1
|
Wang J, Yin C, Huo F. Recent advances in glutathione fluorescent probes based on small organic molecules and their bioimaging. Analyst 2025; 150:220-239. [PMID: 39670499 DOI: 10.1039/d4an01373e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Glutathione (GSH), as one of the most important biological mercaptans, is involved in a variety of biological processes and is considered an important biomarker in early diagnosis, treatment and disease stage monitoring. Rapid and accurate detection of GSH in complex biological systems is of great significance for pathological analysis. Fluorescence imaging technology is widely used because of its advantages of high sensitivity, high resolution and non-destructiveness. In this paper, the latest research progress on GSH-responsive organic small molecule fluorescence probes in the last five years is summarized, and their response mechanisms are classified and discussed. In addition, the probe design strategy, sensing mechanism and biological application are discussed in this review. Finally, the challenges and future research directions of developing new GSH probes are presented.
Collapse
Affiliation(s)
- Jingdong Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China.
| | - Caixia Yin
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China.
| | - Fangjun Huo
- Research Institute of Applied Chemistry, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
2
|
Wu P, Zhang J, Guo L, Chen B, Xiong L, Du Y. LAMP5, One of Four Genes Related to Oxidative Stress That Predict Biochemical Recurrence-Free Survival, Promotes Proliferation and Invasion in Prostate Cancer. Adv Appl Bioinform Chem 2024; 17:119-138. [PMID: 39634037 PMCID: PMC11616484 DOI: 10.2147/aabc.s489131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024] Open
Abstract
Background Prostate cancer (PCa) development largely depends on increased levels of oxidative stress (OS) and a deficient anti-oxidative system. Identifying genes associated with oxidative stress is critical in order to direct PCa therapy and future research. Methods The TCGA and GTEx databases provided the bulk RNA-seq data, and the GEO database provided the single-cell data GSE141445. Utilizing reactive oxygen species (ROS) markers, single-cell analysis and cluster identification related to oxidative stress were conducted using the R packages "Seurat" and "AUCell". The differentially expressed genes (DEGs) in normal and PCa samples were identified with the "limma" R package. LASSO regression analysis was used to build a recurrence score (RS) model. The R packages "maftools" and the CIBERSORT method were employed to explore genetic mutation and the infiltrating immune cell, respectively. LAMP5 was chosen for further investigation after random forest analysis was performed. Results The RS model for PCa was found to be an independent predictor. The tumor immune microenvironment and the frequency of gene mutations differed significantly between the high- and low-risk score groups. Further investigation revealed that downregulation of LAMP5 in PC-3 and DU145 cell lines suppressed cell proliferation and invasion, as demonstrated by the results of in vitro experiments. Conclusion We successfully created a robust RS model. The result of the study indicates that LAMP5 could contribute to cell proliferation and invasion in PCa.
Collapse
Affiliation(s)
- Peiqiang Wu
- Department of Urology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, 710061, People’s Republic of China
| | - Jianlei Zhang
- Department of Urology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, 710061, People’s Republic of China
| | - Li Guo
- Department of Urology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, 710061, People’s Republic of China
| | - Bohong Chen
- Department of Urology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, 710061, People’s Republic of China
| | - Lingxiao Xiong
- Department of Urology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, 710061, People’s Republic of China
| | - Yuefeng Du
- Department of Urology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, 710061, People’s Republic of China
| |
Collapse
|
3
|
Shahzad A, Teng Z, Yameen M, Liu W, Cui K, Liu X, Sun Y, Duan Q, Xia J, Dong Y, Bai Z, Peng D, Zhang J, Xu Z, Pi J, Yang Z, Zhang Q. Innovative lipid nanoparticles: A cutting-edge approach for potential renal cell carcinoma therapeutics. Biomed Pharmacother 2024; 180:117465. [PMID: 39321512 DOI: 10.1016/j.biopha.2024.117465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/09/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024] Open
Abstract
The kidney plays a crucial role in regulating homeostasis within the human body. Renal cell carcinoma (RCC) is the most common form of kidney cancer, accounting for nearly 90 % of all renal malignancies. Despite the availability of various therapeutic strategies, RCC remains a challenging disease due to its resistance to conventional treatments. Nanotechnology has emerged as a promising field, offering new opportunities in cancer therapeutics. It presents several advantages over traditional methods, enabling diverse biomedical applications, including drug delivery, prevention, diagnosis, and treatment. Lipid nanoparticles (LNPs), approximately 100 nm in size, are derived from a range of lipids and other biochemical compounds. these particulates are designed to overcome biological barriers, allowing them to selectively accumulate at diseased target sites for effective therapeutic action. Many pharmaceutically important compounds face challenges such as poor solubility in aqueous solutions, chemical and physiological instability, or toxicity. LNP technology stands out as a promising drug delivery system for bioactive organic compounds. This article reviews the applications of LNPs in RCC treatment and explores their potential clinical translation, identifying the most viable LNPs for medical use. With ongoing advancement in LNP-based anticancer strategies, there is a growing potential to improve the management and treatment of renal cancer.
Collapse
Affiliation(s)
- Asif Shahzad
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Zhuoran Teng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Muhammad Yameen
- Department of Biochemistry, Government College University Faisalabad, Punjab 38000, Pakistan
| | - Wenjing Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Kun Cui
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Xiangjie Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Yijian Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Qiuxin Duan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - JiaoJiao Xia
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Yurong Dong
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Ziyuan Bai
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Dongmei Peng
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Jinshan Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Zhe Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Jiang Pi
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, China.
| | - Zhe Yang
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China.
| | - Qiao Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, China.
| |
Collapse
|
4
|
Chen X, Yong Z, Xiong Y, Yang H, Xu C, Wang X, Deng Q, Li J, Yang X, Li Z. Hydroxyethyl starch conjugates co-assembled nanoparticles promote photodynamic therapy and antitumor immunity by inhibiting antioxidant systems. Asian J Pharm Sci 2024; 19:100950. [PMID: 39497748 PMCID: PMC11532429 DOI: 10.1016/j.ajps.2024.100950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/06/2024] [Accepted: 06/17/2024] [Indexed: 11/07/2024] Open
Abstract
Photodynamic therapy (PDT) can produce high levels of reactive oxygen species (ROS) to kill tumor cells and induce antitumor immunity. However, intracellular antioxidant systems, including glutathione (GSH) system and thioredoxin (Trx) system, limit the accumulation of ROS, resulting in compromised PDT and insufficient immune stimulation. Herein, we designed a nanomedicine PtHPs co-loading photosensitizer pyropheophorbide a (PPa) and cisplatin prodrug Pt-COOH(IV) (Pt (IV)) based on hydroxyethyl starch (HES) to inhibit both GSH and Trx antioxidant systems and achieve potent PDT as well as antitumor immune responses. Specifically, HES-PPa and HES-Pt were obtained by coupling HES with PPa and Pt (IV), and assembled into nanoparticle PtHPs by emulsification method to achieve the purpose of co-delivery of PPa and Pt (IV). PtHPs improved PPa photostability while retaining PPa photodynamic properties. In vitro experiments showed that PtHPs reduced GSH, inhibited Trx system and had better cell-killing effect and ROS generation ability. Subcutaneous tumor models showed that PtHPs had good safety and tumor inhibition effect. Bilateral tumor models suggested that PtHPs promoted the release of damage-associated molecular patterns and the maturation of dendritic cells, induced T cell-mediated immune responses, and thus suppressed the growth of both primary and distal tumors. This study reports a novel platinum-based nanomedicine and provides a new strategy for boosting PDT therapy-mediated antitumor immunity by overcoming intrinsic antioxidant systems.
Collapse
Affiliation(s)
- Xiang Chen
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhengtao Yong
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yuxuan Xiong
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hai Yang
- Key Laboratory of Molecular Biophysics of Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430074, China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Chen Xu
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xing Wang
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qingyuan Deng
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jiayuan Li
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiangliang Yang
- Key Laboratory of Molecular Biophysics of Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430074, China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, Wuhan 430074, China
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan 430074, China
- Hubei Bioinformatics and Molecular Imaging Key Laboratory, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zifu Li
- Key Laboratory of Molecular Biophysics of Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430074, China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, Wuhan 430074, China
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan 430074, China
- Hubei Bioinformatics and Molecular Imaging Key Laboratory, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
5
|
Lu H, Tong W, Jiang M, Liu H, Meng C, Wang K, Mu X. Mitochondria-Targeted Multifunctional Nanoprodrugs by Inhibiting Metabolic Reprogramming for Combating Cisplatin-Resistant Lung Cancer. ACS NANO 2024. [PMID: 39088743 DOI: 10.1021/acsnano.4c04024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
How to address the resistance of cisplatin (CDDP) has always been a clinical challenge. The resistance mechanism of platinum-based drugs is very complex, including nuclear DNA damage repair, apoptosis escape, and tumor metabolism reprogramming. Tumor cells can switch between mitochondrial oxidative phosphorylation (OXPHOS) and glycolysis and develop resistance to chemotherapy drugs through metabolic variability. In addition, due to the lack of histone protection and a relatively weak damage repair ability, mitochondrial DNA (mtDNA) is more susceptible to damage, which in turn affects mitochondrial OXPHOS and can become a potential target for platinum-based drugs. Therefore, mitochondria, as targets of anticancer drugs, have become a hot topic in tumor resistance research. This study constructed a self-assembled nanotargeted drug delivery system LND-SS-Pt-TPP/HA-CD. β-Cyclodextrin-grafted hydronic acid (HA-CD)-encapsulated prodrug nanoparticles can target CD44 on the tumor surface and further deliver the prodrug to intracellular mitochondria through a triphenylphosphine group (TPP+). Disulfide bonds can be selectively degraded by glutathione (GSH) in mitochondria, releasing lonidamine (LND) and the cisplatin prodrug (Pt(IV)). Under the action of GSH and ascorbic acid, Pt(IV) is further reduced to cisplatin (Pt(II)). Cisplatin can cause mtDNA damage, induce mitochondrial dysfunction and mitophagy, and then affect mitochondrial OXPHOS. Meanwhile, LND can reduce the hexokinase II (HK II) level, induce destruction of mitochondria, and block energy supply by glycolysis inhibition. Ultimately, this self-assembled nano targeted delivery system can synergistically kill cisplatin-resistant lung cancer cells, which supplies an overcome cisplatin resistance choice via the disrupt mitochondria therapy.
Collapse
Affiliation(s)
- Haibin Lu
- Jilin University School of Pharmaceutical Sciences, Changchun 130021, China
| | - Weifang Tong
- Department of Otolaryngology Head and Neck Surgery, The Second Hospital of Jilin University, Changchun 130041, China
| | - Meixu Jiang
- Jilin University School of Pharmaceutical Sciences, Changchun 130021, China
| | - Huimin Liu
- Jilin University School of Pharmaceutical Sciences, Changchun 130021, China
| | - Chen Meng
- Jilin University School of Pharmaceutical Sciences, Changchun 130021, China
| | - Kai Wang
- Jilin University School of Pharmaceutical Sciences, Changchun 130021, China
| | - Xupeng Mu
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| |
Collapse
|
6
|
Bai Y, Wang Z, Liu D, Meng X, Wang H, Yu M, Zhang S, Sun T. Enhancing ovarian cancer treatment with maleimide-modified Pt(IV) prodrug nanoparticles. Mater Today Bio 2024; 27:101131. [PMID: 39050986 PMCID: PMC11267080 DOI: 10.1016/j.mtbio.2024.101131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/06/2024] [Accepted: 06/16/2024] [Indexed: 07/27/2024] Open
Abstract
The limitations of platinum in ovarian cancer therapy, such as poor solubility and significant side effects, often lead to suboptimal therapeutic outcome and mortality. In this study, we have developed a novel approach utilizing biodegradable polymeric nanoparticles as a drug delivery system (NDDS), loaded with advanced platinum (IV) (Pt(IV)) prodrugs. A key feature of our approach is the enhancement of nanoparticles with maleimide, a modification hypothesized to significantly boost tumor tissue accumulation. When tested in mouse models of orthotopic and peritoneal metastasis ovarian cancer, these maleimide-modified nanoparticles are anticipated to show preferential accumulation in tumor tissues, enhancing therapeutic efficiency and minimizing systemic drug exposure. Our findings demonstrate that the maleimide-modified Pt(IV)-loaded NDDSs significantly reduce tumor burden in comparison to traditional cisplatin therapy, while simultaneously reducing adverse side effects. This leads to markedly improved survival rates in models of peritoneal metastasis ovarian cancer, offering a promising new direction in the treatment of this challenging disease.
