1
|
Song C, Zheng W, Liu G, Xu Y, Deng Z, Xiu Y, Zhang R, Yang L, Zhang Y, Yu G, Su Y, Luo J, He B, Xu J, Dai H. Sarcopenic obesity is attenuated by E-syt1 inhibition via improving skeletal muscle mitochondrial function. Redox Biol 2025; 79:103467. [PMID: 39675068 PMCID: PMC11699297 DOI: 10.1016/j.redox.2024.103467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 12/17/2024] Open
Abstract
In aging and metabolic disease, sarcopenic obesity (SO) correlates with intramuscular adipose tissue (IMAT). Using bioinformatics analysis, we found a potential target protein Extended Synaptotagmin 1 (E-syt1) in SO. To investigate the regulatory role of E-syt1 in muscle metabolism, we performed in vivo and in vitro experiments through E-syt1 loss- and gain-of-function on muscle physiology. When E-syt1 is overexpressed in vitro, myoblast proliferation, differentiation, mitochondrial respiration, biogenesis, and mitochondrial dynamics are impaired, which were alleviated by the silence of E-syt1. Furthermore, overexpression of E-syt1 inhibited mitophagic flux. Mechanistically, E-syt1 overexpression leads to mitochondrial calcium overload and mitochondrial ROS burst, inhibits the fusion of mitophagosomes with lysosomes, and impedes the acidification of lysosomes. Animal experiments demonstrated the inhibition of E-syt1 increased the capacity of endurance exercise, muscle mass, mitochondrial function, and oxidative capacity of the muscle fibers in OVX mice. These findings establish E-syt1 as a novel contributor to the pathogenesis of skeletal muscle metabolic disorders in SO. Consequently, targeting E-syt1-induced dysfunction may serve as a viable strategy for attenuating SO.
Collapse
Affiliation(s)
- Chao Song
- Department of Orthopedics, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, School of Medicine, Fuzhou University, Fuzhou, 350001, China; School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, 350001, China
| | - Wu Zheng
- Department of Orthopedics, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, School of Medicine, Fuzhou University, Fuzhou, 350001, China
| | - Guoming Liu
- Department of Orthopedics, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, School of Medicine, Fuzhou University, Fuzhou, 350001, China
| | - Yiyang Xu
- Department of Orthopedics, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, School of Medicine, Fuzhou University, Fuzhou, 350001, China
| | - Zhibo Deng
- Department of Orthopedics, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, School of Medicine, Fuzhou University, Fuzhou, 350001, China
| | - Yu Xiu
- Department of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Rongsheng Zhang
- Department of Orthopedics, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, School of Medicine, Fuzhou University, Fuzhou, 350001, China
| | - Linhai Yang
- Department of Orthopedics, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, School of Medicine, Fuzhou University, Fuzhou, 350001, China
| | - Yifei Zhang
- Department of Pediatrics, First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Guoyu Yu
- Department of Orthopedics, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, School of Medicine, Fuzhou University, Fuzhou, 350001, China
| | - Yibin Su
- Department of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Jun Luo
- Department of Orthopedics, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, School of Medicine, Fuzhou University, Fuzhou, 350001, China
| | - Bingwei He
- Department of Orthopedics, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, School of Medicine, Fuzhou University, Fuzhou, 350001, China; School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, 350001, China.
| | - Jie Xu
- Department of Orthopedics, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, School of Medicine, Fuzhou University, Fuzhou, 350001, China.
| | - Hanhao Dai
- Department of Orthopedics, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, School of Medicine, Fuzhou University, Fuzhou, 350001, China.
| |
Collapse
|
2
|
Zhang B, Zhang B, Wang T, Huang B, Cen L, Wang Z. Integrated bulk and single-cell profiling characterize sphingolipid metabolism in pancreatic cancer. BMC Cancer 2024; 24:1347. [PMID: 39487387 PMCID: PMC11531184 DOI: 10.1186/s12885-024-13114-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/25/2024] [Indexed: 11/04/2024] Open
Abstract
BACKGROUND Abnormal sphingolipid metabolism (SM) is closely linked to the incidence of cancers. However, the role of SM in pancreatic cancer (PC) remains unclear. This study aims to explore the significance of SM in the prognosis, immune microenvironment, and treatment of PC. METHODS Single-cell and bulk transcriptome data of PC were acquired via TCGA and GEO databases. SM-related genes (SMRGs) were obtained via MSigDB database. Consensus clustering was utilized to construct SM-related molecular subtypes. LASSO and Cox regression were utilized to build SM-related prognostic signature. ESTIMATE and CIBERSORT algorithms were employed to assess the tumour immune microenvironment. OncoPredict package was used to predict drug sensitivity. CCK-8, scratch, and transwell experiments were performed to analyze the function of ANKRD22 in PC cell line PANC-1 and BxPC-3. RESULTS A total of 153 SMRGs were acquired, of which 48 were linked to PC patients' prognosis. Two SM-related subtypes (SMRGcluster A and B) were identified in PC. SMRGcluster A had a poorer outcome and more active SM process compared to SMRGcluster B. Immune analysis revealed that SMRGcluster B had higher immune and stromal scores and CD8 + T cell abundance, while SMRGcluster A had a higher tumour purity score and M0 macrophages and activated dendritic cell abundance. PC with SMRGcluster B was more susceptible to gemcitabine, paclitaxel, and oxaliplatin. Then SM-related prognostic model (including ANLN, ANKRD22, and DKK1) was built, which had a very good predictive performance. Single-cell analysis revealed that in PC microenvironment, macrophages, epithelial cells, and endothelial cells had relatively higher SM activity. ANKRD22, DKK1, and ANLN have relatively higher expression levels in epithelial cells. Cell subpopulations with high expression of ANKRD22, DKK1, and ANLN had more active SM activity. In vitro experiments showed that ANKRD22 knockdown can inhibit the proliferation, migration, and invasion of PC cells. CONCLUSION This study revealed the important significance of SM in PC and identified SM-associated molecular subtypes and prognostic model, which provided novel perspectives on the stratification, prognostic prediction, and precision treatment of PC patients.
Collapse
Affiliation(s)
- Biao Zhang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Bolin Zhang
- Department of Visceral, Vascular and Endocrine Surgery, Martin-Luther-University Halle- Wittenberg, University Medical Center Halle, Halle, Germany
| | - Tingxin Wang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, China
| | - Bingqian Huang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, China
| | - Lijun Cen
- Department of Transfusion Medicine, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China.
- Key Laboratory of Molecular Pathology in Tumors of Guangxi, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China.
| | - Zhizhou Wang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.
| |
Collapse
|
3
|
Xu Q, Liu C, Wang H, Li S, Yan H, Liu Z, Chen K, Xu Y, Yang R, Zhou J, Yang X, Liu J, Wang L. Deciphering the impact of aggregated autophagy-related genes TUBA1B and HSP90AA1 on colorectal cancer evolution: a single-cell sequencing study of the tumor microenvironment. Discov Oncol 2024; 15:431. [PMID: 39259234 PMCID: PMC11390999 DOI: 10.1007/s12672-024-01322-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/06/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is the third most prevalent cancer worldwide, with the tumor microenvironment (TME) playing a crucial role in its progression. Aggregated autophagy (AA) has been recognized as a factor that exacerbates CRC progression. This study aims to study the relationship between aggregated autophagy and CRC using single-cell sequencing techniques. Our goal is to explain the heterogeneity of the TME and to explore the potential for targeted personalized therapies. OBJECTIVE To study the role of AA in CRC, we employed single-cell sequencing to discern distinct subpopulations within the TME. These subpopulations were characterized by their autophagy levels and further analyzed to identify specific biological processes and marker genes. RESULTS Our study revealed significant correlations between immune factors and both clinical and biological characteristics of the tumor microenvironment (TME), particularly in cells expressing TUBA1B and HSP90AA1. These immune factors were associated with T cell depletion, a reduction in protective factors, diminished efficacy of immune checkpoint blockade (ICB), and enhanced migration of cancer-associated fibroblasts (CAFs), resulting in pronounced inflammation. In vitro experiments showd that silencing TUBA1B and HSP90AA1 using siRNA (Si-TUBA1B and Si-HSP90AA1) significantly reduced the expression of IL-6, IL-7, CXCL1, and CXCL2 and inhibition of tumor cell growth in Caco-2 and Colo-205 cell lines. This reduction led to a substantial alleviation of chronic inflammation and highlighted the heterogeneous nature of the TME. CONCLUSION This study marks an initial foray into understanding how AA-associated processes may potentiate the TME and weaken immune function. Our findings provide insights into the complex dynamics of the TME and highlight potential targets for therapeutic intervention, suggesting a key role for AA in the advancement of colorectal cancer.
Collapse
Affiliation(s)
- Qianping Xu
- Department of Gastrointestinal and Hernial Surgery, Meishan Hospital of West China Hospital of Sichuan University, Meishan City People's Hospital, Meishan, 620010, China
| | - Chao Liu
- General Hospital of Ningxia Medical University, Yinchuan, 750000, Ningxia, China
- Ningxia Medical University, Yinchuan, 750000, Ningxia, China
| | - Hailin Wang
- Department of Hepatobiliary Surgery, Affliated Hospital of North Sichuan Medical College, Nanchong, Sichuan Province, China
| | - Shujuan Li
- General Hospital of Ningxia Medical University, Yinchuan, 750000, Ningxia, China
- Ningxia Medical University, Yinchuan, 750000, Ningxia, China
| | - Hanshen Yan
- General Hospital of Ningxia Medical University, Yinchuan, 750000, Ningxia, China
- Ningxia Medical University, Yinchuan, 750000, Ningxia, China
| | - Ziyang Liu
- General Hospital of Ningxia Medical University, Yinchuan, 750000, Ningxia, China
- Ningxia Medical University, Yinchuan, 750000, Ningxia, China
| | - Kexin Chen
- General Hospital of Ningxia Medical University, Yinchuan, 750000, Ningxia, China
- Ningxia Medical University, Yinchuan, 750000, Ningxia, China
| | - Yaoqin Xu
- General Hospital of Ningxia Medical University, Yinchuan, 750000, Ningxia, China
- Ningxia Medical University, Yinchuan, 750000, Ningxia, China
| | - Runqin Yang
- General Hospital of Ningxia Medical University, Yinchuan, 750000, Ningxia, China
- Ningxia Medical University, Yinchuan, 750000, Ningxia, China
| | - Jingfang Zhou
- General Hospital of Ningxia Medical University, Yinchuan, 750000, Ningxia, China
- Ningxia Medical University, Yinchuan, 750000, Ningxia, China
| | - Xiaolin Yang
- Ningxia Medical University, Yinchuan, 750000, Ningxia, China.
| | - Jie Liu
- Department of General Surgery, Dazhou Central Hospital, Dazhou, 635000, China.
| | - Lexin Wang
- General Hospital of Ningxia Medical University, Yinchuan, 750000, Ningxia, China.
