expand the application of CR and provide an effective strategy for deep tumor theranostics.
Collapse
Affiliation(s)
- Jingru Guo
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China
| | - Kai Feng
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China
| | - Wenyu Wu
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Yiling Ruan
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China
| | - Huihui Liu
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiuping Han
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Guoqiang Shao
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Xiaolian Sun
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China
| |
Collapse
|
21
|
Yi H, Lu W, Liu F, Zhang G, Xie F, Liu W, Wang L, Zhou W, Cheng Z. ROS-responsive liposomes with NIR light-triggered doxorubicin release for combinatorial therapy of breast cancer. J Nanobiotechnology 2021; 19:134. [PMID: 33975609 PMCID: PMC8111982 DOI: 10.1186/s12951-021-00877-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/28/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Reactive oxygen species (ROS)-responsive drug delivery systems (DDSs) are potential tools to minimize the side effects and substantially enhance the therapeutic efficacy of chemotherapy. However, it is challenging to achieve spatially and temporally controllable and accurate drug release in tumor sites based on ROS-responsive DDSs. To solve this problem, we designed a nanosystem combined photodynamic therapy (PDT) and ROS-responsive chemotherapy. METHODS Indocyanine green (ICG), an ROS trigger and photosensitizer, and pB-DOX, a ROS-responsive prodrug of doxorubicin (DOX), were coencapsulated in polyethylene glycol modified liposomes (Lipo/pB-DOX/ICG) to construct a combination therapy nanosystem. The safety of nanosystem was assessed on normal HEK-293 cells, and the cellular uptake, intracellular ROS production capacity, target cell toxicity, and combined treatment effect were estimated on human breast cancer cells MDA-MB-231. In vivo biodistribution, biosafety assessment, and combination therapy effects were investigated based on MDA-MB-231 subcutaneous tumor model. RESULTS Compared with DOX·HCl, Lipo/pB-DOX/ICG showed higher safety on normal cells. The toxicity of target cells of Lipo/pB-DOX/ICG was much higher than that of DOX·HCl, Lipo/pB-DOX, and Lipo/ICG. After endocytosis by MDA-MB-231 cells, Lipo/pB-DOX/ICG produced a large amount of ROS for PDT by laser irradiation, and pB-DOX was converted to DOX by ROS for chemotherapy. The cell inhibition rate of combination therapy reached up to 93.5 %. After the tail vein injection (DOX equivalent of 3.0 mg/kg, ICG of 3.5 mg/kg) in mice bearing MDA-MB-231 tumors, Lipo/pB-DOX/ICG continuously accumulated at the tumor site and reached the peak at 24 h post injection. Under irradiation at this time point, the tumors in Lipo/pB-DOX/ICG group almost disappeared with 94.9 % tumor growth inhibition, while those in the control groups were only partially inhibited. Negligible cardiotoxicity and no treatment-induced side effects were observed. CONCLUSIONS Lipo/pB-DOX/ICG is a novel tool for on-demand drug release at tumor site and also a promising candidate for controllable and accurate combinatorial tumor therapy.
Collapse
Affiliation(s)
- Hanxi Yi
- Division of Biopharmaceutics and Pharmacokinetics, Xiangya School of Pharmaceutical Sciences, Central South University, Tongzipo road 172, Changsha, 410000, China
| | - Wangxing Lu
- Division of Biopharmaceutics and Pharmacokinetics, Xiangya School of Pharmaceutical Sciences, Central South University, Tongzipo road 172, Changsha, 410000, China
| | - Fan Liu
- Neurology department, The First affiliated Xiangya hospital, Central South University, Changsha, China
| | - Guoqing Zhang
- Division of Biopharmaceutics and Pharmacokinetics, Xiangya School of Pharmaceutical Sciences, Central South University, Tongzipo road 172, Changsha, 410000, China
| | - Feifan Xie
- Division of Biopharmaceutics and Pharmacokinetics, Xiangya School of Pharmaceutical Sciences, Central South University, Tongzipo road 172, Changsha, 410000, China
| | - Wenjie Liu
- Division of Biopharmaceutics and Pharmacokinetics, Xiangya School of Pharmaceutical Sciences, Central South University, Tongzipo road 172, Changsha, 410000, China
| | - Lei Wang
- Division of Biopharmaceutics and Pharmacokinetics, Xiangya School of Pharmaceutical Sciences, Central South University, Tongzipo road 172, Changsha, 410000, China
| | - Wenhu Zhou
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Zeneng Cheng
- Division of Biopharmaceutics and Pharmacokinetics, Xiangya School of Pharmaceutical Sciences, Central South University, Tongzipo road 172, Changsha, 410000, China.
| |
Collapse
|
22
|
Ding Y, Liu W, Wu J, Zheng X, Ge J, Ren H, Zhang W, Lee CS, Wang P. Ultrasound-Enhanced Self-Exciting Photodynamic Therapy Based on Hypocrellin B. Chem Asian J 2021; 16:1221-1224. [PMID: 33881805 DOI: 10.1002/asia.202100205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/01/2021] [Indexed: 11/10/2022]
Abstract
Peroxalate CL as an energy source to excite photosensitizers has attracted tremendous attention in photodynamic therapy (PDT). In this work, peroxyoxalate CPPO and hypocrellin B (HB)-based nanoparticles (CBNPs) for ultrasound (US)-enhanced self-exciting PDT were designed and prepared. CBNPs showed an excellent therapeutic effect against cancer cells with the assistance of US. This US-enhanced-chemiluminescence system avoids the dependence on external light and provides an example for inspiring more effective and precise strategies for cancer treatment.