Collapse
Affiliation(s)
- Yiting Bai
- Department of Obstetrics and Gynaecology, The First Hospital, Jilin University, Changchun, Jilin, China
| | - Zhenpeng Wang
- Department of Obstetrics and Gynaecology, The First Hospital, Jilin University, Changchun, Jilin, China
| | - Dongzhen Liu
- Department of Obstetrics and Gynaecology, The First Hospital, Jilin University, Changchun, Jilin, China
| | - Xiandi Meng
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
| | - Haorui Wang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China
- International Center of Future Science, Jilin University, Changchun, Jilin, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
| | - Meiling Yu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
| | - Songling Zhang
- Department of Obstetrics and Gynaecology, The First Hospital, Jilin University, Changchun, Jilin, China
| | - Tianmeng Sun
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China
- International Center of Future Science, Jilin University, Changchun, Jilin, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, Jilin, China
| |
Collapse
|
7
|
Huang H, Zheng Y, Chang M, Song J, Xia L, Wu C, Jia W, Ren H, Feng W, Chen Y. Ultrasound-Based Micro-/Nanosystems for Biomedical Applications. Chem Rev 2024; 124:8307-8472. [PMID: 38924776 DOI: 10.1021/acs.chemrev.4c00009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Due to the intrinsic non-invasive nature, cost-effectiveness, high safety, and real-time capabilities, besides diagnostic imaging, ultrasound as a typical mechanical wave has been extensively developed as a physical tool for versatile biomedical applications. Especially, the prosperity of nanotechnology and nanomedicine invigorates the landscape of ultrasound-based medicine. The unprecedented surge in research enthusiasm and dedicated efforts have led to a mass of multifunctional micro-/nanosystems being applied in ultrasound biomedicine, facilitating precise diagnosis, effective treatment, and personalized theranostics. The effective deployment of versatile ultrasound-based micro-/nanosystems in biomedical applications is rooted in a profound understanding of the relationship among composition, structure, property, bioactivity, application, and performance. In this comprehensive review, we elaborate on the general principles regarding the design, synthesis, functionalization, and optimization of ultrasound-based micro-/nanosystems for abundant biomedical applications. In particular, recent advancements in ultrasound-based micro-/nanosystems for diagnostic imaging are meticulously summarized. Furthermore, we systematically elucidate state-of-the-art studies concerning recent progress in ultrasound-based micro-/nanosystems for therapeutic applications targeting various pathological abnormalities including cancer, bacterial infection, brain diseases, cardiovascular diseases, and metabolic diseases. Finally, we conclude and provide an outlook on this research field with an in-depth discussion of the challenges faced and future developments for further extensive clinical translation and application.
Collapse
Affiliation(s)
- Hui Huang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Yi Zheng
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P. R. China
| | - Meiqi Chang
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P. R. China
| | - Jun Song
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Lili Xia
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Chenyao Wu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Wencong Jia
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Hongze Ren
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Wei Feng
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Yu Chen
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| |
Collapse
|
8
|
Chen M, Fu Y, Liu Y, Zhang B, Song X, Chen X, Zhu Z, Gao H, Yang J, Shi X. NIR-Light-Triggered Mild-Temperature Hyperthermia to Overcome the Cascade Cisplatin Resistance for Improved Resistant Tumor Therapy. Adv Healthc Mater 2024; 13:e2303667. [PMID: 38178648 DOI: 10.1002/adhm.202303667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/13/2023] [Indexed: 01/06/2024]
Abstract
Currently, cisplatin resistance has been recognized as a multistep cascade process for its clinical chemotherapy failure. Hitherto, it remains challenging to develop a feasible and promising strategy to overcome the cascade drug resistance (CDR) issue for achieving fundamentally improved chemotherapeutic efficacy. Herein, a novel self-assembled nanoagent is proposed, which is constructed by Pt(IV) prodrug, cyanine dye (cypate), and gadolinium ion (Gd3+), for systematically conquering the cisplatin resistance by employing near-infrared (NIR) light activated mild-temperature hyperthermia in tumor targets. The proposed nanoagents exhibit high photostability, GSH/H+-responsive dissociation, preferable photothermal conversion, and enhanced cellular uptake performance. In particular, upon 785-nm NIR light irradiation, the generated mild temperature of ≈ 43 °C overtly improves the cell membrane permeability and drug uptake, accelerates the disruption of intracellular redox balance, and apparently enhances the formation of Pt-DNA adducts, thereby effectively overcoming the CDR issue and achieves highly improved therapeutic efficacy for cisplatin-resistant tumor ablation.
Collapse
Affiliation(s)
- Mingmao Chen
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Yulei Fu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Yan Liu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, and State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Baihe Zhang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Xiaorong Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Xinchun Chen
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Zhengjia Zhu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Hang Gao
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, and State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Jianmin Yang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
- Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, Fuzhou, 350108, China
| | - Xianai Shi
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
- Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, Fuzhou, 350108, China
| |
Collapse
|
9
|
Qi N, Zhou X, Ma N, Zhang J, Wang Z, Zhang X, Li A. Integrin αvβ3 and LHRH Receptor Double Directed Nano-Analogue Effective Against Ovarian Cancer in Mice Model. Int J Nanomedicine 2024; 19:3071-3086. [PMID: 38562611 PMCID: PMC10984207 DOI: 10.2147/ijn.s442921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 02/23/2024] [Indexed: 04/04/2024] Open
Abstract
Introduction The high mortality rate of malignant ovarian cancer is attributed to the absence of effective early diagnosis methods. The LHRH receptor is specifically overexpressed in most ovarian cancers, and the integrin αvβ3 receptor is also overexpressed on the surface of ovarian cancer cells. In this study, we designed LHRH analogues (LHRHa)/RGD co-modified paclitaxel liposomes (LHRHa-RGD-LP-PTX) to target LHRH receptor-positive ovarian cancers more effectively and enhance the anti-ovarian cancer effects. Methods LHRHa-RGD-LP-PTX liposomes were prepared using the thin film hydration method. The morphology, physicochemical properties, cellular uptake, and cell viability were assessed. Additionally, the cellular uptake mechanism of the modified liposomes was investigated using various endocytic inhibitors. The inhibitory effect of the formulations on tumor spheroids was observed under a microscope. The co-localization with lysosomes was visualized using confocal laser scanning microscopy (CLSM), and the in vivo tumor-targeting ability of the formulations was assessed using the IVIS fluorescent imaging system. Finally, the in vivo anti-tumor efficacy of the formulations was evaluated in the armpits of BALB/c nude mice. Results The results indicated that LHRHa-RGD-LP-PTX significantly enhanced cellular uptake in A2780 cells, increased cytotoxicity, and hand a more potent inhibitory effect on tumor spheroids of A2780 cells. It also showed enhanced co-localization with endosomes or lysosome in A2780 cells, improved tumor-targeting capability, and demonstrated an enhanced anti-tumor effect in LHRHR-positive ovarian cancers. Conclusion The designed LHRHa-RGD-LP-PTX liposomes significantly enhanced the tumor-targeting ability and therapeutic efficacy for LHRH receptor-positive ovarian cancers.
Collapse
Affiliation(s)
- Na Qi
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, People's Republic of China
| | - Xiantai Zhou
- Department of Pharmacy, Guilin Medical University, Guilin, 541004, People's Republic of China
| | - Ningzhu Ma
- Department of Pharmacy, Guilin Medical University, Guilin, 541004, People's Republic of China
| | - Jianguo Zhang
- Department of Pharmacy, Guilin Medical University, Guilin, 541004, People's Republic of China
| | - Zhenlin Wang
- Department of Pharmacy, Guilin Medical University, Guilin, 541004, People's Republic of China
| | - Xin Zhang
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, People's Republic of China
| | - Aimin Li
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, People's Republic of China
| |
Collapse
|
10
|
Ruan F, Fang H, Chen F, Xie X, He M, Wang R, Lu J, Wu Z, Liu J, Guo F, Sun W, Shao D. Leveraging Radiation-triggered Metal Prodrug Activation Through Nanosurface Energy Transfer for Directed Radio-chemo-immunotherapy. Angew Chem Int Ed Engl 2024; 63:e202317943. [PMID: 38078895 DOI: 10.1002/anie.202317943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Indexed: 12/30/2023]
Abstract
Metal-based drugs currently dominate the field of chemotherapeutic agents; however, achieving the controlled activation of metal prodrugs remains a substantial challenge. Here, we propose a universal strategy for the radiation-triggered activation of metal prodrugs via nanosurface energy transfer (NSET). The core-shell nanoplatform (Ru-GNC) is composed of gold nanoclusters (GNC) and ruthenium (Ru)-containing organic-inorganic hybrid coatings. Upon X-ray irradiation, chemotherapeutic Ru (II) complexes were released in a controlled manner through a unique NSET process involving the transfer of photoelectron energy from the radiation-excited Ru-GNCs to the Ru-containing hybrid layer. In contrast to the traditional radiation-triggered activation of prodrugs, such an NSET-based system ensures that the reactive species in the tumor microenvironment are present in sufficient quantity and are not easily quenched. Additionally, ultrasmall Ru-GNCs preferably target mitochondria and profoundly disrupt the respiratory chain upon irradiation, leading to radiosensitization by generating abundant reactive oxygen species. Consequently, Ru-GNC-directed radiochemotherapy induces immunogenic cell death, resulting in significant therapeutic outcomes when combined with the programmed cell death-ligand 1 (PD-L1) checkpoint blockade. This NSET strategy represents a breakthrough in designing radiation-triggered nanoplatforms for metal-prodrug-mediated cancer treatment in an efficient and controllable manner.
Collapse
Affiliation(s)
- Feixia Ruan
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Hui Fang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, Guangdong, 511442, China
| | - Fangman Chen
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Xiaochun Xie
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Maomao He
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Ran Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Junna Lu
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, Guangdong, 511442, China
| | - Ziping Wu
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Jiali Liu
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, Guangdong, 511442, China
| | - Feng Guo
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, Guangdong, 511442, China
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Dan Shao
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, Guangdong, 511442, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, 510006, China
- Guangdong Provincial Key Laboratory of Biomedical Engineering, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, China
| |
Collapse
|
11
|
Yin X, Zhuang Y, Song H, Xu Y, Zhang F, Cui J, Zhao L, Yu Y, Zhang Q, Ye J, Chen Y, Han Y. Antibody-platinum (IV) prodrugs conjugates for targeted treatment of cutaneous squamous cell carcinoma. J Pharm Anal 2024; 14:389-400. [PMID: 38618248 PMCID: PMC11010626 DOI: 10.1016/j.jpha.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/07/2023] [Accepted: 11/01/2023] [Indexed: 04/16/2024] Open
Abstract
Antibody-drug conjugates (ADCs) are a new type of targeting antibodies that conjugate with highly toxic anticancer drugs via chemical linkers to exert high specificity and efficient killing of tumor cells, thereby attracting considerable attention in precise oncology therapy. Cetuximab (Cet) is a typical antibody that offers the benefits of good targeting and safety for individuals with advanced and inoperable cutaneous squamous cell carcinoma (cSCC); however, its anti-tumor activity is limited to a single use. Cisplatin (CisPt) shows good curative effects; however, its adverse effects and non-tumor-targeting ability are major drawbacks. In this study, we designed and developed a new ADC based on a new cytotoxic platinum (IV) prodrug (C8Pt(IV)) and Cet. The so-called antibody-platinum (IV) prodrugs conjugates, named Cet-C8Pt(IV), showed excellent tumor targeting in cSCC. Specifically, it accurately delivered C8Pt(IV) into tumor cells to exert the combined anti-tumor effect of Cet and CisPt. Herein, metabolomic analysis showed that Cet-C8Pt(IV) promoted cellular apoptosis and increased DNA damage in cSCC cells by affecting the vitamin B6 metabolic pathway in tumor cells, thereby further enhancing the tumor-killing ability and providing a new strategy for clinical cancer treatment using antibody-platinum (IV) prodrugs conjugates.
