1
|
Spinello I, Labbaye C, Saulle E. Metabolic Function and Therapeutic Potential of CD147 for Hematological Malignancies: An Overview. Int J Mol Sci 2024; 25:9178. [PMID: 39273126 PMCID: PMC11395103 DOI: 10.3390/ijms25179178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
Hematological malignancies refer to a heterogeneous group of neoplastic conditions of lymphoid and hematopoietic tissues classified in leukemias, Hodgkin and non-Hodgkin lymphomas and multiple myeloma, according to their presumed cell of origin, genetic abnormalities, and clinical features. Metabolic adaptation and immune escape, which influence various cellular functions, including the proliferation and survival of hematological malignant tumor cells, are major aspects of these malignancies that lead to therapeutic drug resistance. Targeting specific metabolic pathways is emerging as a novel therapeutic strategy in hematopoietic neoplasms, particularly in acute myeloid leukemia and multiple myeloma. In this context, CD147, also known as extracellular matrix metalloproteinase inducer (EMMPRIN) or Basigin, is one target candidate involved in reprograming metabolism in different cancer cells, including hematological malignant tumor cells. CD147 overexpression significantly contributes to the metabolic transformation of these cancer cells, by mediating signaling pathway, growth, metastasis and metabolic reprogramming, through its interaction, direct or not, with various membrane proteins related to metabolic regulation, including monocarboxylate transporters, integrins, P-glycoprotein, and glucose transporter 1. This review explores the metabolic functions of CD147 and its impact on the tumor microenvironment, influencing the progression and neoplastic transformation of leukemias, myeloma, and lymphomas. Furthermore, we highlight new opportunities for the development of targeted therapies against CD147, potentially improving the treatment of hematologic malignancies.
Collapse
Affiliation(s)
- Isabella Spinello
- Istituto Superiore di Sanità, National Center for Drug Research and Evaluation, 00161 Rome, Italy
| | - Catherine Labbaye
- Istituto Superiore di Sanità, National Center for Drug Research and Evaluation, 00161 Rome, Italy
| | - Ernestina Saulle
- Istituto Superiore di Sanità, National Center for Drug Research and Evaluation, 00161 Rome, Italy
| |
Collapse
|
2
|
Alexander KC, Ikonomidis JS, Akerman AW. New Directions in Diagnostics for Aortic Aneurysms: Biomarkers and Machine Learning. J Clin Med 2024; 13:818. [PMID: 38337512 PMCID: PMC10856211 DOI: 10.3390/jcm13030818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
This review article presents an appraisal of pioneering technologies poised to revolutionize the diagnosis and management of aortic aneurysm disease, with a primary focus on the thoracic aorta while encompassing insights into abdominal manifestations. Our comprehensive analysis is rooted in an exhaustive survey of contemporary and historical research, delving into the realms of machine learning (ML) and computer-assisted diagnostics. This overview draws heavily upon relevant studies, including Siemens' published field report and many peer-reviewed publications. At the core of our survey lies an in-depth examination of ML-driven diagnostic advancements, dissecting an array of algorithmic suites to unveil the foundational concepts anchoring computer-assisted diagnostics and medical image processing. Our review extends to a discussion of circulating biomarkers, synthesizing insights gleaned from our prior research endeavors alongside contemporary studies gathered from the PubMed Central database. We elucidate the prevalent challenges and envisage the potential fusion of AI-guided aortic measurements and sophisticated ML frameworks with the computational analyses of pertinent biomarkers. By framing current scientific insights, we contemplate the transformative prospect of translating fundamental research into practical diagnostic tools. This narrative not only illuminates present strides, but also forecasts promising trajectories in the clinical evaluation and therapeutic management of aortic aneurysm disease.
Collapse
Affiliation(s)
| | | | - Adam W. Akerman
- Department of Surgery, Division of Cardiothoracic Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (K.C.A.); (J.S.I.)