Collapse
Affiliation(s)
- Ying Ding
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Weimin Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jiasheng Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Xiuli Zheng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jiechao Ge
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Haohui Ren
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Wenjun Zhang
- Center Of Super-Diamond and Advanced Films (COSDAF) & Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, P. R. China
| | - Chun-Sing Lee
- Center Of Super-Diamond and Advanced Films (COSDAF) & Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, P. R. China
| | - Pengfei Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
23
|
Xue Y, Gao Y, Meng F, Luo L. Recent progress of nanotechnology-based theranostic systems in cancer treatments. Cancer Biol Med 2021; 18:j.issn.2095-3941.2020.0510. [PMID: 33861527 PMCID: PMC8185860 DOI: 10.20892/j.issn.2095-3941.2020.0510] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 12/30/2020] [Indexed: 12/19/2022] Open
Abstract
Theranostics that integrates therapy and diagnosis in one system to achieve accurate cancer diagnosis and treatment has attracted tremendous interest, and has been recognized as a potential breakthrough in overcoming the challenges of conventional oncotherapy. Nanoparticles are ideal candidates as carriers for theranostic agents, which is attributed to their extraordinary physicochemical properties, including nanoscale sizes, functional properties, prolonged blood circulation, active or passive tumor targeting, specific cellular uptake, and in some cases, excellent optical properties that ideally meet the needs of phototherapy and imaging at the same time. Overall, with the development of nanotechnology, theranostics has become a reality, and is now in the transition stage of "bench to bedside." In this review, we summarize recent progress on nanotechnology-based theranostics, i.e., nanotheranostics, that has greatly assisted traditional therapies, and has provided therapeutic strategies emerging in recent decades, as well as "cocktail" theranostics mixing various treatment modalities.
Collapse
Affiliation(s)
- Ying Xue
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yuting Gao
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Fanling Meng
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Liang Luo
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- Research Institute of Huazhong University of Science and Technology in Shenzhen, Shenzhen 518057, China
| |
Collapse
|
24
|
Park H, Saravanakumar G, Kim J, Lim J, Kim WJ. Tumor Microenvironment Sensitive Nanocarriers for Bioimaging and Therapeutics. Adv Healthc Mater 2021; 10:e2000834. [PMID: 33073497 DOI: 10.1002/adhm.202000834] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/05/2020] [Indexed: 12/11/2022]
Abstract
The tumor microenvironment (TME), which is composed of cancer cells, stromal cells, immune cells, and extracellular matrices, plays an important role in tumor growth and progression. Thus, targeting the TME using a well-designed nano-drug delivery system is emerging as a promising strategy for the treatment of solid tumors. Compared to normal tissues, the TME presents several distinguishable physiological features such as mildly acidic pH, hypoxia, high level of reactive oxygen species, and overexpression of specific enzymes, that are exploited as stimuli to induce specific changes in the nanocarrier structures, and thereby facilitates target-specific delivery of imaging or chemotherapeutic agents for the early diagnosis or effective treatment, respectively. Recently, smart nanocarriers that respond to more than one stimulus in the TME have also been designed to elicit a more desirable spatiotemporally controlled drug release. This review highlights the recent progress in TME-sensitive nanocarriers designed for more efficient tumor therapy and imaging. In particular, the design strategies, challenges, and critical considerations involved in the fabrication of TME-sensitive nanocarriers, along with their in vitro and in vivo evaluations are discussed.
Collapse
Affiliation(s)
- Hyeongmok Park
- Department of Chemistry POSTECH‐CATHOLIC Biomedical Engineering Institute Pohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea
| | - Gurusamy Saravanakumar
- Department of Chemistry POSTECH‐CATHOLIC Biomedical Engineering Institute Pohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea
| | - Jinseong Kim
- Department of Chemistry POSTECH‐CATHOLIC Biomedical Engineering Institute Pohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea
| | - Junha Lim
- Department of Chemistry POSTECH‐CATHOLIC Biomedical Engineering Institute Pohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea
| | - Won Jong Kim
- OmniaMed Co., Ltd Pohang 37673 Republic of Korea
| |
Collapse
|
25
|
Xu Y, Yang W, Zhang B. ROS-responsive probes for low-background optical imaging: a review. Biomed Mater 2021; 16:022002. [PMID: 33142272 DOI: 10.1088/1748-605x/abc745] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Optical imaging is a facile tool for visualizing biological processes and disease progression, but its image quality is largely limited by light-induced autofluorescence or background signals. To overcome this issue, low-background optical-imaging techniques including chemiluminescence imaging, afterglow imaging and photoacoustic imaging have been developed, based on their unique working mechanisms, which are: the detection of light emissions from chemical reactions, the cessation of light excitation before signal collection, and the detection of ultrasonic signals instead of light signals, respectively. Stimuli-responsive probes are highly desirable for improved imaging results since they can significantly reduce surrounding interference signals. Reactive oxygen species (ROS), which are closely implicated in a series of diseases such as cancer and inflammation, are frequently employed as initiators for responsive agents to selectively change the imaging signal. Thus, ROS-responsive agents incorporated into low-background imaging techniques can achieve a more promising imaging quality. In this review, recent advances in ROS-responsive probes for low-background optical-imaging techniques are summarized. Moreover, the approaches to improving the sensitivity of probes and tissue penetration depth are discussed in detail. In particular, we highlight the reaction mechanisms between the probes and ROS, revealing the potential for low-background optical imaging.
