1
|
Xie DM, Li ZY, Ren BK, Gong R, Yang D, Huang S. Tanshinone II A Facilitates Chemosensitivity of Osteosarcoma Cells to Cisplatin via Activation of p38 MAPK Pathway. Chin J Integr Med 2024:10.1007/s11655-024-4118-5. [PMID: 39499413 DOI: 10.1007/s11655-024-4118-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2024] [Indexed: 11/07/2024]
Abstract
OBJECTIVE To examine the mechanism of action of tanshinone II A (Tan II A) in promoting chemosensitization of osteosarcoma cells to cisplatin (DDP). METHODS The effects of different concentrations of Tan II A (0-80 µ mol/L) and DDP (0-2 µ mol/L) on the proliferation of osteosarcoma cell lines (U2R, U2OS, 143B, and HOS) at different times were examined using the cell counting kit-8 and colony formation assays. Migration and invasion of U2R and U2OS cells were detected after 24 h treatment with 30 µ mol/L Tan II A, 0.5 µ mol/L DDP alone, and a combination of 10 µ mol/L Tan II A and 0.25 µ mol/L DDP using the transwell assay. After 48 h of treatment of U2R and U2OS cells with predetermined concentrations of each group of drugs, the cell cycle was analyzed using a cell cycle detection kit and flow cytometry. After 48 h treatment, apoptosis of U2R and U2OS cells was detected using annexin V-FITC apoptosis detection kit and flow cytometry. U2R cells were inoculated into the unilateral axilla of nude mice and then the mice were randomly divided into 4 groups of 6 nude mice each. The 4 groups were treated with equal volume of Tan II A (15 mg/kg), DDP (3 mg/kg), Tan II A (7.5 mg/kg) + DDP (1.5 mg/kg), and normal saline, respectively. The body weight of the nude mice was weighed, and the tumor volume and weight were measured. Cell-related gene and signaling pathway expression were detected by RNA sequencing and Kyoto Encyclopedia of Genes and Genomes pathway analysis. p38 MAPK signaling pathway proteins and apoptotic protein expressions were detected by Western blot. RESULTS In vitro studies have shown that Tan II A, DDP and the combination of Tan II A and DDP inhibit the proliferation, migration and invasion of osteosarcoma cells. The inhibitory effect was more pronounced in the Tan II A and DDP combined treatment group (P<0.05 or P<0.01). Osteosarcoma cells underwent significantly cell-cycle arrest and cell apoptosis by Tan II A-DDP combination treatment (P<0.05 or P<0.01). In vivo studies demonstrated that the Tan II A-DD combination treatment group significantly inhibited tumor growth compared to the Tan II A and DDP single drug group (P<0.01). Additionally, we found that the combination of Tan II A and DDP treatment enhanced the p38 MAPK signaling pathway. Western blot assays showed higher p-p38, cleaved caspase-3, and Bax and lower caspase-3, and Bcl-2 expressions with the combination of Tan II A and DDP treatment compared to the single drug treatment (P<0.01). CONCLUSION Tan II A synergizes with DDP by activating the p38/MAPK pathway to upregulate cleaved caspase-3 and Bax pro-apoptotic gene expressions, and downregulate caspase-3 and Bcl-2 inhibitory apoptotic gene expressions, thereby enhancing the chemosensitivity of osteosarcoma cells to DDP.
Collapse
Affiliation(s)
- Da-Ming Xie
- Department of Orthopaedics, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
- Jiangxi Provincial Key Laboratory of Spine and Spinal Cord Disease, Nanchang, 330006, China
| | - Zhi-Yun Li
- Department of Orthopaedics, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Bing-Kai Ren
- Department of Orthopaedics, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Rui Gong
- Department of Clinical Medicine, Jiangxi Health Vocational College, Nanchang, 330052, China
| | - Dong Yang
- Department of Orthopaedics, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
- Jiangxi Provincial Key Laboratory of Spine and Spinal Cord Disease, Nanchang, 330006, China
| | - Sheng Huang
- Department of Orthopaedics, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China.
- Jiangxi Provincial Key Laboratory of Spine and Spinal Cord Disease, Nanchang, 330006, China.
| |
Collapse
|
2
|
Hao Y, Xie F, He J, Gu C, Zhao Y, Luo W, Song X, Shen J, Yu L, Han Z, He J. PLA inhibits TNF-α-induced PANoptosis of prostate cancer cells through metabolic reprogramming. Int J Biochem Cell Biol 2024; 169:106554. [PMID: 38408537 DOI: 10.1016/j.biocel.2024.106554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 02/28/2024]
Abstract
Previous studies have shown that phenyllactic acid (alpha-Hydroxyhydrocinnamic acid, 2-Hydroxy-3-phenylpropionic acid, PLA), a type of organic acid metabolite, has excellent diagnostic efficacy when used to differentiate between prostate cancer, benign prostatic hyperplasia, and prostatitis. This research aims to explore the molecular mechanism by which PLA influences the PANoptosis of prostate cancer (PCa) cell lines. First, we found that PLA was detected in all prostate cancer cell lines (PC-3, PC-3 M, DU145, LNCAP). Further experiments showed that the addition of PLA to prostate cancer cells could promote ATP generation, enhance cysteine desulfurase (NFS1) expression, and reduce tumor necrosis factor alpha (TNF-α) levels, thereby inhibiting apoptosis in prostate cancer cells. Notably, overexpression of NFS1 can inhibit the binding of TNF-α to serpin mRNA binding protein 1 (SERBP1), suggesting that NFS1 competes with TNF-α for binding to SERBP1. Knockdown of SERBP1 significantly reduced the level of small ubiquity-related modifier (SUMO) modification of TNF-α. This suggests that NFS1 reduces the SUMO modification of TNF-α by competing with SERBP1, thereby reducing the expression and stability of TNF-α and ultimately inhibiting apoptosis in prostate cancer cell lines. In conclusion, PLA inhibits TNF-α induced panapoptosis of prostate cancer cells through metabolic reprogramming, providing a new idea for targeted treatment of prostate cancer.
Collapse
Affiliation(s)
- Yinghui Hao
- Department of Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Fangmei Xie
- Department of Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Jieyi He
- Department of Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Chenqiong Gu
- Department of Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Ying Zhao
- Central Laboratory of Panyu Central Hospital, Guangzhou, China
| | - Wenfeng Luo
- Central Laboratory of Panyu Central Hospital, Guangzhou, China
| | - Xiaoyu Song
- Central Laboratory of Panyu Central Hospital, Guangzhou, China
| | - Jian Shen
- Central Laboratory of Panyu Central Hospital, Guangzhou, China
| | - Li Yu
- Department of Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China.
| | - Zeping Han
- Central Laboratory of Panyu Central Hospital, Guangzhou, China.
| | - Jinhua He
- Department of Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China; Central Laboratory of Panyu Central Hospital, Guangzhou, China; Rehabilitation Medicine Institute of Panyu District, Guangzhou, China.
| |
Collapse
|
3
|
Sang H, Li L, Zhao Q, Liu Y, Hu J, Niu P, Hao Z, Chai K. The regulatory process and practical significance of non-coding RNA in the dissemination of prostate cancer to the skeletal system. Front Oncol 2024; 14:1358422. [PMID: 38577343 PMCID: PMC10991771 DOI: 10.3389/fonc.2024.1358422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/12/2024] [Indexed: 04/06/2024] Open
Abstract
Prostate cancer is a major contributor to male cancer-related mortality globally. It has a particular affinity for the skeletal system with metastasis to bones seriously impacting prognosis. The identification of prostate cancer biomarkers can significantly enhance diagnosis and patient monitoring. Research has found that cancer and metastases exhibit abnormal expression of numerous non-coding RNA. Some of these RNA facilitate prostate cancer bone metastasis by activating downstream signaling pathways, while others inhibit this process. Elucidating the functional processes of non-coding RNA in prostate cancer bone metastasis will likely lead to innovative treatment strategies for this malignant condition. In this review, the mechanistic role of the various RNA in prostate cancer is examined. Our goal is to provide a new avenue of approach to the diagnosis and treatment of bone metastasis in this cancer.
Collapse
Affiliation(s)
- Hui Sang
- Department of Urology, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
| | - Luxi Li
- Department of Urology, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
| | - Qiang Zhao
- Department of Urology, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
| | - Yulin Liu
- Department of Urology, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
| | - Jinbo Hu
- Department of Urology, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
| | - Peng Niu
- Department of Urology, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
| | - Zhenming Hao
- Department of Urology, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
| | - Keqiang Chai
- Department of Urology, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
| |
Collapse
|
4
|
Khan SU, Fatima K, Aisha S, Malik F. Unveiling the mechanisms and challenges of cancer drug resistance. Cell Commun Signal 2024; 22:109. [PMID: 38347575 PMCID: PMC10860306 DOI: 10.1186/s12964-023-01302-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 08/30/2023] [Indexed: 02/15/2024] Open
Abstract
Cancer treatment faces many hurdles and resistance is one among them. Anti-cancer treatment strategies are evolving due to innate and acquired resistance capacity, governed by genetic, epigenetic, proteomic, metabolic, or microenvironmental cues that ultimately enable selected cancer cells to survive and progress under unfavorable conditions. Although the mechanism of drug resistance is being widely studied to generate new target-based drugs with better potency than existing ones. However, due to the broader flexibility in acquired drug resistance, advanced therapeutic options with better efficacy need to be explored. Combination therapy is an alternative with a better success rate though the risk of amplified side effects is commonplace. Moreover, recent groundbreaking precision immune therapy is one of the ways to overcome drug resistance and has revolutionized anticancer therapy to a greater extent with the only limitation of being individual-specific and needs further attention. This review will focus on the challenges and strategies opted by cancer cells to withstand the current therapies at the molecular level and also highlights the emerging therapeutic options -like immunological, and stem cell-based options that may prove to have better potential to challenge the existing problem of therapy resistance. Video Abstract.
Collapse
Affiliation(s)
- Sameer Ullah Khan
- Division of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Holcombe Blvd, Houston, TX, 77030, USA.
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Srinagar-190005, Jammu and Kashmir, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
| | - Kaneez Fatima
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Srinagar-190005, Jammu and Kashmir, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Shariqa Aisha
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Srinagar-190005, Jammu and Kashmir, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Fayaz Malik
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Srinagar-190005, Jammu and Kashmir, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
| |
Collapse
|
5
|
Bukva M, Dobra G, Gyukity-Sebestyen E, Boroczky T, Korsos MM, Meckes DG, Horvath P, Buzas K, Harmati M. Machine learning-based analysis of cancer cell-derived vesicular proteins revealed significant tumor-specificity and predictive potential of extracellular vesicles for cell invasion and proliferation - A meta-analysis. Cell Commun Signal 2023; 21:333. [PMID: 37986165 PMCID: PMC10658864 DOI: 10.1186/s12964-023-01344-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/27/2023] [Indexed: 11/22/2023] Open
Abstract
BACKGROUND Although interest in the role of extracellular vesicles (EV) in oncology is growing, not all potential aspects have been investigated. In this meta-analysis, data regarding (i) the EV proteome and (ii) the invasion and proliferation capacity of the NCI-60 tumor cell lines (60 cell lines from nine different tumor types) were analyzed using machine learning methods. METHODS On the basis of the entire proteome or the proteins shared by all EV samples, 60 cell lines were classified into the nine tumor types using multiple logistic regression. Then, utilizing the Least Absolute Shrinkage and Selection Operator, we constructed a discriminative protein panel, upon which the samples were reclassified and pathway analyses were performed. These panels were validated using clinical data (n = 4,665) from Human Protein Atlas. RESULTS Classification models based on the entire proteome, shared proteins, and discriminative protein panel were able to distinguish the nine tumor types with 49.15%, 69.10%, and 91.68% accuracy, respectively. Invasion and proliferation capacity of the 60 cell lines were predicted with R2 = 0.68 and R2 = 0.62 (p < 0.0001). The results of the Reactome pathway analysis of the discriminative protein panel suggest that the molecular content of EVs might be indicative of tumor-specific biological processes. CONCLUSION Integrating in vitro EV proteomic data, cell physiological characteristics, and clinical data of various tumor types illuminates the diagnostic, prognostic, and therapeutic potential of EVs. Video Abstract.
Collapse
Affiliation(s)
- Matyas Bukva
- Department of Immunology, Albert Szent-Györgyi Medical School, Faculty of Science and Informatics, University of Szeged, 6726, Szeged, Hungary
- Doctoral School of Interdisciplinary Medicine, Albert Szent-Györgyi Medical School, University of Szeged, 6720, Szeged, Hungary
- Laboratory of Microscopic Image Analysis and Machine Learning, Institute of Biochemistry, Biological Research Centre, Hungarian Research Network (HUN-REN), Szeged, 6726, Hungary
| | - Gabriella Dobra
- Department of Immunology, Albert Szent-Györgyi Medical School, Faculty of Science and Informatics, University of Szeged, 6726, Szeged, Hungary
- Doctoral School of Interdisciplinary Medicine, Albert Szent-Györgyi Medical School, University of Szeged, 6720, Szeged, Hungary
- Laboratory of Microscopic Image Analysis and Machine Learning, Institute of Biochemistry, Biological Research Centre, Hungarian Research Network (HUN-REN), Szeged, 6726, Hungary
| | - Edina Gyukity-Sebestyen
- Department of Immunology, Albert Szent-Györgyi Medical School, Faculty of Science and Informatics, University of Szeged, 6726, Szeged, Hungary
- Laboratory of Microscopic Image Analysis and Machine Learning, Institute of Biochemistry, Biological Research Centre, Hungarian Research Network (HUN-REN), Szeged, 6726, Hungary
| | - Timea Boroczky
- Department of Immunology, Albert Szent-Györgyi Medical School, Faculty of Science and Informatics, University of Szeged, 6726, Szeged, Hungary
- Doctoral School of Interdisciplinary Medicine, Albert Szent-Györgyi Medical School, University of Szeged, 6720, Szeged, Hungary
- Laboratory of Microscopic Image Analysis and Machine Learning, Institute of Biochemistry, Biological Research Centre, Hungarian Research Network (HUN-REN), Szeged, 6726, Hungary
| | - Marietta Margareta Korsos
- Department of Immunology, Albert Szent-Györgyi Medical School, Faculty of Science and Informatics, University of Szeged, 6726, Szeged, Hungary
| | - David G Meckes
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, 32306, USA
| | - Peter Horvath
- Laboratory of Microscopic Image Analysis and Machine Learning, Institute of Biochemistry, Biological Research Centre, Hungarian Research Network (HUN-REN), Szeged, 6726, Hungary
| | - Krisztina Buzas
- Department of Immunology, Albert Szent-Györgyi Medical School, Faculty of Science and Informatics, University of Szeged, 6726, Szeged, Hungary
- Laboratory of Microscopic Image Analysis and Machine Learning, Institute of Biochemistry, Biological Research Centre, Hungarian Research Network (HUN-REN), Szeged, 6726, Hungary
| | - Maria Harmati
- Department of Immunology, Albert Szent-Györgyi Medical School, Faculty of Science and Informatics, University of Szeged, 6726, Szeged, Hungary.