- Ningxia Medical University, Yinchuan, 750000, Ningxia, China.
| |
Collapse
|
4
|
Li L, Jiang D, Liu H, Guo C, Zhang Q, Li X, Chen X, Chen Z, Feng J, Tan S, Huang W, Huang J, Xu C, Liu CY, Yu W, Hou Y, Ding C. Comprehensive Proteogenomic Profiling Reveals the Molecular Characteristics of Colorectal Cancer at Distinct Stages of Progression. Cancer Res 2024; 84:2888-2910. [PMID: 38861363 PMCID: PMC11372369 DOI: 10.1158/0008-5472.can-23-1878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 02/13/2024] [Accepted: 06/07/2024] [Indexed: 06/13/2024]
Abstract
Colorectal cancer is the second most common malignant tumor worldwide. Analysis of the changes that occur during colorectal cancer progression could provide insights into the molecular mechanisms driving colorectal cancer development and identify improved treatment strategies. In this study, we performed an integrated multiomic analysis of 435 trace tumor samples from 148 patients with colorectal cancer, covering nontumor, intraepithelial neoplasia (IEN), infiltration, and advanced stage colorectal cancer phases. Proteogenomic analyses demonstrated that KRAS and BRAF mutations were mutually exclusive and elevated oxidative phosphorylation in the IEN phase. Chr17q loss and chr20q gain were also mutually exclusive, which occurred predominantly in the IEN and infiltration phases, respectively, and impacted the cell cycle. Mutations in TP53 were frequent in the advanced stage colorectal cancer phase and associated with the tumor microenvironment, including increased extracellular matrix rigidity and stromal infiltration. Analysis of the profiles of colorectal cancer based on consensus molecular subtype and colorectal cancer intrinsic subtype classifications revealed the progression paths of each subtype and indicated that microsatellite instability was associated with specific subtype classifications. Additional comparison of molecular characteristics of colorectal cancer based on location showed that ANKRD22 amplification by chr10q23.31 gain enhanced glycolysis in the right-sided colorectal cancer. The AOM/DSS-induced colorectal cancer carcinogenesis mouse model indicated that DDX5 deletion due to chr17q loss promoted colorectal cancer development, consistent with the findings from the patient samples. Collectively, this study provides an informative resource for understanding the driving events of different stages of colorectal cancer and identifying the potential therapeutic targets. Significance: Characterization of the proteogenomic landscape of colorectal cancer during progression provides a multiomic map detailing the alterations in each stage of carcinogenesis and suggesting potential diagnostic and therapeutic approaches for patients.
Collapse
Affiliation(s)
- Lingling Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Dongxian Jiang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hui Liu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chunmei Guo
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qiao Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xuedong Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaojian Chen
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zheqi Chen
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jinwen Feng
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Subei Tan
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wen Huang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jie Huang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chen Xu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chen-Ying Liu
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yingyong Hou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chen Ding
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Liang Y, Chen P, Wang S, Cai L, Zhu F, Jiang Y, Li L, Zhu L, Heng Y, Zhang W, Pan Y, Wei W, Jia L. SCF FBXW5-mediated degradation of AQP3 suppresses autophagic cell death through the PDPK1-AKT-MTOR axis in hepatocellular carcinoma cells. Autophagy 2024; 20:1984-1999. [PMID: 38726865 PMCID: PMC11346525 DOI: 10.1080/15548627.2024.2353497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 04/22/2024] [Accepted: 05/05/2024] [Indexed: 05/20/2024] Open
Abstract
AQP3 (aquaporin 3 (Gill blood group)), a member of the AQP family, is an aquaglyceroporin which transports water, glycerol and small solutes across the plasma membrane. Beyond its role in fluid transport, AQP3 plays a significant role in regulating various aspects of tumor cell behavior, including cell proliferation, migration, and invasion. Nevertheless, the underlying regulatory mechanism of AQP3 in tumors remains unclear. Here, for the first time, we report that AQP3 is a direct target for ubiquitination by the SCFFBXW5 complex. In addition, we revealed that downregulation of FBXW5 significantly induced AQP3 expression to prompt macroautophagic/autophagic cell death in hepatocellular carcinoma (HCC) cells. Mechanistically, AQP3 accumulation induced by FBXW5 knockdown led to the degradation of PDPK1/PDK1 in a lysosomal-dependent manner, thus inactivating the AKT-MTOR pathway and inducing autophagic death in HCC. Taken together, our findings revealed a previously undiscovered regulatory mechanism through which FBXW5 degraded AQP3 to suppress autophagic cell death via the PDPK1-AKT-MTOR axis in HCC cells.Abbreviation: BafA1: bafilomycin A1; CQ: chloroquine; CRL: CUL-Ring E3 ubiquitin ligases; FBXW5: F-box and WD repeat domain containing 5; HCC: hepatocellular carcinoma; HSPA8/HSC70: heat shock protein family A (Hsp70) member 8; 3-MA: 3-methyladenine; PDPK1/PDK1: 3-phosphoinositide dependent protein kinase 1; RBX1/ROC1: ring-box 1; SKP1: S-phase kinase associated protein 1; SCF: SKP1-CUL1-F-box protein.
Collapse
Affiliation(s)
- Yupei Liang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ping Chen
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Shiwen Wang
- Department of Laboratory Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Lili Cai
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Feng Zhu
- Department of Laboratory Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Yanyu Jiang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lihui Li
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lihua Zhu
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yongqing Heng
- Department of Integrative Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Wenjuan Zhang
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yongfu Pan
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Lijun Jia
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
6
|
Pan T, Yang B, Yao S, Wang R, Zhu Y. Exploring the multifaceted role of adenosine nucleotide translocase 2 in cellular and disease processes: A comprehensive review. Life Sci 2024; 351:122802. [PMID: 38857656 DOI: 10.1016/j.lfs.2024.122802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/04/2024] [Accepted: 06/04/2024] [Indexed: 06/12/2024]
Abstract
Adenosine nucleotide translocases (ANTs) are a family of proteins abundant in the inner mitochondrial membrane, primarily responsible for shuttling ADP and ATP across the mitochondrial membrane. Additionally, ANTs are key players in balancing mitochondrial energy metabolism and regulating cell death. ANT2 isoform, highly expressed in undifferentiated and proliferating cells, is implicated in the development and drug resistance of various tumors. We conduct a detailed analysis of the potential mechanisms by which ANT2 may influence tumorigenesis and drug resistance. Notably, the significance of ANT2 extends beyond oncology, with roles in non-tumor cell processes including blood cell development, gastrointestinal motility, airway hydration, nonalcoholic fatty liver disease, obesity, chronic kidney disease, and myocardial development, making it a promising therapeutic target for multiple pathologies. To better understand the molecular mechanisms of ANT2, this review summarizes the structural properties, expression patterns, and basic functions of the ANT2 protein. In particular, we review and analyze the controversy surrounding ANT2, focusing on its role in transporting ADP/ATP across the inner mitochondrial membrane, its involvement in the composition of the mitochondrial permeability transition pore, and its participation in apoptosis.
Collapse
Affiliation(s)
- Tianhui Pan
- Laboratory of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, PR China
| | - Bin Yang
- Laboratory of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, PR China
| | - Sheng Yao
- Laboratory of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, PR China
| | - Rui Wang
- Laboratory of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, PR China
| | - Yongliang Zhu
- Laboratory of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, PR China.
| |
Collapse
|
7
|
Li L, Tang Q, Ge J, Wang D, Mo Y, Zhang Y, Wang Y, Xiong F, Yan Q, Liao Q, Guo C, Wang F, Zhou M, Xiang B, Zeng Z, Shi L, Chen P, Xiong W. METTL14 promotes lipid metabolism reprogramming and sustains nasopharyngeal carcinoma progression via enhancing m 6A modification of ANKRD22 mRNA. Clin Transl Med 2024; 14:e1766. [PMID: 39021049 PMCID: PMC11255023 DOI: 10.1002/ctm2.1766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND N6-methyladenosine (m6A) modification is essential for modulating RNA processing as well as expression, particularly in the context of malignant tumour progression. However, the exploration of m6A modification in nasopharyngeal carcinoma (NPC) remains very limited. METHODS RNA m6A levels were analysed in NPC using m6A dot blot assay. The expression level of methyltransferase-like 14 (METTL14) within NPC tissues was analysed from public databases as well as RT-qPCR and immunohistochemistry. The influences on METTL14 expression on NPC proliferation and metastasis were explored via in vitro as well as in vivo functional assays. Targeted genes of METTL14 were screened using the m6A and gene expression profiling microarray data. Actinomycin D treatment and polysome analysis were used to detect the half-life and translational efficiency of ANKRD22. Flow cytometry, immunofluorescence and immunoprecipitation were used to validate the role of ANKRD22 on lipid metabolism in NPC cells. ChIP-qPCR analysis of H3K27AC signalling near the promoters of METTL14, GINS3, POLE2, PLEK2 and FERMT1 genes. RESULTS We revealed METTL14, in NPC, correlating with poor patient prognosis. In vitro and in vivo assays indicated METTL14 actively promoted NPC cells proliferation and metastasis. METTL14 catalysed m6A modification on ANKRD22 messenger ribonucleic acid (mRNA), recognized by the reader IGF2BP2, leading to increased mRNA stability and higher translational efficiency. Moreover, ANKRD22, a metabolism-related protein on mitochondria, interacted with SLC25A1 to enhance citrate transport, elevating intracellular acetyl-CoA content. This dual impact of ANKRD22 promoted lipid metabolism reprogramming and cellular lipid synthesis while upregulating the expression of genes associated with the cell cycle (GINS3 and POLE2) and the cytoskeleton (PLEK2 and FERMT1) through heightened epigenetic histone acetylation levels in the nucleus. Intriguingly, our findings highlighted elevated ANKRD22-mediated histone H3 lysine 27 acetylation (H3K27AC) signals near the METTL14 promoter, which contributes to a positive feedback loop perpetuating malignant progression in NPC. CONCLUSIONS The identified METTL14-ANKRD22-SLC25A1 axis emerges as a promising therapeutic target for NPC, and also these molecules may serve as novel diagnostic biomarkers.