Collapse
Affiliation(s)
- Yan Xu
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai 200072, People's Republic of China
| | | | | |
Collapse
|
26
|
Ding J, Lu G, Nie W, Huang LL, Zhang Y, Fan W, Wu G, Liu H, Xie HY. Self-Activatable Photo-Extracellular Vesicle for Synergistic Trimodal Anticancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005562. [PMID: 33432702 DOI: 10.1002/adma.202005562] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 11/02/2020] [Indexed: 06/12/2023]
Abstract
Extracellular vesicles (EVs) hold great potential in both disease treatment and drug delivery. However, accurate drug release from EVs, as well as the spontaneous treatment effect cooperation of EVs and drugs at target tissues, is still challenging. Here, an engineered self-activatable photo-EV for synergistic trimodal anticancer therapy is reported. M1 macrophage-derived EVs (M1 EVs) are simultaneously loaded with bis[2,4,5-trichloro-6-(pentyloxycarbonyl) phenyl] oxalate (CPPO), chlorin e6 (Ce6), and prodrug aldoxorubicin (Dox-EMCH). After administration, the as-prepared system actively targets tumor cells because of the tumor-homing capability of M1 EVs, wherein M1 EVs repolarize M2 to M1 macrophages, which not only display immunotherapy effects but also produce H2 O2 . The reaction between H2 O2 and CPPO generates chemical energy that activates Ce6, creating both chemiluminescence for imaging and singlet oxygen (1 O2 ) for photodynamic therapy (PDT). Meanwhile, 1 O2 -induced membrane rupture leads to the release of Dox-EMCH, which is then activated and penetrates the deep hypoxic areas of tumors. The synergism of immunotherapy, PDT, and chemotherapy results in potent anticancer efficacy, showing great promise to fight cancers.
Collapse
Affiliation(s)
- Jingjing Ding
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Guihong Lu
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Weidong Nie
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Li-Li Huang
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Yahui Zhang
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Wenlin Fan
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Guanghao Wu
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Houli Liu
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Hai-Yan Xie
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, P. R. China
| |
Collapse
|
27
|
Li WP, Yen CJ, Wu BS, Wong TW. Recent Advances in Photodynamic Therapy for Deep-Seated Tumors with the Aid of Nanomedicine. Biomedicines 2021; 9:69. [PMID: 33445690 PMCID: PMC7828119 DOI: 10.3390/biomedicines9010069] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 12/14/2022] Open
Abstract
Photodynamic therapy (PDT) works through photoactivation of a specific photosensitizer (PS) in a tumor in the presence of oxygen. PDT is widely applied in oncology to treat various cancers as it has a minimally invasive procedure and high selectivity, does not interfere with other treatments, and can be repeated as needed. A large amount of reactive oxygen species (ROS) and singlet oxygen is generated in a cancer cell during PDT, which destroys the tumor effectively. However, the efficacy of PDT in treating a deep-seated tumor is limited due to three main reasons: Limited light penetration depth, low oxygen concentration in the hypoxic core, and poor PS accumulation inside a tumor. Thus, PDT treatments are only approved for superficial and thin tumors. With the advancement of nanotechnology, PDT to treat deep-seated or thick tumors is becoming a reachable goal. In this review, we provide an update on the strategies for improving PDT with nanomedicine using different sophisticated-design nanoparticles, including two-photon excitation, X-ray activation, targeting tumor cells with surface modification, alteration of tumor cell metabolism pathways, release of therapeutic gases, improvement of tumor hypoxia, and stimulation of host immunity. We focus on the difficult-to-treat pancreatic cancer as a model to demonstrate the influence of advanced nanomedicine in PDT. A bright future of PDT application in the treatment of deep-seated tumors is expected.
