1
|
Pan C, Ge L, Zhang H, Sang K, Zhou J, Yi T, Ni Q. Case report: A promising neoadjuvant treatment option for individuals with locally advanced HER2-positive breast cancer involves the use of Pyrotinib Maleate in combination with Trastuzumab and Pertuzumab. Heliyon 2024; 10:e34511. [PMID: 39104479 PMCID: PMC11298905 DOI: 10.1016/j.heliyon.2024.e34511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 08/07/2024] Open
Abstract
Breast cancer (BC) is the prevailing malignancy among women, with HER2 overexpression observed in 20-30 % of all BC, thereby serving as a prognostic indicator for unfavorable outcomes in affected individuals. There is a necessity to establish innovative treatment protocols to expand the therapeutic alternatives accessible for managing HER2-positive BC. In this study, we report a case of HER2-positive BC that was managed in our department using a combination of three targeted drugs (Trastuzumab, Pertuzumab and Pyrotinib) along with chemotherapy. The treatment resulted in a pathological complete response (pCR) and was observed to be well-tolerated, without any significant adverse reactions. Hence, the combination of Pyrotinib and Dual HER2 blockade treatment shows promise as a neoadjuvant therapy for locally advanced HER2-positive BC to achieve a pCR in surgery. Nevertheless, this conclusion necessitates additional validation via meticulously designed clinical research investigations encompassing larger patient populations.
Collapse
Affiliation(s)
- Chi Pan
- Department of General Surgery, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu, PR China
| | - Lan Ge
- Department of General Surgery, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu, PR China
| | - Huifeng Zhang
- Department of Pathology, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu, PR China
| | - Kai Sang
- Department of General Surgery, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu, PR China
| | - Jian Zhou
- Department of General Surgery, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu, PR China
| | - Tongbo Yi
- Department of General Surgery, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu, PR China
| | - Qingtao Ni
- Department of Oncology, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu, PR China
| |
Collapse
|
2
|
Zhang M, Yang T, Hu R, Li M, Liu Y, He W, Zhao L, Xu Y, Guo M, Ding S, Chen J, Cheng W. Zipper-Confined DNA Nanoframe for High-Efficient and High-Contrast Imaging of Heterogeneous Tumor Cell. Anal Chem 2024; 96:2253-2263. [PMID: 38277203 DOI: 10.1021/acs.analchem.3c05619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Current study in the heterogeneity and physiological behavior of tumor cells is limited by the fluorescence in situ hybridization technology in terms of probe assembly efficiency, background suppression capability, and target compatibility. In a typically well-designed assay, hybridization probes are constructed in a confined nanostructure to achieve a rapid assembly for efficient signal response, while the excessively high local concentration between different probes inevitably leads to nonspecific background leakage. Inspired by the fabric zipper, we propose a novel confinement reaction pattern in a zipper-confined DNA nanoframe (ZCDN), where two kinds of hairpin probes are independently anchored respective tracks. The metastable states of the dual tracks can well avoid signal leakage caused by the nonspecific probe configuration change. Biomarker-mediated proximity ligation reduces the local distance of dual tracks, kinetically triggering an efficient allosteric chain reaction between the hairpin probes. This method circumvents nonspecific background leakage while maintaining a high efficiency in responding to targets. ZCDN is employed to track different cancer biomarkers located in both the cytoplasm and cytomembrane, of which the expression level and oligomerization behavior can provide crucial information regarding intratumoral heterogeneity. ZCDN exhibits high target response efficiency and strong background suppression capabilities and is compatible with various types of biological targets, thus providing a desirable tool for advanced molecular diagnostics.