Collapse
Affiliation(s)
- Lvyuan Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer MetabolismHunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangshaChina
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationCancer Research Institute and School of Basic Medicine Sciences, Central South UniversityChangshaChina
| | - Qiling Tang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer MetabolismHunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangshaChina
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationCancer Research Institute and School of Basic Medicine Sciences, Central South UniversityChangshaChina
| | - Junshang Ge
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationCancer Research Institute and School of Basic Medicine Sciences, Central South UniversityChangshaChina
| | - Dan Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationCancer Research Institute and School of Basic Medicine Sciences, Central South UniversityChangshaChina
| | - Yongzhen Mo
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationCancer Research Institute and School of Basic Medicine Sciences, Central South UniversityChangshaChina
- Department of Otolaryngology Head and Neck SurgeryXiangya Hospital, Central South UniversityChangshaChina
| | - Yijie Zhang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer MetabolismHunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangshaChina
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationCancer Research Institute and School of Basic Medicine Sciences, Central South UniversityChangshaChina
| | - Yumin Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationCancer Research Institute and School of Basic Medicine Sciences, Central South UniversityChangshaChina
- Department of Otolaryngology Head and Neck SurgeryXiangya Hospital, Central South UniversityChangshaChina
| | - Fang Xiong
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationCancer Research Institute and School of Basic Medicine Sciences, Central South UniversityChangshaChina
- Department of Otolaryngology Head and Neck SurgeryXiangya Hospital, Central South UniversityChangshaChina
| | - Qijia Yan
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationCancer Research Institute and School of Basic Medicine Sciences, Central South UniversityChangshaChina
- Department of Otolaryngology Head and Neck SurgeryXiangya Hospital, Central South UniversityChangshaChina
| | - Qianjin Liao
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer MetabolismHunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangshaChina
| | - Can Guo
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationCancer Research Institute and School of Basic Medicine Sciences, Central South UniversityChangshaChina
| | - Fuyan Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationCancer Research Institute and School of Basic Medicine Sciences, Central South UniversityChangshaChina
| | - Ming Zhou
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationCancer Research Institute and School of Basic Medicine Sciences, Central South UniversityChangshaChina
| | - Bo Xiang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationCancer Research Institute and School of Basic Medicine Sciences, Central South UniversityChangshaChina
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer MetabolismHunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangshaChina
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationCancer Research Institute and School of Basic Medicine Sciences, Central South UniversityChangshaChina
| | - Lei Shi
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer MetabolismHunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangshaChina
- Department of Pathologythe Second Xiangya Hospital, Central South UniversityChangshaChina
| | - Pan Chen
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer MetabolismHunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangshaChina
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer MetabolismHunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangshaChina
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationCancer Research Institute and School of Basic Medicine Sciences, Central South UniversityChangshaChina
| |
Collapse
|
8
|
Zhang X, Chen R, Huo Z, Li W, Jiang M, Su G, Liu Y, Cai Y, Huang W, Xiong Y, Wang S. Blood-based molecular and cellular biomarkers of early response to neoadjuvant PD-1 blockade in patients with non-small cell lung cancer. Cancer Cell Int 2024; 24:225. [PMID: 38951894 PMCID: PMC11218110 DOI: 10.1186/s12935-024-03412-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/22/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND Despite the improved survival observed in PD-1/PD-L1 blockade therapy, a substantial proportion of cancer patients, including those with non-small cell lung cancer (NSCLC), still lack a response. METHODS Transcriptomic profiling was conducted on a discovery cohort comprising 100 whole blood samples, as collected multiple times from 48 healthy controls (including 43 published data) and 31 NSCLC patients that under treatment with a combination of anti-PD-1 Tislelizumab and chemotherapy. Differentially expressed genes (DEGs), simulated immune cell subsets, and germline DNA mutational markers were identified from patients achieved a pathological complete response during the early treatment cycles. The predictive values of mutational markers were further validated in an independent immunotherapy cohort of 1661 subjects, and then confirmed in genetically matched lung cancer cell lines by a co-culturing model. RESULTS The gene expression of hundreds of DEGs (FDR p < 0.05, fold change < -2 or > 2) distinguished responders from healthy controls, indicating the potential to stratify patients utilizing early on-treatment features from blood. PD-1-mediated cell abundance changes in memory CD4 + and regulatory T cell subset were more significant or exclusively observed in responders. A panel of top-ranked genetic alterations showed significant associations with improved survival (p < 0.05) and heightened responsiveness to anti-PD-1 treatment in patient cohort and co-cultured cell lines. CONCLUSION This study discovered and validated peripheral blood-based biomarkers with evident predictive efficacy for early therapy response and patient stratification before treatment for neoadjuvant PD-1 blockade in NSCLC patients.
Collapse
Affiliation(s)
- Xi Zhang
- School of Life Science, Northwest University, Xi'an, Shaanxi, 710069, China.
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, 710069, Shaanxi, Xi'an, China.
| | - Rui Chen
- School of Life Science, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Zirong Huo
- School of Life Science, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Wenqing Li
- School of Life Science, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Mengju Jiang
- School of Life Science, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Guodong Su
- School of Life Science, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Yuru Liu
- School of Life Science, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Yu Cai
- School of Life Science, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Wuhao Huang
- Department of Lung Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Tianjin, 300060, China
| | - Yuyan Xiong
- School of Life Science, Northwest University, Xi'an, Shaanxi, 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, 710069, Shaanxi, Xi'an, China
| | - Shengguang Wang
- Department of Lung Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Tianjin, 300060, China.
| |
Collapse
|
9
|
Zhang S, Liu Y, Zhang XL, Sun Y, Lu ZH. ANKRD22 aggravates sepsis-induced ARDS and promotes pulmonary M1 macrophage polarization. J Transl Autoimmun 2024; 8:100228. [PMID: 38225946 PMCID: PMC10788270 DOI: 10.1016/j.jtauto.2023.100228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 01/17/2024] Open
Abstract
Acute respiratory distress syndrome (ARDS) is independently associated with a poor prognosis in patients with sepsis. Macrophage M1 polarization plays an instrumental role in this process. Therefore, the exploration of key molecules affecting acute lung injury and macrophage M1 polarization may provide therapeutic targets for the treatment of septic ARDS. Here, we identified that elevated levels of Ankyrin repeat domain-containing protein 22 (ANKRD22) were associated with poor prognosis and more pronounced M1 macrophage polarization in septic patients by analyzing high-throughput data. ANKRD22 expression was also significantly upregulated in the alveolar lavage fluid, peripheral blood, and lung tissue of septic ARDS model mice. Knockdown of ANKRD22 significantly attenuated acute lung injury in mice with sepsis-induced ARDS and reduced the M1 polarization of lung macrophages. Furthermore, deletion of ANKRD22 in macrophages inhibited M1 macrophage polarization and reduced levels of phosphorylated IRF3 and intracellular interferon regulatory factor 3 (IRF3) expression, while re-expression of ANKRD22 reversed these changes. Further experiments revealed that ANKRD22 promotes IRF3 activation by binding to mitochondrial antiviral-signaling protein (MAVS). In conclusion, these findings suggest that ANKRD22 promotes the M1 polarization of lung macrophages and exacerbates sepsis-induced ARDS.
Collapse
Affiliation(s)
- Shi Zhang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, ZhongdaHospital, Southeast University, Nanjing, Jiangsu, China
- Department of Pulmonary and Critical Care Medicine, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yao Liu
- Emergency Department of Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Gulou District, Nanjing, China
| | - Xiao-Long Zhang
- Department of Ultrasound, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yun Sun
- The First Department of Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui Province, 230601, China
| | - Zhong-Hua Lu
- The First Department of Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui Province, 230601, China
| |
Collapse
|
10
|
Xia X, Zhu L, Xu M, Lei Z, Yu H, Li G, Wang X, Jia H, Yin Z, Huang F, Gao Y. ANKRD22 promotes resolution of psoriasiform skin inflammation by antagonizing NIK-mediated IL-23 production. Mol Ther 2024; 32:1561-1577. [PMID: 38454607 PMCID: PMC11081937 DOI: 10.1016/j.ymthe.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 12/13/2023] [Accepted: 03/05/2024] [Indexed: 03/09/2024] Open
Abstract
Inflammation resolution is an essential process for preventing the development of chronic inflammatory diseases. However, the mechanisms that regulate inflammation resolution in psoriasis are not well understood. Here, we report that ANKRD22 is an endogenous negative orchestrator of psoriasiform inflammation because ANKRD22-deficient mice are more susceptible to IMQ-induced psoriasiform inflammation. Mechanistically, ANKRD22 deficiency leads to excessive activation of the TNFRII-NIK-mediated noncanonical NF-κB signaling pathway, resulting in the hyperproduction of IL-23 in DCs. This is due to ANKRD22 being a negative feedback regulator for NIK because it physically binds to and assists in the degradation of accumulated NIK. Clinically, ANKRD22 is negatively associated with IL-23A expression and psoriasis severity. Of greater significance, subcutaneous administration of an AAV carrying ANKRD22-overexpression vector effectively hastens the resolution of psoriasiform skin inflammation. Our findings suggest ANKRD22, an endogenous supervisor of NIK, is responsible for inflammation resolution in psoriasis, and may be explored in the context of psoriasis therapy.