| |
Collapse
|
3
|
Marelli S, Micaglio E, Taurino J, Salvi P, Rurali E, Perrucci GL, Dolci C, Udugampolage NS, Caruso R, Gentilini D, Trifiro' G, Callus E, Frigiola A, De Vincentiis C, Pappone C, Parati G, Pini A. Marfan Syndrome: Enhanced Diagnostic Tools and Follow-up Management Strategies. Diagnostics (Basel) 2023; 13:2284. [PMID: 37443678 DOI: 10.3390/diagnostics13132284] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Marfan syndrome (MFS) is a rare inherited autosomic disorder, which encompasses a variety of systemic manifestations caused by mutations in the Fibrillin-1 encoding gene (FBN1). Cardinal clinical phenotypes of MFS are highly variable in terms of severity, and commonly involve cardiovascular, ocular, and musculoskeletal systems with a wide range of manifestations, such as ascending aorta aneurysms and dissection, mitral valve prolapse, ectopia lentis and long bone overgrowth, respectively. Of note, an accurate and prompt diagnosis is pivotal in order to provide the best treatment to the patients as early as possible. To date, the diagnosis of the syndrome has relied upon a systemic score calculation as well as DNA mutation identification. The aim of this review is to summarize the latest MFS evidence regarding the definition, differences and similarities with other connective tissue pathologies with severe systemic phenotypes (e.g., Autosomal dominant Weill-Marchesani syndrome, Loeys-Dietz syndrome, Ehlers-Danlos syndrome) and clinical assessment. In this regard, the management of MFS requires a multidisciplinary team in order to accurately control the evolution of the most severe and potentially life-threatening complications. Based on recent findings in the literature and our clinical experience, we propose a multidisciplinary approach involving specialists in different clinical fields (i.e., cardiologists, surgeons, ophthalmologists, orthopedics, pneumologists, neurologists, endocrinologists, geneticists, and psychologists) to comprehensively characterize, treat, and manage MFS patients with a personalized medicine approach.
Collapse
Affiliation(s)
- Susan Marelli
- Cardiovascular-Genetic Center, IRCCS Policlinico San Donato, 20097 Milan, Italy
| | - Emanuele Micaglio
- Arrhythmia and Electrophysiology Department, IRCCS Policlinico San Donato, 20097 Milan, Italy
| | - Jacopo Taurino
- Cardiovascular-Genetic Center, IRCCS Policlinico San Donato, 20097 Milan, Italy
| | - Paolo Salvi
- Istituto Auxologico Italiano, Cardiology Unit, IRCCS, 20133 Milan, Italy
| | - Erica Rurali
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy
| | - Gianluca L Perrucci
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy
| | - Claudia Dolci
- Laboratory of Functional Anatomy of the Stomatognathic System (LAFAS), Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20133 Milan, Italy
| | | | - Rosario Caruso
- Clinical Research Service, IRCCS Policlinico San Donato, 20097 Milan, Italy
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| | - Davide Gentilini
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
- Bioinformatics and Statistical Genomics Unit, Istituto Auxologico Italiano IRCCS, Cusano Milanino, University of Milano-Bicocca, 20095 Milan, Italy
| | - Giuliana Trifiro'
- Cardiovascular-Genetic Center, IRCCS Policlinico San Donato, 20097 Milan, Italy
| | - Edward Callus
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
- Clinical Psychology Service, IRCCS Policlinico San Donato, 20097 Milan, Italy
| | - Alessandro Frigiola
- Department of Congenital Cardiac Surgery, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy
- Association "Bambini Cardiopatici nel Mondo" Non-Governmental Organization (NGO), 20123 Milan, Italy
| | - Carlo De Vincentiis
- Department of Cardiothoracic, Vascular Anaesthesia and Intensive Care, IRCCS Policlinico San Donato, 20097 Milan, Italy
- Department of Cardiac Surgery, IRCCS Policlinico San Donato, 20097 Milan, Italy
| | - Carlo Pappone
- Arrhythmia and Electrophysiology Department, IRCCS Policlinico San Donato, 20097 Milan, Italy
- Institute of Molecular and Translational Cardiology, IRCCS Policlinico San Donato, 20097 Milan, Italy
- Faculty of Medicine and Surgery, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Gianfranco Parati
- Istituto Auxologico Italiano, Cardiology Unit, IRCCS, 20133 Milan, Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, 20126 Milan, Italy
| | - Alessandro Pini
- Cardiovascular-Genetic Center, IRCCS Policlinico San Donato, 20097 Milan, Italy
| |
Collapse
|
4
|
Łacina P, Butrym A, Frontkiewicz D, Mazur G, Bogunia-Kubik K. Soluble CD147 (BSG) as a Prognostic Marker in Multiple Myeloma. Curr Issues Mol Biol 2022; 44:350-359. [PMID: 35723405 PMCID: PMC8929000 DOI: 10.3390/cimb44010026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 02/06/2023] Open
Abstract
CD147 (basigin, BSG) is a membrane-bound glycoprotein involved in energy metabolism that plays a role in cancer cell survival. Its soluble form is a promising marker of some diseases, but it is otherwise poorly studied. CD147 is overexpressed in multiple myeloma (MM) and is known to affect MM progression, while its genetic variants are associated with MM survival. In the present study, we aimed to assess serum soluble CD147 (sCD147) expression as a potential marker in MM. We found that sCD147 level was higher in MM patients compared to healthy individuals. It was also higher in patients with more advanced disease (ISS III) compared to both patients with less advanced MM and healthy individuals, while its level was observed to drop after positive response to treatment. Patients with high sCD147 were characterized by worse overall survival. sCD147 level did not directly correlate with bone marrow CD147 mRNA expression. In conclusion, this study suggests that serum sCD147 may be a prognostic marker in MM.