- Laboratory of Microscopic Image Analysis and Machine Learning, Institute of Biochemistry, Biological Research Centre, Hungarian Research Network (HUN-REN), Szeged, 6726, Hungary.
| |
Collapse
|
6
|
Haerinck J, Goossens S, Berx G. The epithelial-mesenchymal plasticity landscape: principles of design and mechanisms of regulation. Nat Rev Genet 2023; 24:590-609. [PMID: 37169858 DOI: 10.1038/s41576-023-00601-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2023] [Indexed: 05/13/2023]
Abstract
Epithelial-mesenchymal plasticity (EMP) enables cells to interconvert between several states across the epithelial-mesenchymal landscape, thereby acquiring hybrid epithelial/mesenchymal phenotypic features. This plasticity is crucial for embryonic development and wound healing, but also underlies the acquisition of several malignant traits during cancer progression. Recent research using systems biology and single-cell profiling methods has provided novel insights into the main forces that shape EMP, which include the microenvironment, lineage specification and cell identity, and the genome. Additionally, key roles have emerged for hysteresis (cell memory) and cellular noise, which can drive stochastic transitions between cell states. Here, we review these forces and the distinct but interwoven layers of regulatory control that stabilize EMP states or facilitate epithelial-mesenchymal transitions (EMTs) and discuss the therapeutic potential of manipulating the EMP landscape.
Collapse
Affiliation(s)
- Jef Haerinck
- Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Steven Goossens
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Unit for Translational Research in Oncology, Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Geert Berx
- Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| |
Collapse
|
7
|
Lin J, Zhuo Y, Zhang Y, Liu R, Zhong W. Molecular predictors of metastasis in patients with prostate cancer. Expert Rev Mol Diagn 2023; 23:199-215. [PMID: 36860119 DOI: 10.1080/14737159.2023.2187289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
INTRODUCTION Prostate cancer is a serious threat to the health of older adults worldwide. The quality of life and survival time of patients sharply decline once metastasis occurs. Thus, early screening for prostate cancer is very advanced in developed countries. The detection methods used include Prostate-specific antigen (PSA) detection and digital rectal examination. However, the lack of universal access to early screening in some developing countries has resulted in an increased number of patients presenting with metastatic prostate cancer. In addition, the treatment methods for metastatic and localized prostate cancer are considerably different. In many patients, early-stage prostate cancer cells often metastasize due to delayed observation, negative PSA results, and delay in treatment time. Therefore, the identification of patients who are prone to metastasis is important for future clinical studies. AREAS COVERED this review introduced a large number of predictive molecules related to prostate cancer metastasis. These molecules involve the mutation and regulation of tumor cell genes, changes in the tumor microenvironment, and the liquid biopsy. EXPERT OPINION In next decade, PSMA PET/CT and liquid biopsy will be the excellent predicting tools, while 177 Lu- PSMA-RLT will be showed excellent anti-tumor efficacy in mPCa patients.
Collapse
Affiliation(s)
- Jundong Lin
- Department of Urology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Yangjia Zhuo
- Department of Urology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Yixun Zhang
- Department of Urology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Ren Liu
- Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Weide Zhong
- Department of Urology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| |
Collapse
|
8
|
Liu X, Zhang C, Wang X, Cui C, Cui H, Zhu B, Chen A, Zhang L, Xin J, Fu Q, Dionigi G, Sun H. Long non-coding RNA MFSD4A-AS1 promotes lymphangiogenesis and lymphatic metastasis of papillary thyroid cancer. Endocr Relat Cancer 2023; 30:e220221. [PMID: 36606578 PMCID: PMC9986400 DOI: 10.1530/erc-22-0221] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/05/2023] [Indexed: 01/07/2023]
Abstract
Lymphatic metastasis is the leading cause responsible for recurrence and progression in papillary thyroid cancer (PTC), where dysregulation of long non-coding RNAs (lncRNAs) has been extensively demonstrated to be implicated. However, the specific lymphatic node metastatsis-related lncRNAs remain not identified in PTC yet. Lymphatic node metastatsis-related lncRNA, MFSD4A-AS1, was explored in the PTC dataset from The Cancer Genome Atlas and our clinical samples. The roles of MFSD4A-AS1 in lymphatic metastasis were investigated in vitro and in vivo. Bioinformatic analysis, luciferase assay and RNA immunoprecipitation assay were performed to identify the potential targets and the underlying pathway of MFSD4A-AS1 in lymphatic metastasis of PTC. MFSD4A-AS1 was specifically upregulated in PTC tissues with lymphatic metastasis. Upregulating MFSD4A-AS1 promoted mesh formation and migration of human umbilical vein endothelial cells and invasion and migration of PTC cells. Importantly and consistently, MFSD4A-AS1 promoted lymphatic metastasis of PTC cells in vivo by inducing the lymphangiogenic formation and enhancing the invasive capability of PTC cells. Mechanistic dissection further revealed that MFSD4A-AS1 functioned as competing endogenous RNA to sequester miR-30c-2-3p, miR-145-3p and miR-139-5p to disrupt the miRNA-mediated inhibition of vascular endothelial growth factors A and C, and further activated transforming growth factor (TGF)-β signaling by sponging miR-30c-2-3p that targeted TGFBR2 and USP15, both of which synergistically promoted lymphangiogenesis and lymphatic metastasis of PTC. Our results unravel novel dual mechanisms by which MFSD4A-AS1 promotes lymphatic metastasis of PTC, which will facilitate the development of anti-lymphatic metastatic therapeutic strategy in PTC.
Collapse
Affiliation(s)
- Xiaoli Liu
- Division of Thyroid Surgery, China-Japan Union Hospital of Jilin University, Jilin Provincial Key Laboratory of Surgical Translational Medicine, Changchun, Jilin, China
| | - Chunhai Zhang
- Division of Thyroid Surgery, China-Japan Union Hospital of Jilin University, Jilin Provincial Key Laboratory of Surgical Translational Medicine, Changchun, Jilin, China
| | - Xiaomiao Wang
- Division of Thyroid Surgery, China-Japan Union Hospital of Jilin University, Jilin Provincial Key Laboratory of Surgical Translational Medicine, Changchun, Jilin, China
| | - Can Cui
- Division of Thyroid Surgery, China-Japan Union Hospital of Jilin University, Jilin Provincial Key Laboratory of Surgical Translational Medicine, Changchun, Jilin, China
| | - Hanwen Cui
- Division of Thyroid Surgery, China-Japan Union Hospital of Jilin University, Jilin Provincial Key Laboratory of Surgical Translational Medicine, Changchun, Jilin, China
| | - Baishu Zhu
- Division of Thyroid Surgery, China-Japan Union Hospital of Jilin University, Jilin Provincial Key Laboratory of Surgical Translational Medicine, Changchun, Jilin, China
| | - Anqi Chen
- Division of Thyroid Surgery, China-Japan Union Hospital of Jilin University, Jilin Provincial Key Laboratory of Surgical Translational Medicine, Changchun, Jilin, China
| | - Lu Zhang
- Division of Thyroid Surgery, China-Japan Union Hospital of Jilin University, Jilin Provincial Key Laboratory of Surgical Translational Medicine, Changchun, Jilin, China
| | - Jingwei Xin
- Division of Thyroid Surgery, China-Japan Union Hospital of Jilin University, Jilin Provincial Key Laboratory of Surgical Translational Medicine, Changchun, Jilin, China
| | - Qingfeng Fu
- Division of Thyroid Surgery, China-Japan Union Hospital of Jilin University, Jilin Provincial Key Laboratory of Surgical Translational Medicine, Changchun, Jilin, China
| | - Gianlorenzo Dionigi
- Department of Pathophysiology and Transplantation, University of Milan, Department of Surgery, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Division of General Surgery, Endocrine Surgery Section, Istituto Auxologico Italiano IRCCS (Istituti di Ricovero e Cura a Carattere Scientifico), Milan, Italy
| | - Hui Sun
- Division of Thyroid Surgery, China-Japan Union Hospital of Jilin University, Jilin Provincial Key Laboratory of Surgical Translational Medicine, Changchun, Jilin, China
| |
Collapse
|
9
|
Zhang N, Huang D, Ruan X, Ng ATL, Tsu JHL, Jiang G, Huang J, Zhan Y, Na R. CRISPR screening reveals gleason score and castration resistance related oncodriver ring finger protein 19 A (RNF19A) in prostate cancer. Drug Resist Updat 2023; 67:100912. [PMID: 36623445 DOI: 10.1016/j.drup.2022.100912] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/11/2022] [Accepted: 12/20/2022] [Indexed: 01/05/2023]
Abstract
Prostate cancer (PCa) is one of the most lethal causes of cancer-related death in male. It is characterized by chromosomal instability and disturbed signaling transduction. E3 ubiquitin ligases are well-recognized as mediators leading to genomic alterations and malignant phenotypes. There is a lack of systematic study on novel oncodrivers with genomic and clinical significance in PCa. In this study we used clustered regularly interspaced short palindromic repeats (CRISPR) system to screen 656 E3 ubiquitin ligases as oncodrivers or tumor repressors in PCa cells. We identified 51 significantly changed genes, and conducted genomic and clinical analysis on these genes. It was found that the Ring Finger Protein 19 A (RNF19A) was a novel oncodriver in PCa. RNF19A was frequently amplified and highly expressed in PCa and other cancer types. Clinically, higher RNF19A expression correlated with advanced Gleason Score and predicted castration resistance. Mechanistically, transcriptomics, quantitative and ubiquitination proteomic analysis showed that RNF19A ubiquitylated Thyroid Hormone Receptor Interactor 13 (TRIP13) and was transcriptionally activated by androgen receptor (AR) and Hypoxia Inducible Factor 1 Subunit Alpha (HIF1A). This study uncovers the genomic and clinical significance of a oncodriver RNF19A in PCa. The results of this study indicate that targeting AR/HIF1A-RNF19A-TRIP13 signaling axis could be an alternative option for PCa diagnosis and therapy.
Collapse
Affiliation(s)
- Ning Zhang
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Da Huang
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaohao Ruan
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ada Tsui-Lin Ng
- Division of Urology, Department of Surgery, Queen Mary Hospital, Hong Kong, China; Division of Urology, Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - James Hok-Leung Tsu
- Division of Urology, Department of Surgery, Queen Mary Hospital, Hong Kong, China; Division of Urology, Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Guangliang Jiang
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingyi Huang
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongle Zhan
- Division of Urology, Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Rong Na
- Division of Urology, Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
10
|
Li D, Xia L, Huang P, Wang Z, Guo Q, Huang C, Leng W, Qin S. Heterogeneity and plasticity of epithelial-mesenchymal transition (EMT) in cancer metastasis: Focusing on partial EMT and regulatory mechanisms. Cell Prolif 2023:e13423. [PMID: 36808651 DOI: 10.1111/cpr.13423] [Citation(s) in RCA: 51] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/05/2023] [Accepted: 01/27/2023] [Indexed: 02/22/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) or mesenchymal-epithelial transition (MET) plays critical roles in cancer metastasis. Recent studies, especially those based on single-cell sequencing, have revealed that EMT is not a binary process, but a heterogeneous and dynamic disposition with intermediary or partial EMT states. Multiple double-negative feedback loops involved by EMT-related transcription factors (EMT-TFs) have been identified. These feedback loops between EMT drivers and MET drivers finely regulate the EMT transition state of the cell. In this review, the general characteristics, biomarkers and molecular mechanisms of different EMT transition states were summarized. We additionally discussed the direct and indirect roles of EMT transition state in tumour metastasis. More importantly, this article provides direct evidence that the heterogeneity of EMT is closely related to the poor prognosis in gastric cancer. Notably, a seesaw model was proposed to explain how tumour cells regulate themselves to remain in specific EMT transition states, including epithelial state, hybrid/intermediate state and mesenchymal state. Additionally, this article also provides a review of the current status, limitations and future perspectives of EMT signalling in clinical applications.
Collapse
Affiliation(s)
- Dandan Li
- Department of Stomatology, Taihe Hospital and Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China.,Laboratory of Tumor Biology, Academy of Bio-medicine Research, Hubei University of Medicine, Shiyan, China
| | - Lingyun Xia
- Department of Stomatology, Taihe Hospital and Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Pan Huang
- Laboratory of Tumor Biology, Academy of Bio-medicine Research, Hubei University of Medicine, Shiyan, China
| | - Zidi Wang
- Laboratory of Tumor Biology, Academy of Bio-medicine Research, Hubei University of Medicine, Shiyan, China
| | - Qiwei Guo
- Laboratory of Tumor Biology, Academy of Bio-medicine Research, Hubei University of Medicine, Shiyan, China
| | - Congcong Huang
- Laboratory of Tumor Biology, Academy of Bio-medicine Research, Hubei University of Medicine, Shiyan, China
| | - Weidong Leng
- Department of Stomatology, Taihe Hospital and Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Shanshan Qin
- Department of Stomatology, Taihe Hospital and Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China.,Laboratory of Tumor Biology, Academy of Bio-medicine Research, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
11
|
Zhu Y, Yin WF, Yu P, Zhang C, Sun MH, Kong LY, Yang L. Meso-Hannokinol inhibits breast cancer bone metastasis via the ROS/JNK/ZEB1 axis. Phytother Res 2023. [PMID: 36726293 DOI: 10.1002/ptr.7732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/25/2022] [Accepted: 07/11/2022] [Indexed: 02/03/2023]
Abstract
Distal metastases from breast cancer, especially bone metastases, are extremely common in the late stages of the disease and are associated with a poor prognosis. EMT is a biomarker of the early process of bone metastasis, and MMP-9 and MMP-13 are important osteoclastic activators. Previously, we found that meso-Hannokinol (HA) could significantly inhibit EMT and MMP-9 and MMP-13 expressions in breast cancer cells. On this basis, we further explored the role of HA in breast cancer bone metastasis. In vivo, we established a breast cancer bone metastasis model by intracardially injecting breast cancer cells. Intraperitoneal injections of HA significantly reduced breast cancer cell metastasis to the leg bone in mice and osteolytic lesions caused by breast cancer. In vitro, HA inhibited the migration and invasion of breast cancer cells and suppressed the expressions of EMT, MMP-9, MMP-13, and other osteoclastic activators. HA inhibited EMT and MMP-9 by activating the ROS/JNK pathway as demonstrated by siJNK and SP600125 inhibition of JNK phosphorylation and NAC scavenging of ROS accumulation. Moreover, HA promoted bone formation and inhibited bone resorption in vitro. In conclusion, our findings suggest that HA may be an excellent candidate for treating breast cancer bone metastasis.
Collapse
Affiliation(s)
- Yuan Zhu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Wei-Feng Yin
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Pei Yu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Chao Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Ming-Hui Sun
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, People's Republic of China
| | - Ling-Yi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Lei Yang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| |
Collapse
|
12
|
Huang Y, Hong W, Wei X. The molecular mechanisms and therapeutic strategies of EMT in tumor progression and metastasis. J Hematol Oncol 2022; 15:129. [PMID: 36076302 PMCID: PMC9461252 DOI: 10.1186/s13045-022-01347-8] [Citation(s) in RCA: 299] [Impact Index Per Article: 149.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/30/2022] [Indexed: 11/10/2022] Open
Abstract
Epithelial–mesenchymal transition (EMT) is an essential process in normal embryonic development and tissue regeneration. However, aberrant reactivation of EMT is associated with malignant properties of tumor cells during cancer progression and metastasis, including promoted migration and invasiveness, increased tumor stemness, and enhanced resistance to chemotherapy and immunotherapy. EMT is tightly regulated by a complex network which is orchestrated with several intrinsic and extrinsic factors, including multiple transcription factors, post-translational control, epigenetic modifications, and noncoding RNA-mediated regulation. In this review, we described the molecular mechanisms, signaling pathways, and the stages of tumorigenesis involved in the EMT process and discussed the dynamic non-binary process of EMT and its role in tumor metastasis. Finally, we summarized the challenges of chemotherapy and immunotherapy in EMT and proposed strategies for tumor therapy targeting EMT.