Collapse
Affiliation(s)
- Xichun Xia
- Institute of Dermatology and Venereal Diseases, Dermatology Hospital, Southern Medical University, Guangzhou 510091, China; The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University), Jinan University, Zhuhai 519050, China
| | - Leqing Zhu
- Guangzhou Laboratory, Bioland, Guangzhou 510005, China
| | - Miaomiao Xu
- The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University), Jinan University, Zhuhai 519050, China
| | - Zhiwei Lei
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, China
| | - Hai Yu
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Guangqiang Li
- The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China
| | - Xiao Wang
- The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China
| | - Hongling Jia
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Zhinan Yin
- The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University), Jinan University, Zhuhai 519050, China.
| | - Fang Huang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University), Jinan University, Zhuhai 519050, China.
| | - Yunfei Gao
- Department of Oncology, Research Center of Cancer Diagnosis and Therapy, the First Affiliated Hospital, Jinan University, Guangzhou 510632, China; The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China.
| |
Collapse
|
11
|
Zhong Y, Zeng W, Chen Y, Zhu X. The effect of lipid metabolism on cuproptosis-inducing cancer therapy. Biomed Pharmacother 2024; 172:116247. [PMID: 38330710 DOI: 10.1016/j.biopha.2024.116247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/01/2024] [Accepted: 02/01/2024] [Indexed: 02/10/2024] Open
Abstract
Cuproptosis provides a new therapeutic strategy for cancer treatment and is thought to have broad clinical application prospects. Nevertheless, some oncological clinical trials have yet to demonstrate favorable outcomes, highlighting the need for further research into the molecular mechanisms underlying cuproptosis in tumors. Cuproptosis primarily hinges on the intracellular accumulation of copper, with lipid metabolism exerting a profound influence on its course. The interaction between copper metabolism and lipid metabolism is closely related to cuproptosis. Copper imbalance can affect mitochondrial respiration and lipid metabolism changes, while lipid accumulation can promote copper uptake and absorption, and inhibit cuproptosis induced by copper. Anomalies in lipid metabolism can disrupt copper homeostasis within cells, potentially triggering cuproptosis. The interaction between cuproptosis and lipid metabolism regulates the occurrence, development, metastasis, chemotherapy drug resistance, and tumor immunity of cancer. Cuproptosis is a promising new target for cancer treatment. However, the influence of lipid metabolism and other factors should be taken into consideration. This review provides a brief overview of the characteristics of the interaction between cuproptosis and lipid metabolism in cancer and analyses potential strategies of applying cuproptosis for cancer treatment.
Collapse
Affiliation(s)
- Yue Zhong
- School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
| | - Wei Zeng
- School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
| | - Yongbo Chen
- Rehabilitation College of Gannan Medical University, Ganzhou 341000, China
| | - Xiuzhi Zhu
- School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China.
| |
Collapse
|
12
|
Wang L, Li M, Yang H, Dai F, Xie N, Li L, Zhu M, Ding R. Subtype recognition and identification of a prognosis model characterized by antibody-dependent cell phagocytosis-related genes in breast cancer. Aging (Albany NY) 2024; 16:4014-4032. [PMID: 38393698 PMCID: PMC10929816 DOI: 10.18632/aging.205575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/23/2024] [Indexed: 02/25/2024]
Abstract
BACKGROUND Breast cancer (BC) is a heterogeneous tumor with a variety of etiology and clinical features. Antibody-dependent cell phagocytosis (ADCP) is the last step of immune checkpoint inhibition (ICI), and macrophages detect and recognize tumor cells, then destroy and engulf tumor cells. Despite the large number, negative regulators that inhibit phagocytic activity are still a key obstacle to the full efficacy of ICI. PATIENTS AND METHODS An ADCP-related risk score prognostic model for risk stratification as well as prognosis prediction was established in the Cancer Genome Atlas (TCGA) cohort. The predictive value of ADCP risk score in prognosis and immunotherapy was also further validated in the TCGA along with International Cancer Genome Consortium cohorts. To promote the clinical application of the risk score, a nomogram was established, with its effectiveness verified by different methods. RESULTS In this study, the genes collected from previous studies were defined as ADCP-related genes. In BC patients, two ADCP-related subtypes were identified. The immune characteristics and prognostic stratification were significant different between them. CONCLUSIONS We identified two subtypes associated with ADCP gene expression in breast cancer. They have significant differences in immune cells, molecular functions, HLA family genes, immune scores, stromal scores, and inflammatory gene expression, which have important guiding significance for the selection of clinical treatment methods. At the same time, we constructed a risk model based on ADCP, and the risk score can be used as a good indicator of prognosis, providing potential therapeutic advantages for chemotherapy and immunotherapy, thus helping the clinical decision-making of BC patients.
Collapse
Affiliation(s)
- Li Wang
- Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China
| | - Menghan Li
- Acupuncture-Moxibustion Clinical Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China
| | - Hongyu Yang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China
| | - Fenghuan Dai
- Acupuncture-Moxibustion Clinical Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Ning Xie
- Acupuncture-Moxibustion Clinical Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Linhui Li
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China
| | - Meiying Zhu
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China
| | - Ran Ding
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, China
| |
Collapse
|
13
|
Wang H, Liu F, Wu X, Zhu G, Tang Z, Qu W, Zhao Q, Huang R, Tian M, Fang Y, Jiang X, Tao C, Gao J, Liu W, Zhou J, Fan J, Wu D, Shi Y. Cancer-associated fibroblasts contributed to hepatocellular carcinoma recurrence and metastasis via CD36-mediated fatty-acid metabolic reprogramming. Exp Cell Res 2024; 435:113947. [PMID: 38301989 DOI: 10.1016/j.yexcr.2024.113947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/18/2024] [Accepted: 01/21/2024] [Indexed: 02/03/2024]
Abstract
Cancer-associated fibroblasts (CAFs) are the main components in the tumor microenvironment. Tumors activate fibroblasts from quiescent state into activated state by secreting cytokines, and activated CAFs may in turn promote tumor progression and metastasis. Therefore, studies targeting CAFs could enrich the therapeutic options for tumor treatment. In this study, we demonstrate that the content of lipid droplets and the expression of autophagosomes were higher in CAFs than in peri-tumor fibroblasts (PTFs), which was inhibited by 5-(tetradecyloxy)-2-furoic acid(TOFA). The expression of CD36 in CAFs was higher than that in PTFs at both mRNA and protein levels. Inhibition of CD36 activity using either the CD36 inhibitor SSO or siRNA had a significant negative impact on the proliferation and migration abilities of CAFs, which was associated with reduced levels of relevant activated genes (α-SMA, FAP, Vimentin) and cytokines (IL-6, TGF-β and VEGF-α). SSO also inhibited HCC growth and tumorigenesis in nude mice orthotopically implanted with CAFs and HCC cells. Our data further show that CD36+CAFs affected the expression of PD-1 in CTLs leading to CTL exhaustion, and that patients with high CD36 expression in CAFs were correlated with shorter overall survival (OS). Together, our data demonstrate that CAFs were active in lipid metabolism with increased lipid content and lipophagy activity. CD36 may play a key role in the regulation of the biological behaviors of CAFs, which may influence the proliferation and migration of tumor cells by reprograming the lipid metabolism in tumor cells. Thus, CD36 could be an effective therapeutic target for the treatment of HCC.
Collapse
Affiliation(s)
- Han Wang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China; Department of General Surgery, Affiliated Hospital of Nantong University, Jiangsu, China
| | - Fangming Liu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Xiaoling Wu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China; Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Guiqi Zhu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China; Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Zheng Tang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China; Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Weifeng Qu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China; Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Qianfu Zhao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China; Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Run Huang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Mengxin Tian
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuan Fang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China; Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Xifei Jiang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China; Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Chenyang Tao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China; Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Jun Gao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China; Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Weiren Liu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China; Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China; Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Jia Fan
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China; Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China.
| | - Duojiao Wu
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Yinghong Shi
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China; Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
14
|
Cao J, Zhang H, Wei X, Zhou H. ANKRD22 promotes M2 polarization in lung adenocarcinoma macrophages via the glycolytic pathway. Chem Biol Drug Des 2024; 103:e14445. [PMID: 38230786 DOI: 10.1111/cbdd.14445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 11/29/2023] [Accepted: 12/27/2023] [Indexed: 01/18/2024]
Abstract
Lung adenocarcinoma (LUAD) is the most common subtype of lung cancer with a low 5-year survival rate. ANKRD22 is an ankyrin repeat protein capable of promoting tumor progression, and its mechanism in LUAD remains elusive. Our study aims to investigate the mechanisms underlying the involvement of ANKRD22 in the progression of LUAD. The expression of ANKRD22 in LUAD and its enriched pathway were analyzed by bioinformatics analysis. Meanwhile, the correlation between ANKRD22 and the expression of glycolysis-related genes and M2 macrophage marker genes was analyzed. qRT-PCR was used for determination of the expression of ANKRD22, IL-10 and CCL17, CCK-8 for cell viability, and western blot for expression of ANKRD22, LDHA, HK2, PGK1, and PKM2. Immunofluorescence and flow cytometry were utilized to examine the level of CD163, and kits were used to measure the contents of pyruvic acid, lactate, citrate, and malate. Seahorse XF96 analyzer was employed to determine extracellular acidification rate (ECAR) and oxygen consumption rate (OCR). Mitochondrial membrane potential was assessed using the JC-1 probe. Bioinformatics analysis, qRT-PCR, and western blot showed that ANKRD22 was highly expressed in LUAD, which had a positive connection with M2 marker genes. Knockdown of ANKRD22 considerably attenuated the expression of ANKRD22, IL-10, and CCL17 in M2. ANKRD22 overexpression demonstrated the opposite results. Bioinformatics analysis uncovered that ANKRD22 was enriched in the glycolytic pathway and positively correlated with glycolysis-related genes. The knockdown of ANKRD22 substantially attenuated pyruvic acid, lactate, citrate, malate, and ECAR levels and elevated OCR levels in cells. The knockdown of ANKRD22 also reduced mitochondrial membrane potential. Further, it was discovered that glycolysis-related genes had a positive correlation with M2 marker genes. It was revealed by rescue experiments that the usage of 2-DG, a glycolytic inhibitor, remarkably reversed the facilitating effect of overexpression of ANKRD22 on M2 polarization. This study demonstrates that ANKRD22 can facilitate LUAD M2 polarization through glycolysis, and targeting ANKRD22 to inhibit M2 polarization has the potential to be a new strategy for LUAD treatment.