Collapse
Affiliation(s)
- Piotr Łacina
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland;
- Correspondence: ; Tel.: +48-713-709-960 (ext. 236)
| | - Aleksandra Butrym
- Department of Cancer Prevention and Therapy, Wroclaw Medical University, 50-556 Wrocław, Poland;
| | - Diana Frontkiewicz
- Department of Haematology, Sokołowski Specialist Hospital, 58-309 Wałbrzych, Poland;
| | - Grzegorz Mazur
- Department of Internal, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, 50-556 Wrocław, Poland;
| | - Katarzyna Bogunia-Kubik
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland;
| |
Collapse
|
5
|
Łacina P, Butrym A, Turlej E, Stachowicz-Suhs M, Wietrzyk J, Mazur G, Bogunia-Kubik K. BSG (CD147) Serum Level and Genetic Variants Are Associated with Overall Survival in Acute Myeloid Leukaemia. J Clin Med 2022; 11:jcm11020332. [PMID: 35054026 PMCID: PMC8779396 DOI: 10.3390/jcm11020332] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/30/2021] [Accepted: 01/06/2022] [Indexed: 02/04/2023] Open
Abstract
Basigin (BSG, CD147) is a multifunctional protein involved in cancer cell survival, mostly by controlling lactate transport through its interaction with monocarboxylate transporters (MCTs) such as MCT1. Previous studies have found that single nucleotide polymorphisms (SNPs) in the gene coding for BSG and MCT1, as well as levels of the soluble form of BSG (sBSG), are potential biomarkers in various diseases. The goal of this study was to confirm BSG and MCT1 RNA overexpression in AML cell lines, as well as to analyse soluble BSG levels and selected BSG/MCT1 genetic variants as potential biomarkers in AML patients. We found that BSG and MCT1 were overexpressed in most AML cell lines. Soluble BSG was increased in AML patients compared to healthy controls, and correlated with various clinical parameters. High soluble BSG was associated with worse overall survival, higher bone marrow blast percentage, and higher white blood cell count. BSG SNPs rs4919859 and rs4682, as well as MCT1 SNP rs1049434, were also associated with overall survival of AML patients. In conclusion, this study confirms the importance of BSG/MCT1 in AML, and suggests that soluble BSG and BSG/MCT1 genetic variants may act as potential AML biomarkers.
Collapse
Affiliation(s)
- Piotr Łacina
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland;
- Correspondence: ; Tel.: +48-713-709-960-236
| | - Aleksandra Butrym
- Department of Cancer Prevention and Therapy, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Eliza Turlej
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (E.T.); (M.S.-S.); (J.W.)
- Department of Experimental Biology, Wrocław University of Environmental and Life Sciences, 50-375 Wroclaw, Poland
| | - Martyna Stachowicz-Suhs
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (E.T.); (M.S.-S.); (J.W.)
| | - Joanna Wietrzyk
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (E.T.); (M.S.-S.); (J.W.)
| | - Grzegorz Mazur
- Department of Internal, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Katarzyna Bogunia-Kubik
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland;
| |
Collapse
|
6
|
Stengl R, Ágg B, Pólos M, Mátyás G, Szabó G, Merkely B, Radovits T, Szabolcs Z, Benke K. Potential predictors of severe cardiovascular involvement in Marfan syndrome: the emphasized role of genotype-phenotype correlations in improving risk stratification-a literature review. Orphanet J Rare Dis 2021; 16:245. [PMID: 34059089 PMCID: PMC8165977 DOI: 10.1186/s13023-021-01882-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/21/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Marfan syndrome (MFS) is a genetically determined systemic connective tissue disorder, caused by a mutation in the FBN1 gene. In MFS mainly the cardiovascular, musculoskeletal and ocular systems are affected. The most dangerous manifestation of MFS is aortic dissection, which needs to be prevented by a prophylactic aortic root replacement. MAIN BODY The indication criteria for the prophylactic procedure is currently based on aortic diameter, however aortic dissections below the threshold defined in the guidelines have been reported, highlighting the need for a more accurate risk stratification system to predict the occurrence of aortic complications. The aim of this review is to present the current knowledge on the possible predictors of severe cardiovascular manifestations in MFS patients, demonstrating the wide range of molecular and radiological differences between people with MFS and healthy individuals, and more importantly between MFS patients with and without advanced aortic manifestations. These differences originating from the underlying common molecular pathological processes can be assessed by laboratory (e.g. genetic testing) and imaging techniques to serve as biomarkers of severe aortic involvement. In this review we paid special attention to the rapidly expanding field of genotype-phenotype correlations for aortic features as by collecting and presenting the ever growing number of correlations, future perspectives for risk stratification can be outlined. CONCLUSIONS Data on promising biomarkers of severe aortic complications of MFS have been accumulating steadily. However, more unifying studies are required to further evaluate the applicability of the discussed predictors with the aim of improving the risk stratification and therefore the life expectancy and quality of life of MFS patients.