Collapse
Affiliation(s)
- Yuhe Huang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Weiqi Hong
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
13
|
Basu B, Ghosh MK. Ubiquitination and deubiquitination in the regulation of epithelial-mesenchymal transition in cancer: Shifting gears at the molecular level. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119261. [PMID: 35307468 DOI: 10.1016/j.bbamcr.2022.119261] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/03/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
The process of conversion of non-motile epithelial cells to their motile mesenchymal counterparts is known as epithelial-mesenchymal transition (EMT), which is a fundamental event during embryonic development, tissue repair, and for the maintenance of stemness. However, this crucial process is hijacked in cancer and becomes the means by which cancer cells acquire further malignant properties such as increased invasiveness, acquisition of stem cell-like properties, increased chemoresistance, and immune evasion ability. The switch from epithelial to mesenchymal phenotype is mediated by a wide variety of effector molecules such as transcription factors, epigenetic modifiers, post-transcriptional and post-translational modifiers. Ubiquitination and de-ubiquitination are two post-translational processes that are fundamental to the ubiquitin-proteasome system (UPS) of the cell, and the shift in equilibrium between these two processes during cancer dictates the suppression or activation of different intracellular processes, including EMT. Here, we discuss the complex and dynamic relationship between components of the UPS and EMT in cancer.
Collapse
Affiliation(s)
- Bhaskar Basu
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata- 700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Mrinal K Ghosh
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata- 700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India.
| |
Collapse
|
14
|
Liao D, Liu X, Yuan X, Feng P, Ouyang Z, Liu Y, Li C. Long non-coding RNA tumor protein 53 target gene 1 promotes cervical cancer development via regulating microRNA-33a-5p to target forkhead box K2. Cell Cycle 2022; 21:572-584. [PMID: 35090377 PMCID: PMC8942495 DOI: 10.1080/15384101.2022.2026705] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Long non-coding RNA tumor protein 53 target gene 1 (TP53TG1) has been unraveled to exert regulatory effects on cancer progression, while the regulatory function of TP53TG1 on cervical cancer (CC) via regulating microRNA (miR)-33a-5p/Forkhead box K2 (FOXK2) axis remains rarely explored. This study aims to unearth the regulatory mechanism of TP53TG1/miR-33a-5p/FOXK2 axis in CC. The CC clinical samples were collected, and CC cells were cultured. TP53TG1, miR-33a-5p and FOXK2 levels were examined in CC tissues and cells. The CC cells were transfected with high- or low-expressed TP53TG1, FOXK2 or miR-33a-5p to determine the changes of CC cell biological activities and the status of phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) pathway. The tumorigenesis in nude mice was conducted. The relationship among TP53TG1, miR-33a-5p and FOXK2 was validated. TP53TG1 and FOXK2 expression levels were increased and miR-33a-5p expression level was reduced in CC cells and tissues. The silenced TP53TG1 or FOXK2, or elevated miR-33a-5p decelerated the CC cell development and restrained the activation of PI3K/AKT/mTOR signaling pathway. The depleted FOXK2 or elevated miR-33a-5p reversed the effects of decreased TP53TG1 on CC cell progression. TP53TG1 sponged miR-33a-5p, which targeted FOXK2. The experiment in vivo validated the outcomes of the experiment in vitro. TP53TG1 accelerates the CC development via regulating miR-33a-5p to target FOXK2 with the involvement of PI3K/AKT/mTOR signaling pathway. This study provides novel theory basis and distinct therapeutic targets for CC treatment.
Collapse
Affiliation(s)
- Dan Liao
- Department of Gynaecology, SSL Central Hospital of Dongguan, Affiliated Dongguan Shilong People’s Hospital of Southern Medical University, Dongguan, Guangdong, China
| | - Xiaomei Liu
- Department of Gynaecology, SSL Central Hospital of Dongguan, Affiliated Dongguan Shilong People’s Hospital of Southern Medical University, Dongguan, Guangdong, China
| | - Xiuying Yuan
- Department of Gynaecology, SSL Central Hospital of Dongguan, Affiliated Dongguan Shilong People’s Hospital of Southern Medical University, Dongguan, Guangdong, China
| | - Poling Feng
- Department of Gynaecology, SSL Central Hospital of Dongguan, Affiliated Dongguan Shilong People’s Hospital of Southern Medical University, Dongguan, Guangdong, China
| | - Zhiwei Ouyang
- Department of Gynaecology, SSL Central Hospital of Dongguan, Affiliated Dongguan Shilong People’s Hospital of Southern Medical University, Dongguan, Guangdong, China
| | - Yanyan Liu
- Department of Gynaecology, SSL Central Hospital of Dongguan, Affiliated Dongguan Shilong People’s Hospital of Southern Medical University, Dongguan, Guangdong, China,CONTACT Yanyan Liu Department of Gynaecology, SSL Central Hospital of Dongguan, Affiliated Dongguan Shilong People’s Hospital of Southern Medical University, No. 1, Xianglong Road, Huangzhou, Shilong Town, Dongguan, Guangdong523326, China
| | - Cuifen Li
- Department of Gynaecology, SSL Central Hospital of Dongguan, Affiliated Dongguan Shilong People’s Hospital of Southern Medical University, Dongguan, Guangdong, China
| |
Collapse
|
15
|
Transforming growth factor-beta (TGF-β) in prostate cancer: A dual function mediator? Int J Biol Macromol 2022; 206:435-452. [PMID: 35202639 DOI: 10.1016/j.ijbiomac.2022.02.094] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 12/14/2022]
Abstract
Transforming growth factor-beta (TGF-β) is a member of a family of secreted cytokines with vital biological functions in cells. The abnormal expression of TGF-β signaling is a common finding in pathological conditions, particularly cancer. Prostate cancer (PCa) is one of the leading causes of death among men. Several genetic and epigenetic alterations can result in PCa development, and govern its progression. The present review attempts to shed some light on the role of TGF-β signaling in PCa. TGF-β signaling can either stimulate or inhibit proliferation and viability of PCa cells, depending on the context. The metastasis of PCa cells is increased by TGF-β signaling via induction of EMT and MMPs. Furthermore, TGF-β signaling can induce drug resistance of PCa cells, and can lead to immune evasion via reducing the anti-tumor activity of cytotoxic T cells and stimulating regulatory T cells. Upstream mediators such as microRNAs and lncRNAs, can regulate TGF-β signaling in PCa. Furthermore, some pharmacological compounds such as thymoquinone and valproic acid can suppress TGF-β signaling for PCa therapy. TGF-β over-expression is associated with poor prognosis in PCa patients. Furthermore, TGF-β up-regulation before prostatectomy is associated with recurrence of PCa. Overall, current review discusses role of TGF-β signaling in proliferation, metastasis and therapy response of PCa cells and in order to improve knowledge towards its regulation, upstream mediators of TGF-β such as non-coding RNAs are described. Finally, TGF-β regulation and its clinical application are discussed.
Collapse
|
16
|
Long J, Liu B, Yao Z, Weng H, Li H, Jiang C, Fang S. miR-500a-3p is a Potential Prognostic Biomarker in Hepatocellular Carcinoma. Int J Gen Med 2022; 15:1891-1899. [PMID: 35221718 PMCID: PMC8881010 DOI: 10.2147/ijgm.s340629] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/21/2022] [Indexed: 12/27/2022] Open
Abstract
Purpose miR-500a-3p has been extensively reported to be implicated in the development and progression in several human cancer types. This study aimed to investigate the diagnostic and prognostic significance of miR-500a-3p as a biomarker in hepatocellular carcinoma (HCC). Methods miR-500a-3p expression was evaluated by in situ hybridization (ISH) and real-time PCR in 10 adjacent normal tissues (ANT), 21 liver fibrosis tissues, and 110 HCC tissues. Statistical analysis was used to investigate the correlation of miR-500a-3p expression with clinicopathological features in HCC patients. Kaplan–Meier survival analysis was performed to evaluate the prognostic significance of miR-500a-3p in overall survival and recurrence-free survival in HCC patients. Results In this study, we found that expression levels of miR-500a-3p were enhanced in HCC tissues. High miR-500a-3p levels were positively correlated with multiple clinicopathological features, including advanced clinical stage, distant metastatic status, increased AFP levels and poor tumor differentiation degree. More importantly, high miR-500a-3p levels predicted poor overall survival and early recurrence in HCC patients. Finally, a strong and positive correlation of miR-500a-3p mRNA expression with ISH staining scores was observed in clinical HCC tissues. Conclusion Our findings suggest that miR-500a-3p might be used as a novel biomarker to facilitate early diagnosis and predict prognosis in HCC patients.
Collapse
Affiliation(s)
- Jianting Long
- Department of Medicinal Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, People’s Republic of China
| | - Baoxian Liu
- Department of Medical Ultrasound, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, People’s Republic of China
| | - Zhijia Yao
- Department of Medicinal Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, People’s Republic of China
| | - Huiwen Weng
- Department of Medicinal Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, People’s Republic of China
| | - Heping Li
- Department of Medicinal Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, People’s Republic of China
| | - Chunlin Jiang
- Department of General Surgery, Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510799, People’s Republic of China
- Guangzhou Key Laboratory of Enhanced Recovery After Abdominal Surgery, Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510799, People’s Republic of China
- Correspondence: Chunlin Jiang, Email
| | - Shi Fang
- Department of Clinical Nutrition, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, People’s Republic of China
| |
Collapse
|
17
|
Xi X, Hu Z, Wu Q, Hu K, Cao Z, Zhou J, Liao J, Zhang Z, Hu Y, Zhong X, Bao Y. High expression of small nucleolar RNA host gene 3 predicts poor prognosis and promotes bone metastasis in prostate cancer by activating transforming growth factor-beta signaling. Bioengineered 2022; 13:1895-1907. [PMID: 35030969 PMCID: PMC8805939 DOI: 10.1080/21655979.2021.2020393] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Bone metastasis is closely related to tumor death in prostate cancer (PC). Long noncoding RNA small nucleolar RNA host gene 3 (SNHG3) has been implicated in the initiation and progression of multiple human cancers. Nevertheless, the biological function of SNHG3 in PC has not been elucidated. Our results indicated that SNHG3 was upregulated in bone metastasis-positive PC tissues compared to bone metastasis-negative PC tissues and adjacent normal tissues. High expression of SNHG3 indicates advanced clinicopathological features and predicts poor prognosis in patients with PC. Meanwhile, SNHG3 knockdown suppressed the proliferation, migration, and invasion abilities of PC cells and inhibited PC cell metastasis to the bone. Mechanistically, SNHG3 enhanced the expression of transforming growth factor beta receptor 1 (TGFBR1) and activated transforming growth factor-Beta (TGF-β) signaling by targeting miR-214-3p. Our study demonstrated the novel role of the SNHG3/miR-214-3p/TGF-β axis in tumor growth and bone metastasis in PC, indicating that SNHG3 may act as a biomarker and promising therapeutic target against PC.
Collapse
Affiliation(s)
- Xinhua Xi
- Department of Orthopaedics, Yuebei People's Hospital Affiliated to Shantou University Medical College, Shaoguan, Guangdong, China
| | - Zhengbo Hu
- Department of Orthopedics, Shaoguan First People's Hospital Affiliated Southern Medical University, Shaoguan, Guangdong, China
| | - Qiang Wu
- Department of Orthopaedics, Yuebei People's Hospital Affiliated to Shantou University Medical College, Shaoguan, Guangdong, China
| | - Konghe Hu
- Department of Orthopaedics, Yuebei People's Hospital Affiliated to Shantou University Medical College, Shaoguan, Guangdong, China
| | - Zhengguo Cao
- Department of Urology, Yuebei People's Hospital Affiliated to Shantou University Medical College, Shaoguan, Guangdong, China
| | - Jun Zhou
- Department of Orthopaedics, Yuebei People's Hospital Affiliated to Shantou University Medical College, Shaoguan, Guangdong, China
| | - Junjian Liao
- Department of Orthopaedics, Yuebei People's Hospital Affiliated to Shantou University Medical College, Shaoguan, Guangdong, China
| | - Zhipeng Zhang
- Department of Orthopaedics, Yuebei People's Hospital Affiliated to Shantou University Medical College, Shaoguan, Guangdong, China
| | - Yongyu Hu
- Department of Orthopaedics, Yuebei People's Hospital Affiliated to Shantou University Medical College, Shaoguan, Guangdong, China
| | - Xueren Zhong
- Department of Orthopaedics, Yuebei People's Hospital Affiliated to Shantou University Medical College, Shaoguan, Guangdong, China
| | - Yongzheng Bao
- Department of Orthopaedics, Yuebei People's Hospital Affiliated to Shantou University Medical College, Shaoguan, Guangdong, China
| |
Collapse
|
18
|
Lin Y, Qi X, Chen J, Shen B. Multivariate competing endogenous RNA network characterization for cancer MicroRNA biomarker discovery: a novel bioinformatics model with application to prostate cancer metastasis. PRECISION CLINICAL MEDICINE 2022; 5:pbac001. [PMID: 35821682 PMCID: PMC9267254 DOI: 10.1093/pcmedi/pbac001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/01/2022] [Accepted: 01/05/2022] [Indexed: 02/05/2023] Open
Abstract
Background MicroRNAs (miRNAs) are post-transcriptional regulators with potential as biomarkers for cancer management. Data-driven competing endogenous RNA (ceRNA) network modeling is an effective way to decipher the complex interplay between miRNAs and spongers. However, there are currently no general rules for ceRNA network-based biomarker prioritization. Methods and results In this study, a novel bioinformatics model was developed by integrating gene expression with multivariate miRNA-target data for ceRNA network-based biomarker discovery. Compared with traditional methods, the structural vulnerability in the human long non-coding RNA (lncRNA)–miRNA–messenger RNAs (mRNA) network was comprehensively analyzed, and the single-line regulatory or competing mode among miRNAs, lncRNAs, and mRNAs was characterized and quantified as statistical evidence for miRNA biomarker identification. The application of this model to prostate cancer (PCa) metastasis identified a total of 12 miRNAs as putative biomarkers from the metastatic PCa-specific lncRNA–miRNA–mRNA network and nine of them have been previously reported as biomarkers for PCa metastasis. The receiver operating characteristic curve and cell line qRT-PCR experiments demonstrated the power of miR-26b-5p, miR-130a-3p, and miR-363-3p as novel candidates for predicting PCa metastasis. Moreover, PCa-associated pathways such as prostate cancer signaling, ERK/MAPK signaling, and TGF-β signaling were significantly enriched by targets of identified miRNAs, indicating the underlying mechanisms of miRNAs in PCa carcinogenesis. Conclusions A novel ceRNA-based bioinformatics model was proposed and applied to screen candidate miRNA biomarkers for PCa metastasis. Functional validations using human samples and clinical data will be performed for future translational studies on the identified miRNAs.