Collapse
Affiliation(s)
- Jiangbo Cao
- Department of Respiratory and Critical Care Medicine, Jingmen People's Hospital, Jingmen, China
| | - Hongwei Zhang
- Department of Ultrasound, Jingmen People's Hospital, Jingmen, China
| | - Xiaoli Wei
- Neurointensive Care Unit, Jingmen People's Hospital, Jingmen, China
| | - Huihui Zhou
- Department of Respiratory and Critical Care Medicine, Jingmen People's Hospital, Jingmen, China
| |
Collapse
|
15
|
Liu L, Cai Y, Deng C. Identification of ANXA3 as a biomarker associated with pyroptosis in ischemic stroke. Eur J Med Res 2023; 28:596. [PMID: 38102696 PMCID: PMC10725036 DOI: 10.1186/s40001-023-01564-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/03/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Pyroptosis plays an important role in the pathological process of ischemic stroke (IS). However, the exact mechanism of pyroptosis remains unclear. This paper aims to reveal the key molecular markers associated with pyroptosis in IS. METHODS We used random forest learning, gene set variation analysis, and Pearson correlation analysis to screen for biomarkers associated with pyroptosis in IS. Middle cerebral artery occlusion/reperfusion (MCAO/R) and oxygen and glucose deprivation/reoxygenation (OGD/R) models were constructed in vitro and in vivo. Cells were transfected with an Annexin A3 silencing (si-ANXA3) plasmid to observe the effects of ANXA3 on OGD/R + lipopolysaccharides (LPS)-induced pyroptosis. qRT‒PCR and western blotting were used to detect the expression of potential biomarkers and pyroptotic pathways. RESULTS Samples from a total of 170 IS patients and 109 healthy individuals were obtained from 5 gene expression omnibus databases. Thirty important genes were analyzed by random forest learning from the differentially expressed genes. Then, we investigated the relationship between the above genes and the pyroptosis score, obtaining three potential biomarkers (ANXA3, ANKRD22, ADM). ANXA3 and ADM were upregulated in the MCAO/R model, and the fold difference in ANXA3 expression was greater. Pyroptosis-related factors (NLRP3, NLRC4, AIM2, GSDMD-N, caspase-8, pro-caspase-1, cleaved caspase-1, IL-1β, and IL-18) were upregulated in the MCAO/R model. Silencing ANXA3 alleviated the expression of pyroptosis-related factors (NLRC4, AIM2, GSDMD-N, caspase-8, pro-caspase-1, cleaved caspase-1, and IL-18) induced by OGD/R + LPS or MCAO/R. CONCLUSION This study identified ANXA3 as a possible pyroptosis-related gene marker in IS through bioinformatics and experiments. ANXA3 could inhibit pyroptosis through the NLRC4/AIM2 axis.
Collapse
Affiliation(s)
- Linquan Liu
- Chronic Disease Management Department, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, Hunan, China
- The Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Yahong Cai
- Chronic Disease Management Department, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, Hunan, China
| | - Changqing Deng
- The Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China.
| |
Collapse
|
16
|
Chu S, Fei B, Yu M. Molecular Mechanism of Circ_0088300-BOLL Interaction Regulating Mitochondrial Metabolic Reprogramming and Involved in Gastric Cancer Growth and Metastasis. J Proteome Res 2023; 22:3793-3810. [PMID: 37953520 DOI: 10.1021/acs.jproteome.3c00476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
This study aims to investigate the effect and molecular mechanism of the interaction between circRNA circ_0088300 and the RNA binding protein (RBP) BOLL on the growth and metastasis of gastric cancer. A prognostic risk model was established by screening differentially expressed RBP genes from the TCGA database, and BOLL was identified as a critical RBP. Gene Set Enrichment analysis (GSEA) showed that BOLL was associated with mitochondrial function. The upregulation fold change of circ_0088300 was the highest in the GSE93541 data set, and the RPISeq database confirmed its binding relationship with BOLL. In vitro experiments showed that BOLL regulates mitochondrial metabolism and cancer cell function and circ_0088300 upregulates the expression level of BOLL. In vivo experiments demonstrated that knocking down circ_0088300 can inhibit tumor growth and metastasis, whereas overexpression of BOLL can reverse this effect. In conclusion, we have reached a preliminary conclusion that upregulation of BOLL by circ_0088300 promotes gastric cancer growth and metastasis by promoting mitochondrial metabolic reprogramming.
Collapse
Affiliation(s)
- Songtao Chu
- Department of Forensic Medicine of Basic Medical College, Beihua University, Jilin 132013, P.R. China
| | - Bingyuan Fei
- Department of Gastrointestinal Colorectal and Anal. Surgery, the Third Bethune Hospital of Jilin University, Changchun 130000, Jilin Province, P.R. China
| | - Miao Yu
- Department of Gastrointestinal Colorectal and Anal. Surgery, the Third Bethune Hospital of Jilin University, Changchun 130000, Jilin Province, P.R. China
| |
Collapse
|
17
|
Meng F, Sun X, Guo W, Shi Y, Cheng W, Zhao L. Recognition and combination of multiple cell-death features showed good predictive value in lung adenocarcinoma. Heliyon 2023; 9:e22434. [PMID: 38076144 PMCID: PMC10709390 DOI: 10.1016/j.heliyon.2023.e22434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 11/11/2023] [Accepted: 11/13/2023] [Indexed: 10/14/2024] Open
Abstract
BACKGROUND Cell death is a key regulatory process in organisms and its study has become increasingly important in the field of cancer. While prior research has primarily centered on the individual pathways of cell death in cancer, there has been a lack of comprehensive investigation into the synergistic effects of multiple cell death pathways. METHODS Genes related to autophagy, apoptosis, necroptosis, pyroptosis, and cuproptosis was selected, and patients' data was collected from The Cancer Genome Atlas (TCGA)project. Cell death features were identified using principal component analysis and combined to create a composite score. A scalable prediction model was then created using LASSO regression after a thorough assessment of the composite scores. The model was subsequently validated across multiple external datasets to establish its robustness and reliability. RESULTS The cell death features effectively represented the gene expression patterns in the samples. The composite score well predicted prognosis, clinical stage, mutation, tumor microenvironment, and immunotherapy effectiveness. The model built on composite scores accurately predicted prognosis and immunotherapy effectiveness across multiple datasets. GJB2 was identified as a potential biomarker. CONCLUSION Models based on multiple cell death pathways have significant predictive power for prognosis and immunotherapy effectiveness in lung adenocarcinoma. This highlights the synergistic role of multiple cell death pathways in cancer development and offers a new perspective for cancer research.
Collapse
Affiliation(s)
- Fanmao Meng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, PR China
| | - Xin Sun
- Department of Medical Management, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, PR China
| | - Wei Guo
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, PR China
| | - Yong Shi
- Department of Radiation Medicine, Affiliated Tengzhou Central Hospital of Jining Medical University, Tengzhou 277500, PR China
| | - Wenhui Cheng
- Department of Radiation Medicine, Affiliated Tengzhou Central Hospital of Jining Medical University, Tengzhou 277500, PR China
| | - Liang Zhao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, PR China
| |
Collapse
|
18
|
Woo SH, Mo YJ, Lee YI, Park JH, Hwang D, Park TJ, Kang HY, Park SC, Lee YS. ANT2 Accelerates Cutaneous Wound Healing in Aged Skin by Regulating Energy Homeostasis and Inflammation. J Invest Dermatol 2023; 143:2295-2310.e17. [PMID: 37211200 DOI: 10.1016/j.jid.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 04/26/2023] [Accepted: 05/05/2023] [Indexed: 05/23/2023]
Abstract
An effective healing response is critical to healthy aging. In particular, energy homeostasis has become increasingly recognized as a factor in effective skin regeneration. ANT2 is a mediator of adenosine triphosphate import into mitochondria for energy homeostasis. Although energy homeostasis and mitochondrial integrity are critical for wound healing, the role played by ANT2 in the repair process had not been elucidated to date. In our study, we found that ANT2 expression decreased in aged skin and cellular senescence. Interestingly, overexpression of ANT2 in aged mouse skin accelerated the healing of full-thickness cutaneous wounds. In addition, upregulation of ANT2 in replicative senescent human diploid dermal fibroblasts induced their proliferation and migration, which are critical processes in wound healing. Regarding energy homeostasis, ANT2 overexpression increased the adenosine triphosphate production rate by activating glycolysis and induced mitophagy. Notably, ANT2-mediated upregulation of HSPA6 in aged human diploid dermal fibroblasts downregulated proinflammatory genes that mediate cellular senescence and mitochondrial damage. This study shows a previously uncharacterized physiological role of ANT2 in skin wound healing by regulating cell proliferation, energy homeostasis, and inflammation. Thus, our study links energy metabolism to skin homeostasis and reports, to the best of our knowledge, a previously unreported genetic factor that enhances wound healing in an aging model.