Collapse
Affiliation(s)
- Xiangye Yin
- Department of Plastic and Reconstructive Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yingjie Zhuang
- Department of Plastic and Reconstructive Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Haiqin Song
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200023, China
| | - Yujian Xu
- Department of Plastic and Reconstructive Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Fan Zhang
- Department of Plastic and Reconstructive Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Jianxin Cui
- Department of Plastic and Reconstructive Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Lei Zhao
- Department of Plastic and Reconstructive Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yingjie Yu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Qixu Zhang
- Department of Plastic Surgery, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jun Ye
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Youbai Chen
- Department of Plastic and Reconstructive Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yan Han
- Department of Plastic and Reconstructive Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| |
Collapse
|
12
|
Tian HX, Mei J, Cao L, Song J, Rong D, Fang M, Xu Z, Chen J, Tang J, Xiao H, Liu Z, Wang PY, Yin JY, Li XP. Disruption of Iron Homeostasis to Induce Ferroptosis with Albumin-Encapsulated Pt(IV) Nanodrug for the Treatment of Non-Small Cell Lung Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206688. [PMID: 37606911 DOI: 10.1002/smll.202206688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 06/27/2023] [Indexed: 08/23/2023]
Abstract
Non-small cell lung cancer (NSCLC) is the most common pathological type of lung cancer , accounting for approximately 85% of lung cancers. For more than 40 years, platinum (Pt)-based drugs are still one of the most widely used anticancer drugs even in the era of precision medicine and immunotherapy. However, the clinical limitations of Pt-based drugs, such as serious side effects and drug resistance, have not been well solved. This study constructs a new albumin-encapsulated Pt(IV) nanodrug (HSA@Pt(IV)) based on the Pt(IV) drug and nanodelivery system. The characterization of nanodrug and biological experiments demonstrate its excellent drug delivery and antitumor effects. The multi-omics analysis of the transcriptome and the ionome reveals that nanodrug can activate ferroptosis by affecting intracellular iron homeostasis in NSCLC. This study provides experimental evidence to suggest the potential of HSA@Pt(IV) as a nanodrug with clinical application.
Collapse
Affiliation(s)
- Hui-Xiang Tian
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, 510006, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jie Mei
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410008, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410008, China
- Oujiang Laboratory, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, 325000, China
| | - Lei Cao
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jianan Song
- Oujiang Laboratory, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, 325000, China
| | - Dingchao Rong
- Department of Orthopaedic Surgery, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, China
| | - Man Fang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Zhe Xu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Juan Chen
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jie Tang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410008, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410008, China
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Polymer Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhaoqian Liu
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410008, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410008, China
| | - Peng-Yuan Wang
- Oujiang Laboratory, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, 325000, China
| | - Ji-Ye Yin
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410008, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410008, China
| | - Xiang-Ping Li
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| |
Collapse
|
13
|
Gajbhiye KR, Salve R, Narwade M, Sheikh A, Kesharwani P, Gajbhiye V. Lipid polymer hybrid nanoparticles: a custom-tailored next-generation approach for cancer therapeutics. Mol Cancer 2023; 22:160. [PMID: 37784179 PMCID: PMC10546754 DOI: 10.1186/s12943-023-01849-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/23/2023] [Indexed: 10/04/2023] Open
Abstract
Lipid-based polymeric nanoparticles are the highly popular carrier systems for cancer drug therapy. But presently, detailed investigations have revealed their flaws as drug delivery carriers. Lipid polymer hybrid nanoparticles (LPHNPs) are advanced core-shell nanoconstructs with a polymeric core region enclosed by a lipidic layer, presumed to be derived from both liposomes and polymeric nanounits. This unique concept is of utmost importance as a combinable drug delivery platform in oncology due to its dual structured character. To add advantage and restrict one's limitation by other, LPHNPs have been designed so to gain number of advantages such as stability, high loading of cargo, increased biocompatibility, rate-limiting controlled release, and elevated drug half-lives as well as therapeutic effectiveness while minimizing their drawbacks. The outer shell, in particular, can be functionalized in a variety of ways with stimuli-responsive moieties and ligands to provide intelligent holding and for active targeting of antineoplastic medicines, transport of genes, and theragnostic. This review comprehensively provides insight into recent substantial advancements in developing strategies for treating various cancer using LPHNPs. The bioactivity assessment factors have also been highlighted with a discussion of LPHNPs future clinical prospects.
Collapse
Affiliation(s)
- Kavita R Gajbhiye
- Department of Pharmaceutics, Poona College of Pharmacy, Bharati Vidyapeeth, Erandwane, Pune, 411038, India
| | - Rajesh Salve
- Nanobioscience, Agharkar Research Institute, Pune, 411038, India
- Savitribai Phule Pune University, Pune, 411007, India
| | - Mahavir Narwade
- Department of Pharmaceutics, Poona College of Pharmacy, Bharati Vidyapeeth, Erandwane, Pune, 411038, India
| | - Afsana Sheikh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
- Center for Global health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| | - Virendra Gajbhiye
- Nanobioscience, Agharkar Research Institute, Pune, 411038, India.
- Savitribai Phule Pune University, Pune, 411007, India.
| |
Collapse
|
14
|
Zheng S, Li G, Shi J, Liu X, Li M, He Z, Tian C, Kamei KI. Emerging platinum(IV) prodrug nanotherapeutics: A new epoch for platinum-based cancer therapy. J Control Release 2023; 361:819-846. [PMID: 37597809 DOI: 10.1016/j.jconrel.2023.08.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
Owing to the unique DNA damaging cytotoxicity, platinum (Pt)-based chemotherapy has long been the first-line choice for clinical oncology. Unfortunately, Pt drugs are restricted by the severe dose-dependent toxicity and drug resistance. Correspondingly, Pt(IV) prodrugs are developed with the aim to improve the antitumor performance of Pt drugs. However, as "free" molecules, Pt(IV) prodrugs are still subject to unsatisfactory in vivo destiny and antitumor efficacy. Recently, Pt(IV) prodrug nanotherapeutics, inheriting both the merits of Pt(IV) prodrugs and nanotherapeutics, have emerged and demonstrated the promise to address the underexploited dilemma of Pt-based cancer therapy. Herein, we summarize the latest fronts of emerging Pt(IV) prodrug nanotherapeutics. First, the basic outlines of Pt(IV) prodrug nanotherapeutics are overviewed. Afterwards, how versatile Pt(IV) prodrug nanotherapeutics overcome the multiple biological barriers of antitumor drug delivery is introduced in detail. Moreover, advanced combination therapies based on multimodal Pt(IV) prodrug nanotherapeutics are discussed with special emphasis on the synergistic mechanisms. Finally, prospects and challenges of Pt(IV) prodrug nanotherapeutics for future clinical translation are spotlighted.
Collapse
Affiliation(s)
- Shunzhe Zheng
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Guanting Li
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jianbin Shi
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xinying Liu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Meng Li
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhonggui He
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Chutong Tian
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, Hangzhou 310058, China.
| | - Ken-Ichiro Kamei
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan.
| |
Collapse
|
15
|
Baranwal J, Barse B, Di Petrillo A, Gatto G, Pilia L, Kumar A. Nanoparticles in Cancer Diagnosis and Treatment. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5354. [PMID: 37570057 PMCID: PMC10420054 DOI: 10.3390/ma16155354] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/10/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023]
Abstract
The use of tailored medication delivery in cancer treatment has the potential to increase efficacy while decreasing unfavourable side effects. For researchers looking to improve clinical outcomes, chemotherapy for cancer continues to be the most challenging topic. Cancer is one of the worst illnesses despite the limits of current cancer therapies. New anticancer medications are therefore required to treat cancer. Nanotechnology has revolutionized medical research with new and improved materials for biomedical applications, with a particular focus on therapy and diagnostics. In cancer research, the application of metal nanoparticles as substitute chemotherapy drugs is growing. Metals exhibit inherent or surface-induced anticancer properties, making metallic nanoparticles extremely useful. The development of metal nanoparticles is proceeding rapidly and in many directions, offering alternative therapeutic strategies and improving outcomes for many cancer treatments. This review aimed to present the most commonly used nanoparticles for cancer applications.
Collapse
Affiliation(s)
- Jaya Baranwal
- DBT-ICGEB Centre for Advanced Bioenergy Research, International Centre for Genetic Engineering & Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Brajesh Barse
- US India Business Council|US Chamber of Commerce, DLF Centre, Sansad Marg, New Delhi 110001, India
| | - Amalia Di Petrillo
- Department of Medical Sciences and Public Health, University of Cagliari, Monserrato, 09042 Cagliari, Italy;
| | - Gianluca Gatto
- Department of Electrical and Electronic Engineering, University of Cagliari, Via Marengo 2, 09123 Cagliari, Italy;
| | - Luca Pilia
- Department of Mechanical, Chemical and Material Engineering, University of Cagliari, Via Marengo 2, 09123 Cagliari, Italy
| | - Amit Kumar
- Department of Electrical and Electronic Engineering, University of Cagliari, Via Marengo 2, 09123 Cagliari, Italy;
| |
Collapse
|
16
|
Bangera PD, Kara DD, Tanvi K, Tippavajhala VK, Rathnanand M. Highlights on Cell-Penetrating Peptides and Polymer-Lipid Hybrid Nanoparticle: Overview and Therapeutic Applications for Targeted Anticancer Therapy. AAPS PharmSciTech 2023; 24:124. [PMID: 37225901 DOI: 10.1208/s12249-023-02576-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/28/2023] [Indexed: 05/26/2023] Open
Abstract
Polymer-lipid hybrid nanoparticles (PLHNs) have been widely used as a vehicle for carrying anticancer owing to its unique framework of polymer and lipid combining and giving the maximum advantages over the lipid and polymer nanoparticle drug delivery system. Surface modification of PLHNs aids in improved targeting and active delivery of the encapsulated drug. Therefore, surface modification of the PLHNs with the cell-penetrating peptide is explored by many researchers and is explained in this review. Cell-penetrating peptides (CPPs) are made up of few amino acid sequence and act by disrupting the cell membrane and transferring the cargos into the cell. Ideally, we can say that CPPs are peptide chains which are cell specific and are biocompatible, noninvasive type of delivery vehicle which can transport siRNA, protein, peptides, macromolecules, pDNA, etc. into the cell effectively. Therefore, this review focuses on the structure, type, and method of preparation of PLHNs also about the uptake mechanism of CPPs and concludes with the therapeutic application of PLHNs surface modified with the CPPs and their theranostics.
Collapse
Affiliation(s)
- Pragathi Devanand Bangera
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Divya Dhatri Kara
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Katikala Tanvi
- Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, 576104, India
| | - Vamshi Krishna Tippavajhala
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| | - Mahalaxmi Rathnanand
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
17
|
Liu C, Zhang Y, Sun W, Zhu H, Su M, Wang X, Rong X, Wang K, Yu M, Sheng W, Zhu B. A novel GSH-activable theranostic probe containing kinase inhibitor for synergistic treatment and selective imaging of tumor cells. Talanta 2023; 260:124567. [PMID: 37121140 DOI: 10.1016/j.talanta.2023.124567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 04/05/2023] [Accepted: 04/15/2023] [Indexed: 05/02/2023]
Abstract
Theranostic probe is becoming a powerful tool for diagnosis and treatment of cancer. Although some theranostic probes have been successfully developed, there is still a great room for improvement in sensitive diagnosis and efficient treatment. Herein, we developed a novel GSH-activable theranostic probe NC-G, which uses 1,8-naphthalimide-4-sulfonamide as a fluorescence imaging group and crizotinib as a highly toxic kinase inhibitor to tumor cells. The probe not only has high sensitivity (DL = 74 nM) and specificity, but also can detect GSH sensitively in cells and zebrafish. In addition, probe NC-G can not only show more obvious fluorescence in tumor cells to achieve sensitive diagnosis of tumor cells, but also release the inhibitor crizotinib to achieve high toxicity to tumor cells. It is worth noting that the consumption of GSH can cause oxidative stress response of cells and the release of SO2 can induce cell apoptosis during the recognition process of the probe and GSH. Thus, the synergistic effect of crizotinib, GSH depletion, and SO2 release provides a highly effective therapeutic feature for tumor cells. Therefore, probe NC-G can serve as an excellent theranostic probe for sensitive imaging and highly effective treatment of tumor cells.