Collapse
Affiliation(s)
- Yuxin Lin
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610212, China
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou 215000, China
- Center for Systems Biology, Soochow University, Suzhou 215006, China
| | - Xin Qi
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215011, China
| | - Jing Chen
- Center for Systems Biology, Soochow University, Suzhou 215006, China
| | - Bairong Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610212, China
| |
Collapse
|
19
|
Olivan M, Garcia M, Suárez L, Guiu M, Gros L, Méndez O, Rigau M, Reventós J, Segura MF, de Torres I, Planas J, de la Cruz X, Gomis RR, Morote J, Rodríguez-Barrueco R, Santamaria A. Loss of microRNA-135b Enhances Bone Metastasis in Prostate Cancer and Predicts Aggressiveness in Human Prostate Samples. Cancers (Basel) 2021; 13:6202. [PMID: 34944822 PMCID: PMC8699528 DOI: 10.3390/cancers13246202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 11/29/2021] [Accepted: 12/03/2021] [Indexed: 12/22/2022] Open
Abstract
About 70% of advanced-stage prostate cancer (PCa) patients will experience bone metastasis, which severely affects patients' quality of life and progresses to lethal PCa in most cases. Hence, understanding the molecular heterogeneity of PCa cell populations and the signaling pathways associated with bone tropism is crucial. For this purpose, we generated an animal model with high penetrance to metastasize to bone using an intracardiac percutaneous injection of PC3 cells to identify PCa metastasis-promoting factors. Using genomic high-throughput analysis we identified a miRNA signature involved in bone metastasis that also presents potential as a biomarker of PCa progression in human samples. In particular, the downregulation of miR-135b favored the incidence of bone metastases by significantly increasing PCa cells' migratory capacity. Moreover, the PLAG1, JAKMIP2, PDGFA, and VTI1b target genes were identified as potential mediators of miR-135b's role in the dissemination to bone. In this study, we provide a genomic signature involved in PCa bone growth, contributing to a better understanding of the mechanisms responsible for this process. In the future, our results could ultimately translate into promising new therapeutic targets for the treatment of lethal PCa.
Collapse
Affiliation(s)
- Mireia Olivan
- Translational Oncology Laboratory, Anatomy Unit, Department of Pathology and Experimental Therapy, School of Medicine, Universitat de Barcelona (UB), 08907 L’Hospitalet de Llobregat, Spain;
- Molecular Mechanisms and Experimental Therapy in Oncology-Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908 L’Hospitalet de Llobregat, Spain
- Cell Cycle and Cancer Laboratory, Biomedical Research Group in Urology, Vall d’Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain; (M.G.); (L.S.); (L.G.); (O.M.); (I.d.T.); (J.P.); (J.M.)
| | - Marta Garcia
- Cell Cycle and Cancer Laboratory, Biomedical Research Group in Urology, Vall d’Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain; (M.G.); (L.S.); (L.G.); (O.M.); (I.d.T.); (J.P.); (J.M.)
- Developmental Tumor Biology Laboratory, Institut de Recerca Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain
| | - Leticia Suárez
- Cell Cycle and Cancer Laboratory, Biomedical Research Group in Urology, Vall d’Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain; (M.G.); (L.S.); (L.G.); (O.M.); (I.d.T.); (J.P.); (J.M.)
| | - Marc Guiu
- Cancer Science Programme, Institute for Research in Biomedicine (IRB-Barcelona), 08028 Barcelona, Spain; (M.G.); (R.R.G.)
| | - Laura Gros
- Cell Cycle and Cancer Laboratory, Biomedical Research Group in Urology, Vall d’Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain; (M.G.); (L.S.); (L.G.); (O.M.); (I.d.T.); (J.P.); (J.M.)
| | - Olga Méndez
- Cell Cycle and Cancer Laboratory, Biomedical Research Group in Urology, Vall d’Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain; (M.G.); (L.S.); (L.G.); (O.M.); (I.d.T.); (J.P.); (J.M.)
| | - Marina Rigau
- Bellvitge Biomedical Research Institute (IDIBELL), 08908 L’Hospitalet de Llobregat, Spain; (M.R.); (J.R.)
| | - Jaume Reventós
- Bellvitge Biomedical Research Institute (IDIBELL), 08908 L’Hospitalet de Llobregat, Spain; (M.R.); (J.R.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
- Departament de Ciències Bàsiques, Universitat Internacional de Catalunya, 08017 Barcelona, Spain
| | - Miguel F. Segura
- Group of Translational Research in Child and Adolescent Cancer, Vall d’Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain;
| | - Inés de Torres
- Cell Cycle and Cancer Laboratory, Biomedical Research Group in Urology, Vall d’Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain; (M.G.); (L.S.); (L.G.); (O.M.); (I.d.T.); (J.P.); (J.M.)
- Department of Pathology, University Hospital Vall d’Hebron, Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
| | - Jacques Planas
- Cell Cycle and Cancer Laboratory, Biomedical Research Group in Urology, Vall d’Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain; (M.G.); (L.S.); (L.G.); (O.M.); (I.d.T.); (J.P.); (J.M.)
- Department of Urology, University Hospital Vall d’Hebron, Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
| | - Xavier de la Cruz
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain;
- Group of Clinical and Translational Bioinformatics, Vall d’Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
| | - Roger R. Gomis
- Cancer Science Programme, Institute for Research in Biomedicine (IRB-Barcelona), 08028 Barcelona, Spain; (M.G.); (R.R.G.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain;
| | - Juan Morote
- Cell Cycle and Cancer Laboratory, Biomedical Research Group in Urology, Vall d’Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain; (M.G.); (L.S.); (L.G.); (O.M.); (I.d.T.); (J.P.); (J.M.)
- Department of Urology, University Hospital Vall d’Hebron, Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
| | - Ruth Rodríguez-Barrueco
- Translational Oncology Laboratory, Anatomy Unit, Department of Pathology and Experimental Therapy, School of Medicine, Universitat de Barcelona (UB), 08907 L’Hospitalet de Llobregat, Spain;
- Molecular Mechanisms and Experimental Therapy in Oncology-Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908 L’Hospitalet de Llobregat, Spain
| | - Anna Santamaria
- Cell Cycle and Cancer Laboratory, Biomedical Research Group in Urology, Vall d’Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain; (M.G.); (L.S.); (L.G.); (O.M.); (I.d.T.); (J.P.); (J.M.)
| |
Collapse
|
20
|
Oh-Hohenhorst SJ, Lange T. Role of Metastasis-Related microRNAs in Prostate Cancer Progression and Treatment. Cancers (Basel) 2021; 13:cancers13174492. [PMID: 34503302 PMCID: PMC8431208 DOI: 10.3390/cancers13174492] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary In this review article we summarize the current literature on the pro- and anti-metastatic roles of distinct microRNAs in prostate cancer with a particular focus on their impact on invasion, migration and epithelial-to-mesenchymal transition. Moreover, we give a brief overview on how this knowledge developed so far into novel therapeutic approaches to target metastatic prostate cancer. Abstract Prostate cancer (PCa) is one of the most prevalent cancer types in males and the consequences of its distant metastatic deposits are the leading cause of PCa mortality. Therefore, identifying the causes and molecular mechanisms of hematogenous metastasis formation is of considerable clinical importance for the future development of improved therapeutic approaches. MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression at the post-transcriptional level by targeting messenger RNAs. Numerous studies have identified miRNAs as promotors or inhibitors of metastasis and revealed, in part, their targeting pathways in PCa. Because miRNAs are remarkably stable and can be detected in both tissue and body fluid, its potential as specific biomarkers for metastasis and therapeutic response is also currently under preclinical evaluation. In the present review, we focus on miRNAs that are supposed to initiate or suppress metastasis by targeting several key mRNAs in PCa. Metastasis-suppressing miRNAs include miR-33a-5p, miR-34, miR-132 and miR-212, miR-145, the miR-200 family (incl. miR-141-3p), miR-204-5p, miR-532-3p, miR-335, miR-543, miR-505-3p, miR 19a 3p, miR-802, miR-940, and miR-3622a. Metastasis-promoting RNAs, such as miR-9, miR-181a, miR-210-3, miR-454, miR-671-5p, have been shown to increase the metastatic potential of PCa cells. Other metastasis-related miRNAs with conflicting reports in the literature are also discussed (miR-21 and miR-186). Finally, we summarize the recent developments of miRNA-based therapeutic approaches, as well as current limitations in PCa. Taken together, the metastasis-controlling miRNAs provide the potential to be integrated in the strategy of diagnosis, prognosis, and treatment of metastatic PCa. Nevertheless, there is still a lack of consistency between certain miRNA signatures and reproducibility, which impedes clinical implementation.
Collapse
Affiliation(s)
- Su Jung Oh-Hohenhorst
- Martini-Klinik, Prostate Cancer Centre, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany;
- Institute of Anatomy and Experimental Morphology, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM) et Institut du Cancer de Montréal (ICM), Montreal, QC H2X 0A9, Canada
| | - Tobias Lange
- Institute of Anatomy and Experimental Morphology, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
- Correspondence:
| |
Collapse
|
21
|
Song Q, Liu H, Li C, Liang H. miR-33a-5p inhibits the progression of esophageal cancer through the DKK1-mediated Wnt/β-catenin pathway. Aging (Albany NY) 2021; 13:20481-20494. [PMID: 34426559 PMCID: PMC8436944 DOI: 10.18632/aging.203430] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/19/2021] [Indexed: 01/04/2023]
Abstract
Esophageal cancer (EC) is one of the most lethal malignancies in humans, and multiple miRNAs have been identified to modulate EC progression by targeting different targets. However, the effect and related mechanism of microRNA-33a-5p (miR-33a-5p) on EC development remain elusive. In this study, we explored the clinical value, function, and possible mechanism of miR-33a-5p in EC. We uncovered that miR-33a-5p and DKK1 are involved in the progression of EC. Significantly, the expression levels of miR-33a-5p were reduced and DKK1 levels were elevated in serum and tissues of clinical EC samples and in EC cell lines. The downregulation of miR-33a-5p and DKK1 upregulation were related to high TNM staging and poor differentiation of patients. The area under the curves (AUCs) of miR-33a-5p and DKK1 for the occurrence of EC were 0.914 and 0.900, respectively. Down-regulation of miR-33a-5p or overexpression of DKK1 indicated a worse prognosis. The miR-33a-5p overexpression or DKK1 depletion induced apoptosis and repressed proliferation, migration, and invasion of EC cells. The repression of miR-33a-5p by inhibitor or DKK1 overexpression presented the conversed effects on EC cells. Mechanically, miR-33a-5p suppressed DKK1 expression, and miR-33a-5p targeted DKK1 to affect the biological behavior of EC through the Wnt/β-catenin pathway. Meanwhile, miR-33a-5p inhibited the tumor growth of EC in vivo. Thus, we concluded that miR-33a-5p inhibited the progression of EC through the DKK1-mediated Wnt/β-catenin pathway. MiR-33a-5p and DKK1 can be used as potential therapeutic targets of EC.
Collapse
Affiliation(s)
- Qingping Song
- Department of Surgery, Tumor Hospital of Liaocheng, Liaocheng 252000, Shandong, China
| | - Hui Liu
- Department of Gastroenterology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai 264000, Shandong, China
| | - Chengyan Li
- Department of Gastroenterology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai 264000, Shandong, China
| | - Haifeng Liang
- Department of Surgery, Tumor Hospital of Liaocheng, Liaocheng 252000, Shandong, China
| |
Collapse
|
22
|
Papanikolaou S, Vourda A, Syggelos S, Gyftopoulos K. Cell Plasticity and Prostate Cancer: The Role of Epithelial-Mesenchymal Transition in Tumor Progression, Invasion, Metastasis and Cancer Therapy Resistance. Cancers (Basel) 2021; 13:cancers13112795. [PMID: 34199763 PMCID: PMC8199975 DOI: 10.3390/cancers13112795] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 12/23/2022] Open
Abstract
Simple Summary Although epithelial-to-mesenchymal transition (EMT) is a well-known cellular process involved during normal embryogenesis and wound healing, it also has a dark side; it is a complex process that provides tumor cells with a more aggressive phenotype, facilitating tumor metastasis and even resistance to therapy. This review focuses on the key pathways of EMT in the pathogenesis of prostate cancer and the development of metastases and evasion of currently available treatments. Abstract Prostate cancer, the second most common malignancy in men, is characterized by high heterogeneity that poses several therapeutic challenges. Epithelial–mesenchymal transition (EMT) is a dynamic, reversible cellular process which is essential in normal embryonic morphogenesis and wound healing. However, the cellular changes that are induced by EMT suggest that it may also play a central role in tumor progression, invasion, metastasis, and resistance to current therapeutic options. These changes include enhanced motility and loss of cell–cell adhesion that form a more aggressive cellular phenotype. Moreover, the reverse process (MET) is a necessary element of the metastatic tumor process. It is highly probable that this cell plasticity reflects a hybrid state between epithelial and mesenchymal status. In this review, we describe the underlying key mechanisms of the EMT-induced phenotype modulation that contribute to prostate tumor aggressiveness and cancer therapy resistance, in an effort to provide a framework of this complex cellular process.
Collapse
|
23
|
Soleymani L, Zarrabi A, Hashemi F, Hashemi F, Zabolian A, Banihashemi SM, Moghadam SS, Hushmandi K, Samarghandian S, Ashrafizadeh M, Khan H. Role of ZEB family members in proliferation, metastasis and chemoresistance of prostate cancer cells: Revealing signaling networks. Curr Cancer Drug Targets 2021; 21:749-767. [PMID: 34077345 DOI: 10.2174/1568009621666210601114631] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/10/2021] [Accepted: 03/19/2021] [Indexed: 11/22/2022]
Abstract
Prostate cancer (PCa) is one of the leading causes of death worldwide. A variety of strategies including surgery, chemotherapy, radiotherapy and immunotherapy are applied for PCa treatment. PCa cells are responsive towards therapy at early stages, but they can obtain resistance in the advanced stage. Furthermore, their migratory ability is high in advanced stages. It seems that genetic and epigenetic factors play an important in this case. Zinc finger E-box-binding homeobox (ZEB) is a family of transcription with two key members including ZEB1 and ZEB2. ZEB family members are known due to their involvement in promoting cancer metastasis via EMT induction. Recent studies have shown their role in cancer proliferation and inducing therapy resistance. In the current review, we focus on revealing role of ZEB1 and ZEB2 in PCa. ZEB family members that are able to significantly promote proliferation and viability of cancer cells. ZEB1 and ZEB2 enhance migration and invasion of PCa cells via EMT induction. Overexpression of ZEB1 and ZEB2 is associated with poor prognosis of PCa. ZEB1 and ZEB2 upregulation occurs during PCa progression and can provide therapy resistance to cancer cells. PRMT1, Smad2, and non-coding RNAs can function as upstream mediators of the ZEB family. Besides, Bax, Bcl-2, MRP1, N-cadherin and E-cadherin can be considered as downstream targets of ZEB family in PCa.