Collapse
Affiliation(s)
- Seung-Hwa Woo
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Yun Jeong Mo
- Well Aging Research Center, Division of Biotechnology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Yun-Il Lee
- Well Aging Research Center, Division of Biotechnology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Ji Hwan Park
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Daehee Hwang
- Department of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Tae Jun Park
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, Republic of Korea; Institution of Inflamm-aging Translational Research Center, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Hee Young Kang
- Institution of Inflamm-aging Translational Research Center, Ajou University School of Medicine, Suwon, Republic of Korea; Department of Dermatology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Sang Chul Park
- The Future Life & Society Research Center, Advanced Institute of Aging Science, Chonnam National University, Gwangju, Republic of Korea
| | - Young-Sam Lee
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea; Well Aging Research Center, Division of Biotechnology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea.
| |
Collapse
|
19
|
Janker L, Schuster D, Bortel P, Hagn G, Meier-Menches SM, Mohr T, Mader JC, Slany A, Bileck A, Brunmair J, Madl C, Unger L, Hennlich B, Weitmayr B, Del Favero G, Pils D, Pukrop T, Pfisterer N, Feichtenschlager T, Gerner C. Multiomics-empowered Deep Phenotyping of Ulcerative Colitis Identifies Biomarker Signatures Reporting Functional Remission States. J Crohns Colitis 2023; 17:1514-1527. [PMID: 36961872 PMCID: PMC10588787 DOI: 10.1093/ecco-jcc/jjad052] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Indexed: 03/25/2023]
Abstract
INTRODUCTION Ulcerative colitis [UC] is a chronic disease with rising incidence and unclear aetiology. Deep molecular phenotyping by multiomics analyses may provide novel insights into disease processes and characteristic features of remission states. METHODS UC pathomechanisms were assessed by proteome profiling of human tissue specimens, obtained from five distinct colon locations for each of the 12 patients included in the study. Systemic disease-associated alterations were evaluated thanks to a cross-sectional setting of mass spectrometry-based multiomics analyses comprising proteins, metabolites, and eicosanoids of plasma obtained from UC patients during acute episodes and upon remission, in comparison with healthy controls. RESULTS Tissue proteome profiling indicated colitis-associated activation of neutrophils, macrophages, B and T cells, fibroblasts, endothelial cells and platelets, and hypoxic stress, and suggested a general downregulation of mitochondrial proteins accompanying the establishment of apparent wound healing-promoting activities including scar formation. Whereas pro-inflammatory proteins were apparently upregulated by immune cells, the colitis-associated epithelial cells, fibroblasts, endothelial cells, and platelets seemed to predominantly contribute anti-inflammatory and wound healing-promoting proteins. Blood plasma proteomics indicated chronic inflammation and platelet activation, whereas plasma metabolomics identified disease-associated deregulations of gut and gut microbiome-derived metabolites. Upon remission several, but not all, molecular candidate biomarker levels recovered back to normal. CONCLUSION The findings may indicate that microvascular damage and platelet deregulation hardly resolve upon remission, but apparently persist as disease-associated molecular signatures. This study presents local and systemic molecular alterations integrated in a model for UC pathomechanisms, potentially supporting the assessment of disease and remission states in UC patients.
Collapse
Affiliation(s)
- Lukas Janker
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Dina Schuster
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Patricia Bortel
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Gerhard Hagn
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Samuel M Meier-Menches
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
- Joint Metabolome Facility, University of Vienna, Vienna, Austria
| | - Thomas Mohr
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
- Joint Metabolome Facility, University of Vienna, Vienna, Austria
| | - Johanna C Mader
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Astrid Slany
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Andrea Bileck
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
- Joint Metabolome Facility, University of Vienna, Vienna, Austria
| | - Julia Brunmair
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Christian Madl
- Institute of Pathology and Microbiology, Krankenanstalt Rudolfstiftung, Vienna, Austria
| | - Lukas Unger
- Division of General Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Barbara Hennlich
- Institute of Pathology and Microbiology, Krankenanstalt Rudolfstiftung, Vienna, Austria
| | - Barbara Weitmayr
- Institute of Pathology and Microbiology, Krankenanstalt Rudolfstiftung, Vienna, Austria
| | - Giorgia Del Favero
- Core Facility Multimodal Imaging, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Dietmar Pils
- Department of Obstetrics and Gynaecology, Medical University of Vienna, Vienna, Austria
| | - Tobias Pukrop
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Nikolaus Pfisterer
- Institute of Pathology and Microbiology, Krankenanstalt Rudolfstiftung, Vienna, Austria
| | | | - Christopher Gerner
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
- Joint Metabolome Facility, University of Vienna, Vienna, Austria
| |
Collapse
|
20
|
Wu Y, Chen W, Zhang B, Liu H. ANKRD22 knockdown suppresses papillary thyroid cell carcinoma growth and migration and modulates the Wnt/β-catenin signaling pathway. Tissue Cell 2023; 84:102193. [PMID: 37586180 DOI: 10.1016/j.tice.2023.102193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/26/2023] [Accepted: 08/07/2023] [Indexed: 08/18/2023]
Abstract
The incidence of thyroid cancer is escalating globally, particularly among women. Studies have demonstrated the abnormal activation of Ankyrin Repeat Domain 22 (ANKRD22) in various cancers, but it remains uncertain whether it is also highly expressed in papillary thyroid carcinoma (PTC). Our objective was to evaluate the role of ANKRD22 in PTC. The expression of ANKRD22 varies among tissues, as validated by the Cancer Genome Atlas, and further predicted using the Tumor Immune Estimation Resource. Predicted results were examined via polymerase chain reaction and western blotting. Subsequently, the expression of ANKRD22 in cells was suppressed by RNA interference, and changes in cell progression were examined in conjunction with the cell counting kit-8 assay, transwell assay, and colony formation assay. Finally, the effects of ANKRD22 knockdown on the Epithelial-to-Mesenchymal transition and the Wnt/β-catenin signaling pathway were investigated through western blotting. An in vivo mice model was established to validate the effect of ANKRD22. This study discovered that ANKRD22 was highly expressed in PTC, which was validated by polymerase chain reaction and western blotting. Knockdown of ANKRD22, significantly reduced thecell viability, colony formation capability, and cell invasion and migration abilities. Furthermore, we found that knockdown of ANKRD22 impaired both tumor Epithelial-to-Mesenchymal transition and the activation of the Wnt/β-catenin signaling pathway. In conclusion, this study revealed that the knockdown of ANKRD22 inhibits the growth and migration of papillary thyroid cell carcinoma by regulating the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Yange Wu
- Department of Pathology, Pingshan District People's Hospital of Shenzhen, Pingshan General Hospital of Southern Medical University, Shenzhen 518118, China.
| | - WenXiu Chen
- Department of Pathology, Pingshan District People's Hospital of Shenzhen, Pingshan General Hospital of Southern Medical University, Shenzhen 518118, China
| | - Bo Zhang
- Department of Pathology, Pingshan District People's Hospital of Shenzhen, Pingshan General Hospital of Southern Medical University, Shenzhen 518118, China
| | - HongXia Liu
- Department of Pathology, Pingshan District People's Hospital of Shenzhen, Pingshan General Hospital of Southern Medical University, Shenzhen 518118, China
| |
Collapse
|
21
|
Fan T, Xiao C, Liu H, Liu Y, Wang L, Tian H, Li C, He J. CXXC finger protein 1 (CFP1) bridges the reshaping of genomic H3K4me3 signature to the advancement of lung adenocarcinoma. Signal Transduct Target Ther 2023; 8:369. [PMID: 37735441 PMCID: PMC10514036 DOI: 10.1038/s41392-023-01612-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 08/08/2023] [Accepted: 08/15/2023] [Indexed: 09/23/2023] Open
Abstract
Histone H3 lysine 4 trimethylation (H3K4me3) is a canonical chromatin modification associated with active gene transcription, playing a pivotal role in regulating various cellular functions. Components of the H3K4me3 methyltransferase complex, known as the proteins associated with SET1 (COMPASS), have been implicated in exerting cancer-protective or cancer-inhibitory effects through inducive H3K4me3 modification. However, the role of the indispensable non-catalytic component of COMPASS CXXC-type zinc finger protein 1 (CFP1) in malignant progression remains unclear. We have unveiled that CFP1 promote lung adenocarcinoma (LUAD) cell proliferation, migration, and invasion while impairing cell apoptosis through in vitro and in vivo models. In addition, high CFP1 expression was identified as emerged as an adverse prognostic indicator across multiple public and in-house LUAD datasets. Notably, CFP1 deficiency led to dual effects on cancer cell transcriptome including extensive inactivation of cancer-promoting as well as activation of cancer repressors. Combining this with the chromatin immunoprecipitation sequencing (ChIP-seq) analysis, we showed that CFP1 ablation reshaped the genomic H3K4me3 distribution signature, with prominent effects on TGF-β and WNT signaling pathways. Collectively, our study proposes that CFP1 mediates tumorigenesis by genomic histone methylation reprogramming, offering insights for future investigations into epigenetic modifications in cancer progression and potential therapeutic advancements.
Collapse
Affiliation(s)
- Tao Fan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chu Xiao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Hengchang Liu
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Liu
- Department of Intervention, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liyu Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - He Tian
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
22
|
Zhang N, Yu H, Liu T, Zhou Z, Feng B, Wang Y, Qian Z, Hou X, Zou J. Bmal1 downregulation leads to diabetic cardiomyopathy by promoting Bcl2/IP3R-mediated mitochondrial Ca 2+ overload. Redox Biol 2023; 64:102788. [PMID: 37356134 DOI: 10.1016/j.redox.2023.102788] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 06/11/2023] [Accepted: 06/15/2023] [Indexed: 06/27/2023] Open
Abstract
Brain and muscle arnt-like protein 1 (Bmal1) is a crucial transcription factor, regulating circadian rhythm and involved in multiple heart diseases. However, it is unknown whether Bmal1 promotes diabetic cardiomyopathy (DCM) pathogenesis. The objective of this investigation was to ascertain the vital role of Bmal1 in the progression of DCM. Mice with T2D and H9c2 cardiomyoblasts exposed to high glucose and palmitic acid (HGHP) were used. Cardiomyocyte-specific knockout mouse of Bmal1 (CKB) was also generated, and cardiac Bmal1 was overexpressed in type 2 diabetes (T2D) mice using an adeno-associated virus. Bmal1 gene recombinant adenovirus was used to either knockdown or overexpress in H9c2 cardiomyoblasts. Bmal1 expression was significantly altered in diabetic mice hearts. Bmal1 downregulation in CKB and T2D mice heart accelerated cardiac hypertrophy and diastolic dysfunction, while Bmal1 overexpression ameliorated these pathological changes in DCM mice. Furthermore, DCM mice had significant mitochondrial ultrastructural defects, reactive oxygen species accumulation, and apoptosis, which could be alleviated by overexpressing Bmal1. In H9c2 cardiomyoblasts, genetic downregulation of Bmal1 or HGHP markedly decreased the binding of Bcl2 to IP3R, thus increasing Ca2+ release to mitochondria through mitochondria-associated endoplasmic reticulum membranes. Importantly, chromatin immunoprecipitation revealed Bmal1 could bind directly to the Bcl2 gene promoter region. Bmal1 overexpression augmented the Bmal1/Bcl2 binding, enhancing the inhibition of Bcl2 on IP3R activity, thus alleviating mitochondrial Ca2+ overload and subsequent cell apoptosis. These results show that Bmal1 is involved in the DCM development through Bcl2/IP3R-mediated mitochondria Ca2+ overload. Therapy targeting the circadian clock (Bmal1) can treat DCM.