Collapse
Affiliation(s)
- Caiyun Liu
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China.
| | - Yan Zhang
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Weimin Sun
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Hanchuang Zhu
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Meijun Su
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Xin Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Xiaodi Rong
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Kun Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Miaohui Yu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China
| | - Wenlong Sheng
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China.
| | - Baocun Zhu
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China.
| |
Collapse
|
18
|
Li C, Chen Y, Gao Y, Wang X, Wang J, Zhang P, Hu X, Li L, Tong W, Ren Z, Yao W. A nanomedicine based on stoichiometric coordination of camptothecin and organoplatinum (II) for synergistic antitumor therapy. Acta Biomater 2023; 164:553-562. [PMID: 37072068 DOI: 10.1016/j.actbio.2023.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/30/2023] [Accepted: 04/07/2023] [Indexed: 04/20/2023]
Abstract
Precise combination therapy, involving multiple chemotherapeutics with pharmacologically synergistic antitumor effects, is a promising approach to address the challenge of monotherapy with insufficient activity towards their targets of interest. We employed Pt←pyridine coordination-driven assembly to construct a stoichiometric coordination complex of camptothecin and organoplatinum (II) (Pt-CPT). The Pt-CPT complex exhibited a remarkable synergistic effect toward several tumor cell lines, which is equal to the optimal synergistic effect of (PEt3)2Pt(OTf)2 (Pt) and CPT mixture at various ratios. An amphiphilic polymer with H2O2-responsiveness and glutathione (GSH)-depleting ability (PO) was used to encapsulate Pt-CPT complex to enable the nanomedicine (Pt-CPT@PO) with prolonged blood circulation and elevated tumor accumulation. The Pt-CPT@PO nanomedicine exhibited remarkable synergistic antitumor efficacy and antimetastatic effect on a mice orthotopic breast tumor model. This work demonstrated the potential of stoichiometric coordination-driven assembly of organic therapeutics with metal-based drugs in developing advanced nanomedicine with optimal synergistic antitumor activity. STATEMENT OF SIGNIFICANCE: : In this study, for the first time, we employed Pt←pyridine coordination-driven assembly to construct a stoichiometric coordination complex of camptothecin and organoplatinum (II) (Pt-CPT), with an optimal synergistic effect at various ratios. Then it was encapsulated into an amphiphilic polymer with H2O2-responsiveness and glutathione (GSH)-depleting ability (PO) to enable the nanomedicine (Pt-CPT@PO) with prolonged blood circulation and elevated tumor accumulation. The Pt-CPT@PO nanomedicine exhibited remarkable synergistic antitumor efficacy and antimetastatic effect on a mice orthotopic breast tumor model.
Collapse
Affiliation(s)
- Chao Li
- Department of Orthopaedic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450052 P. R. China
| | - Yu Chen
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450052 P. R. China; Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052 P. R. China
| | - Yong Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058 P. R. China
| | - Xin Wang
- Department of Orthopaedic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450052 P. R. China
| | - Jiaqiang Wang
- Department of Orthopaedic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450052 P. R. China
| | - Peng Zhang
- Department of Orthopaedic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450052 P. R. China
| | - Xiaobo Hu
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052 P. R. China; Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052 P. R. China
| | - Lei Li
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052 P. R. China; Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052 P. R. China
| | - Weijun Tong
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058 P. R. China.
| | - Zhigang Ren
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052 P. R. China; Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052 P. R. China.
| | - Weitao Yao
- Department of Orthopaedic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450052 P. R. China.
| |
Collapse
|
19
|
Zhang J, Ding H, Zhang F, Xu Y, Liang W, Huang L. New trends in diagnosing and treating ovarian cancer using nanotechnology. Front Bioeng Biotechnol 2023; 11:1160985. [PMID: 37082219 PMCID: PMC10110946 DOI: 10.3389/fbioe.2023.1160985] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/22/2023] [Indexed: 04/07/2023] Open
Abstract
Ovarian cancer stands as the fifth most prevalent cancer among women, causing more mortalities than any other disease of the female reproductive system. There are numerous histological subtypes of ovarian cancer, each of which has distinct clinical characteristics, risk factors, cell origins, molecular compositions, and therapeutic options. Typically, it is identified at a late stage, and there is no efficient screening method. Standard therapies for newly diagnosed cancer are cytoreductive surgery and platinum-based chemotherapy. The difficulties of traditional therapeutic procedures encourage researchers to search for other approaches, such as nanotechnology. Due to the unique characteristics of matter at the nanoscale, nanomedicine has emerged as a potent tool for creating novel drug carriers that are more effective and have fewer adverse effects than traditional treatments. Nanocarriers including liposomes, dendrimers, polymer nanoparticles, and polymer micelles have unique properties in surface chemistry, morphology, and mechanism of action that can distinguish between malignant and normal cells, paving the way for targeted drug delivery. In contrast to their non-functionalized counterparts, the development of functionalized nano-formulations with specific ligands permits selective targeting of ovarian cancers and ultimately increases the therapeutic potential. This review focuses on the application of various nanomaterials to the treatment and diagnosis of ovarian cancer, their advantages over conventional treatment methods, and the effective role of controlled drug delivery systems in the therapy of ovarian cancer.
Collapse
Affiliation(s)
- Juan Zhang
- Department of Gynecology, Shaoxing Maternity and Child Healthcare Hospital, Shaoxing, China
- Obstetrics and Gynecology Hospital of Shaoxing University, Shaoxing, China
| | - Haigang Ding
- Department of Gynecology, Shaoxing Maternity and Child Healthcare Hospital, Shaoxing, China
- Obstetrics and Gynecology Hospital of Shaoxing University, Shaoxing, China
| | - Feng Zhang
- Department of Gynecology, Shaoxing Maternity and Child Healthcare Hospital, Shaoxing, China
- Obstetrics and Gynecology Hospital of Shaoxing University, Shaoxing, China
| | - Yan Xu
- Intensive Care Unit, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Wenqing Liang
- Medical Research Center, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
- *Correspondence: Liping Huang, ; Wenqing Liang,
| | - Liping Huang
- Department of Medical Oncology, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
- *Correspondence: Liping Huang, ; Wenqing Liang,
| |
Collapse
|
20
|
Charge-conversional click polyprodrug nanomedicine for targeted and synergistic cancer therapy. J Control Release 2023; 356:567-579. [PMID: 36924894 DOI: 10.1016/j.jconrel.2023.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 03/03/2023] [Accepted: 03/11/2023] [Indexed: 03/18/2023]
Abstract
Polyprodrug nanomedicines hold great potential for combating tumors. However, the functionalization of polyprodrug nanomedicines to improve therapeutic efficacy is restricted by conventional polymerization methods. Herein, we fabricated a charge-conversional click polyprodrug nanomedicine system by metal-free azide-alkyne cycloaddition click polymerization (AACCP) for targeted and synergistic cancer therapy. Specifically, Pt(IV) prodrug-backboned diazide monomer, DMC prodrug-pendent diazide monomer, dialkyne-terminated PEG monomer and azide-modified folate were click polymerized to obtain the target polyprodrug (P1). P1 could self-assemble into nano-micelles (1-NM), where PEG was the hydrophilic shell with folate on the surface, Pt(IV) and DMC prodrugs as the hydrophobic core. Taking advantage of PEGylation and folate-mediated tumor cell targeting, 1-NM achieved prolonged blood circulation time and high tumor accumulation efficiency. Tumor acidic microenvironment-responsive cleavage and cascade activation of pendant DMC prodrug induced surface charge conversion of 1-NM from negative to positive, which promoted tumor penetration and cellular internalization of the remaining 1-NM. After internalization into tumor cells, the reduction-responsive activation of Pt(IV) prodrug to Pt(II) further showed synergetic effect with DMC for enhanced apoptosis. This first designed charge-conversional click polyprodrug nanomedicine exhibited targeted and synergistic efficacy to suppress tumor proliferation in living mice bearing human ovarian tumor model.
Collapse
|
21
|
Shahriar SMS, Andrabi SM, Islam F, An JM, Schindler SJ, Matis MP, Lee DY, Lee YK. Next-Generation 3D Scaffolds for Nano-Based Chemotherapeutics Delivery and Cancer Treatment. Pharmaceutics 2022; 14:2712. [PMID: 36559206 PMCID: PMC9784306 DOI: 10.3390/pharmaceutics14122712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer is the leading cause of death after cardiovascular disease. Despite significant advances in cancer research over the past few decades, it is almost impossible to cure end-stage cancer patients and bring them to remission. Adverse effects of chemotherapy are mainly caused by the accumulation of chemotherapeutic agents in normal tissues, and drug resistance hinders the potential therapeutic effects and curing of this disease. New drug formulations need to be developed to overcome these problems and increase the therapeutic index of chemotherapeutics. As a chemotherapeutic delivery platform, three-dimensional (3D) scaffolds are an up-and-coming option because they can respond to biological factors, modify their properties accordingly, and promote site-specific chemotherapeutic deliveries in a sustainable and controlled release manner. This review paper focuses on the features and applications of the variety of 3D scaffold-based nano-delivery systems that could be used to improve local cancer therapy by selectively delivering chemotherapeutics to the target sites in future.
Collapse
Affiliation(s)
- S. M. Shatil Shahriar
- Eppley Institute for Research in Cancer and Allied Diseases, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Surgery—Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Syed Muntazir Andrabi
- Department of Surgery—Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Farhana Islam
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jeong Man An
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | | | - Mitchell P. Matis
- Kansas City Internal Medicine Residency Program, HCA Healthcare, Overland Park, KS 66215, USA
| | - Dong Yun Lee
- Department of Bioengineering, College of Engineering, and BK21 PLUS Future Biopharmaceutical Human Resources Training and Research Team, Hanyang University, Seoul 04763, Republic of Korea
- Institute of Nano Science and Technology (INST), Hanyang University, Seoul 04763, Republic of Korea
| | - Yong-kyu Lee
- 4D Biomaterials Center, Korea National University of Transportation, Jeungpyeong 27909, Republic of Korea
- Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju 27469, Republic of Korea
| |
Collapse
|
22
|
Chen Y, Xu Z, Lu T, Luo J, Xue H. Prostate-specific membrane antigen targeted, glutathione-sensitive nanoparticles loaded with docetaxel and enzalutamide for the delivery to prostate cancer. Drug Deliv 2022; 29:2705-2712. [PMID: 35980107 PMCID: PMC9487954 DOI: 10.1080/10717544.2022.2110998] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Prostate cancer (PCa) is the most common malignant tumor in men. Chemotherapy with docetaxel (DTX) and novel hormonal agents such as enzalutamide (EZL) and abiraterone are the preferred first-line therapeutic regimens. Prostate-specific membrane antigen (PSMA) is overexpressed on the surface of PCa cells. This study aimed to prepare a PSMA targeted (Glutamate-Urea-Lysine, GUL ligand modified), glutathione (GSH)-sensitive (Cystamine, SS), DTX and EZL co-loaded nanoparticles (GUL-SS DTX/EZL-NPs) to treat PCa. Polyethylene glycol (PEG) was conjugated with oleic acid (OA) using a GSH-sensitive ligand: cystamine (PEG-SS-OA). GUL was covalently coupled to PEG-SS-OA to achieve GUL-PEG-SS-OA. GUL-PEG-SS-OA was used to prepare GUL-SS DTX/EZL-NPs. To evaluate the in vitro and in vivo efficiency of the system, human prostate cancer cell lines and PCa cells bearing mice were applied. Single drug-loaded nanoparticle and free drugs systems were utilized for the comparison of the anticancer ability. GUL-SS DTX/EZL-NPs showed a size of 143.7 ± 4.1 nm, with a PDI of 0.162 ± 0.037 and a zeta potential of +29.1 ± 2.4 mV. GUL-SS DTX/EZL-NPs showed high cancer cell uptake of about 70%, as well as higher cell growth inhibition efficiency (a maximum 79% of cells were inhibited after treatment) than single drug-loaded NPs and free drugs. GUL-SS DTX/EZL-NPs showed the most prominent tumor inhibition ability and less systemic toxicity. The novel GUL-SS DTX/EZL-NPs could be used as a promising system for PCa therapy.