Collapse
Affiliation(s)
- Wei-Peng Li
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chia-Jui Yen
- Division of Hematology and Oncology, Department of Internal Medicine, Graduate Institute of Clinical Medicine, National Cheng Kung University Hospital, Tainan 704, Taiwan;
| | - Bo-Sheng Wu
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Tak-Wah Wong
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
28
|
Yang CP, He L, Huang CZ, Li YF, Zhen SJ. Continuous singlet oxygen generation for persistent chemiluminescence in Cu-MOFs-based catalytic system. Talanta 2021; 221:121498. [DOI: 10.1016/j.talanta.2020.121498] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 11/30/2022]
|
29
|
Wang P, Gong Q, Hu J, Li X, Zhang X. Reactive Oxygen Species (ROS)-Responsive Prodrugs, Probes, and Theranostic Prodrugs: Applications in the ROS-Related Diseases. J Med Chem 2020; 64:298-325. [PMID: 33356214 DOI: 10.1021/acs.jmedchem.0c01704] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Elevated levels of reactive oxygen species (ROS) have commonly been implicated in a variety of diseases, including cancer, inflammation, and neurodegenerative diseases. In light of significant differences in ROS levels between the nonpathogenic and pathological tissues, an increasing number of ROS-responsive prodrugs, probes, and theranostic prodrugs have been developed for the targeted treatment and precise diagnosis of ROS-related diseases. This review will summarize and provide insight into recent advances in ROS-responsive prodrugs, fluorescent probes, and theranostic prodrugs, with applications to different ROS-related diseases and various subcellular organelle-targetable and disease-targetable features. The ROS-responsive moieties, the self-immolative linkers, and the typical activation mechanism for the ROS-responsive release are also summarized and discussed.
Collapse
Affiliation(s)
- Pengfei Wang
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China.,Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Qijie Gong
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Jiabao Hu
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Xiang Li
- Department of Pharmaceutical Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaojin Zhang
- Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
30
|
Blum NT, Zhang Y, Qu J, Lin J, Huang P. Recent Advances in Self-Exciting Photodynamic Therapy. Front Bioeng Biotechnol 2020; 8:594491. [PMID: 33195164 PMCID: PMC7606875 DOI: 10.3389/fbioe.2020.594491] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 09/07/2020] [Indexed: 12/21/2022] Open
Abstract
Photodynamic therapy (PDT) is already (Food and Drug Administration) FDA approved and used in the clinic for oncological treatment of pancreatic, lung, esophagus, bile duct, and of course several cancers of skin. It is an important tool in the oncological array of treatments, but for it exist several shortcomings, the most prominent of which is the shallow depth penetration of light within tissues. One-way researchers have attempted to circumvent this is through the creation of self-exciting "auto-PDT" nanoplatforms, which do not require the presence of an external light source to drive the PDT process. Instead, these platforms are driven either through oxidative chemical excitation in the form of chemiluminescence or radiological excitation from beta-emitting isotopes in the form of Cherenkov luminescence. In both, electronic excitations are generated and then transferred to the photosensitizer (PS) via Resonance Energy Transfer (RET) or Cherenkov Radiation Energy Transfer (CRET). Self-driven PDT has many components, so in this review, using contemporary examples from literature, we will breakdown the important concepts, strategies, and rationale behind the design of these self-propagating PDT nanoplatforms and critically review the aspects which make them successful and different from conventional PDT. Particular focus is given to the mechanisms of excitation and the different methods of transfer of excited electronic energy to the photosensitizer as well as the resulting therapeutic effect. The papers reviewed herein will be critiqued for their apparent therapeutic efficiency, and a basic rationale will be developed for what qualities are necessary to constitute an "effective" auto-PDT platform. This review will take a biomaterial engineering approach to the review of the auto-PDT platforms and the intended audience includes researchers in the field looking for a new perspective on PDT nanoplatforms as well as other material scientists and engineers looking to understand the mechanisms and relations between different parts of the complex "auto-PDT" system.
Collapse
Affiliation(s)
- Nicholas Thomas Blum
- Marshall Laboratory of Biomedical Engineering, Laboratory of Evolutionary Theranostics (LET), International Cancer Center, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, China.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Yifan Zhang
- Marshall Laboratory of Biomedical Engineering, Laboratory of Evolutionary Theranostics (LET), International Cancer Center, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, China
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Jing Lin
- Marshall Laboratory of Biomedical Engineering, Laboratory of Evolutionary Theranostics (LET), International Cancer Center, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, China
| | - Peng Huang
- Marshall Laboratory of Biomedical Engineering, Laboratory of Evolutionary Theranostics (LET), International Cancer Center, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|
31
|
A near-infrared turn-on fluorescence probe for glutathione detection based on nanocomposites of semiconducting polymer dots and MnO2 nanosheets. Anal Bioanal Chem 2020; 412:8167-8176. [DOI: 10.1007/s00216-020-02951-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/17/2020] [Accepted: 09/11/2020] [Indexed: 01/01/2023]
|
32
|
Li L, Zou J, Dai Y, Fan W, Niu G, Yang Z, Chen X. Burst release of encapsulated annexin A5 in tumours boosts cytotoxic T-cell responses by blocking the phagocytosis of apoptotic cells. Nat Biomed Eng 2020; 4:1102-1116. [PMID: 32807941 DOI: 10.1038/s41551-020-0599-5] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 07/10/2020] [Indexed: 12/15/2022]
Abstract
Cancer immunotherapies, particularly therapeutic vaccination, do not typically generate robust anti-tumour immune responses. Here, we show that the intratumoral burst release of the protein annexin A5 from intravenously injected hollow mesoporous nanoparticles made of diselenide-bridged organosilica generates robust anti-tumour immunity by exploiting the capacity of primary tumours to act as antigen depots. Annexin A5 blocks immunosuppressive apoptosis and promotes immunostimulatory secondary necrosis by binding to the phagocytic marker phosphatidylserine on dying tumour cells. In mice bearing large established tumours, the burst release of annexin A5 owing to diselenide-bond cleavage under the oxidizing conditions of the tumour microenvironment and the reducing intracellular conditions of tumour cells induced systemic cytotoxic T-cell responses and immunological memory associated with tumour regression and the prevention of relapse, and led to complete tumour eradication in about 50% of mice with orthotopic breast tumours. Reducing apoptosis signalling via in situ vaccination could be a versatile strategy for the generation of adaptive anti-tumour immune responses.