Collapse
Affiliation(s)
- Leyla Soleymani
- Department of biology, school of science, Urmia university, Urmia, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul. Turkey
| | - Farid Hashemi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Fardin Hashemi
- Student Research Committee, Department of Physiotherapy, Faculty of Rehabilitation, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Shirin Sabouhi Moghadam
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Saeed Samarghandian
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite -Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul. Turkey
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, 23200. Pakistan
| |
Collapse
|
24
|
Hussen BM, Shoorei H, Mohaqiq M, Dinger ME, Hidayat HJ, Taheri M, Ghafouri-Fard S. The Impact of Non-coding RNAs in the Epithelial to Mesenchymal Transition. Front Mol Biosci 2021; 8:665199. [PMID: 33842553 PMCID: PMC8033041 DOI: 10.3389/fmolb.2021.665199] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 03/01/2021] [Indexed: 12/13/2022] Open
Abstract
Epithelial to mesenchymal transition (EMT) is a course of action that enables a polarized epithelial cell to undertake numerous biochemical alterations that allow it to adopt features of mesenchymal cells such as high migratory ability, invasive properties, resistance to apoptosis, and importantly higher-order formation of extracellular matrix elements. EMT has important roles in implantation and gastrulation of the embryo, inflammatory reactions and fibrosis, and transformation of cancer cells, their invasiveness and metastatic ability. Regarding the importance of EMT in the invasive progression of cancer, this process has been well studies in in this context. Non-coding RNAs (ncRNAs) have been shown to exert critical function in the regulation of cellular processes that are involved in the EMT. These processes include regulation of some transcription factors namely SNAI1 and SNAI2, ZEB1 and ZEB2, Twist, and E12/E47, modulation of chromatin configuration, alternative splicing, and protein stability and subcellular location of proteins. In the present paper, we describe the influence of ncRNAs including microRNAs and long non-coding RNAs in the EMT process and their application as biomarkers for this process and cancer progression and their potential as therapeutic targets.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Pharmacognosy Department, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mahdi Mohaqiq
- Wake Forest Institute for Regenerative Medicine, School of Medicine, Wake Forest University, Winston-Salem, NC, United States
| | - Marcel E. Dinger
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Hazha Jamal Hidayat
- Department of Biology, College of Education, Salahaddin University-Erbil, Erbil, Iraq
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
Liu X, Fu Q, Bian X, Fu Y, Xin J, Liang N, Li S, Zhao Y, Fang L, Li C, Zhang J, Dionigi G, Sun H. Long Non-Coding RNA MAPK8IP1P2 Inhibits Lymphatic Metastasis of Thyroid Cancer by Activating Hippo Signaling via Sponging miR-146b-3p. Front Oncol 2021; 10:600927. [PMID: 33489905 PMCID: PMC7817949 DOI: 10.3389/fonc.2020.600927] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/09/2020] [Indexed: 12/13/2022] Open
Abstract
The principal issue derived from thyroid cancer is its high propensity to metastasize to the lymph node. Aberrant exprssion of long non-coding RNAs have been extensively reported to be significantly correlated with lymphatic metastasis of thyroid cancer. However, the clinical significance and functional role of lncRNA-MAPK8IP1P2 in lymphatic metastasis of thyroid cancer remain unclear. Here, we reported that MAPK8IP1P2 was downregulated in thyroid cancer tissues with lymphatic metastasis. Upregulating MAPK8IP1P2 inhibited, while silencing MAPK8IP1P2 enhanced anoikis resistance in vitro and lymphatic metastasis of thyroid cancer cells in vivo. Mechanistically, MAPK8IP1P2 activated Hippo signaling by sponging miR-146b-3p to disrupt the inhibitory effect of miR-146b-3p on NF2, RASSF1, and RASSF5 expression, which further inhibited anoikis resistance and lymphatic metastasis in thyroid cancer. Importantly, miR-146b-3p mimics reversed the inhibitory effect of MAPK8IP1P2 overexpression on anoikis resistance of thyroid cancer cells. In conclusion, our findings suggest that MAPK8IP1P2 may serve as a potential biomarker to predict lymphatic metastasis in thyroid cancer, or a potential therapeutic target in lymphatic metastatic thyroid cancer.
Collapse
Affiliation(s)
- Xiaoli Liu
- Division of Thyroid Surgery, China-Japan Union Hospital of Jilin University, Jilin Provincial Key Laboratory of Surgical Translational Medicine, Changchun, China
| | - Qingfeng Fu
- Division of Thyroid Surgery, China-Japan Union Hospital of Jilin University, Jilin Provincial Key Laboratory of Surgical Translational Medicine, Changchun, China
| | - Xuehai Bian
- Division of Thyroid Surgery, China-Japan Union Hospital of Jilin University, Jilin Provincial Key Laboratory of Surgical Translational Medicine, Changchun, China
| | - Yantao Fu
- Division of Thyroid Surgery, China-Japan Union Hospital of Jilin University, Jilin Provincial Key Laboratory of Surgical Translational Medicine, Changchun, China
| | - Jingwei Xin
- Division of Thyroid Surgery, China-Japan Union Hospital of Jilin University, Jilin Provincial Key Laboratory of Surgical Translational Medicine, Changchun, China
| | - Nan Liang
- Division of Thyroid Surgery, China-Japan Union Hospital of Jilin University, Jilin Provincial Key Laboratory of Surgical Translational Medicine, Changchun, China
| | - Shijie Li
- Division of Thyroid Surgery, China-Japan Union Hospital of Jilin University, Jilin Provincial Key Laboratory of Surgical Translational Medicine, Changchun, China
| | - Yishen Zhao
- Division of Thyroid Surgery, China-Japan Union Hospital of Jilin University, Jilin Provincial Key Laboratory of Surgical Translational Medicine, Changchun, China
| | - Li Fang
- Division of Thyroid Surgery, China-Japan Union Hospital of Jilin University, Jilin Provincial Key Laboratory of Surgical Translational Medicine, Changchun, China
| | - Changlin Li
- Division of Thyroid Surgery, China-Japan Union Hospital of Jilin University, Jilin Provincial Key Laboratory of Surgical Translational Medicine, Changchun, China
| | - Jiao Zhang
- Division of Thyroid Surgery, China-Japan Union Hospital of Jilin University, Jilin Provincial Key Laboratory of Surgical Translational Medicine, Changchun, China
| | - Gianlorenzo Dionigi
- Division for Endocrine and Minimally Invasive Surgery, Department of Human Pathology in Adulthood and Childhood "G. Barresi", University Hospital "G. Martino", University of Messina, Messina, Italy
| | - Hui Sun
- Division of Thyroid Surgery, China-Japan Union Hospital of Jilin University, Jilin Provincial Key Laboratory of Surgical Translational Medicine, Changchun, China
| |
Collapse
|
26
|
Zhu B, Wu Y, Niu L, Yao W, Xue M, Wang H, Yang J, Li J, Fan W. Silencing SAPCD2 Represses Proliferation and Lung Metastasis of Fibrosarcoma by Activating Hippo Signaling Pathway. Front Oncol 2021; 10:574383. [PMID: 33384953 PMCID: PMC7770171 DOI: 10.3389/fonc.2020.574383] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 11/13/2020] [Indexed: 12/18/2022] Open
Abstract
The primary problem associated with fibrosarcoma is its high potential to metastasize to the lung. Aberrant expression of SAPCD2 has been widely reported to be implicated in the progression and metastasis in multiple cancer types. However, the clinical significance and biological roles of SAPCD2 in fibrosarcoma remain unknown. Here, we reported that SAPCD2 expression was markedly elevated in fibrosarcoma tissues, and its expression was differentially upregulated in fibrosarcoma cell lines compared with that in several primary fibroblast cell lines. Kaplan-Meier survival analysis revealed that SAPCD2 overexpression was significantly correlated with early progression and metastasis, and poor prognosis in fibrosarcoma patients. Our results further showed that silencing SAPCD2 inhibited the proliferation and increased the apoptosis of fibrosarcoma cells in vitro. Importantly, silencing SAPCD2 repressed lung metastasis of fibrosarcoma cells in vivo. Mechanistic investigation further demonstrated that silencing SAPCD2 inhibited the proliferation and lung metastasis of fibrosarcoma cells by activating the Hippo signaling pathway, as evidenced by the finding that constitutively active YAP1, YAP1-S127A, significantly reversed the inhibitory effect of SAPCD2 downregulation on the colony formation and anchorage-independent growth capabilities of fibrosarcoma cells, as well as the stimulatory effect on the apoptotic ratio of fibrosarcoma cells. In conclusion, SAPCD2 promotes the proliferation and lung metastasis of fibrosarcoma cells by regulating the activity of Hippo signaling, and this mechanism represents a potential therapeutic target for the treatment of lung metastatic fibrosarcoma.
Collapse
Affiliation(s)
- Bowen Zhu
- Department of Interventional Oncology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yanqin Wu
- Department of Interventional Oncology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Lizhi Niu
- Fuda Cancer Hospital, Jinan University School of Medicine, Guangzhou, China.,Fudan Institute of Cryosurgery for Cancer, Jinan University School of Medicine, Guangzhou, China
| | - Wang Yao
- Department of Interventional Oncology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Miao Xue
- Department of Interventional Oncology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Hongyu Wang
- Department of Interventional Oncology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jianyong Yang
- Department of Interventional Radiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.,Department of Medical Imaging, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jiaping Li
- Department of Interventional Oncology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Wenzhe Fan
- Department of Interventional Oncology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
27
|
Chen J, Ding ZY, Li S, Liu S, Xiao C, Li Z, Zhang BX, Chen XP, Yang X. Targeting transforming growth factor-β signaling for enhanced cancer chemotherapy. Theranostics 2021; 11:1345-1363. [PMID: 33391538 PMCID: PMC7738904 DOI: 10.7150/thno.51383] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 10/29/2020] [Indexed: 12/14/2022] Open
Abstract
During the past decades, drugs targeting transforming growth factor-β (TGFβ) signaling have received tremendous attention for late-stage cancer treatment since TGFβ signaling has been recognized as a prime driver for tumor progression and metastasis. Nonetheless, in healthy and pre-malignant tissues, TGFβ functions as a potent tumor suppressor. Furthermore, TGFβ signaling plays a key role in normal development and homeostasis by regulating cell proliferation, differentiation, migration, apoptosis, and immune evasion, and by suppressing tumor-associated inflammation. Therefore, targeting TGFβ signaling for cancer therapy is challenging. Recently, we and others showed that blocking TGFβ signaling increased chemotherapy efficacy, particularly for nanomedicines. In this review, we briefly introduce the TGFβ signaling pathway, and the multifaceted functions of TGFβ signaling in cancer, including regulating the tumor microenvironment (TME) and the behavior of cancer cells. We also summarize TGFβ targeting agents. Then, we highlight TGFβ inhibition strategies to restore the extracellular matrix (ECM), regulate the tumor vasculature, reverse epithelial-mesenchymal transition (EMT), and impair the stemness of cancer stem-like cells (CSCs) to enhance cancer chemotherapy efficacy. Finally, the current challenges and future opportunities in targeting TGFβ signaling for cancer therapy are discussed.
Collapse
Affiliation(s)
- Jitang Chen
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Ze-yang Ding
- Hepatic Surgery Center, and Hubei Key Laboratory of Hepatic-Biliary-Pancreatic Diseases, National Medical Center for Major Public Health Events, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Si Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Sha Liu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Hepatic Surgery Center, and Hubei Key Laboratory of Hepatic-Biliary-Pancreatic Diseases, National Medical Center for Major Public Health Events, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chen Xiao
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zifu Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Bi-xiang Zhang
- Hepatic Surgery Center, and Hubei Key Laboratory of Hepatic-Biliary-Pancreatic Diseases, National Medical Center for Major Public Health Events, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-ping Chen
- Hepatic Surgery Center, and Hubei Key Laboratory of Hepatic-Biliary-Pancreatic Diseases, National Medical Center for Major Public Health Events, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, Wuhan, 430074, China
- GBA Research Innovation Institute for Nanotechnology, Guangdong, 510530, China
| |
Collapse
|
28
|
Xing W, Li T, Wang Y, Qiang Y, Ai C, Tang H. MiR-33a-5p targets NOMO1 to modulate human cardiomyocyte progenitor cells proliferation and differentiation and apoptosis. J Recept Signal Transduct Res 2020; 41:476-487. [PMID: 33054489 DOI: 10.1080/10799893.2020.1825492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
PURPOSE MicroRNA (miRNA) is known to be involved in the pathological process of congenital heart disease (CHD), and nodal modulator1 (NOMO1) is a critical determinant of heart formation. The present study aims to discover the effect of miR-33a-5p and NOMO1 on CHD. METHODS Quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect expressions of miR-33a-5p mimic or inhibitor and overexpressed NOMO1 plasmid orNOMO1 knockdown. Human cardiomyocyte progenitor cells (hCMPCs) proliferation was measured by cell counting kit-8 (CCK-8) at 24, 48 and 72 h. Flow cytometry was applied to investigate hCMPCs cell cycle progression and apoptosis. Expressions of cell apoptotic proteins Bax, Cleaved(C) caspase-3 and Bcl-2, and expressions of cardiomyocyte differentiation markers GATA4, troponin T (cTnT) and myocyte enhancer factor2C (MEF2C) in hCMPCs were identified by qRT-PCR and western blot. Target genes and potential binding sites of NOMO1 and miR-33a-5p were predicted with Targetscan 7.2, and was confirmed through dual-luciferase reporter assay. RESULTS Up-regulation of miR-33a-5p inhibited hCMPCs proliferation, cell cycle G0/S transition but promoted hCMPCs apoptosis, which was partially mitigated by overexpressed NOMO1. NOMO1 was the target gene of miR-33a-5p. Expressions of Bax and C caspase-3 were enhanced but expressions of Bcl-2, GATA4, cTnT and MEF2C were reduced by up-regulation of miR-33a-5p, which was partially mitigated by overexpressed NOMO1. CONCLUSION Up-regulation of miR-33a-5p inhibited hCMPCs proliferation, cell cycle G0/S transition and differentiation into cardiomyocytes but promoted apoptosis via targeting NOMO1.
Collapse
Affiliation(s)
- Wang Xing
- Cardiovascular Center, Gansu Provincial Maternity and Child-care Hospital, Lanzhou City, China
| | - Tiangang Li
- Department of Ultrasonography, Gansu Provincial Maternity and Child-care Hospital, Lanzhou City, China
| | - Yixuan Wang
- Department of Ultrasonography, Gansu Provincial Maternity and Child-care Hospital, Lanzhou City, China
| | - Yi Qiang
- Cardiovascular Center, Gansu Provincial Maternity and Child-care Hospital, Lanzhou City, China
| | - Chencheng Ai
- Cardiovascular Center, Gansu Provincial Maternity and Child-care Hospital, Lanzhou City, China
| | - Hanbo Tang
- Cardiovascular Center, Gansu Provincial Maternity and Child-care Hospital, Lanzhou City, China
| |
Collapse
|
29
|
Ashrafizadeh M, Hushmandi K, Rahmani Moghadam E, Zarrin V, Hosseinzadeh Kashani S, Bokaie S, Najafi M, Tavakol S, Mohammadinejad R, Nabavi N, Hsieh CL, Zarepour A, Zare EN, Zarrabi A, Makvandi P. Progress in Delivery of siRNA-Based Therapeutics Employing Nano-Vehicles for Treatment of Prostate Cancer. Bioengineering (Basel) 2020; 7:E91. [PMID: 32784981 PMCID: PMC7552721 DOI: 10.3390/bioengineering7030091] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/31/2020] [Accepted: 08/06/2020] [Indexed: 02/06/2023] Open
Abstract
Prostate cancer (PCa) accounts for a high number of deaths in males with no available curative treatments. Patients with PCa are commonly diagnosed in advanced stages due to the lack of symptoms in the early stages. Recently, the research focus was directed toward gene editing in cancer therapy. Small interfering RNA (siRNA) intervention is considered as a powerful tool for gene silencing (knockdown), enabling the suppression of oncogene factors in cancer. This strategy is applied to the treatment of various cancers including PCa. The siRNA can inhibit proliferation and invasion of PCa cells and is able to promote the anti-tumor activity of chemotherapeutic agents. However, the off-target effects of siRNA therapy remarkably reduce its efficacy in PCa therapy. To date, various carriers were designed to improve the delivery of siRNA and, among them, nanoparticles are of importance. Nanoparticles enable the targeted delivery of siRNAs and enhance their potential in the downregulation of target genes of interest. Additionally, nanoparticles can provide a platform for the co-delivery of siRNAs and anti-tumor drugs, resulting in decreased growth and migration of PCa cells. The efficacy, specificity, and delivery of siRNAs are comprehensively discussed in this review to direct further studies toward using siRNAs and their nanoscale-delivery systems in PCa therapy and perhaps other cancer types.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz 5166616471, Iran;
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran 1419963114, Iran; (K.H.); (S.B.)
| | - Ebrahim Rahmani Moghadam
- Department of Anatomical Sciences, School of Medicine, Student Research Committee, Shiraz University of Medical Sciences, Shiraz 7134814336, Iran;
| | - Vahideh Zarrin
- Laboratory for Stem Cell Research, Shiraz University of Medical Sciences, Shiraz 7134814336, Iran;
| | | | - Saied Bokaie
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran 1419963114, Iran; (K.H.); (S.B.)