Collapse
Affiliation(s)
- Nannan Zhang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Hao Yu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Tianzi Liu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zihao Zhou
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Bin Feng
- Department of Endocrinology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yao Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhiyong Qian
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaofeng Hou
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiangang Zou
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
23
|
Zhang X, Yang L, Zhang D, Wang X, Bu X, Zhang X, Cui L. Prognostic assessment capability of a five-gene signature in pancreatic cancer: a machine learning based-study. BMC Gastroenterol 2023; 23:68. [PMID: 36906533 PMCID: PMC10007739 DOI: 10.1186/s12876-023-02700-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 02/27/2023] [Indexed: 03/13/2023] Open
Abstract
BACKGROUND A prognostic assessment method with good sensitivity and specificity plays an important role in the treatment of pancreatic cancer patients. Finding a way to evaluate the prognosis of pancreatic cancer is of great significance for the treatment of pancreatic cancer. METHODS In this study, GTEx dataset and TCGA dataset were merged together for differential gene expression analysis. Univariate Cox regression and Lasso regression were used to screen variables in the TCGA dataset. Screening the optimal prognostic assessment model is then performed by gaussian finite mixture model. Receiver operating characteristic (ROC) curves were used as an indicator to assess the predictive ability of the prognostic model, the validation process was performed on the GEO datasets. RESULTS Gaussian finite mixture model was then used to build 5-gene signature (ANKRD22, ARNTL2, DSG3, KRT7, PRSS3). Receiver operating characteristic (ROC) curves suggested the 5-gene signature performed well on both the training and validation datasets. CONCLUSIONS This 5-gene signature performed well on both our chosen training dataset and validation dataset and provided a new way to predict the prognosis of pancreatic cancer patients.
Collapse
Affiliation(s)
- Xuanfeng Zhang
- Center of Hepatobiliary Pancreatic Disease, XuZhou Central Hospital, Jiangsu, People's Republic of China.,Center of Hepatobiliary Pancreatic Disease, The Affiliated Xuzhou Hospital of Medical School of Southeast University, No.199 Jiefang South Road, Xuzhou, Jiangsu, People's Republic of China
| | - Lulu Yang
- Department of Radiology, XuZhou Central Hospital, Jiangsu, People's Republic of China.,Department of Radiology, The Affiliated Xuzhou Hospital of Medical School of Southeast University, Jiangsu, People's Republic of China
| | - Dong Zhang
- Center of Hepatobiliary Pancreatic Disease, XuZhou Central Hospital, Jiangsu, People's Republic of China.,Bengbu Medical College, Anhui, People's Republic of China
| | - Xiaochuan Wang
- Center of Hepatobiliary Pancreatic Disease, XuZhou Central Hospital, Jiangsu, People's Republic of China.,Center of Hepatobiliary Pancreatic Disease, The Affiliated Xuzhou Hospital of Medical School of Southeast University, No.199 Jiefang South Road, Xuzhou, Jiangsu, People's Republic of China
| | - Xuefeng Bu
- Department of General Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Xinhui Zhang
- Center of Hepatobiliary Pancreatic Disease, XuZhou Central Hospital, Jiangsu, People's Republic of China. .,Center of Hepatobiliary Pancreatic Disease, The Affiliated Xuzhou Hospital of Medical School of Southeast University, No.199 Jiefang South Road, Xuzhou, Jiangsu, People's Republic of China.
| | - Long Cui
- Center of Hepatobiliary Pancreatic Disease, XuZhou Central Hospital, Jiangsu, People's Republic of China. .,Center of Hepatobiliary Pancreatic Disease, The Affiliated Xuzhou Hospital of Medical School of Southeast University, No.199 Jiefang South Road, Xuzhou, Jiangsu, People's Republic of China.
| |
Collapse
|
24
|
Bai Y, Zhao N, Zhang Z, Jia Y, Zhang G, Dong G. Identification and validation of a novel four-gene diagnostic model for neonatal early-onset sepsis with bacterial infection. Eur J Pediatr 2023; 182:977-985. [PMID: 36527479 PMCID: PMC10023633 DOI: 10.1007/s00431-022-04753-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/25/2022] [Accepted: 12/03/2022] [Indexed: 12/23/2022]
Abstract
Neonatal early-onset sepsis (EOS) has unfortunately been the third leading cause of neonatal death worldwide. The current study is aimed at discovering reliable biomarkers for the diagnosis of neonatal EOS through transcriptomic analysis of publicly available datasets. Whole blood mRNA expression profiling of neonatal EOS patients in the GSE25504 dataset was downloaded and analyzed. The binomial LASSO model was constructed to select genes that most accurately predicted neonatal EOS. Then, ROC curves were generated to assess the performance of the predictive features in differentiating between neonatal EOS and normal infants. Finally, the miRNA-mRNA network was established to explore the potential biological mechanisms of genes within the model. Four genes (CST7, CD3G, CD247, and ANKRD22) were identified that most accurately predicted neonatal EOS and were subsequently used to construct a diagnostic model. ROC analysis revealed that this diagnostic model performed well in differentiating between neonatal EOS and normal infants in both the GSE25504 dataset and our clinical cohort. Finally, the miRNA-mRNA network consisting of the four genes and potential target miRNAs was constructed. Through bioinformatics analysis, a diagnostic four-gene model that can accurately distinguish neonatal EOS in newborns with bacterial infection was constructed, which can be used as an auxiliary test for diagnosing neonatal EOS with bacterial infection in the future. CONCLUSION In the current study, we analyzed gene expression profiles of neonatal EOS patients from public databases to develop a genetic model for predicting sepsis, which could provide insight into early molecular changes and biological mechanisms of neonatal EOS. WHAT IS KNOWN • Infants with suspected EOS usually receive empiric antibiotic therapy directly after birth. • When blood cultures are negative after 48 to 72 hours, empirical antibiotic treatment is often halted. Needless to say, this is not a short time. Additionally, because of the concern for inadequate clinical sepsis production and the limited sensitivity of blood cultures, the duration of antibiotic therapy for the kid is typically extended. WHAT IS NEW • We established a 4-gene diagnostic model of neonatal EOS with bacterial infection by bioinformatics analysis method. The model has better diagnostic performance compared with conventional inflammatory indicators such as CRP, Hb, NEU%, and PCT.
Collapse
Affiliation(s)
- Yong Bai
- Children's Hospital Affiliated to Zhengzhou University, Zhengzhou Key Laboratory of Children's Infection and Immunity, Zhengzhou, China
| | - Na Zhao
- Department of Pathology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Zhenhua Zhang
- Children's Hospital Affiliated to Zhengzhou University, Zhengzhou Key Laboratory of Children's Infection and Immunity, Zhengzhou, China
| | - Yangjie Jia
- Department of Pathology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Genhao Zhang
- Department of Blood Transfusion, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Geng Dong
- Children's Hospital Affiliated to Zhengzhou University, Zhengzhou Key Laboratory of Children's Infection and Immunity, Zhengzhou, China.
| |
Collapse
|
25
|
Chen H, Yang K, Pang L, Fei J, Zhu Y, Zhou J. ANKRD22 is a potential novel target for reversing the immunosuppressive effects of PMN-MDSCs in ovarian cancer. J Immunother Cancer 2023; 11:jitc-2022-005527. [PMID: 36822671 PMCID: PMC9950970 DOI: 10.1136/jitc-2022-005527] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2023] [Indexed: 02/25/2023] Open
Abstract
BACKGROUND Ovarian cancer is the deadliest type of malignant gynecological tumor. Polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) are involved ovarian cancer and are closely related to adverse outcomes. However, the immunosuppressive mechanism of PMN-MDSCs remains elusive. METHODS The types and numbers of ANKRD22-expressing cells were investigated by bioinformatics analysis and immunohistochemical staining. Ankrd22-/- C57BL/6 mice were constructed with CRISPR-Cas9 technology. Mouse PMN-MDSCs were obtained from bone marrow (BM)-derived CD11b+Ly6G+Ly6Clow cells sorted by fluorescence-activated cell sorting with treatment of GM-CSF and IL-6, and the immunosuppressive activity of PMN-MDSCs was evaluated by flow cytometry (FCM) and ELISA. The expression level of CCR2 and the exogenous glucose uptake capacity were determined by FCM. RT-qPCR was used to detect ANKRD22 expression in CD11b+HLA-DR-CD14-CD15+ cells from human ovarian cancer tissues, and the correlations of ANKRD22 expression with the clinical characteristics and prognosis of patients were evaluated by the χ2 test. RESULTS We identified a novel protein involved in regulating the immunosuppressive ability of PMN-MDSCs, ANKRD22. Ankrd22 expression was high in mouse CD11b+Ly6G+Ly6Clow cells and could be significantly downregulated after exposure to a simulated microenvironmental stimulus. Knockout of Ankrd22 increased the expression level of CCR2 of CD11b+Ly6G+Ly6Clow cells and the immunosuppressive activity of PMN-MDSCs. BM-derived CD11b+Ly6G+Ly6Clow cells of Ankrd22-/- mice significantly promoted the proliferation of ovarian cancer cells in tumor xenograft mouse models. Mechanistically, RNA sequencing showed that Wdfy1 expression was obviously increased in Ankrd22-knockout BM-derived CD11b+Ly6G+ Ly6Clow cells and that ectopic expression of Wdfy1 increased the levels of Arg1, Inos, Ido and Pdl1 in Ankrd22+/+ PMN-MDSCs derived from BM-derived CD11b+Ly6G+Ly6Clow cells. Surprisingly, an ANKRD22-activating candidate small-molecule compound attenuated the immunosuppressive activity of Ankrd22+/+ PMN-MDSCs. Finally, we found that low ANKRD22 levels in CD11b+HLA-DR-CD14-CD15+ cells derived from primary ovarian tissues were associated with a more advanced International Federation of Gynecology and Obstetrics stage, a higher recurrence rate, and a higher neutrophil-to-lymphocyte ratio. CONCLUSIONS These results suggest that ANKRD22 is a potential novel target for reversing the immunosuppressive effects of PMN-MDSCs.