Collapse
Affiliation(s)
- Ling Li
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Jianhua Zou
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Yunlu Dai
- Faculty of Health Sciences, University of Macau, Macau, P. R. China
| | - Wenpei Fan
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, USA. .,State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing, P. R. China.
| | - Gang Niu
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Zhen Yang
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, USA.
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
33
|
Shen Z, Xia J, Ma Q, Zhu W, Gao Z, Han S, Liang Y, Cao J, Sun Y. Tumor Microenvironment-triggered Nanosystems as dual-relief Tumor Hypoxia Immunomodulators for enhanced Phototherapy. Theranostics 2020; 10:9132-9152. [PMID: 32802183 PMCID: PMC7415819 DOI: 10.7150/thno.46076] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/18/2020] [Indexed: 12/23/2022] Open
Abstract
Photodynamic therapy (PDT) is a promising strategy in cancer treatment that utilizes photosensitizers (PSs) to produce reactive oxygen species (ROS) and eliminate cancer cells under specific wavelength light irradiation. However, special tumor environments, such as those with overexpression of glutathione (GSH), which will consume PDT-mediated ROS, as well as hypoxia in the tumor microenvironment (TME) could lead to ineffective treatment. Moreover, PDT is highly light-dependent and therefore can be hindered in deep tumor cells where light cannot easily penetrate. To solve these problems, we designed oxygen-dual-generating nanosystems MnO2@Chitosan-CyI (MCC) for enhanced phototherapy. Methods: The TME-sensitive nanosystems MCC were easily prepared through the self-assembly of iodinated indocyanine green (ICG) derivative CyI and chitosan, after which the MnO2 nanoparticles were formed as a shell by electrostatic interaction and Mn-N coordinate bonding. Results: When subjected to NIR irradiation, MCC offered enhanced ROS production and heat generation. Furthermore, once endocytosed, MnO2 could not only decrease the level of GSH but also serve as a highly efficient in situ oxygen generator. Meanwhile, heat generation-induced temperature increase accelerated in vivo blood flow, which effectively relieved the environmental tumor hypoxia. Furthermore, enhanced PDT triggered an acute immune response, leading to NIR-guided, synergistic PDT/photothermal/immunotherapy capable of eliminating tumors and reducing tumor metastasis. Conclusion: The proposed novel nanosystems represent an important advance in altering TME for improved clinical PDT efficacy, as well as their potential as effective theranostic agents in cancer treatment.
Collapse
Affiliation(s)
- Zijun Shen
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266021, China
| | - Junfei Xia
- Department of Electrical and Computer Engineering, Tufts University, Medford, MA, 02155, USA
| | - Qingming Ma
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266021, China
| | - Wei Zhu
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, 266021, China
| | - Zhen Gao
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266021, China
| | - Shangcong Han
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266021, China
| | - Yan Liang
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266021, China
| | - Jie Cao
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266021, China
| | - Yong Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266021, China
| |
Collapse
|
34
|
Wong XY, Sena-Torralba A, Álvarez-Diduk R, Muthoosamy K, Merkoçi A. Nanomaterials for Nanotheranostics: Tuning Their Properties According to Disease Needs. ACS NANO 2020; 14:2585-2627. [PMID: 32031781 DOI: 10.1021/acsnano.9b08133] [Citation(s) in RCA: 175] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Nanotheranostics is one of the biggest scientific breakthroughs in nanomedicine. Most of the currently available diagnosis and therapies are invasive, time-consuming, and associated with severe toxic side effects. Nanotheranostics, on the other hand, has the potential to bridge this gap by harnessing the capabilities of nanotechnology and nanomaterials for combined therapeutics and diagnostics with markedly enhanced efficacy. However, nanomaterial applications in nanotheranostics are still in its infancy. This is due to the fact that each disease has a particular microenvironment with well-defined characteristics, which promotes deeper selection criteria of nanomaterials to meet the disease needs. In this review, we have outlined how nanomaterials are designed and tailored for nanotheranostics of cancer and other diseases such as neurodegenerative, autoimmune (particularly on rheumatoid arthritis), and cardiovascular diseases. The penetrability and retention of a nanomaterial in the biological system, the therapeutic strategy used, and the imaging mode selected are some of the aspects discussed for each disease. The specific properties of the nanomaterials in terms of feasibility, physicochemical challenges, progress in clinical trials, its toxicity, and their future application on translational medicine are addressed. Our review meticulously and critically examines the applications of nanotheranostics with various nanomaterials, including graphene, across several diseases, offering a broader perspective of this emerging field.