Collapse
Affiliation(s)
- Roland Stengl
- Heart and Vascular Center, Semmelweis University, Városmajor u. 68, Budapest, 1122, Hungary.
- Hungarian Marfan Foundation, Városmajor u. 68, Budapest, 1122, Hungary.
| | - Bence Ágg
- Heart and Vascular Center, Semmelweis University, Városmajor u. 68, Budapest, 1122, Hungary
- Hungarian Marfan Foundation, Városmajor u. 68, Budapest, 1122, Hungary
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary
| | - Miklós Pólos
- Heart and Vascular Center, Semmelweis University, Városmajor u. 68, Budapest, 1122, Hungary
- Hungarian Marfan Foundation, Városmajor u. 68, Budapest, 1122, Hungary
| | - Gábor Mátyás
- Center for Cardiovascular Genetics and Gene Diagnostics, Foundation for People With Rare Diseases, Wagistrasse 25, 8952, CH-Schlieren-Zurich, Switzerland
| | - Gábor Szabó
- Department of Cardiac Surgery, University of Halle, Halle, Germany
| | - Béla Merkely
- Heart and Vascular Center, Semmelweis University, Városmajor u. 68, Budapest, 1122, Hungary
| | - Tamás Radovits
- Heart and Vascular Center, Semmelweis University, Városmajor u. 68, Budapest, 1122, Hungary
| | - Zoltán Szabolcs
- Heart and Vascular Center, Semmelweis University, Városmajor u. 68, Budapest, 1122, Hungary
- Hungarian Marfan Foundation, Városmajor u. 68, Budapest, 1122, Hungary
| | - Kálmán Benke
- Heart and Vascular Center, Semmelweis University, Városmajor u. 68, Budapest, 1122, Hungary
- Hungarian Marfan Foundation, Városmajor u. 68, Budapest, 1122, Hungary
- Department of Cardiac Surgery, University of Halle, Halle, Germany
| |
Collapse
|
7
|
Clinical Significance of CD147 in Children with Inflammatory Bowel Disease. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7647181. [PMID: 33015178 PMCID: PMC7516708 DOI: 10.1155/2020/7647181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 05/24/2020] [Accepted: 06/03/2020] [Indexed: 02/06/2023]
Abstract
Background CD147/basigin (Bsg), a transmembrane glycoprotein, activates matrix metalloproteinases and promotes inflammation. Objective The aim of this study is to explore the clinical significance of CD147 in the pathogenesis of inflammatory bowel disease (IBD). Results In addition to monocytes, the clinical analysis showed that there is no significance obtained in leucocyte, neutrophil, eosinophil, basophil, and erythrocyte between IBD and controls. Immunohistochemistry analysis showed that CD147 was increased in intestinal tissue of patients with active IBD compared to that in the control group. What is more, CD147 is involved in intestinal barrier function and intestinal inflammation, which was attributed to the fact that it has an influence on MCT4 expression, a regulator of intestinal barrier function and intestinal inflammation, in HT-29 and CaCO2 cells. Most importantly, serum level of CD147 content is higher in active IBD than that in inactive IBD or healthy control, which could be a biomarker of IBD. Conclusion The data suggested that increased CD147 level could be a biomarker of IBD in children.