Collapse
Affiliation(s)
- Mengxuan Zhang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P. R. China
| | - Tiantian Yang
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P. R. China
- Biobank Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P. R. China
| | - Ruiwei Hu
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Menghan Li
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yuanjie Liu
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Wen He
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Lina Zhao
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yuan Xu
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Minghui Guo
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Shijia Ding
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Junman Chen
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Wei Cheng
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P. R. China
- Biobank Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P. R. China
| |
Collapse
|
3
|
Lin B, Xiao F, Jiang J, Zhao Z, Zhou X. Engineered aptamers for molecular imaging. Chem Sci 2023; 14:14039-14061. [PMID: 38098720 PMCID: PMC10718180 DOI: 10.1039/d3sc03989g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/07/2023] [Indexed: 12/17/2023] Open
Abstract
Molecular imaging, including quantification and molecular interaction studies, plays a crucial role in visualizing and analysing molecular events occurring within cells or organisms, thus facilitating the understanding of biological processes. Moreover, molecular imaging offers promising applications for early disease diagnosis and therapeutic evaluation. Aptamers are oligonucleotides that can recognize targets with a high affinity and specificity by folding themselves into various three-dimensional structures, thus serving as ideal molecular recognition elements in molecular imaging. This review summarizes the commonly employed aptamers in molecular imaging and outlines the prevalent design approaches for their applications. Furthermore, it highlights the successful application of aptamers to a wide range of targets and imaging modalities. Finally, the review concludes with a forward-looking perspective on future advancements in aptamer-based molecular imaging.
Collapse
Affiliation(s)
- Bingqian Lin
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Department of Hematology of Zhongnan Hospital, Taikang Center for Life and Medical Sciences, Wuhan University Wuhan 430072 China
| | - Feng Xiao
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Department of Hematology of Zhongnan Hospital, Taikang Center for Life and Medical Sciences, Wuhan University Wuhan 430072 China
| | - Jinting Jiang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Department of Hematology of Zhongnan Hospital, Taikang Center for Life and Medical Sciences, Wuhan University Wuhan 430072 China
| | - Zhengjia Zhao
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Department of Hematology of Zhongnan Hospital, Taikang Center for Life and Medical Sciences, Wuhan University Wuhan 430072 China
| | - Xiang Zhou
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Department of Hematology of Zhongnan Hospital, Taikang Center for Life and Medical Sciences, Wuhan University Wuhan 430072 China
| |
Collapse
|
4
|
Yang T, Li J, Zhang D, Cheng X, Li J, Huang X, Ding S, Tang BZ, Cheng W. Pre-Folded G-Quadruplex as a Tunable Reporter to Facilitate CRISPR/Cas12a-Based Visual Nucleic Acid Diagnosis. ACS Sens 2022; 7:3710-3719. [PMID: 36399094 DOI: 10.1021/acssensors.2c01391] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas12a-based detection strategies with a fluorophore quencher-labeled ssDNA reporter or gold nanoparticle ssDNA reporter have been widely used in point-of-care (POC) molecular diagnostics. However, the potential of these CRISPR/Cas12a strategies for POC molecular diagnostics is often compromised due to the complex labeling, high cost, and low signal-to-noise ratio. Herein, we show a pre-folded G-quadruplex (G4) structure with tunable tolerance to CRISPR/Cas12a trans-cleavage and explore its mechanism. Two G4 structures (i.e., Tel22-10 and G16C) sensitive or tolerant to CRISPR/Cas12a trans-cleavage are designed and used as signal elements to fabricate a label-free visible fluorescent strategy or "signal-on" colorimetric strategy, respectively. These two strategies facilitate an ultrasensitive visual nucleic acid determination of Group B Streptococci with a naked-eye limit of detection of 1 aM. The feasibility of the developed G4-assisted CRISPR/Cas12a strategies for real-world applications is demonstrated in clinical vaginal/anal specimens and further verified by a commercial qPCR assay. This work suggests that the proposed G4 structures with tunable tolerance can act as promising signal reporters in the CRISPR/Cas12a system to enable ultrasensitive visible nucleic acid detection.