Collapse
Affiliation(s)
- Yang Chen
- Affiliated Hospital of Jiangnan University, Wuxi214000, Jiangsu Province, China
| | - Zhenyu Xu
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi214000, Jiangsu Province, China
| | - Tingxun Lu
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi214000, Jiangsu Province, China
| | - Jia Luo
- Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong226000, Jiangsu Province, China
| | - Hua Xue
- Department of Pharmacy, Wuxi Mental Health Center, Wuxi214000, Jiangsu Province, China
| |
Collapse
|
23
|
Bilbao‐Asensio M, Ruiz‐de‐Angulo A, Arguinzoniz AG, Cronin J, Llop J, Zabaleta A, Michue‐Seijas S, Sosnowska D, Arnold JN, Mareque‐Rivas JC. Redox‐Triggered Nanomedicine via Lymphatic Delivery: Inhibition of Melanoma Growth by Ferroptosis Enhancement and a Pt(IV)‐Prodrug Chemoimmunotherapy Approach. ADVANCED THERAPEUTICS 2022. [DOI: 10.1002/adtp.202200179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Marc Bilbao‐Asensio
- Department of Chemistry Swansea University Singleton Park Swansea SA2 8PP UK
| | | | | | - James Cronin
- Swansea University Medical School Singleton Park Swansea SA2 8PP UK
| | - Jordi Llop
- Radiochemistry and Nuclear Imaging Laboratory CIC biomaGUNE Paseo Miramón 182 San Sebastián 20014 Spain
| | - Aintzane Zabaleta
- Clinica Universidad de Navarra Centro de Investigación Médica Aplicada (CIMA) IdiSNA Instituto de Investigación Sanitaria de Navarra Pamplona 31009 Spain
| | - Saul Michue‐Seijas
- Department of Chemistry Swansea University Singleton Park Swansea SA2 8PP UK
| | - Dominika Sosnowska
- School of Cancer and Pharmaceutical Sciences King's College London London SE1 1UL UK
| | - James N. Arnold
- School of Cancer and Pharmaceutical Sciences King's College London London SE1 1UL UK
| | | |
Collapse
|
24
|
Zhang Y, Li J, Pu K. Recent advances in dual- and multi-responsive nanomedicines for precision cancer therapy. Biomaterials 2022; 291:121906. [DOI: 10.1016/j.biomaterials.2022.121906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 11/03/2022] [Accepted: 11/05/2022] [Indexed: 11/09/2022]
|
25
|
Updates on Responsive Drug Delivery Based on Liposome Vehicles for Cancer Treatment. Pharmaceutics 2022; 14:pharmaceutics14102195. [PMID: 36297630 PMCID: PMC9608678 DOI: 10.3390/pharmaceutics14102195] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/08/2022] [Accepted: 10/13/2022] [Indexed: 11/20/2022] Open
Abstract
Liposomes are well-known nanoparticles with a non-toxic nature and the ability to incorporate both hydrophilic and hydrophobic drugs simultaneously. As modern drug delivery formulations are produced by emerging technologies, numerous advantages of liposomal drug delivery systems over conventional liposomes or free drug treatment of cancer have been reported. Recently, liposome nanocarriers have exhibited high drug loading capacity, drug protection, improved bioavailability, enhanced intercellular delivery, and better therapeutic effect because of resounding success in targeting delivery. The site targeting of smart responsive liposomes, achieved through changes in their physicochemical and morphological properties, allows for the controlled release of active compounds under certain endogenous or exogenous stimuli. In that way, the multifunctional and stimuli-responsive nanocarriers for the drug delivery of cancer therapeutics enhance the efficacy of treatment prevention and fighting over metastases, while limiting the systemic side effects on healthy tissues and organs. Since liposomes constitute promising nanocarriers for site-targeted and controlled anticancer drug release, this review focuses on the recent progress of smart liposome achievements for anticancer drug delivery applications.
Collapse
|
26
|
Ren G, Wang Z, Tian Y, Li J, Ma Y, Zhou L, Zhang C, Guo L, Diao H, Li L, Lu L, Ma S, Wu Z, Yan L, Liu W. Targeted chemo-photodynamic therapy toward esophageal cancer by GSH-sensitive theranostic nanoplatform. Biomed Pharmacother 2022; 153:113506. [DOI: 10.1016/j.biopha.2022.113506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/25/2022] [Accepted: 07/30/2022] [Indexed: 11/28/2022] Open
|
27
|
A DNA damage nanoamplifier for the chemotherapy of triple-negative breast cancer via DNA damage induction and repair blocking. Int J Pharm 2022; 622:121897. [PMID: 35690308 DOI: 10.1016/j.ijpharm.2022.121897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/04/2022] [Accepted: 06/03/2022] [Indexed: 11/21/2022]
Abstract
Due to a powerful DNA damage repair system and a lack of surface markers, there is currently no effective chemotherapy or tailored targeted therapies available for triple-negative breast cancer (TNBC) treatment. Herein, a tailored DNA damage nanoamplifier (Lipo@Nir/Pt(IV)C18) was engineered to simultaneously induce DNA damage and inhibit DNA reparation for highly efficient TNBC treatment. A newly synthesized Pt(IV)C18 prodrug, the DNA damaging inducer, and the hydrophobic poly(ADP-ribose) polymerases (PARPs) inhibitor niraparib, which is used as the DNA repair blocker, were concurrently encapsulated in highly biocompatible PEGylated liposomes to prepare Lipo@Nir/Pt(IV)C18, for enhanced cancer therapy and future clinical translation. Lipo@Nir/Pt(IV)C18 with an appropriate size and excellent stability, effectively accumulated at the tumor site. After internalization by tumor cells, niraparib, a highly-selective hydrophobic PARP1 inhibitor, could exacerbate the accumulation of platinum-induced DNA lesions to induce excessive genome damage for synergistic cell apoptosis, which was evidenced by the upregulated γ-H2AX and cleaved-PARP levels. Importantly, Lipo@Nir/Pt(IV)C18 exhibited remarkable antitumor efficacy on TNBC without BRCA mutants in vivo with little systemic toxicity. Inspired by the concept of "synthetic lethality", this study provides an inspirational and clinically transformable nanobased DNA damaging amplification strategy for the expansion of TNBC beneficiaries and highly efficient TNBC treatment via DNA damage induction and DNA repair blocking.
Collapse
|
28
|
Mitochondrial Dysfunction Pathway Alterations Offer Potential Biomarkers and Therapeutic Targets for Ovarian Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5634724. [PMID: 35498135 PMCID: PMC9045977 DOI: 10.1155/2022/5634724] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/24/2021] [Accepted: 04/02/2022] [Indexed: 11/29/2022]
Abstract
The mitochondrion is a very versatile organelle that participates in some important cancer-associated biological processes, including energy metabolism, oxidative stress, mitochondrial DNA (mtDNA) mutation, cell apoptosis, mitochondria-nuclear communication, dynamics, autophagy, calcium overload, immunity, and drug resistance in ovarian cancer. Multiomics studies have found that mitochondrial dysfunction, oxidative stress, and apoptosis signaling pathways act in human ovarian cancer, which demonstrates that mitochondria play critical roles in ovarian cancer. Many molecular targeted drugs have been developed against mitochondrial dysfunction pathways in ovarian cancer, including olive leaf extract, nilotinib, salinomycin, Sambucus nigra agglutinin, tigecycline, and eupatilin. This review article focuses on the underlying biological roles of mitochondrial dysfunction in ovarian cancer progression based on omics data, potential molecular relationship between mitochondrial dysfunction and oxidative stress, and future perspectives of promising biomarkers and therapeutic targets based on the mitochondrial dysfunction pathway for ovarian cancer.
Collapse
|
29
|
Wang Y, Xie H, Wu Y, Xu S, Li Y, Li J, Xu X, Wang S, Li Y, Zhang Z. Bioinspired Lipoproteins of Furoxans-Oxaliplatin Remodel Physical Barriers in Tumor to Potentiate T-Cell Infiltration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110614. [PMID: 35092711 DOI: 10.1002/adma.202110614] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/21/2022] [Indexed: 05/21/2023]
Abstract
The infiltration of cytotoxic T lymphocytes (CTLs) in tumors is critically challenged by the intricate intratumor physical barriers, which is emerging as an important issue of anticancer immunotherapy. Herein, a reduction-sensitive nitric oxide donor conjugate of furoxans-oxaliplatin is synthesized and a stroma-cell-accessible bioinspired lipoprotein system (S-LFO) is designed, aiming to facilitate CTL infiltration in tumors for anticancer immunotherapy. S-LFO treatment significantly promotes tumor vessel normalization and eliminates multiple components of tumor stroma, ultimately producing a 2.96-fold, 5.02-fold, and 8.65-fold increase of CD3+ CD8+ T cells, their interferon-γ- and granzyme B-expressing subtypes when comparing to the negative control, and considerably facilitating their trafficking to the cancer cell regions in tumors. Moreover, the combination of S-LFO with an antiprogrammed death ligand-1 produces notable therapeutic benefits of retarded tumor growth and extends survivals in three murine tumor models. Therefore, this study provides an encouraging strategy of remodeling the intratumor physical barriers to potentiate CTL infiltration for anticancer immunotherapy.
Collapse
Affiliation(s)
- Yuqi Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Honglei Xie
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Yantai, Shandong, 264000, China
| | - Yao Wu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Shuzhou Xu
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Yantai, Shandong, 264000, China
| | - Yongping Li
- Department of Breast Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| | - Jie Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xiaoxuan Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Siling Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Yaping Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264005, China
| | - Zhiwen Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Yantai, Shandong, 264000, China
| |
Collapse
|
30
|
Franco Machado J, Morais TS. Are smart delivery systems the solution to overcome the lack of selectivity of current metallodrugs in cancer therapy? Dalton Trans 2022; 51:2593-2609. [PMID: 35106525 DOI: 10.1039/d1dt04079k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Chemotherapeutic metallodrugs such as cisplatin and its derivatives are among the most widely applied anticancer treatments worldwide. Despite their clinical success, patients suffer from severe adverse effects while subjected to treatment due to platinum's low selectivity for tumour over healthy tissues. Additionally, intrinsic or acquired resistance to metallodrugs, as well as their inability to reach cancer metastases, often results in therapeutic failure. The evident need for highly efficient and specific treatments has driven the scientific community to research novel ways to surpass the stated limitations. Within this scenario, a rising number of smart drug delivery systems have been lately reported to target primary cancers or metastases, where the metallodrugs are released in a controlled and selective way triggered by specific tumour-related stimuli, thus suggesting a viable and attractive therapeutic approach. Herein, we discuss the main efforts undertaken in the past few years towards the smart delivery of metal-based drugs and drug candidates to tumour sites, particularly focusing on the pH- and/or redox-responsive targeted delivery of platinum and ruthenium anticancer complexes.
Collapse
Affiliation(s)
- João Franco Machado
- Centro de Química Estrutural, Institute of Molecular Sciences and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal.
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139, 7), 2695-066 Bobadela LRS, Portugal
| | - Tânia S Morais
- Centro de Química Estrutural, Institute of Molecular Sciences and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal.
| |
Collapse
|
31
|
Jobdeedamrong A, Theerasilp M, Thumrongsiri N, Dana P, Saengkrit N, Crespy D. Responsive polyprodrug for anticancer nanocarriers. Polym Chem 2022. [DOI: 10.1039/d2py00427e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Nanocarriers responsive to glutathione (GSH), a molecule overexpressed in cancer cells, are extensively investigated for the delivery of Pt-based chemotherapeutics for cancer treatment.
Collapse
Affiliation(s)
- Arjaree Jobdeedamrong
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, 21210 Rayong, Thailand
| | - Man Theerasilp
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, 21210 Rayong, Thailand
| | - Nutthanit Thumrongsiri
- National Nanotechnology Center, National Science and Technology Development Agency, Pathumthani, 12120, Thailand
| | - Paweena Dana
- National Nanotechnology Center, National Science and Technology Development Agency, Pathumthani, 12120, Thailand
| | - Nattika Saengkrit
- National Nanotechnology Center, National Science and Technology Development Agency, Pathumthani, 12120, Thailand
| | - Daniel Crespy
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, 21210 Rayong, Thailand
| |
Collapse
|
32
|
Wang Z, Meng F, Zhong Z. Emerging targeted drug delivery strategies toward ovarian cancer. Adv Drug Deliv Rev 2021; 178:113969. [PMID: 34509574 DOI: 10.1016/j.addr.2021.113969] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/05/2021] [Accepted: 09/07/2021] [Indexed: 12/11/2022]
Abstract
Ovarian cancer is a high-mortality malignancy in women. The contemporary clinical chemotherapy with classic cytotoxic drugs, targeted molecular inhibitors would mostly fail when ovarian cancer cells become drug-resistant or metastasize through the body or when patients bare no more toleration because of strong adverse effects. The past decade has spotted varying targeted delivery systems including antibody-drug conjugates (ADCs), peptide/folate/aptamer-drug conjugates, polymer-drug conjugates, ligand-functionalized nanomedicines, and dual-targeted nanomedicines that upgrade ovarian cancer chemo- and molecular therapy effectively in preclinical/clinical settings via endowing therapeutic agents selectivity and bypassing drug resistance as well as lessening systemic toxicity. The targeted delivery approaches further provide means to potentiate emergent treatment modalities such as molecular therapy, gene therapy, protein therapy, photodynamic therapy, dual-targeting therapy and combination therapy for ovarian cancer. This review highlights up-to-date development of targeted drug delivery strategies toward advanced, metastatic, relapsed, and drug resistant ovarian cancers.