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran;
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614525, Iran;
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kermaan 55425147, Iran;
| | - Noushin Nabavi
- Research Services, University of Victoria, Victoria, BC V8W 2Y2, Canada;
| | - Chia-Ling Hsieh
- Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei City 110, Taiwan;
| | - Atefeh Zarepour
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan 8174673441, Iran;
| | | | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey
- Center of Excellence for Functional Surfaces and Interfaces (EFSUN), Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul 34956, Turkey
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Micro-BioRobotics, viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
- Chemistry Department, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz 61537-53843, Iran
| |
Collapse
|
30
|
Yu L, Shu H, Xing L, Lv MX, Li L, Xie YC, Zhang Z, Zhang L, Xie YY. Silencing long non‑coding RNA NEAT1 suppresses the tumorigenesis of infantile hemangioma by competitively binding miR‑33a‑5p to stimulate HIF1α/NF‑κB pathway. Mol Med Rep 2020; 22:3358-3366. [PMID: 32945470 PMCID: PMC7453642 DOI: 10.3892/mmr.2020.11409] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 05/20/2020] [Indexed: 02/07/2023] Open
Abstract
Infantile hemangioma (IH) is one of the most common vascular tumors that occurs during childhood, but its pathogenesis is currently not completely understood. Even though lncRNA nuclear paraspeckle assembly transcript 1 (NEAT1) plays vital roles in tumorigenesis of malignant tumors, its roles in IH remain unclear. Therefore, we evaluate the function of lncRNA NEAT1 in IH. Reverse transcription-quantitative PCR indicated that IH tissues exhibited high expression levels of NEAT1 and hypoxia-inducible factor 1α (HIF1α), and low expression levels of the microRNA (miR)-33a-5p. Small interfering RNA-mediated depletion of NEAT1 suppressed hemangioma endothelial cell (HemEC) proliferation, migration and invasion. The data suggested that NEAT1 positively regulated HIF1α expression by sponging miR-33a-5p in HemECs. miR-33a-5p overexpression or HIF1α silencing also acted to suppress HemEC proliferation, migration and invasion. Furthermore, the results indicated that the NEAT1/miR-33a-5p/HIF1α axis regulated the NF-κB signaling pathway. Collectively, the results revealed that depletion of lncRNA NEAT1 suppressed the tumorigenesis of IH by competitively binding miR-33a-5p and thereby stimulating the HIF1α/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Li Yu
- Department of Dermatology, Kunming Children's Hospital, Kunming, Yunnan 650228, P.R. China
| | - Hong Shu
- Department of Dermatology, Kunming Children's Hospital, Kunming, Yunnan 650228, P.R. China
| | - Lu Xing
- Department of Dermatology, Kunming Children's Hospital, Kunming, Yunnan 650228, P.R. China
| | - Meng-Xing Lv
- Department of Pathology, Kunming Children's Hospital, Kunming, Yunnan 650228, P.R. China
| | - Li Li
- Department of Institute Pediatrics, Kunming Children's Hospital, Kunming, Yunnan 650228, P.R. China
| | - Yu-Cheng Xie
- Department of Pathology, Kunming Children's Hospital, Kunming, Yunnan 650228, P.R. China
| | - Zhao Zhang
- Department of Dermatology, Kunming Children's Hospital, Kunming, Yunnan 650228, P.R. China
| | - Li Zhang
- Department of Dermatology, Kunming Children's Hospital, Kunming, Yunnan 650228, P.R. China
| | - Yu-Yan Xie
- Department of Dermatology, Kunming Children's Hospital, Kunming, Yunnan 650228, P.R. China
| |
Collapse
|
31
|
Prostate cancer reactivates developmental epigenomic programs during metastatic progression. Nat Genet 2020; 52:790-799. [PMID: 32690948 PMCID: PMC10007911 DOI: 10.1038/s41588-020-0664-8] [Citation(s) in RCA: 163] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 06/16/2020] [Indexed: 02/06/2023]
Abstract
Epigenetic processes govern prostate cancer (PCa) biology, as evidenced by the dependency of PCa cells on the androgen receptor (AR), a prostate master transcription factor. We generated 268 epigenomic datasets spanning two state transitions-from normal prostate epithelium to localized PCa to metastases-in specimens derived from human tissue. We discovered that reprogrammed AR sites in metastatic PCa are not created de novo; rather, they are prepopulated by the transcription factors FOXA1 and HOXB13 in normal prostate epithelium. Reprogrammed regulatory elements commissioned in metastatic disease hijack latent developmental programs, accessing sites that are implicated in prostate organogenesis. Analysis of reactivated regulatory elements enabled the identification and functional validation of previously unknown metastasis-specific enhancers at HOXB13, FOXA1 and NKX3-1. Finally, we observed that prostate lineage-specific regulatory elements were strongly associated with PCa risk heritability and somatic mutation density. Examining prostate biology through an epigenomic lens is fundamental for understanding the mechanisms underlying tumor progression.
Collapse
|
32
|
MicroRNAs and Their Influence on the ZEB Family: Mechanistic Aspects and Therapeutic Applications in Cancer Therapy. Biomolecules 2020; 10:biom10071040. [PMID: 32664703 PMCID: PMC7407563 DOI: 10.3390/biom10071040] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/06/2020] [Accepted: 07/10/2020] [Indexed: 02/07/2023] Open
Abstract
Molecular signaling pathways involved in cancer have been intensively studied due to their crucial role in cancer cell growth and dissemination. Among them, zinc finger E-box binding homeobox-1 (ZEB1) and -2 (ZEB2) are molecules that play vital roles in signaling pathways to ensure the survival of tumor cells, particularly through enhancing cell proliferation, promoting cell migration and invasion, and triggering drug resistance. Importantly, ZEB proteins are regulated by microRNAs (miRs). In this review, we demonstrate the impact that miRs have on cancer therapy, through their targeting of ZEB proteins. MiRs are able to act as onco-suppressor factors and inhibit the malignancy of tumor cells through ZEB1/2 down-regulation. This can lead to an inhibition of epithelial-mesenchymal transition (EMT) mechanism, therefore reducing metastasis. Additionally, miRs are able to inhibit ZEB1/2-mediated drug resistance and immunosuppression. Additionally, we explore the upstream modulators of miRs such as long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), as these regulators can influence the inhibitory effect of miRs on ZEB proteins and cancer progression.
Collapse
|
33
|
Tiwari R, Manzar N, Ateeq B. Dynamics of Cellular Plasticity in Prostate Cancer Progression. Front Mol Biosci 2020; 7:130. [PMID: 32754615 PMCID: PMC7365877 DOI: 10.3389/fmolb.2020.00130] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/02/2020] [Indexed: 12/13/2022] Open
Abstract
Despite the current advances in the treatment for prostate cancer, the patients often develop resistance to the conventional therapeutic interventions. Therapy-induced drug resistance and tumor progression have been associated with cellular plasticity acquired due to reprogramming at the molecular and phenotypic levels. The plasticity of the tumor cells is mainly governed by two factors: cell-intrinsic and cell-extrinsic. The cell-intrinsic factors involve alteration in the genetic or epigenetic regulators, while cell-extrinsic factors include microenvironmental cues and drug-induced selective pressure. Epithelial-mesenchymal transition (EMT) and stemness are two important hallmarks that dictate cellular plasticity in multiple cancer types including prostate. Emerging evidence has also pinpointed the role of tumor cell plasticity in driving anti-androgen induced neuroendocrine prostate cancer (NEPC), a lethal and therapy-resistant subtype. In this review, we discuss the role of cellular plasticity manifested due to genetic, epigenetic alterations and cues from the tumor microenvironment, and their role in driving therapy resistant prostate cancer.
Collapse
Affiliation(s)
| | | | - Bushra Ateeq
- Molecular Oncology Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, India
| |
Collapse
|
34
|
Gao C, Wei J, Tang T, Huang Z. Role of microRNA-33a in malignant cells. Oncol Lett 2020; 20:2537-2556. [PMID: 32782572 PMCID: PMC7399786 DOI: 10.3892/ol.2020.11835] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 05/27/2020] [Indexed: 01/17/2023] Open
Abstract
Cancer causes most of the mortality and morbidity worldwide, with a significant increase in incidence during recent years. MicroRNAs (miRNAs/miRs) are non-coding small RNAs capable of regulating gene expression. They regulate crucial cellular processes, including proliferation, differentiation, metastasis and apoptosis. Therefore, abnormal miRNA expression is associated with multiple diseases, including cancer. There are two types of cancer-associated miRNAs, oncogenic and tumor suppressor miRNAs, depending on their roles and expression patterns in cancer. Accordingly, miRNAs are considered to be targets for cancer prevention and treatment. miR-33a controls cellular cholesterol uptake and synthesis, which are both closely associated with carcinogenesis. The present review thoroughly describes the roles of miR-33a in more than a dozen types of cancer and the underlying mechanisms. Accordingly, the present review may serve as a guide for researchers studying the involvement of miR-33a in diverse cancer settings.
Collapse
Affiliation(s)
- Chang Gao
- Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China.,Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Research Platform Service Management Center, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Jiaen Wei
- Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China.,Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Research Platform Service Management Center, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Tingting Tang
- Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China.,Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Research Platform Service Management Center, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Zunnan Huang
- Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China.,Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Research Platform Service Management Center, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China.,Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong 524023, P.R. China
| |
Collapse
|
35
|
Feng Y, Qu X, Chen Y, Feng Q, Zhang Y, Hu J, Li X. MicroRNA-33a-5p sponges to inhibit pancreatic β-cell function in gestational diabetes mellitus LncRNA DANCR. Reprod Biol Endocrinol 2020; 18:61. [PMID: 32505219 PMCID: PMC7275540 DOI: 10.1186/s12958-020-00618-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/25/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Gestational diabetes mellitus (GDM) is the most common medical complication associated with pregnancy, which may impose risks on both mother and fetus. Micro RNAs (miRNAs) and long noncoding RNAs (lncRNAs) are implied as vital regulators in GDM. A recent paper revealed dysregulation of miR-33a-5p in placental tissues of GDM patients. However, the biological function of miR-33a-5p in GDM remains elusive. This study focused on exploring the function and underlying mechanisms of miR-33a-5p in GDM. METHODS 12 GDM pregnancies and 12 healthy pregnancies were enrolled in the study. INS-1 cell line was applied in in vitro experiments. The expression levels of miR-33a-5p, lnc-DANCR (Differentiation Antagonizing Non-Protein Coding RNA), and ABCA1 (ATP-binding cassette transporter 1) mRNA were determined by RT-qPCR assay. Glucose and insulin levels were measured by ELISA assay. Luciferase reporter assay and western blot assay were applied to validate the target of miR-33a-5p. RESULTS miR-33a-5p was upregulated in the blood samples from GDM, and was positively correlated with blood glucose (p < 0.0001). Overexpression or inhibition of miR-33a-5p significantly inhibited or promoted cell growth and insulin production of INS-1 cells (p < 0.01). Furthermore, ABCA1 is a direct target of miR-33a-5p, and lnc-DANCR functions as a sponge for miR-33a-5p to antagonize the function of miR-33a-5p in INS-1 cells. CONCLUSION Our study demonstrated that lnc-DANCR-miR-33a-5p-ABCA1 signaling cascade plays a crucial role in the regulation of the cellular function of INS-1 cells.
Collapse
Affiliation(s)
- Yan Feng
- grid.440323.2Department of Clinical Nutrition, Yuhuangding Hospital Affiliated to Qingdao University, No. 20 East Yuhuangding Road, Yantai, 264000 Shandong China
| | - Xin Qu
- grid.440323.2Department of Obstetrics and Gynecology, Yuhuangding Hospital Affiliated to Qingdao University, No. 20 East Yuhuangding Road, Yantai, 264000 Shandong China
| | - Yu Chen
- Department of Gynecology, Penglai People’s Hospital, No. 89, Xianhou Road, Penglai, 265600 Shandong China
| | - Qi Feng
- grid.460007.50000 0004 1791 6584Department of General Surgery, CPLA No. 71897, No. 1 Bayi Road, Xi’an, 710000 Shaanxi China
| | - Yinghong Zhang
- grid.440323.2Department of Obstetrics and Gynecology, Yuhuangding Hospital Affiliated to Qingdao University, No. 20 East Yuhuangding Road, Yantai, 264000 Shandong China
| | - Jianwei Hu
- Department of Group Health, Maternal and Child Health Institution, Kunshan, 215301 Jiangsu China
| | - Xiaoyan Li
- grid.440323.2Department of Obstetrics and Gynecology, Yuhuangding Hospital Affiliated to Qingdao University, No. 20 East Yuhuangding Road, Yantai, 264000 Shandong China
| |
Collapse
|
36
|
Chen J, Liu A, Wang Z, Wang B, Chai X, Lu W, Cao T, Li R, Wu M, Lu Z, Pang W, Xiao L, Chen X, Zheng Y, Chen Q, Zeng J, Li J, Zhang X, Ren D, Huang Y. LINC00173.v1 promotes angiogenesis and progression of lung squamous cell carcinoma by sponging miR-511-5p to regulate VEGFA expression. Mol Cancer 2020; 19:98. [PMID: 32473645 PMCID: PMC7260858 DOI: 10.1186/s12943-020-01217-2] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 05/13/2020] [Indexed: 12/19/2022] Open
Abstract
Background Anti-angiogenic therapy represents a promising strategy for non-small-cell lung cancer (NSCLC) but its application in lung squamous cell carcinoma (SQC) is limited due to the high-risk adverse effects. Accumulating evidence indicates that long noncoding RNAs (lncRNAs) mediate in tumor progression by participating in the regulation of VEGF in NSCLC, which might guide the development of new antiangiogenic strategies. Methods Differential lncRNA expression in SQC was analyzed in AE-meta and TCGA datasets, and further confirmed in lung cancer tissues and adjacent normal tissues with RT-qPCR and in-situ hybridization. Statistical analysis was performed to evaluate the clinical correlation between LINC00173.v1 expression and survival characteristics. A tube formation assay, chick embryo chorioallantoic membrane assay and animal experiments were conducted to detect the effect of LINC00173.v1 on the proliferation and migration of vascular endothelial cells and tumorigenesis of SQC in vivo. Bioinformatics analysis, RNA immunoprecipitation and luciferase reporter assays were performed to elucidate the downstream target of LINC00173.v1. The therapeutic efficacy of antisense oligonucleotide (ASO) against LINC00173.v1 was further investigated in vivo. Chromatin immunoprecipitation and high throughput data processing and visualization were performed to identify the cause of LINC00173.v1 overexpression in SQC. Results LINC00173.v1 was specifically upregulated in SQC tissues, which predicted poorer overall and progression-free survival in SQC patients. Overexpression of LINC00173.v1 promoted, while silencing LINC00173.v1 inhibited the proliferation and migration of vascular endothelial cells and the tumorigenesis of SQC cells in vitro and in vivo. Our results further revealed that LINC00173.v1 promoted the proliferation and migration of vascular endothelial cells and the tumorigenesis of SQC cells by upregulating VEGFA expression by sponging miR-511-5p. Importantly, inhibition of LINC00173.v1 via the ASO strategy reduced the tumor growth of SQC cells, and enhanced the therapeutic sensitivity of SQC cells to cisplatin in vivo. Moreover, our results showed that squamous cell carcinoma-specific factor ΔNp63α contributed to LINC00173.v1 overexpression in SQC. Conclusion Our findings clarify the underlying mechanism by which LINC00173.v1 promotes the proliferation and migration of vascular endothelial cells and the tumorigenesis of SQC, demonstrating that LINC00173.v1-targeted drug in combination with cisplatin may serve as a rational regimen against SQC.