Collapse
Affiliation(s)
- Tiantian Yang
- The Centre for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing400016, China
| | - Juan Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang330047, China
| | - Decai Zhang
- The Centre for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing400016, China
| | - Xiaoxue Cheng
- The Centre for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing400016, China
| | - Jia Li
- The Centre for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing400016, China
| | - Xiaolin Huang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang330047, China
| | - Shijia Ding
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing400016, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong518172, China
| | - Wei Cheng
- The Centre for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing400016, China
| |
Collapse
|
5
|
Chen L, Huang H, Wang Z, Deng K, Huang H. Sensitive fluorescence detection of pathogens based on target nucleic acid sequence-triggered transcription. Talanta 2022; 243:123352. [DOI: 10.1016/j.talanta.2022.123352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/27/2022] [Accepted: 02/28/2022] [Indexed: 10/18/2022]
|
6
|
Chen L, Luo S, Ge Z, Fan C, Yang Y, Li Q, Zhang Y. Unbiased Enrichment of Circulating Tumor Cells Via DNAzyme-Catalyzed Proximal Protein Biotinylation. NANO LETTERS 2022; 22:1618-1625. [PMID: 35156821 DOI: 10.1021/acs.nanolett.1c04583] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Circulating tumor cells (CTCs) are noninvasive biomarkers with great potential for assessing neoplastic diseases. However, the enrichment bias toward heterogeneous CTCs remains to be minimized. Herein, a DNAzyme-catalyzed proximal protein biotinylation (DPPB) strategy is established for unbiased CTCs enrichment, employing DNA-framework-based, aptamer-coupled DNAzymes that bind to the surface marker of CTCs and subsequently biotinylated membrane proteins in situ. The DNA framework enables the construction of multivalent DNAzyme and serves as steric hindrance to avoid undesired interaction between DNAzymes and aptamer, leading to efficient binding and biotinylation. Compared with a biotinylated-aptamer strategy, fivefold lower bias of cell subpopulations was achieved by DPPB before and after capture, which enabled a 4.6-fold performance for CTCs analysis in clinic blood samples. DPPB is envisioned to offer a new solution for CTC-based cancer diagnostics.
Collapse
Affiliation(s)
- Liang Chen
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Shihua Luo
- Department of Traumatology, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Zhilei Ge
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yang Yang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Qian Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuanqing Zhang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
7
|
Keijzer JF, Albada B. DNA-assisted site-selective protein modification. Biopolymers 2021; 113:e23483. [PMID: 34878181 PMCID: PMC9285461 DOI: 10.1002/bip.23483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 11/09/2022]
Abstract
Protein modification is important for various types of biomedical research, including proteomics and therapeutics. Many methodologies for protein modification exist, but not all possess the required level of efficiency and site selectivity. This review focuses on the use of DNA to achieve the desired conversions and levels of accuracy in protein modification by using DNA (i) as a template to help concentrate dilute reactants, (ii) as a guidance system to achieve selectivity by binding specific proteins, and (iii) even as catalytic entity or construct to enhance protein modification reactions.
Collapse
Affiliation(s)
- Jordi F Keijzer
- Laboratory of Organic Chemistry, Wageningen University and Research, Wageningen, The Netherlands
| | - Bauke Albada
- Laboratory of Organic Chemistry, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
8
|
Abstract
This article provides a comprehensive review of biosensing with DNAzymes, providing an overview of different sensing applications while highlighting major progress and seminal contributions to the field of portable biosensor devices and point-of-care diagnostics. Specifically, the field of functional nucleic acids is introduced, with a specific focus on DNAzymes. The incorporation of DNAzymes into bioassays is then described, followed by a detailed overview of recent advances in the development of in vivo sensing platforms and portable sensors incorporating DNAzymes for molecular recognition. Finally, a critical perspective on the field, and a summary of where DNAzyme-based devices may make the biggest impact are provided.