Collapse
|
33
|
Henderson E, Huynh G, Wilson K, Plebanski M, Corrie S. The Development of Nanoparticles for the Detection and Imaging of Ovarian Cancers. Biomedicines 2021; 9:1554. [PMID: 34829783 PMCID: PMC8615601 DOI: 10.3390/biomedicines9111554] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 11/27/2022] Open
Abstract
Ovarian cancer remains as one of the most lethal gynecological cancers to date, with major challenges associated with screening, diagnosis and treatment of the disease and an urgent need for new technologies that can meet these challenges. Nanomaterials provide new opportunities in diagnosis and therapeutic management of many different types of cancers. In this review, we highlight recent promising developments of nanoparticles designed specifically for the detection or imaging of ovarian cancer that have reached the preclinical stage of development. This includes contrast agents, molecular imaging agents and intraoperative aids that have been designed for integration into standard imaging procedures. While numerous nanoparticle systems have been developed for ovarian cancer detection and imaging, specific design criteria governing nanomaterial targeting, biodistribution and clearance from the peritoneal cavity remain key challenges that need to be overcome before these promising tools can accomplish significant breakthroughs into the clinical setting.
Collapse
Affiliation(s)
- Edward Henderson
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia; (E.H.); (G.H.)
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia; (K.W.); (M.P.)
| | - Gabriel Huynh
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia; (E.H.); (G.H.)
| | - Kirsty Wilson
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia; (K.W.); (M.P.)
| | - Magdalena Plebanski
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia; (K.W.); (M.P.)
| | - Simon Corrie
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia; (E.H.); (G.H.)
- ARC Training Center for Cell and Tissue Engineering Technologies, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
34
|
Li W, Li M, Qi J. Nano-Drug Design Based on the Physiological Properties of Glutathione. Molecules 2021; 26:5567. [PMID: 34577040 PMCID: PMC8469141 DOI: 10.3390/molecules26185567] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/05/2021] [Accepted: 09/09/2021] [Indexed: 12/12/2022] Open
Abstract
Glutathione (GSH) is involved in and regulates important physiological functions of the body as an essential antioxidant. GSH plays an important role in anti-oxidation, detoxification, anti-aging, enhancing immunity and anti-tumor activity. Herein, based on the physiological properties of GSH in different diseases, mainly including the strong reducibility of GSH, high GSH content in tumor cells, and the NADPH depletion when GSSH is reduced to GSH, we extensively report the design principles, effect, and potential problems of various nano-drugs in diabetes, cancer, nervous system diseases, fluorescent probes, imaging, and food. These studies make full use of the physiological and pathological value of GSH and develop excellent design methods of nano-drugs related to GSH, which shows important scientific significance and prominent application value for the related diseases research that GSH participates in or responds to.
Collapse
Affiliation(s)
| | - Minghui Li
- Daqing Campus, Harbin Medical University, 39 Xinyang Rd., Daqing 163319, China;
| | - Jing Qi
- Daqing Campus, Harbin Medical University, 39 Xinyang Rd., Daqing 163319, China;
| |
Collapse
|
35
|
Xia Y, Wei J, Zhao S, Guo B, Meng F, Klumperman B, Zhong Z. Systemic administration of polymersomal oncolytic peptide LTX-315 combining with CpG adjuvant and anti-PD-1 antibody boosts immunotherapy of melanoma. J Control Release 2021; 336:262-273. [PMID: 34174350 DOI: 10.1016/j.jconrel.2021.06.032] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 06/02/2021] [Accepted: 06/21/2021] [Indexed: 01/15/2023]
Abstract
Oncolytic peptide LTX-315 while showing clinical promise in treating solid tumors is limited to intratumoral administration, which is not applicable for inaccessible or metastatic tumors. The cationic and amphipathic nature of oncolytic peptides engenders formidable challenges to developing systems for their systemic delivery. Here, we describe cRGD-functionalized chimaeric polymersomes (cRGD-CPs) as a robust systemic delivery vehicle for LTX-315, which in combination with CpG adjuvant and anti-PD-1 boost immunotherapy of malignant B16F10 melanoma in mice. cRGD-CPs containing 14.9 wt% LTX-315 (cRGD-CPs-L) exhibited a size of 53 nm, excellent serum stability, and strong and selective killing of B16F10 cells (versus L929 fibroblasts) in vitro, which provoked similar immunogenic effects to free LTX-315 as revealed by release of danger-associated molecular pattern molecules. The systemic administration of cRGD-CPs-L gave a notable tumor accumulation of 4.8% ID/g and significant retardation of tumor growth. More interestingly, the treatment of B16F10 tumor-bearing mice was further boosted by co-administration of polymersomal CpG and anti-PD-1 antibody, in which two out of seven mice were cured as a result of strong immune response and long-term immune memory protection. The immunotherapeutic effect was evidenced by secretion of IL-6, IFN-γ and TNF-α, tumor infiltration of CD8+ CTLs and Th, and induction of TEM and TCM in spleen. This study opens a new avenue to oncolytic peptides, which enables durable immunotherapy of tumors via systemic administration.
Collapse
Affiliation(s)
- Yifeng Xia
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China
| | - Jingjing Wei
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China
| | - Songsong Zhao
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China
| | - Beibei Guo
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China
| | - Fenghua Meng
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China.
| | - Bert Klumperman
- Department of Chemistry and Polymer Science, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China.
| |
Collapse
|
36
|
Bukhari SI, Imam SS, Ahmad MZ, Vuddanda PR, Alshehri S, Mahdi WA, Ahmad J. Recent Progress in Lipid Nanoparticles for Cancer Theranostics: Opportunity and Challenges. Pharmaceutics 2021; 13:840. [PMID: 34200251 PMCID: PMC8226834 DOI: 10.3390/pharmaceutics13060840] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/30/2021] [Accepted: 06/02/2021] [Indexed: 12/14/2022] Open
Abstract
Cancer is one of the major leading causes of mortality in the world. The implication of nanotherapeutics in cancer has garnered splendid attention owing to their capability to efficiently address various difficulties associated with conventional drug delivery systems such as non-specific biodistribution, poor efficacy, and the possibility of occurrence of multi-drug resistance. Amongst a plethora of nanocarriers for drugs, this review emphasized lipidic nanocarrier systems for delivering anticancer therapeutics because of their biocompatibility, safety, high drug loading and capability to simultaneously carrying imaging agent and ligands as well. Furthermore, to date, the lack of interaction between diagnosis and treatment has hampered the efforts of the nanotherapeutic approach alone to deal with cancer effectively. Therefore, a novel paradigm with concomitant imaging (with contrasting agents), targeting (with biomarkers), and anticancer agent being delivered in one lipidic nanocarrier system (as cancer theranostics) seems to be very promising in overcoming various hurdles in effective cancer treatment. The major obstacles that are supposed to be addressed by employing lipidic theranostic nanomedicine include nanomedicine reach to tumor cells, drug internalization in cancer cells for therapeutic intervention, off-site drug distribution, and uptake via the host immune system. A comprehensive account of recent research updates in the field of lipidic nanocarrier loaded with therapeutic and diagnostic agents is covered in the present article. Nevertheless, there are notable hurdles in the clinical translation of the lipidic theranostic nanomedicines, which are also highlighted in the present review along with plausible countermeasures.
Collapse
Affiliation(s)
- Sarah I. Bukhari
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.I.B.); (S.S.I.); (S.A.); (W.A.M.)
| | - Syed Sarim Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.I.B.); (S.S.I.); (S.A.); (W.A.M.)
| | - Mohammad Zaki Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia;
| | - Parameswara Rao Vuddanda
- Research Centre for Topical Drug Delivery and Toxicology (TDDT), University of Hertfordshire, Hertfordshire AL10 9AB, UK;
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.I.B.); (S.S.I.); (S.A.); (W.A.M.)
- Department of Pharmaceutical Sciences, College of Pharmacy, Almaarefa University, Riyadh 11597, Saudi Arabia
| | - Wael A. Mahdi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.I.B.); (S.S.I.); (S.A.); (W.A.M.)
| | - Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia;
| |
Collapse
|
37
|
Nguyen VD, Min HK, Kim HY, Han J, Choi YH, Kim CS, Park JO, Choi E. Primary Macrophage-Based Microrobots: An Effective Tumor Therapy In Vivo by Dual-Targeting Function and Near-Infrared-Triggered Drug Release. ACS NANO 2021; 15:8492-8506. [PMID: 33973786 DOI: 10.1021/acsnano.1c00114] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Macrophages (MΦs) have the capability to sense chemotactic cues and to home tumors, therefore presenting a great approach to engineer these cells to deliver therapeutic agents to treat diseases. However, current cell-based drug delivery systems usually use commercial cell lines that may elicit an immune response when injected into a host animal. Furthermore, premature off-target drug release also remains an enormous challenge. Here, we isolated and differentiated MΦs from the spleens of BALB/c mice and developed dual-targeting MΦ-based microrobots, regulated by chemotaxis and an external magnetic field, and had a precise spatiotemporal controlled drug release at the tumor sites in response to the NIR laser irradiation. These microrobots were prepared by coloading citric acid (CA)-coated superparamagnetic nanoparticles (MNPs) and doxorubicin (DOX)-containing thermosensitive nanoliposomes (TSLPs) into the MΦs. CA-MNPs promoted a magnetic targeting function to the microrobots and also permitted photothermal heating in response to the NIR irradiation, triggering drug release from TSLPs. In vitro experiments showed that the microrobots effectively infiltrated tumors in 3D breast cancer tumor spheroids, particularly in the presence of the magnetic field, and effectively induced tumor cell death, further enhanced by the NIR laser irradiation. In vivo experiments confirmed that the application of the magnetic field and NIR laser could markedly inhibit the growth of tumors with a subtherapeutic dose of DOX and a single injection of the microrobots. In summary, the study proposes a strategy for the effective anticancer treatment using the developed microrobots.
Collapse
Affiliation(s)
- Van Du Nguyen
- School of Mechanical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea
- Korea Institute of Medical Microrobotics, 43-26, Cheomdangwagi-ro 208-beon-gil, Buk-gu, Gwangju 61011, Korea
| | - Hyun-Ki Min
- Korea Institute of Medical Microrobotics, 43-26, Cheomdangwagi-ro 208-beon-gil, Buk-gu, Gwangju 61011, Korea
| | - Ho Yong Kim
- Korea Institute of Medical Microrobotics, 43-26, Cheomdangwagi-ro 208-beon-gil, Buk-gu, Gwangju 61011, Korea
| | - Jiwon Han
- Korea Institute of Medical Microrobotics, 43-26, Cheomdangwagi-ro 208-beon-gil, Buk-gu, Gwangju 61011, Korea
| | - You Hee Choi
- Korea Institute of Medical Microrobotics, 43-26, Cheomdangwagi-ro 208-beon-gil, Buk-gu, Gwangju 61011, Korea
| | - Chang-Sei Kim
- School of Mechanical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea
- Korea Institute of Medical Microrobotics, 43-26, Cheomdangwagi-ro 208-beon-gil, Buk-gu, Gwangju 61011, Korea
| | - Jong-Oh Park
- School of Mechanical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea
- Korea Institute of Medical Microrobotics, 43-26, Cheomdangwagi-ro 208-beon-gil, Buk-gu, Gwangju 61011, Korea
| | - Eunpyo Choi
- School of Mechanical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea
- Korea Institute of Medical Microrobotics, 43-26, Cheomdangwagi-ro 208-beon-gil, Buk-gu, Gwangju 61011, Korea
| |
Collapse
|
38
|
Yu Z, Gao L, Chen K, Zhang W, Zhang Q, Li Q, Hu K. Nanoparticles: A New Approach to Upgrade Cancer Diagnosis and Treatment. NANOSCALE RESEARCH LETTERS 2021; 16:88. [PMID: 34014432 PMCID: PMC8137776 DOI: 10.1186/s11671-021-03489-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 01/27/2021] [Indexed: 05/07/2023]
Abstract
Traditional cancer therapeutics have been criticized due to various adverse effects and insufficient damage to targeted tumors. The breakthrough of nanoparticles provides a novel approach for upgrading traditional treatments and diagnosis. Actually, nanoparticles can not only solve the shortcomings of traditional cancer diagnosis and treatment, but also create brand-new perspectives and cutting-edge devices for tumor diagnosis and treatment. However, most of the research about nanoparticles stays in vivo and in vitro stage, and only few clinical researches about nanoparticles have been reported. In this review, we first summarize the current applications of nanoparticles in cancer diagnosis and treatment. After that, we propose the challenges that hinder the clinical applications of NPs and provide feasible solutions in combination with the updated literature in the last two years. At the end, we will provide our opinions on the future developments of NPs in tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Zhongyang Yu
- Beijing University of Chinese Medicine, 11 North Third Ring East Road, Chaoyang District, Beijing, 100029, China
| | - Lei Gao
- Oncology Department, Dongfang Hospital, Beijing University of Chinese Medicine, Fangguyuan Rd, Fengtai District, Beijing, 100078, China
| | - Kehan Chen
- College of Engineering, China Agricultural University, Tsinghua East Rd, Haidian District, Beijing, 100083, China
| | - Wenqiang Zhang
- College of Engineering, China Agricultural University, Tsinghua East Rd, Haidian District, Beijing, 100083, China
| | - Qihang Zhang
- Department of Management, Fredericton Campus, University of New Brunswick, 3 Bailey Drive, Fredericton, NB, E3B 5A3, Canada
| | - Quanwang Li
- Oncology Department, Dongfang Hospital, Beijing University of Chinese Medicine, Fangguyuan Rd, Fengtai District, Beijing, 100078, China
| | - Kaiwen Hu
- Oncology Department, Dongfang Hospital, Beijing University of Chinese Medicine, Fangguyuan Rd, Fengtai District, Beijing, 100078, China.