Collapse
Affiliation(s)
- Jiarong Chen
- Clinical Experimental Center, Jiangmen Key Laboratory of Clinical Biobanks and Translational Research, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, 529030, China.,Department of Oncology, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, 529030, China
| | - Aibin Liu
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, 410008, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Zhihui Wang
- Department of Oncology, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, 529030, China
| | - Bin Wang
- Clinical Experimental Center, Jiangmen Key Laboratory of Clinical Biobanks and Translational Research, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, 529030, China.,Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, China.,Collaborative Innovation Center for Antitumor Active Substance Research and Development, Guangdong Medical University, Zhanjiang, 524023, China
| | - Xingxing Chai
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, China.,Laboratory Animal Center, Guangdong Medical University, Zhanjiang, 524023, China
| | - Wenjie Lu
- Clinical Experimental Center, Jiangmen Key Laboratory of Clinical Biobanks and Translational Research, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, 529030, China
| | - Ting Cao
- Clinical Experimental Center, Jiangmen Key Laboratory of Clinical Biobanks and Translational Research, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, 529030, China
| | - Ronggang Li
- Department of Pathology, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, 529030, China
| | - Minyan Wu
- Department of Basic Medicine, Guangdong Jiangmen Chinese Medical College, Jiangmen, 529030, China
| | - Zhuming Lu
- Department of Thoracic Surgery, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, 529030, China
| | - Wenguang Pang
- Department of Thoracic Surgery, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, 529030, China
| | - Lin Xiao
- Department of Radiotherapy Center, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, 529030, China
| | - Xiangmeng Chen
- Department of Radiology, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, 529030, China
| | - Yan Zheng
- Department of Research and Development, Research and Development Center for Molecular Diagnosis Engineering Technology of Human Papillomavirus (HPV) Related Diseases of Guangdong Province, Hybribio Limited, Chaozhou, 521021, China
| | - Qiong Chen
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, 410008, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jincheng Zeng
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, China.,Collaborative Innovation Center for Antitumor Active Substance Research and Development, Guangdong Medical University, Zhanjiang, 524023, China
| | - Jun Li
- Clinical Experimental Center, Jiangmen Key Laboratory of Clinical Biobanks and Translational Research, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, 529030, China
| | - Xin Zhang
- Clinical Experimental Center, Jiangmen Key Laboratory of Clinical Biobanks and Translational Research, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, 529030, China. .,Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, China. .,Collaborative Innovation Center for Antitumor Active Substance Research and Development, Guangdong Medical University, Zhanjiang, 524023, China.
| | - Dong Ren
- Clinical Experimental Center, Jiangmen Key Laboratory of Clinical Biobanks and Translational Research, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, 529030, China. .,Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, China.
| | - Yanming Huang
- Clinical Experimental Center, Jiangmen Key Laboratory of Clinical Biobanks and Translational Research, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, 529030, China.
| |
Collapse
|
37
|
Tang L, Gao Y, Song Y, Li Y, Li Y, Zhang H, Li D, Li J, Liu C, Li F. PAK4 phosphorylating RUNX1 promotes ERα-positive breast cancer-induced osteolytic bone destruction. Int J Biol Sci 2020; 16:2235-2247. [PMID: 32549768 PMCID: PMC7294946 DOI: 10.7150/ijbs.47225] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 05/15/2020] [Indexed: 12/27/2022] Open
Abstract
The biological function of nuclear PAK4 in ERα-positive breast cancer osteolytic bone destruction remains unclear. Here, we find that the nuclear PAK4 promotes osteoclastogenesis and tumor-induced osteolysis via phosphorylating RUNX1. We show that nuclear PAK4 interacts with and phosphorylates RUNX1 at Thr-207, which induces its localization from the nucleus to the cytoplasm and influences direct interaction with SIN3A/HDAC1 and PRMT1. Furthermore, we reveal that RUNX1 phosphorylation by PAK4 at Thr-207 promotes osteolytic bone destruction via targeting downstream genes related to osteoclast differentiation and maturation. Importantly, we verify changes in RUNX1 subcellular localization when nuclear PAK4 is positive in breast cancer bone metastasis tissues. Functionally, we demonstrate that RUNX1 phosphorylation promotes osteolytic bone maturation and ERα-positive breast cancer-induced osteolytic bone damage in the mouse model of orthotopic breast cancer bone metastasis. Our results suggest PAK4 can be a therapeutic target for ERα-positive breast cancer osteolytic bone destruction.
Collapse
Affiliation(s)
- Lina Tang
- Department of Cell Biology, Key Laboratory of Cell Biology of National Health Commission of the PRC, and Key Laboratory of Medical Cell Biology of Ministry of Education of the PRC, China Medical University, No.77, Puhe Road, Shenyang, 110122, Liaoning, China
| | - Yunling Gao
- Department of Cell Biology, Key Laboratory of Cell Biology of National Health Commission of the PRC, and Key Laboratory of Medical Cell Biology of Ministry of Education of the PRC, China Medical University, No.77, Puhe Road, Shenyang, 110122, Liaoning, China
| | - Yongqi Song
- Department of Cell Biology, Key Laboratory of Cell Biology of National Health Commission of the PRC, and Key Laboratory of Medical Cell Biology of Ministry of Education of the PRC, China Medical University, No.77, Puhe Road, Shenyang, 110122, Liaoning, China
| | - Yang Li
- Department of Cell Biology, Key Laboratory of Cell Biology of National Health Commission of the PRC, and Key Laboratory of Medical Cell Biology of Ministry of Education of the PRC, China Medical University, No.77, Puhe Road, Shenyang, 110122, Liaoning, China
| | - Yanshu Li
- Department of Cell Biology, Key Laboratory of Cell Biology of National Health Commission of the PRC, and Key Laboratory of Medical Cell Biology of Ministry of Education of the PRC, China Medical University, No.77, Puhe Road, Shenyang, 110122, Liaoning, China
| | - Hongyan Zhang
- Department of Cell Biology, Key Laboratory of Cell Biology of National Health Commission of the PRC, and Key Laboratory of Medical Cell Biology of Ministry of Education of the PRC, China Medical University, No.77, Puhe Road, Shenyang, 110122, Liaoning, China
| | - Danni Li
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Jiabin Li
- Department of Cell Biology, Key Laboratory of Cell Biology of National Health Commission of the PRC, and Key Laboratory of Medical Cell Biology of Ministry of Education of the PRC, China Medical University, No.77, Puhe Road, Shenyang, 110122, Liaoning, China
| | - Caigang Liu
- Department of Breast Surgery, Shengjing Hospital of China Medical University, Shenyang, 110001, China
| | - Feng Li
- Department of Cell Biology, Key Laboratory of Cell Biology of National Health Commission of the PRC, and Key Laboratory of Medical Cell Biology of Ministry of Education of the PRC, China Medical University, No.77, Puhe Road, Shenyang, 110122, Liaoning, China
| |
Collapse
|
38
|
Lin SR, Mokgautsi N, Liu YN. Ras and Wnt Interaction Contribute in Prostate Cancer Bone Metastasis. Molecules 2020; 25:E2380. [PMID: 32443915 PMCID: PMC7287876 DOI: 10.3390/molecules25102380] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/15/2020] [Accepted: 05/16/2020] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer (PCa) is one of the most prevalent and malignant cancer types in men, which causes more than three-hundred thousand cancer death each year. At late stage of PCa progression, bone marrow is the most often metastatic site that constitutes almost 70% of metastatic cases of the PCa population. However, the characteristic for the osteo-philic property of PCa is still puzzling. Recent studies reported that the Wnt and Ras signaling pathways are pivotal in bone metastasis and that take parts in different cytological changes, but their crosstalk is not well studied. In this review, we focused on interactions between the Wnt and Ras signaling pathways during each stage of bone metastasis and present the fate of those interactions. This review contributes insights that can guide other researchers by unveiling more details with regard to bone metastasis and might also help in finding potential therapeutic regimens for preventing PCa bone metastasis.
Collapse
Affiliation(s)
- Shian-Ren Lin
- Graduate Institute of Cancer Biology and Drug Discovery, Collage of Medical Science and Technology, Taipei Medical University, Taipei 11024, Taiwan;
| | - Ntlotlang Mokgautsi
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11024, Taiwan;
| | - Yen-Nien Liu
- Graduate Institute of Cancer Biology and Drug Discovery, Collage of Medical Science and Technology, Taipei Medical University, Taipei 11024, Taiwan;
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11024, Taiwan;
| |
Collapse
|
39
|
Xu H, Wang H, Zhao W, Fu S, Li Y, Ni W, Xin Y, Li W, Yang C, Bai Y, Zhan M, Lu L. SUMO1 modification of methyltransferase-like 3 promotes tumor progression via regulating Snail mRNA homeostasis in hepatocellular carcinoma. Am J Cancer Res 2020; 10:5671-5686. [PMID: 32483411 PMCID: PMC7254988 DOI: 10.7150/thno.42539] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 04/13/2020] [Indexed: 01/03/2023] Open
Abstract
Rationale: Hepatocellular carcinoma (HCC) is one of the leading causes of mortality worldwide. Methyltransferase-like 3 (Mettl3), an RNA N6-methyladenosine (m6A) methyltransferase, has been shown to act as an oncogene in several human cancers. However, the regulatory role of posttranslational modifications of Mettl3 in liver cancer remains elusive. Methods: SUMOylation was analyzed using immunoprecipitation and western blot assays. In vitro and in vivo biological functions were examined using MTS, colony formation, wound healing, transwell, apoptosis, and viability assays and the BALB/c nude mouse model, respectively. Immunohistochemistry was conducted to evaluate the prognostic value of Mettl3 expression in HCC. The regulatory mechanism of Mettl3 in HCC was investigated by m6A dot blot, immunofluorescence, dual luciferase reporter, protein stability, and RNA stability assays. Results: Mettl3 was found to be SUMOylated by a small ubiquitin-like modifier SUMO1. Further, SUMOylation of Mettl3 was increased upon mitogen stimulation, which correlated with UBC9 upregulation, and was positively correlated with high metastatic potential of liver cancer. Finally, SUMOylation of Mettl3 was found to regulate HCC progression via controlling Snail mRNA homeostasis in an m6A methyltransferase activity-dependent manner. Conclusions: This study revealed a novel mechanism of SUMOylated Mettl3-mediated Snail mRNA homeostasis, identifying the UBC9/SUMOylated Mettl3/Snail axis as a novel mediator of the SUMO pathway involved in HCC progression.
Collapse
|
40
|
Cochetti G, Rossi de Vermandois JA, Maulà V, Giulietti M, Cecati M, Del Zingaro M, Cagnani R, Suvieri C, Paladini A, Mearini E. Role of miRNAs in prostate cancer: Do we really know everything? Urol Oncol 2020; 38:623-635. [PMID: 32284256 DOI: 10.1016/j.urolonc.2020.03.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/12/2020] [Accepted: 03/14/2020] [Indexed: 12/16/2022]
Abstract
Many different genetic alterations, as well as complex epigenetic interactions, are the basis of the genesis and progression of prostate cancer (CaP). This is the reason why until now the molecular pathways related to development of this cancer were only partly known, and even less those that determine aggressive or indolent tumour behaviour. MicroRNAs (miRNAs) represent a class of about 22 nucleotides long, small non-coding RNAs, which are involved in gene expression regulation at the post-transcriptional level. MiRNAs play a crucial role in regulating several biological functions and preserving homeostasis, as they carry out a wide modulatory activity on various molecular signalling pathways. MiRNA genes are placed in cancer-related genomic regions or in fragile sites, and they have been proven to be involved in the main steps of carcinogenesis as oncogenes or oncosuppressors in many types of cancer, including CaP. We performed a narrative review to describe the relationship between miRNAs and the crucial steps of development and progression of CaP. The aims of this study were to improve the knowledge regarding the mechanisms underlying miRNA expression and their target genes, and to contribute to understanding the relationship between miRNA expression profiles and CaP.
Collapse
Affiliation(s)
- Giovanni Cochetti
- Division of Urology Clinic, Department of Surgical and Biomedical Sciences, University of Perugia, Perugia, Italy
| | | | - Vincenza Maulà
- Biotechnology Laboratory in Urology, Division of Urology Clinic, Department of Surgical and Biomedical Sciences, University of Perugia, Perugia, Italy
| | - Matteo Giulietti
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Monia Cecati
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Michele Del Zingaro
- Division of Urology Clinic, Department of Surgical and Biomedical Sciences, University of Perugia, Perugia, Italy
| | - Rosy Cagnani
- Biotechnology Laboratory in Urology, Division of Urology Clinic, Department of Surgical and Biomedical Sciences, University of Perugia, Perugia, Italy
| | - Chiara Suvieri
- Biotechnology Laboratory in Urology, Division of Urology Clinic, Department of Surgical and Biomedical Sciences, University of Perugia, Perugia, Italy
| | - Alessio Paladini
- Division of Urology Clinic, Department of Surgical and Biomedical Sciences, University of Perugia, Perugia, Italy.
| | - Ettore Mearini
- Division of Urology Clinic, Department of Surgical and Biomedical Sciences, University of Perugia, Perugia, Italy
| |
Collapse
|
41
|
Ectopic Expression of miR-532-3p Suppresses Bone Metastasis of Prostate Cancer Cells via Inactivating NF-κB Signaling. MOLECULAR THERAPY-ONCOLYTICS 2020; 17:267-277. [PMID: 32368615 PMCID: PMC7191128 DOI: 10.1016/j.omto.2020.03.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 03/27/2020] [Indexed: 11/23/2022]
Abstract
miR-532-3p is a widely documented microRNA (miRNA) involved in multifaceted processes of cancer tumorigenesis and metastasis. However, the clinical significance and biological functions of miR-532-3p in bone metastasis of prostate cancer (PCa) remain largely unknown. Herein, we report that miR-532-3p was downregulated in PCa tissues with bone metastasis, and downexpression of miR-532-3p was significantly associated with Gleason grade and serum prostate-specific antigen (PSA) levels and predicted poor bone metastasis-free survival in PCa patients. Upregulating miR-532-3p inhibited invasion and migration abilities of PCa cells in vitro, while silencing miR-532-3p yielded an opposite effect on invasion and migration abilities of PCa cells. Importantly, upregulating miR-532-3p repressed bone metastasis of PCa cells in vivo. Our results further demonstrated that overexpression of miR-532-3p inhibited activation of nuclear facto κB (NF-κB) signaling via simultaneously targeting tumor necrosis factor receptor-associated factor 1 (TRAF1), TRAF2, and TRAF4, which further promoted invasion, migration, and bone metastasis of PCa cells. Therefore, our findings reveal a novel mechanism contributing to the sustained activity of NF-κB signaling underlying the bone metastasis of PCa.