Collapse
Affiliation(s)
- Erin M McConnell
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada.
| | | | | | | | | | | |
Collapse
|
9
|
Xu L, Zhou Z, Gou X, Shi W, Gong Y, Yi M, Cheng W, Song F. Light up multiple protein dimers on cell surface based on proximity-induced fluorescence activation of DNA-templated sliver nanoclusters. Biosens Bioelectron 2021; 179:113064. [DOI: 10.1016/j.bios.2021.113064] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/27/2021] [Accepted: 01/31/2021] [Indexed: 02/07/2023]
|
10
|
Zhang Q, Feng S, Li W, Xie T, Zhang W, Lin J. In Situ Stable Generation of Reactive Intermediates by Open Microfluidic Probe for Subcellular Free Radical Attack and Membrane Labeling. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Qiang Zhang
- Department of Chemistry Beijing Key Laboratory of Microanalytical Methods and Instrumentation MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology Tsinghua University Beijing 100084 China
| | - Shuo Feng
- Department of Chemistry Beijing Key Laboratory of Microanalytical Methods and Instrumentation MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology Tsinghua University Beijing 100084 China
| | - Weiwei Li
- Department of Chemistry Beijing Key Laboratory of Microanalytical Methods and Instrumentation MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology Tsinghua University Beijing 100084 China
| | - Tianze Xie
- Department of Chemistry Beijing Key Laboratory of Microanalytical Methods and Instrumentation MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology Tsinghua University Beijing 100084 China
| | - Wanling Zhang
- Department of Chemistry Beijing Key Laboratory of Microanalytical Methods and Instrumentation MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology Tsinghua University Beijing 100084 China
| | - Jin‐Ming Lin
- Department of Chemistry Beijing Key Laboratory of Microanalytical Methods and Instrumentation MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology Tsinghua University Beijing 100084 China
| |
Collapse
|
11
|
Zhang Q, Feng S, Li W, Xie T, Zhang W, Lin J. In Situ Stable Generation of Reactive Intermediates by Open Microfluidic Probe for Subcellular Free Radical Attack and Membrane Labeling. Angew Chem Int Ed Engl 2021; 60:8483-8487. [DOI: 10.1002/anie.202016171] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/07/2021] [Indexed: 01/19/2023]
Affiliation(s)
- Qiang Zhang
- Department of Chemistry Beijing Key Laboratory of Microanalytical Methods and Instrumentation MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology Tsinghua University Beijing 100084 China
| | - Shuo Feng
- Department of Chemistry Beijing Key Laboratory of Microanalytical Methods and Instrumentation MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology Tsinghua University Beijing 100084 China
| | - Weiwei Li
- Department of Chemistry Beijing Key Laboratory of Microanalytical Methods and Instrumentation MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology Tsinghua University Beijing 100084 China
| | - Tianze Xie
- Department of Chemistry Beijing Key Laboratory of Microanalytical Methods and Instrumentation MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology Tsinghua University Beijing 100084 China
| | - Wanling Zhang
- Department of Chemistry Beijing Key Laboratory of Microanalytical Methods and Instrumentation MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology Tsinghua University Beijing 100084 China
| | - Jin‐Ming Lin
- Department of Chemistry Beijing Key Laboratory of Microanalytical Methods and Instrumentation MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology Tsinghua University Beijing 100084 China
| |
Collapse
|
12
|
Zhao X, Dai X, Zhao S, Cui X, Gong T, Song Z, Meng H, Zhang X, Yu B. Aptamer-based fluorescent sensors for the detection of cancer biomarkers. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 247:119038. [PMID: 33120124 DOI: 10.1016/j.saa.2020.119038] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 06/11/2023]
Abstract
Aptamers are short single-stranded RNA or DNA molecules that can recognize a series of targets with high affinity and specificity. Known as "chemical antibodies", aptamers have many unique merits, including ease of chemical synthesis, high chemical stability, low molecular weight, lack of immunogenicity, and ease of modification and manipulation compared to their protein counterparts. Using aptamers as the recognition groups, fluorescent aptasensors provide exciting opportunities for sensitive detection and quantification of analytes. Herein, we give an overview on the recent development of aptamer-based fluorescent sensors for the detection of cancer biomarkers. Based on various nanostructured sensor designs, we extended our discussions on sensitivity, specificity and the potential applications of aptamer-based fluorescent sensors in early diagnosis, treatment and prognosis of cancers.