Collapse
Affiliation(s)
- Xin Yi Wong
- Nanobioelectronics and Biosensors Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, and The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, 08193 Barcelona, Spain
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham Malaysia, 43500 Semenyih, Selangor Malaysia
| | - Amadeo Sena-Torralba
- Nanobioelectronics and Biosensors Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, and The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Ruslan Álvarez-Diduk
- Nanobioelectronics and Biosensors Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, and The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Kasturi Muthoosamy
- Nanotechnology Research Group, Centre of Nanotechnology and Advanced Materials, University of Nottingham Malaysia, 43500 Semenyih, Selangor Malaysia
| | - Arben Merkoçi
- Nanobioelectronics and Biosensors Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, and The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, 08193 Barcelona, Spain
- ICREA, Institució Catalana de Recerca i Estudis Avançats, Pg. Lluis Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
35
|
Chen X, Wang T, Le W, Huang X, Gao M, Chen Q, Xu S, Yin D, Fu Q, Shao C, Chen B, Shi D. Smart Sorting of Tumor Phenotype with Versatile Fluorescent Ag Nanoclusters by Sensing Specific Reactive Oxygen Species. Am J Cancer Res 2020; 10:3430-3450. [PMID: 32206100 PMCID: PMC7069096 DOI: 10.7150/thno.38422] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 01/13/2020] [Indexed: 12/11/2022] Open
Abstract
Reactive oxygen species (ROS) play a crucial role in cancer formation and development, especially cancer metastasis. However, lack of a precise tool, which could accurately distinguish specific types of ROS, restricts an in-depth study of ROS in cancer development and progression. Herein, we designed smart and versatile fluorescent Ag nanoclusters (AgNCs) for sensitive and selective detection of different species of ROS in cells and tissues. Methods: Firstly, dual-emission fluorescent AgNCs was synthesized by using bovine serum albumin (BSA) to sense different types of ROS (H2O2, O2•-, •OH). The responsiveness of the AgNCs to different species of ROS was explored by fluorescence spectrum, hydrodynamic diameter, and so on. Furthermore, dual-emission fluorescent AgNCs was used to sense ROS in tumor with different degrees of differentiation. Finally, the relationship between specific types of ROS and tumor cell invasion was explored by cell migration ability and the expression of cell adhesion and EMT markers. Results: This dual-emission fluorescent AgNCs possessed an excellent ability to sensitively and selectively distinguish highly reactive oxygen species (hROS, including O2•-and •OH) from moderate reactive oxygen species (the form of H2O2), and exhibited no fluoresence and green fluorescence, respectively. The emission of AgNCs is effective in detecting cellular and tissular ROS. When cultured with AgNCs, malignant tumor cells exhibit non-fluorescence, while the benign tumor emits green and reduced red light and the normal cells appear in weak green and bright red fluorescence. We further verified that not just H2O2 but specific species of ROS (O2•-and •OH) were involved in cell invasion and malignant transformation. Our study warrants further research on the role of ROS in physiological and pathophysiological processes. Conclusion: Taken together, AgNCs would be a promising approach for sensing ROS, and offer an intelligent tool to detect different kinds of ROS in tumors.
Collapse
|
36
|
Yan Y, Wang XY, Hai X, Song W, Ding C, Cao J, Bi S. Chemiluminescence resonance energy transfer: From mechanisms to analytical applications. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115755] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
37
|
Xu Y, Yang W, Yao D, Bian K, Zeng W, Liu K, Wang D, Zhang B. An aggregation-induced emission dye-powered afterglow luminogen for tumor imaging. Chem Sci 2020; 11:419-428. [PMID: 32190262 PMCID: PMC7067237 DOI: 10.1039/c9sc04901k] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 11/08/2019] [Indexed: 12/13/2022] Open
Abstract
Semiconducting polymer (SP)-based afterglow luminogens are showing increasing potential for in vivo imaging because of their long-life luminescence and the associated benefits (e.g., zero-autofluorescence background and high signal-to-noise ratio). However, such organic afterglow luminescence agents are still rare and their application is usually limited by their relatively low afterglow intensity and short afterglow duration. Herein, we report an aggregation-induced emission (AIE) dye-powered SP afterglow luminogen by leveraging on the unique characteristics of an AIE dye to circumvent the concentration-quenching effect, enhance afterglow intensity and prolong afterglow duration. The underlying working mechanism is investigated by a series of experiments and it is found that the AIE dye provides sufficient 1O2 to excite SPs and form massive amounts of high-energy intermediates, and then the SP intermediates emit photons that can activate the AIE dye to generate 1O2 and simultaneously trigger the energy transfer process between the SPs and AIE dye, resulting in a deep-red emission. It is this closed-loop of "photon-1O2-SP intermediates-photon" that provides the afterglow emission even after the cessation of the excitation light. The as-prepared luminogen shows good performance in in vivo tumour imaging. This study demonstrates the advantages of AIE-facilitated afterglow luminescence and discloses its mechanism, and hopefully it could inspire the development of other innovative designs for cancer theranostics.