| |
Collapse
|
39
|
Kuang X, Chi D, Li J, Guo C, Yang Y, Zhou S, Luo C, Liu H, He Z, Wang Y. Disulfide bond based cascade reduction-responsive Pt(IV) nanoassemblies for improved anti-tumor efficiency and biosafety. Colloids Surf B Biointerfaces 2021; 203:111766. [PMID: 33866279 DOI: 10.1016/j.colsurfb.2021.111766] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/18/2021] [Accepted: 04/10/2021] [Indexed: 12/11/2022]
Abstract
The platinum-based drugs prevail in the therapy of malignant tumors treatment. However, their clinical outcomes have been heavily restricted by severe systemic toxicities. To ensure biosafety and efficiency, herein, we constructed a disulfide bond inserted Pt(IV) self-assembled nanoplatform that is selectively activated by rich glutathione (GSH) in tumor site. Disulfide bond was introduced into the conjugates of oxaliplatin (IV) and oleic acid (OA) which conferred cascade reduction-responsiveness to nanoassemblies. Disulfide bond cleavage and reduction of Pt(IV) center occur sequentially as a cascade process. In comparison to oxaliplatin solution, Pt(IV) nanoparticles (NPs) achieved prolonged blood circulation and higher maximum tolerated doses. Furthermore, Oxa(IV)-SS-OA prodrug NPs exhibited potent anti-tumor efficiency against 4T1 cells and low toxicities in other normal tissues, which offers a promising nano-platform for potential clinical application.
Collapse
Affiliation(s)
- Xiao Kuang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Dongxu Chi
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jinbo Li
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Chunlin Guo
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yinxian Yang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Shuang Zhou
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Cong Luo
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Hongzhuo Liu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Zhonggui He
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yongjun Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
40
|
Coppens E, Desmaële D, Mougin J, Tusseau-Nenez S, Couvreur P, Mura S. Gemcitabine Lipid Prodrugs: The Key Role of the Lipid Moiety on the Self-Assembly into Nanoparticles. Bioconjug Chem 2021; 32:782-793. [PMID: 33797231 DOI: 10.1021/acs.bioconjchem.1c00051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A small library of amphiphilic prodrugs has been synthesized by conjugation of gemcitabine (Gem) (a hydrophilic nucleoside analogue) to a series of lipid moieties and investigated for their capacity to spontaneously self-assemble into nanosized objects by simple nanoprecipitation. Four of these conjugates formed stable nanoparticles (NPs), while with the others, immediate aggregation occurred, whatever the tested experimental conditions. Whether such capacity could have been predicted based on the prodrug physicochemical features was a matter of question. Among various parameters, the hydrophilic-lipophilic balance (HLB) value seemed to hold a predictive character. Indeed, we identified a threshold value which well correlated with the tendency (or not) of the synthesized prodrugs to form stable nanoparticles. Such a hypothesis was further confirmed by broadening the analysis to Gem and other nucleoside prodrugs already described in the literature. We also observed that, in the case of Gem prodrugs, the lipid moiety affected not only the colloidal properties but also the in vitro anticancer efficacy of the resulting nanoparticles. Overall, this study provides a useful demonstration of the predictive potential of the HLB value for lipid prodrug NP formulation and highlights the need of their opportune in vitro screening, as optimal drug loading does not always translate in an efficient biological activity.
Collapse
Affiliation(s)
- Eleonore Coppens
- Institut Galien Paris-Saclay, UMR 8612, CNRS, Université Paris-Saclay, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 cedex Châtenay-Malabry, France
| | - Didier Desmaële
- Institut Galien Paris-Saclay, UMR 8612, CNRS, Université Paris-Saclay, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 cedex Châtenay-Malabry, France
| | - Julie Mougin
- Institut Galien Paris-Saclay, UMR 8612, CNRS, Université Paris-Saclay, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 cedex Châtenay-Malabry, France
| | - Sandrine Tusseau-Nenez
- Laboratoire de Physique de la Matière Condensée (PMC), CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France
| | - Patrick Couvreur
- Institut Galien Paris-Saclay, UMR 8612, CNRS, Université Paris-Saclay, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 cedex Châtenay-Malabry, France
| | - Simona Mura
- Institut Galien Paris-Saclay, UMR 8612, CNRS, Université Paris-Saclay, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 cedex Châtenay-Malabry, France
| |
Collapse
|
41
|
Zhang L, Zhang S, Li M, Li Y, Xiong H, Jiang D, Li L, Huang H, Kang Y, Pang J. Reactive oxygen species and glutathione dual responsive nanoparticles for enhanced prostate cancer therapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 123:111956. [PMID: 33812584 DOI: 10.1016/j.msec.2021.111956] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 12/27/2022]
Abstract
Docetaxel (DTX)-based chemotherapy of prostate cancer is still confronted with significant challenges due to insufficient drug accumulation at the tumor sites and the systemic side effects on normal cells and organs. Tumor microenvironment-responsive nanosized drug delivery systems have shown enormous potential to improve the anticancer efficacy and minimize the systemic side effects of chemotherapeutics. However, most of the currently redox-responsive nanoparticles respond only to single stimuli, which compromise the treatment effect. Hence, inspired by the abundance of reactive oxygen species (ROS) and intracellular glutathione (GSH) in cancer cells, we proposed a unique ROS and GSH dual responsive nanocarrier (PCL-SS) for DTX delivery. The DTX-loaded PCL-SS nanoparticles (PCL-SS@DTX NPs) were not only stable in a normal physiological environment but also rapidly triggered DTX release in prostate cancer cells. In vitro experiments showed that PCL-SS@DTX NPs had robust prostate cancer cell cytotoxicity, induced cell apoptosis, inhibited cell migration and invasion and exhibited satisfactory biocompatibility. In mice bearing orthotopic prostate cancer, PCL-SS@DTX NPs could accumulate in orthotopic tumor sites and then significantly weaken tumor growth by inhibiting prostate cancer cell proliferation and inducing cell apoptosis, without obvious damages to major organs. Overall, this dual responsive nanosized drug delivery system may act as a promising therapeutic option for prostate cancer chemotherapy.
Collapse
Affiliation(s)
- Liuhui Zhang
- Department of Urology, Kidney and Urology Center, Pelvic Floor Disorders Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China; Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China; Department of Urology, The Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Shiqiang Zhang
- Department of Urology, Kidney and Urology Center, Pelvic Floor Disorders Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Mengxiong Li
- Department of Obstetrics and Gynecology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Yamei Li
- Department of Urology, Kidney and Urology Center, Pelvic Floor Disorders Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Haiyun Xiong
- Department of Urology, Kidney and Urology Center, Pelvic Floor Disorders Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Donggen Jiang
- Department of Urology, Kidney and Urology Center, Pelvic Floor Disorders Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Lujing Li
- Department of Urology, Kidney and Urology Center, Pelvic Floor Disorders Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Hai Huang
- Department of Urology, The Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
| | - Yang Kang
- Department of Urology, Kidney and Urology Center, Pelvic Floor Disorders Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China; Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China.
| | - Jun Pang
- Department of Urology, Kidney and Urology Center, Pelvic Floor Disorders Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China.
| |
Collapse
|
42
|
Zafar A, Alruwaili NK, Imam SS, Alharbi KS, Afzal M, Alotaibi NH, Yasir M, Elmowafy M, Alshehri S. Novel nanotechnology approaches for diagnosis and therapy of breast, ovarian and cervical cancer in female: A review. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
43
|
Yang Y, Zeng W, Huang P, Zeng X, Mei L. Smart materials for drug delivery and cancer therapy. VIEW 2020. [DOI: 10.1002/viw.20200042] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Yao Yang
- Institute of Pharmaceutics School of Pharmaceutical Sciences (Shenzhen) Sun Yat‐sen University Shenzhen China
| | - Weiwei Zeng
- Institute of Pharmaceutics School of Pharmaceutical Sciences (Shenzhen) Sun Yat‐sen University Shenzhen China
| | - Ping Huang
- Institute of Pharmaceutics School of Pharmaceutical Sciences (Shenzhen) Sun Yat‐sen University Shenzhen China
| | - Xiaowei Zeng
- Institute of Pharmaceutics School of Pharmaceutical Sciences (Shenzhen) Sun Yat‐sen University Shenzhen China
| | - Lin Mei
- Institute of Pharmaceutics School of Pharmaceutical Sciences (Shenzhen) Sun Yat‐sen University Shenzhen China
- Tianjin Key Laboratory of Biomedical Materials Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy Institute of Biomedical Engineering Chinese Academy of Medical Sciences & Peking Union Medical College Tianjin China
| |
Collapse
|
44
|
Zhang Y, Dong Y, Fu H, Huang H, Wu Z, Zhao M, Yang X, Guo Q, Duan Y, Sun Y. Multifunctional tumor-targeted PLGA nanoparticles delivering Pt(IV)/siBIRC5 for US/MRI imaging and overcoming ovarian cancer resistance. Biomaterials 2020; 269:120478. [PMID: 33213862 DOI: 10.1016/j.biomaterials.2020.120478] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/08/2020] [Accepted: 10/18/2020] [Indexed: 02/07/2023]
Abstract
Cisplatin (Pt(II)) resistance is an important factor in the high mortality rates of ovarian cancer. Herein, we synthesized multifunctional tumor-targeted poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs-cRGD) for monitoring therapeutic effects by dual-mode imaging and overcoming cisplatin resistance. Uniformly sized NPs-cRGD demonstrated controlled and sustained release of drugs and genes, excellent gene loading and gene protection capacity, good storage stability and no serum-induced aggregation in vitro. NPs-cRGD demonstrated clear, targeting and prolonged ultrasound imaging and magnetic resonance imaging (MRI) in vivo. The targeting of NPs-cRGD combined with ultrasound facilitated nanoparticle penetrattion into cells; entry was time-dependent. NPs-cRGD escaped from lysosomes, thereby preventing siBIRC5 degradation, which enabled siBIRC5 to efficiently inhibit the antiapoptosis effects of BIRC5 in SKO3-DDP to overcome the antiapoptosis properties of resistant cells. Furthermore, Pt(IV) in NPs-cRGD exhausted glutathione (GSH), thereby increasing drug accumulation to effectively increase Pt(II) levels. The subsequent combination of Pt(II) with DNA prevented the expressions of genes and upregulated the expression of p53 to induce the mitochondria apoptosis pathway. The reduced GSH activity and the generation of Pt(II) further promoted high levels of reactive oxygen species (ROS) to induce cell apoptosis. Therefore, NPs-cRGD with ultrasound promoted the apoptosis of resistant ovarian cancer cells by multiple mechanisms, including increased cellular drug accumulation, reversed antiapoptotic effects by siBIRC5, and enhanced ROS levels. In a tumor-bearing nude mice model, NPs-cRGD with US demonstrated excellent tumor-targeting, high efficiency tumor inhibition and low systemic toxicity. Therefore, NPs-cRGD provides a means to monitor treatment processes and can be combined with ultrasound treatment to overcome ovarian cancer resistance in vitro and in vivo.