Collapse
|
42
|
Lang C, Dai Y, Wu Z, Yang Q, He S, Zhang X, Guo W, Lai Y, Du H, Wang H, Ren D, Peng X. SMAD3/SP1 complex-mediated constitutive active loop between lncRNA PCAT7 and TGF-β signaling promotes prostate cancer bone metastasis. Mol Oncol 2020; 14:808-828. [PMID: 31925912 PMCID: PMC7138406 DOI: 10.1002/1878-0261.12634] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/16/2019] [Accepted: 01/09/2020] [Indexed: 01/05/2023] Open
Abstract
Bone metastasis is associated with cancer-related death in patients with prostate cancer (PCa). Long noncoding RNAs (lncRNAs) play critical roles in tumor progression of PCa. Nevertheless, the biological function of lncRNAs in PCa bone metastasis remains unclear. PCAT7 was identified as a bone metastasis-related lncRNA via analyzing TCGA dataset. Meanwhile, PCAT7 was found to be elevated in primary PCa tissues with bone metastasis and associated with bone metastasis status and poor prognosis of patients with PCa. Functionally, our results reveal that PCAT7 overexpression promotes PCa bone metastasis in vivo, as well as migration, invasion, and EMT of PCa cells in vitro; on the contrary, PCAT7 knockdown has an inverse effect. Mechanistically, PCAT7 activates TGF-β/SMAD signaling by upregulating TGFBR1 expression via sponging miR-324-5p. In turn, TGF-β signaling forms a positive feedback loop with PCAT7 via SMAD3/SP1 complex-induced PCAT7 upregulation. Finally, the clinical positive correlation between PCAT7 and TGFBR1 and TGF-β signaling activity, and the negative association with miR-324-5p are further demonstrated in PCa tissues and clinical primary PCa cells. This study reveals a novel mechanism that is responsible for the constitutive activation of TGF-β signaling in PCa bone metastasis, implying that PCAT7 can act as a potential therapeutic target against bone metastasis of PCa via disrupting the constitutive active loop between PCAT7 and TGF-β signaling.
Collapse
Affiliation(s)
- Chuandong Lang
- Department of Orthopaedic SurgeryThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Orthopedics and TraumatologyGuangzhouChina
| | - Yuhu Dai
- Department of Orthopaedic SurgeryThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Orthopedics and TraumatologyGuangzhouChina
| | - Zhengquan Wu
- Department of Orthopaedic SurgeryThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Orthopedics and TraumatologyGuangzhouChina
| | - Qing Yang
- Department of Orthopaedic SurgeryThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Orthopedics and TraumatologyGuangzhouChina
| | - Shaofu He
- Department of RadiologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Xin Zhang
- Clinical Experimental CenterJiangmen Central HospitalAffiliated Jiangmen HospitalSun Yat‐sen UniversityJiangmenChina
| | - Wei Guo
- Department of Orthopaedic SurgeryThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Orthopedics and TraumatologyGuangzhouChina
| | - Yingrong Lai
- Department of PathologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Hong Du
- Department of PathologyThe First People’s Hospital of Guangzhou CityGuangzhouChina
| | - Hehe Wang
- Department of Medical LaboratoryWeifang Medical UniversityWeifangChina
| | - Dong Ren
- Department of Orthopaedic SurgeryThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Orthopedics and TraumatologyGuangzhouChina
| | - Xinsheng Peng
- Department of Orthopaedic SurgeryThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Orthopedics and TraumatologyGuangzhouChina
| |
Collapse
|
43
|
Fredsøe J, Rasmussen AKI, Mouritzen P, Bjerre MT, Østergren P, Fode M, Borre M, Sørensen KD. Profiling of Circulating microRNAs in Prostate Cancer Reveals Diagnostic Biomarker Potential. Diagnostics (Basel) 2020; 10:diagnostics10040188. [PMID: 32231021 PMCID: PMC7235761 DOI: 10.3390/diagnostics10040188] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/24/2020] [Accepted: 03/26/2020] [Indexed: 02/06/2023] Open
Abstract
Early detection of prostate cancer (PC) is paramount as localized disease is generally curable, while metastatic PC is generally incurable. There is a need for improved, minimally invasive biomarkers as current diagnostic tools are inaccurate, leading to extensive overtreatment while still missing some clinically significant cancers. Consequently, we profiled the expression levels of 92 selected microRNAs by RT-qPCR in plasma samples from 753 patients, representing multiple stages of PC and non-cancer controls. First, we compared plasma miRNA levels in patients with benign prostatic hyperplasia (BPH) or localized prostate cancer (LPC), versus advanced prostate cancer (APC). We identified several dysregulated microRNAs with a large overlap of 59 up/down-regulated microRNAs between BPH versus APC and LPC versus APC. Besides identifying several novel PC-associated dysregulated microRNAs in plasma, we confirmed the previously reported upregulation of miR-375 and downregulation of miR-146a-5p. Next, by randomly splitting our dataset into a training and test set, we identified and successfully validated a novel four microRNA diagnostic ratio model, termed bCaP (miR-375*miR-33a-5p/miR-16-5p*miR-409-3p). Combined in a model with prostate specific antigen (PSA), digital rectal examination status, and age, bCaP predicted the outcomes of transrectal ultrasound (TRUS)-guided biopsies (negative vs. positive) with greater accuracy than PSA alone (Training: area under the curve (AUC), model = 0.84; AUC, PSA = 0.63. Test set: AUC, model = 0.67; AUC, PSA = 0.56). It may be possible in the future to use this simple and minimally invasive bCaP test in combination with existing clinical parameters for a more accurate selection of patients for prostate biopsy.
Collapse
Affiliation(s)
- Jacob Fredsøe
- Department of Molecular Medicine, Aarhus University Hospital, 8200 Aarhus N, Denmark; (J.F.); (M.T.B.)
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus C, Denmark
| | | | - Peter Mouritzen
- Exiqon A/S, Skelstedet 16, 2950 Vedbaek, Denmark; (A.K.I.R.); (P.M.)
| | - Marianne T. Bjerre
- Department of Molecular Medicine, Aarhus University Hospital, 8200 Aarhus N, Denmark; (J.F.); (M.T.B.)
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus C, Denmark
- Department of Urology, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Peter Østergren
- Department of Urology, Herlev and Gentofte Hospital, 2900 Hellerup, Denmark; (P.Ø.); (M.F.)
| | - Mikkel Fode
- Department of Urology, Herlev and Gentofte Hospital, 2900 Hellerup, Denmark; (P.Ø.); (M.F.)
| | - Michael Borre
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus C, Denmark
- Department of Urology, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Karina D. Sørensen
- Department of Molecular Medicine, Aarhus University Hospital, 8200 Aarhus N, Denmark; (J.F.); (M.T.B.)
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus C, Denmark
- Correspondence: ; Tel.: +45-7845-5316; Fax: +45-8678-2108
| |
Collapse
|
44
|
Qi JC, Yang Z, Zhang YP, Lu BS, Yin YW, Liu KL, Xue WY, Qu CB, Li W. miR-20b-5p, TGFBR2, and E2F1 Form a Regulatory Loop to Participate in Epithelial to Mesenchymal Transition in Prostate Cancer. Front Oncol 2020; 9:1535. [PMID: 32010624 PMCID: PMC6974577 DOI: 10.3389/fonc.2019.01535] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/19/2019] [Indexed: 12/17/2022] Open
Abstract
The transcription factor E2F1 regulates the expression of the miR-20b-5p precursor and is involved in epithelial-to-mesenchymal transition (EMT). Transforming growth factor-β1 (TGF-β1) induces EMT in prostate cancer (PCa) by binding to TGF-beta receptor 2 (TGFBR2) to activate TGF-β signaling. However, the relationship between TGFBR2, E2F1, and miR-20b-5p in the modulation of EMT in PCa cells remains unknown. In this study, we found that the level of miR-20b-5p expression was significantly lower in PC3 and DU145 cells than that in prostate epithelial (RWPE-1) cells, and TGF-β1 treatment further down-regulated miR-20b-5p expression in these two cell lines. Functional studies showed that miR-20b-5p suppressed TGF-β1-induced migration and invasion of PC3 and DU145 cells by up-regulating E-cadherin and down-regulating vimentin, leading to TGF-β1-induced inhibition of EMT. Using gain and loss of function experiments, it was shown that E2F1 mediated TGF-β1 regulation of miR-20b-5p expression. Further, a luciferase activity assay showed that TGFBR2 was a direct target of miR-20b-5p in PCa cells. These results suggest that miR-20b-5p, TGFBR2, and E2F1 form a regulatory loop to modulate EMT induced by TGF-β1. A novel regulatory mechanism underlying the miR-20b-5p/TGFBR2/E2F1 axis is involved in TGF-β1-induced EMT of PCa cells, and miR-20b-5p may be a potential therapeutic target for PCa.
Collapse
Affiliation(s)
- Jin-Chun Qi
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhan Yang
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yan-Ping Zhang
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Bao-Sai Lu
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yue-Wei Yin
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Kai-Long Liu
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Wen-Yong Xue
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Chang-Bao Qu
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Wei Li
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
45
|
Liu X, Fu Y, Zhang G, Zhang D, Liang N, Li F, Li C, Sui C, Jiang J, Lu H, Zhao Z, Dionigi G, Sun H. miR-424-5p Promotes Anoikis Resistance and Lung Metastasis by Inactivating Hippo Signaling in Thyroid Cancer. MOLECULAR THERAPY-ONCOLYTICS 2019; 15:248-260. [PMID: 31890869 PMCID: PMC6921161 DOI: 10.1016/j.omto.2019.10.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 10/28/2019] [Indexed: 11/24/2022]
Abstract
miR-424-5p has been widely identified to function as an oncomiR in multiple human cancer types. However, the biological function of miR-424-5p in distant metastasis of thyroid cancer, as well as the underlying mechanism, remains not clarified yet. In the current study, miR-424-5p expression was elucidated in 10 paired fresh thyroid cancer tissues and the thyroid cancer dataset from The Cancer Genome Atlas (TCGA). Lung metastasis colonization models in vivo and functional assays in vitro were used to determine the role of miR-424-5p in thyroid cancer. Bioinformatics analysis, western blot, luciferase reporter, and immunofluorescence assays were applied to identify the potential targets and underlying mechanism involved in the functional role of miR-424-5p in lung metastasis of thyroid cancer. Here, we reported that miR-424-5p was upregulated in thyroid cancer, and overexpression of miR-424-5p significantly correlated with distant metastasis of thyroid cancer. Upregulating miR-424-5p promoted, whereas silencing miR-424-5p inhibited, anoikis resistance in vitro and lung metastasis in vivo. Mechanistic investigation further revealed that miR-424-5p promoted anoikis resistance and lung metastasis by inactivating Hippo signaling via simultaneously targeting WWC1, SAV1, and LAST2. Therefore, our results support the idea that miR-424-5p may serve as a potential therapeutic target in lung metastasis of thyroid cancer.
Collapse
Affiliation(s)
- Xiaoli Liu
- Division of Thyroid Surgery, China-Japan Union Hospital of Jilin University, Jilin Provincial Key Laboratory of Surgical Translational Medicine, Changchun City, Jilin Province, 130033, China
| | - Yantao Fu
- Division of Thyroid Surgery, China-Japan Union Hospital of Jilin University, Jilin Provincial Key Laboratory of Surgical Translational Medicine, Changchun City, Jilin Province, 130033, China
| | - Guang Zhang
- Division of Thyroid Surgery, China-Japan Union Hospital of Jilin University, Jilin Provincial Key Laboratory of Surgical Translational Medicine, Changchun City, Jilin Province, 130033, China
| | - Daqi Zhang
- Division of Thyroid Surgery, China-Japan Union Hospital of Jilin University, Jilin Provincial Key Laboratory of Surgical Translational Medicine, Changchun City, Jilin Province, 130033, China
| | - Nan Liang
- Division of Thyroid Surgery, China-Japan Union Hospital of Jilin University, Jilin Provincial Key Laboratory of Surgical Translational Medicine, Changchun City, Jilin Province, 130033, China
| | - Fang Li
- Division of Thyroid Surgery, China-Japan Union Hospital of Jilin University, Jilin Provincial Key Laboratory of Surgical Translational Medicine, Changchun City, Jilin Province, 130033, China
| | - Changlin Li
- Division of Thyroid Surgery, China-Japan Union Hospital of Jilin University, Jilin Provincial Key Laboratory of Surgical Translational Medicine, Changchun City, Jilin Province, 130033, China
| | - Chengqiu Sui
- Division of Thyroid Surgery, China-Japan Union Hospital of Jilin University, Jilin Provincial Key Laboratory of Surgical Translational Medicine, Changchun City, Jilin Province, 130033, China
| | - Jinxi Jiang
- Division of Thyroid Surgery, China-Japan Union Hospital of Jilin University, Jilin Provincial Key Laboratory of Surgical Translational Medicine, Changchun City, Jilin Province, 130033, China
| | - Hongzhi Lu
- Division of Thyroid Surgery, China-Japan Union Hospital of Jilin University, Jilin Provincial Key Laboratory of Surgical Translational Medicine, Changchun City, Jilin Province, 130033, China
| | - Zihan Zhao
- Division of Thyroid Surgery, China-Japan Union Hospital of Jilin University, Jilin Provincial Key Laboratory of Surgical Translational Medicine, Changchun City, Jilin Province, 130033, China
| | - Gianlorenzo Dionigi
- Division for Endocrine and Minimally Invasive Surgery, Department of Human Pathology in Adulthood and Childhood "G. Barresi," University Hospital "G. Martino," University of Messina, Messina, Italy
| | - Hui Sun
- Division of Thyroid Surgery, China-Japan Union Hospital of Jilin University, Jilin Provincial Key Laboratory of Surgical Translational Medicine, Changchun City, Jilin Province, 130033, China
| |
Collapse
|
46
|
Fan J, Du W, Zhang H, Wang Y, Li K, Meng Y, Wang J. Transcriptional downregulation of miR-127-3p by CTCF promotes prostate cancer bone metastasis by targeting PSMB5. FEBS Lett 2019; 594:466-476. [PMID: 31562641 DOI: 10.1002/1873-3468.13624] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/21/2019] [Accepted: 09/23/2019] [Indexed: 12/20/2022]
Abstract
Prostate cancer (PCa) is one of the most common cancers in males and particularly tends to metastasize to bone. Currently, metastatic bone disease is incurable, and new therapies need to be developed. Our study aims to determine the role of miR-127-3p in PCa metastasis to bone. The results demonstrate that miR-127-3p is markedly reduced in bone metastasis-positive PCa tissues relative to that in bone metastasis-negative PCa tissues. Furthermore, overexpressing miR-127-3p inhibits PCa cell invasion and migration in vitro by targeting the proteasome β-subunit PSMB5. Moreover, CCCTC-binding factor (CTCF) transcriptionally inhibits miR-127-3p by interacting with the miR-127-3p promoter. Collectively, this study uncovers a novel mechanism of the CTCF/miR-127-3p/PSMB5 axis in promoting PCa bone metastasis, indicating that miR-127-3p could function as a promising therapeutic target against bone metastasis.
Collapse
Affiliation(s)
- Jiaxing Fan
- Department of Urology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China.,School of Medicine, Shandong University, Jinan, China
| | - Wenzhi Du
- Graduate School, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China.,Medical Research Center, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Hui Zhang
- Department of Urology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China.,School of Medicine, Shandong University, Jinan, China
| | - Yunchao Wang
- Department of Urology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Kai Li
- Department of Urology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Yong Meng
- Department of Urology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Jianning Wang
- Department of Urology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China.,Medical Research Center, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| |
Collapse
|