Collapse
|
8
|
Sun H, Wen W, Zhao M, Yan X, Zhang L, Jiao X, Yang Y, Fang F, Qin Y, Zhang M, Wei Y. EMMPRIN: A potential biomarker for predicting the presence of obstructive sleep apnea. Clin Chim Acta 2020; 510:317-322. [PMID: 32673670 DOI: 10.1016/j.cca.2020.07.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 07/05/2020] [Accepted: 07/06/2020] [Indexed: 11/18/2022]
Abstract
BACKGROUND Obstructive Sleep Apnea (OSA) is a sleep-related breathing disorder which is strongly associated with the development of cardiovascular diseases. The aim of the study was to investigate the association between circulating extracellular matrix metalloproteinase inducer (EMMPRIN) and OSA risk. METHODS This was a cross-sectional study in which a total of 144 patients were recruited. Demographic data, blood biochemical parameters and polysomnography parameters were collected. We used a powerful high-throughput Multiplex Immunobead Assay technique to simultaneously detect circulating levels of EMMPRIN and E-selectin. RESULTS Circulating levels of EMMPRIN were significantly increased in patients with OSA compared to controls (7.58[6.21-8.80] vs 1.47[0.80-5.91] ng/ml, P < 0.001). After adjusting for confounding factors, we found that circulating EMMPRIN levels were independently associated with the presence of OSA (odds ratio[OR] = 2.240, 95% confidence interval [CI] = 1.391-3.607, P < 0.001). Furthermore, circulating EMMPRIN showed greater discriminatory accuracy in predicting the presence of OSA (AUC:0.904). CONCLUSIONS Circulating EMMPRIN levels were significantly increased in patients with OSA, and may be a novel marker for predicting the risk of OSA.
Collapse
Affiliation(s)
- Haili Sun
- Department of Otolaryngology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China; Key Laboratory of Upper Airway Dysfunction-related Cardiovascular Diseases, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Wanwan Wen
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Mengmeng Zhao
- Department of Otolaryngology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Xiaoguang Yan
- Department of Otolaryngology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Lichuan Zhang
- Department of Otolaryngology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Xiaolu Jiao
- Key Laboratory of Upper Airway Dysfunction-related Cardiovascular Diseases, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Yunyun Yang
- Key Laboratory of Upper Airway Dysfunction-related Cardiovascular Diseases, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Fang Fang
- Department of Otolaryngology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China; Key Laboratory of Upper Airway Dysfunction-related Cardiovascular Diseases, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Yanwen Qin
- Key Laboratory of Upper Airway Dysfunction-related Cardiovascular Diseases, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Ming Zhang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yongxiang Wei
- Department of Otolaryngology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China; Key Laboratory of Upper Airway Dysfunction-related Cardiovascular Diseases, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China.
| |
Collapse
|
9
|
Cyclophilin A/EMMPRIN Axis Is Involved in Pro-Fibrotic Processes Associated with Thoracic Aortic Aneurysm of Marfan Syndrome Patients. Cells 2020; 9:cells9010154. [PMID: 31936351 PMCID: PMC7016677 DOI: 10.3390/cells9010154] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/16/2019] [Accepted: 01/03/2020] [Indexed: 02/07/2023] Open
Abstract
Background: Marfan syndrome (MFS) is a genetic disease, characterized by thoracic aortic aneurysm (TAA), which treatment is to date purely surgical. Understanding of novel molecular targets is mandatory to unveil effective pharmacological approaches. Cyclophilin A (CyPA) and its receptor EMMPRIN are associated with several cardiovascular diseases, including abdominal aortic aneurysm. Here, we envisioned the contribution of CyPA/EMMPRIN axis in MFS-related TAA. Methods: We obtained thoracic aortic samples from healthy controls (HC) and MFS patients’ aortas and then isolated vascular smooth muscle cells (VSMC) from the aortic wall. Results: our findings revealed that MFS aortic tissue samples isolated from the dilated zone of aorta showed higher expression levels of EMMPRIN vs. MFS non-dilated aorta and HC. Interestingly, angiotensin II significantly stimulated CyPA secretion in MFS-derived VSMC (MFS-VSMC). CyPA treatment on MFS-VSMC led to increased levels of EMMPRIN and other MFS-associated pro-fibrotic mediators, such as TGF-β1 and collagen I. These molecules were downregulated by in vitro treatment with CyPA inhibitor MM284. Our results suggest that CyPA/EMMPRIN axis is involved in MFS-related TAA development, since EMMPRIN is upregulated in the dilated zone of MFS patients’ TAA and the inhibition of its ligand, CyPA, downregulated EMMPRIN and MFS-related markers in MFS-VSMC. Conclusions: these insights suggest both a novel detrimental role for CyPA/EMMPRIN axis and its inhibition as a potential therapeutic strategy for MFS-related TAA treatment.
Collapse
|