Collapse
Affiliation(s)
- Yanhua Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Yang Dong
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Hao Fu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Hui Huang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Zhihua Wu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Meng Zhao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Xupeng Yang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Qianqian Guo
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Yourong Duan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China.
| | - Ying Sun
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China.
| |
Collapse
|
45
|
Mohanty A, Uthaman S, Park IK. Utilization of Polymer-Lipid Hybrid Nanoparticles for Targeted Anti-Cancer Therapy. Molecules 2020; 25:E4377. [PMID: 32977707 PMCID: PMC7582728 DOI: 10.3390/molecules25194377] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/22/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022] Open
Abstract
Cancer represents one of the most dangerous diseases, with 1.8 million deaths worldwide. Despite remarkable advances in conventional therapies, these treatments are not effective to completely eradicate cancer. Nanotechnology offers potential cancer treatment based on formulations of several nanoparticles (NPs). Liposomes and polymeric nanoparticle are the most investigated and effective drug delivery systems (DDS) for cancer treatment. Liposomes represent potential DDS due to their distinct properties, including high-drug entrapment efficacy, biocompatibility, low cost, and scalability. However, their use is restricted by susceptibility to lipid peroxidation, instability, burst release of drugs, and the limited surface modification. Similarly, polymeric nanoparticles show several chemical modifications with polymers, good stability, and controlled release, but their drawbacks for biological applications include limited drug loading, polymer toxicity, and difficulties in scaling up. Therefore, polymeric nanoparticles and liposomes are combined to form polymer-lipid hybrid nanoparticles (PLHNPs), with the positive attributes of both components such as high biocompatibility and stability, improved drug payload, controlled drug release, longer circulation time, and superior in vivo efficacy. In this review, we have focused on the prominent strategies used to develop tumor targeting PLHNPs and discuss their advantages and unique properties contributing to an ideal DDS.
Collapse
Affiliation(s)
- Ayeskanta Mohanty
- Department of Biomedical Sciences, Chonnam National University Medical School, 264, Seoyang-ro, Jeollanam-do 58128, Korea;
| | - Saji Uthaman
- Department of Polymer Science and Engineering, Chungnam National University, 99 Daehak-ro, Yuseoung-gu, Daejeon 34134, Korea
| | - In-Kyu Park
- Department of Biomedical Sciences, Chonnam National University Medical School, 264, Seoyang-ro, Jeollanam-do 58128, Korea;
| |
Collapse
|
46
|
Ebenhan T, Kleynhans J, Zeevaart JR, Jeong JM, Sathekge M. Non-oncological applications of RGD-based single-photon emission tomography and positron emission tomography agents. Eur J Nucl Med Mol Imaging 2020; 48:1414-1433. [PMID: 32918574 DOI: 10.1007/s00259-020-04975-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/23/2020] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Non-invasive imaging techniques (especially single-photon emission tomography and positron emission tomography) apply several RGD-based imaging ligands developed during a vast number of preclinical and clinical investigations. The RGD (Arg-Gly-Asp) sequence is a binding moiety for a large selection of adhesive extracellular matrix and cell surface proteins. Since the first identification of this sequence as the shortest sequence required for recognition in fibronectin during the 1980s, fundamental research regarding the molecular mechanisms of integrin action have paved the way for development of several pharmaceuticals and radiopharmaceuticals with clinical applications. Ligands recognizing RGD may be developed for use in the monitoring of these interactions (benign or pathological). Although RGD-based molecular imaging has been actively investigated for oncological purposes, their utilization towards non-oncology applications remains relatively under-exploited. METHODS AND SCOPE This review highlights the new non-oncologic applications of RGD-based tracers (with the focus on single-photon emission tomography and positron emission tomography). The focus is on the last 10 years of scientific literature (2009-2020). It is proposed that these imaging agents will be used for off-label indications that may provide options for disease monitoring where there are no approved tracers available, for instance Crohn's disease or osteoporosis. Fundamental science investigations have made progress in elucidating the involvement of integrin in various diseases not pertaining to oncology. Furthermore, RGD-based radiopharmaceuticals have been evaluated extensively for safety during clinical evaluations of various natures. CONCLUSION Clinical translation of non-oncological applications for RGD-based radiopharmaceuticals and other imaging tracers without going through time-consuming extensive development is therefore highly plausible. Graphical abstract.
Collapse
Affiliation(s)
- Thomas Ebenhan
- Nuclear Medicine, University of Pretoria, Pretoria, 0001, South Africa. .,Nuclear Medicine Research Infrastructure, NPC, Pretoria, 0001, South Africa.
| | - Janke Kleynhans
- Nuclear Medicine, University of Pretoria, Pretoria, 0001, South Africa.,Nuclear Medicine Research Infrastructure, NPC, Pretoria, 0001, South Africa
| | - Jan Rijn Zeevaart
- Nuclear Medicine Research Infrastructure, NPC, Pretoria, 0001, South Africa.,DST/NWU Preclinical Drug Development Platform, North-West University, Potchefstroom, 2520, South Africa
| | - Jae Min Jeong
- Department of Nuclear Medicine, Institute of Radiation Medicine, Seoul National University College of Medicine, 101 Daehangno Jongno-gu, Seoul, 110-744, South Korea
| | - Mike Sathekge
- Nuclear Medicine, University of Pretoria, Pretoria, 0001, South Africa
| |
Collapse
|
47
|
Li N, Zhan X. MASS SPECTROMETRY-BASED MITOCHONDRIAL PROTEOMICS IN HUMAN OVARIAN CANCERS. MASS SPECTROMETRY REVIEWS 2020; 39:471-498. [PMID: 32020673 DOI: 10.1002/mas.21618] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 01/22/2020] [Indexed: 06/10/2023]
Abstract
The prominent characteristics of mitochondria are highly dynamic and regulatory, which have crucial roles in cell metabolism, biosynthetic, senescence, apoptosis, and signaling pathways. Mitochondrial dysfunction might lead to multiple serious diseases, including cancer. Therefore, identification of mitochondrial proteins in cancer could provide a global view of tumorigenesis and progression. Mass spectrometry-based quantitative mitochondrial proteomics fulfils this task by enabling systems-wide, accurate, and quantitative analysis of mitochondrial protein abundance, and mitochondrial protein posttranslational modifications (PTMs). Multiple quantitative proteomics techniques, including isotope-coded affinity tag, stable isotope labeling with amino acids in cell culture, isobaric tags for relative and absolute quantification, tandem mass tags, and label-free quantification, in combination with different PTM-peptide enrichment methods such as TiO2 enrichment of tryptic phosphopeptides and antibody enrichment of other PTM-peptides, increase flexibility for researchers to study mitochondrial proteomes. This article reviews isolation and purification of mitochondria, quantitative mitochondrial proteomics, quantitative mitochondrial phosphoproteomics, mitochondrial protein-involved signaling pathway networks, mitochondrial phosphoprotein-involved signaling pathway networks, integration of mitochondrial proteomic and phosphoproteomic data with whole tissue proteomic and transcriptomic data and clinical information in ovarian cancers (OC) to in-depth understand its molecular mechanisms, and discover effective mitochondrial biomarkers and therapeutic targets for predictive, preventive, and personalized treatment of OC. This proof-of-principle model about OC mitochondrial proteomics is easily implementable to other cancer types. © 2020 John Wiley & Sons Ltd. Mass Spec Rev.
Collapse
Affiliation(s)
- Na Li
- University Creative Research Initiatives Center, Shandong First Medical University, Shandong, 250062, P. R. China
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, P. R. China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, P. R. China
| | - Xianquan Zhan
- University Creative Research Initiatives Center, Shandong First Medical University, Shandong, 250062, P. R. China
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, P. R. China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, P. R. China
- Department of Oncology, Xiangya Hospital, Central South University, 88 Xiangya Road, Changsha, Hunan, 410008, P. R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 88 Xiangya Road, Changsha, Hunan, 410008, P. R. China
| |
Collapse
|
48
|
Patel G, Thakur NS, Kushwah V, Patil MD, Nile SH, Jain S, Banerjee UC, Kai G. Liposomal Delivery of Mycophenolic Acid With Quercetin for Improved Breast Cancer Therapy in SD Rats. Front Bioeng Biotechnol 2020; 8:631. [PMID: 32612988 PMCID: PMC7308462 DOI: 10.3389/fbioe.2020.00631] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 05/22/2020] [Indexed: 12/27/2022] Open
Abstract
The present study explores the influence of mycophenolic acid (MPA) in combination therapy with quercetin (QC) (impeding MPA metabolic rate) delivered using the liposomal nanoparticles (LNPs). Mycophenolic acid liposome nanoparticles (MPA-LNPs) and quercetin liposome nanoparticles (QC-LNPs) were individually prepared and comprehensively characterized. The size of prepared MPA-LNPs and QC-LNPs were found to be 183 ± 13 and 157 ± 09.8, respectively. The in vitro studies revealed the higher cellular uptake and cytotoxicity of combined therapy (MPA-LNPs + QC-LNPs) compared to individual ones. Moreover pharmacokinetics studies in female SD-rat shown higher T 1 / 2 value (1.94 fold) of combined therapy compared to MPA. Furthermore, in vivo anticancer activity in combination of MPA-LNPs and QC-LNPs was also significantly higher related to other treatments groups. The combination therapy of liposomes revealed the new therapeutic approach for the treatment of breast cancer.
Collapse
Affiliation(s)
- Gopal Patel
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Pharmaceutical Technology (Biotechnology), National Institute of Pharmaceutical Education and Research, Sahibzada Ajit Singh Nagar, India
| | - Neeraj Singh Thakur
- Department of Pharmaceutical Technology (Biotechnology), National Institute of Pharmaceutical Education and Research, Sahibzada Ajit Singh Nagar, India
| | - Varun Kushwah
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sahibzada Ajit Singh Nagar, India
| | - Mahesh D. Patil
- Department of Systems Biotechnology, Konkuk University, Seoul, South Korea
| | - Shivraj Hariram Nile
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Sanyog Jain
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sahibzada Ajit Singh Nagar, India
| | - Uttam Chand Banerjee
- Department of Pharmaceutical Technology (Biotechnology), National Institute of Pharmaceutical Education and Research, Sahibzada Ajit Singh Nagar, India
| | - Guoyin Kai
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
49
|
Wu Z, Zhao D, Duan Y, Dong Y, Li Y. Raman-tag labelled Au@ZIF-8 for cell metabolism monitoring in vitro. Clin Hemorheol Microcirc 2020; 75:489-498. [PMID: 32444535 DOI: 10.3233/ch-200861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cell metabolism decides the state of cells in division, differentiation and growth, maintaining intracellular balance. Monitoring the metabolic behavior of cells is of great significance to study the development of diseases in cell levels. Surface-enhanced Raman spectroscopy (SERS) is a powerful technique to detect and quantify analytes in extremely low concentration. Combined with SRES technology, we can monitor the concentration of metabolites in live cells and thus study the biological behavior of cells. In this work, Raman-tag labelled Au@ZIF-8 nanoparticles were used to monitor the distribution of reactive oxygen species (ROS) in SKOV3 cells. With the help of the ultrasensitive Raman enhancement material, the distribution of ROS in SKOV3 cells was mapped, the results were further confirmed in the fluorescent images. The SERS platform provides an ultrasensitive monitoring method of ROS distribution, which may offer an opportunity for real-time monitoring the cell metabolism in the cell biology applications.
Collapse
Affiliation(s)
- Zhihua Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| | - De Zhao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yourong Duan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Dong
- Ultrasound Department, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yaogang Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| |
Collapse
|
50
|
Double security drug delivery system DDS constructed by multi-responsive (pH/redox/US) microgel. Colloids Surf B Biointerfaces 2020; 193:111022. [PMID: 32416517 DOI: 10.1016/j.colsurfb.2020.111022] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/23/2020] [Accepted: 04/06/2020] [Indexed: 01/17/2023]
Abstract
In this paper, the multi-responsive core-shell microgels were prepared for constructing a double-locked drug delivery system. The pH- sensitive poly(2-(diisopropylamino ethylmethacry-late)-block-poly(ethyleneimine) diblock copolymers (PDPA-b-PEI) were synthesized and used to prepare micelles through their self-assembly in neutral solution. Redox-responsive gel shells were formed by Michael addition of primary amine group of branched PEI using disulfide as a cross-linker, which was specifically cleaved by glutathione (GSH). Anticancer drug doxorubicin DOX and perfluorohexane (PFH) could be encapsulated in the core of microgel. The DOX was released sustainably only under the condition of pH and GSH were both right. For example, under neutral condition with GSH, DOX could not release swimmingly due to the core of microgels was in hydrophobic state and wrapped the DOX firmly, although the gel shells were collapsed by GSH. When exposed to ultrasound, the drug released abruptly and achieved a complete release instantly. Moreover, it was found that the structure of the microgels was not destroyed after the ultrasound stimulus but had undergone an expansion-recovery process. Finally, it was demonstrated that the microgel had a "double security" effect, ensuring the low drug leakage during the normal blood circulation and efficient drug release under the pH/redox/ultrasound stimulus. The multi-responsive microgels designed here, which combines the usage of both endogenous and exogenous stimuli, has the advantages of low side-effect, high spatiotemporal controllability and complete release.
Collapse
|