Collapse
Affiliation(s)
- Yan Xu
- Department of Medical Ultrasound , Shanghai Tenth People's Hospital , Tongji University Cancer Center , Tongji University School of Medicine , Shanghai 200072 , China .
| | - Weitao Yang
- Department of Medical Ultrasound , Shanghai Tenth People's Hospital , Tongji University Cancer Center , Tongji University School of Medicine , Shanghai 200072 , China .
| | - Defan Yao
- Department of Radiology , Xinhua Hospital , Shanghai Jiao Tong University School of Medicine , Shanghai 200092 , China
| | - Kexin Bian
- Department of Medical Ultrasound , Shanghai Tenth People's Hospital , Tongji University Cancer Center , Tongji University School of Medicine , Shanghai 200072 , China .
| | - Weiwei Zeng
- Department of Medical Ultrasound , Shanghai Tenth People's Hospital , Tongji University Cancer Center , Tongji University School of Medicine , Shanghai 200072 , China .
| | - Kai Liu
- Department of Medical Ultrasound , Shanghai Tenth People's Hospital , Tongji University Cancer Center , Tongji University School of Medicine , Shanghai 200072 , China .
| | - Dengbin Wang
- Department of Radiology , Xinhua Hospital , Shanghai Jiao Tong University School of Medicine , Shanghai 200092 , China
| | - Bingbo Zhang
- Department of Medical Ultrasound , Shanghai Tenth People's Hospital , Tongji University Cancer Center , Tongji University School of Medicine , Shanghai 200072 , China .
| |
Collapse
|
38
|
Yang M, Huang J, Fan J, Du J, Pu K, Peng X. Chemiluminescence for bioimaging and therapeutics: recent advances and challenges. Chem Soc Rev 2020; 49:6800-6815. [DOI: 10.1039/d0cs00348d] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The current progress, design principles in bioimaging and therapeutic applications, and future perspectives of various chemiluminescent platforms are reviewed.
Collapse
Affiliation(s)
- Mingwang Yang
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- 116024 Dalian
- China
| | - Jiaguo Huang
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore 637457
- Singapore
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- 116024 Dalian
- China
- Ningbo Institute of Dalian University of Technology
| | - Jianjun Du
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- 116024 Dalian
- China
- Ningbo Institute of Dalian University of Technology
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore 637457
- Singapore
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- 116024 Dalian
- China
| |
Collapse
|
39
|
Chen J, Qiu H, Zhao S. Fabrication of chemiluminescence resonance energy transfer platform based on nanomaterial and its application in optical sensing, biological imaging and photodynamic therapy. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115747] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
40
|
Bretin L, Pinon A, Bouramtane S, Ouk C, Richard L, Perrin ML, Chaunavel A, Carrion C, Bregier F, Sol V, Chaleix V, Leger DY, Liagre B. Photodynamic Therapy Activity of New Porphyrin-Xylan-Coated Silica Nanoparticles in Human Colorectal Cancer. Cancers (Basel) 2019; 11:cancers11101474. [PMID: 31575052 PMCID: PMC6826978 DOI: 10.3390/cancers11101474] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 09/28/2019] [Indexed: 12/13/2022] Open
Abstract
Photodynamic therapy (PDT) using porphyrins has been approved for treatment of several solid tumors due to the generation of cytotoxic reactive oxygen species (ROS). However, low physiological solubility and lack of selectivity towards tumor sites are the main limitations of their clinical use. Nanoparticles are able to spontaneously accumulate in solid tumors through an enhanced permeability and retention (EPR) effect due to leaky vasculature, poor lymphatic drainage, and increased vessel permeability. Herein, we proved the added value of nanoparticle vectorization on anticancer efficacy and tumor-targeting by 5-(4-hydroxyphenyl)-10,15,20-triphenylporphyrin (TPPOH). Using 80 nm silica nanoparticles (SNPs) coated with xylan-TPPOH conjugate (TPPOH-X), we first showed very significant phototoxic effects of TPPOH-X SNPs mediated by post-PDT ROS generation and stronger cell uptake in human colorectal cancer cell lines compared to free TPPOH. Additionally, we demonstrated apoptotic cell death induced by TPPOH-X SNPs-PDT and the interest of autophagy inhibition to increase anticancer efficacy. Finally, we highlighted in vivo, without toxicity, elevated anticancer efficacy of TPPOH-X SNPs through improvement of tumor-targeting compared to a free TPPOH protocol. Our work demonstrated for the first time the strong anticancer efficacy of TPPOH in vitro and in vivo and the merit of SNPs vectorization.