Collapse
Affiliation(s)
- Xuhua Zhao
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Xiaochun Dai
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Suya Zhao
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Xiaohua Cui
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Tao Gong
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Zhiling Song
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Hongmin Meng
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaobing Zhang
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Baofeng Yu
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi 030001, China.
| |
Collapse
|
13
|
Han L, Pan C, Ni Q, Yu T. Case Report: Herceptin as a Potentially Valuable Adjuvant Therapy for a Patient With Human Epidermal Growth Factor Receptor 2-Positive Advanced Esophageal Squamous Cell Carcinoma. Front Oncol 2021; 10:600459. [PMID: 33598429 PMCID: PMC7883677 DOI: 10.3389/fonc.2020.600459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 12/11/2020] [Indexed: 11/29/2022] Open
Abstract
Esophageal cancer is one of the most common cancers with a low overall 5-year relative survival rate of approximately 20%. Trastuzumab (Herceptin®) targets HER2 and is an effective therapeutic strategy in HER2-positive breast cancer. However, few reports have described targeted therapy for treating esophageal squamous cell carcinoma (ESCC). A patient with advanced ESCC who had received chemotherapy, radiotherapy, and had undergone a clinical study is described here. The tumor had not been controlled. Herceptin and chemotherapy were used as salvage therapy in this patient because of high HER2 expression. Good therapeutic results were observed in this patient. Therefore, Herceptin is a potential target therapy for patients with HER2-positive advanced ESCC. A study with a large population and a prospective random study are necessary to validate these results.
Collapse
Affiliation(s)
- Li Han
- Department of Medical Oncology, Xuzhou first People's Hospital, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou, China
| | - Chi Pan
- Department of General Surgery, Jiangsu Taizhou People's Hospital, Taizhou, China
| | - Qingtao Ni
- Department of Oncology, Jiangsu Taizhou People's Hospital, Taizhou, China
| | - Tao Yu
- Department of Medical Oncology, Xuzhou first People's Hospital, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
14
|
Yang H, Peng D, Zhou Y, Liu J. Pb 2+ as a Substrate and a Cofactor of a Porphyrin Metalation DNAzyme. Chembiochem 2020; 21:2259-2263. [PMID: 32202058 DOI: 10.1002/cbic.202000073] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/21/2020] [Indexed: 11/11/2022]
Abstract
We herein report a DNAzyme named T30695 (sequence: (G3 T)4 ) that can catalyze Zn2+ insertion into three different porphyrins in the presence of Pb2+ as a cofactor. Meanwhile, T30695 with Pb2+ alone was found to cause a shift in both the fluorescence and UV-vis spectra of protoporphyrin IX (PPIX), thus suggesting that metalation of Pb2+ was also achieved at room temperature. From kinetic measurements, the reaction required two Pb2+ ions; this is consistent with one being a cofactor and the other being a substrate. No previous reports inserted Pb2+ into porphyrins by using DNAzymes or protein-based enzymes. This reaction was most significantly inhibited in the presence of K+ followed by Na+ and Li+ , suggesting the importance of the Pb2+ -stabilized G-quadruplex. When Pb2+ is inserted into PPIX, its emission blue shifts from 635 to 590 nm, thus allowing simple ratiometric fluorescent sensing with a detection limit of 1.2 nM Pb2+ .
Collapse
Affiliation(s)
- Hualin Yang
- College of Life Science, Yangtze University, 266 Jingmi Road, Jingzhou, Hubei, 434025, China.,Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2 L 3G1, Canada
| | - Dong Peng
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2 L 3G1, Canada.,College of Chemistry20, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, Jiangxi, China
| | - Yu Zhou
- College of Life Science, Yangtze University, 266 Jingmi Road, Jingzhou, Hubei, 434025, China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2 L 3G1, Canada
| |
Collapse
|