Collapse
Affiliation(s)
- Ludovic Bretin
- Laboratoire PEIRENE EA 7500, Faculté de Pharmacie, Université de Limoges 2, Rue du Docteur Raymond Marcland, 87025 Limoges Cedex, France.
| | - Aline Pinon
- Laboratoire PEIRENE EA 7500, Faculté de Pharmacie, Université de Limoges 2, Rue du Docteur Raymond Marcland, 87025 Limoges Cedex, France.
| | - Soukaina Bouramtane
- Laboratoire PEIRENE EA 7500, Faculté des Sciences & Techniques, Université de Limoges 123, Avenue Albert Thomas, 87060 Limoges Cedex, France.
| | - Catherine Ouk
- BISCEm Pôle Cytométrie en flux/Microscopie, Université de Limoges 2, Rue du Docteur Raymond Marcland, 87025 Limoges Cedex, France.
| | - Laurence Richard
- Service d'Anatomie Pathologique, Centre Hospitalier Universitaire de Limoges 2, Avenue Martin Luther King, 87042 Limoges Cedex, France.
| | - Marie-Laure Perrin
- Laboratoire Bio EM XLIM UMR CNRS 7252, Faculté de Médecine, Université de Limoges 2, Rue du Docteur Raymond Marcland, 87025 Limoges Cedex, France.
| | - Alain Chaunavel
- Service d'Anatomie Pathologique, Centre Hospitalier Universitaire de Limoges 2, Avenue Martin Luther King, 87042 Limoges Cedex, France.
| | - Claire Carrion
- BISCEm Pôle Cytométrie en flux/Microscopie, Université de Limoges 2, Rue du Docteur Raymond Marcland, 87025 Limoges Cedex, France.
| | - Frédérique Bregier
- Laboratoire PEIRENE EA 7500, Faculté des Sciences & Techniques, Université de Limoges 123, Avenue Albert Thomas, 87060 Limoges Cedex, France.
| | - Vincent Sol
- Laboratoire PEIRENE EA 7500, Faculté des Sciences & Techniques, Université de Limoges 123, Avenue Albert Thomas, 87060 Limoges Cedex, France.
| | - Vincent Chaleix
- Laboratoire PEIRENE EA 7500, Faculté des Sciences & Techniques, Université de Limoges 123, Avenue Albert Thomas, 87060 Limoges Cedex, France.
| | - David Yannick Leger
- Laboratoire PEIRENE EA 7500, Faculté de Pharmacie, Université de Limoges 2, Rue du Docteur Raymond Marcland, 87025 Limoges Cedex, France.
| | - Bertrand Liagre
- Laboratoire PEIRENE EA 7500, Faculté de Pharmacie, Université de Limoges 2, Rue du Docteur Raymond Marcland, 87025 Limoges Cedex, France.
| |
Collapse
|
41
|
Cao Y, Min J, Zheng D, Li J, Xue Y, Yu F, Wu M. Vehicle-saving theranostic probes based on hydrophobic iron oxide nanoclusters using doxorubicin as a phase transfer agent for MRI and chemotherapy. Chem Commun (Camb) 2019; 55:9015-9018. [DOI: 10.1039/c9cc03868j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A simple approach for constructing vehicle-saving theranostic nanobeads for MRI and chemotherapy is developed by using doxorubicin for phase transfer of iron oxide nanoclusters.
Collapse
Affiliation(s)
- Yanbing Cao
- Key Laboratory for Green Chemical Process of Ministry of Education
- Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology
- Hubei Engineering Research Center for Advanced Fine Chemicals, and School of Chemical Engineering and Pharmacy
- Wuhan Institute of Technology
- Wuhan 430205
| | - Juan Min
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province
- Mengchao Hepatobiliary Hospital of Fujian Medical University
- Fuzhou 350025
- P. R. China
| | - Dongye Zheng
- Key Laboratory of Design and Assembly of Functional Nanostructures
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou 350002
- P. R. China
| | - Jiong Li
- Key Laboratory of Design and Assembly of Functional Nanostructures
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou 350002
- P. R. China
| | - Yanan Xue
- Key Laboratory for Green Chemical Process of Ministry of Education
- Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology
- Hubei Engineering Research Center for Advanced Fine Chemicals, and School of Chemical Engineering and Pharmacy
- Wuhan Institute of Technology
- Wuhan 430205
| | - Faquan Yu
- Key Laboratory for Green Chemical Process of Ministry of Education
- Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology
- Hubei Engineering Research Center for Advanced Fine Chemicals, and School of Chemical Engineering and Pharmacy
- Wuhan Institute of Technology
- Wuhan 430205
| | - Ming Wu
- Wuhan Institute of Virology
- Chinese Academy of Sciences
- Wuhan 430071
- P. R. China
| |
Collapse
|