Collapse
Affiliation(s)
- Huanhuan Chen
- Second affiliated hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Keqing Yang
- Second affiliated hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lingxiao Pang
- Second affiliated hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Fei
- Second affiliated hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yongliang Zhu
- Second affiliated hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianwei Zhou
- Second affiliated hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
26
|
Zhang Y, Shi J, Luo J, Liu C, Zhu L. Metabolic heterogeneity in early-stage lung adenocarcinoma revealed by RNA-seq and scRNA-seq. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2023; 25:1844-1855. [PMID: 36692643 DOI: 10.1007/s12094-023-03082-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/09/2023] [Indexed: 01/25/2023]
Abstract
PURPOSE Cancer cells maintain cell growth, division, and survival through altered energy metabolism. However, research on metabolic reprogramming in lung adenocarcinoma (LUAD) is limited METHODS: We downloaded TCGA and GEO sequencing data. Consistent clustering with the ConsensusClusterPlus package was employed to detect the scores for four metabolism-related pathways. The LUAD samples in the TCGA dataset were clustered with ConsensusClusterPlus, and the optimal number of clusters was determined according to the cumulative distribution function (CDF). The cell score for each sample in the TCGA dataset was calculated using the MCPcounter estimate function of the MCPcounter package. RESULTS We identified two subtypes by scoring the samples based on the 4 metabolism-related pathways and cluster dimensionality reduction. The prognosis of cluster B was obviously poorer than that of cluster A in patients with LUAD. The analysis of single-nucleotide variation (SNV) data showed that the top 15 genes in the four metabolic pathways with the most mutations were TKTL2, PGK2, HK3, EHHADH, GLUD2, PKLR, TKTL1, HADHB, CPT1C, HK1, HK2, PFKL, SLC2A3, PFKFB1, and CPT1A. The IFNγ score of cluster B was significantly higher than that of cluster A. The immune T-cell lytic activity score of cluster B was significantly higher than that of cluster A. We further identified 5 immune cell subsets from single-cell sequencing data. The top 5 marker genes of B cells were IGHM, JCHAIN, IGLC3, IGHA1, and IGKC. The C0 subgroup of monocytes had a higher pentose phosphate pathway (PPP) score than the C6 subgroup. CONCLUSIONS Metabolism-related subtypes could be potential biomarkers in the prognosis prediction and treatment of LUAD.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Geriatric Respiratory and Sleep, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Jiang Shi
- Department of Geriatric Respiratory and Sleep, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Junfang Luo
- Department of Geriatric Respiratory and Sleep, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Cong Liu
- Department of Geriatric Respiratory and Sleep, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Lixu Zhu
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
27
|
Chen J, Zhu H, Yin Y, Jia S, Luo X. Colorectal cancer: Metabolic interactions reshape the tumor microenvironment. Biochim Biophys Acta Rev Cancer 2022; 1877:188797. [DOI: 10.1016/j.bbcan.2022.188797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/24/2022] [Accepted: 09/05/2022] [Indexed: 02/07/2023]
|
28
|
Niu F, Duan Y, Man Y, Liu W, Dai T, Zhang H, Li C, Wei D. Mitochondrial protein LETM1 and its-mediated CTMP are potential therapeutic targets for endometrial cancer. Anticancer Drugs 2022; 33:632-641. [PMID: 35324530 DOI: 10.1097/cad.0000000000001301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Leucine zipper/EF hand-containing transmembrane-1 (LETM1) is an important mitochondrial protein, while its function in endometrial cancer remains unknown. This study aimed to explore the function of LETM1 in endometrial cancer and reveal the underlying mechanisms involving carboxy-terminal modulator protein (CTMP). Immunohistochemistry was performed to detect the expression of LETM1 and CTMP in normal, atypical hyperplastic and endometrial cancer endometrial tissues. LETM1 and CTMP were silenced in two endometrial cancer cell lines (ISK and KLE), which were verified by western blot. Cell viability, colony number, migration and invasion were detected by cell counting kit-8, colony formation, wound healing and trans-well assays, respectively. A xenograft mouse model was established to determine the antitumor potential of LETM1/CTMP silencing in vivo . In addition, CTMP was overexpressed to evaluate its regulatory relationship with LETM1 in endometrial cancer cells. The expression of LETM1 and CTMP proteins were higher in endometrial cancer tissues than atypical hyperplastic tissues and were higher in atypical hyperplastic tissues than normal tissues. LETM1 and CTMP were also upregulated in ISK and KLE cells. Silencing of LETM1 or CTMP could decrease the viability, colony number, migration and invasion of endometrial cancer cells and the weight and volume of tumor xenografts. In addition, CTMP was downregulated by LETM1 silencing in KLE cells, and its overexpression enhanced the malignant characteristics of si-LETM1-transfected KLE cells. Silencing of LETM1 inhibits the malignant progression of endometrial cancer through downregulating CTMP.
Collapse
Affiliation(s)
- Feifei Niu
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan
- Department of Obstetrics and Gynecology, Shengli Oilfield Central Hospital, Dongying
| | - Yan Duan
- Department of Obstetrics and Gynecology, Shengli Oilfield Central Hospital, Dongying
| | - Ying Man
- Department of Stomatology, Shengli Oilfield Central Hospital, Dongying, Shandong, China
| | - Wei Liu
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan
| | - Tianyu Dai
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan
| | - Hui Zhang
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan
| | - Changzhong Li
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan
| | - Deying Wei
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan
| |
Collapse
|
29
|
Glioblastoma Stem-Like Cells (GSCs) with Mesenchymal Signature: Lipid Profiles of Mobile Lipids Obtained with MRS before and after Radio/Chemical Treatments. Biomolecules 2022; 12:biom12081051. [PMID: 36008944 PMCID: PMC9405836 DOI: 10.3390/biom12081051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/15/2022] [Accepted: 07/26/2022] [Indexed: 02/05/2023] Open
Abstract
Glioblastoma is the most common and lethal primary malignant brain tumor in adults. Glioblastoma stem cells (GSCs) promote and are responsible for glioblastoma intratumoral heterogeneity and therapy resistance, due to their two main features: self-renewal and differentiation. Lipids have important biological and physiological functions that are critical for understanding the regulation and control of stem cell fate; lipid metabolism and related unsaturation levels play a possible role as the target of therapeutics to overcome glioblastoma radioresistance. This paper aimed at an in-depth analysis of 13 GSC mesenchymal (MES) lines, two subclones, and a stabilized glioblastoma line (T98G) by magnetic resonance spectroscopy (MRS). Particularly, 2D MRS was used to investigate lipid unsaturation behavior during growth in culture and after treatment with etomoxir and photon beams. MES lines, although belonging to the same genetic and metabolic cluster, showed metabolic heterogeneity when observed by MRS, focusing on lipid signals. Nonetheless, the observed unsaturation level stability for two representative lines after stressful treatments suggests unusual robustness of the unsaturation levels for each line, as a peculiar and intrinsic characteristic of GSCs.
Collapse
|
30
|
Han J, Feng GH, Liu HW, Yi JP, Wu JB, Yao XX. Classifying mild cognitive impairment and Alzheimer's disease by constructing a 14-gene diagnostic model. Am J Transl Res 2022; 14:4477-4492. [PMID: 35958496 PMCID: PMC9360837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) and mild cognitive impairment (MCI) are two neurodegenerative diseases. Most patients with MCI will develop AD. Early detection of AD and MCI is a crucial issue in terms of secondary prevention. Therefore, more diagnostic models need to be developed to distinguish AD patients from MCI patients. METHODS In our research, the expression matrix and were screened from Gene Expression Omnibus (GEO) databases. A 14-gene diagnostic model was constructed with lasso logistic analysis. The efficiency and accuracy of diagnostic model have also been validated. In order to clarify the expression differences of 14 genes in health donor, AD and MCI, the blood samples of patients and healthy individuals were collected. The mRNA expression of the 14 genes in blood sample were detected. The SH-SY5Y cell injury model was constructed and biological function of POU2AF1 and ANKRD22 in SH-SY5Y have been proved. RESULTS We obtained 16 genes which have an area under curve (AUC) ≥0.6. After that, a diagnostic model based on 14 genes was constructed. Validation in independent cohort showed that the diagnostic model has a good diagnostic efficiency. The expressions of 6 genes in AD patients were significantly lower than those in healthy individuals and MCI patients, while the expressions of 8 genes in AD patients were significantly higher than those in healthy individuals and MCI patients. In in vitro experiments, we found that two key genes POU2AF1 and ANKRD22 could regulate neuronal development by regulating cell viability and IL-6 expression. CONCLUSION The diagnostic model established in this study has a good diagnose efficiency. Most of these genes in diagnostic model also showed diagnostic value in AD patients. This research also can help doctors make better diagnosis for the treatment and prevention of AD.
Collapse
Affiliation(s)
- Jing Han
- School of Basic Medical Sciences, Xiangnan UniversityChenzhou 423000, Hunan, China
| | - Gang-Hua Feng
- Department of Neurology, Chenzhou First People’s HospitalChenzhou 423000, Hunan, China
| | - Hua-Wu Liu
- School of Basic Medical Sciences, Xiangnan UniversityChenzhou 423000, Hunan, China
| | - Ji-Ping Yi
- Department of Neurology, Chenzhou First People’s HospitalChenzhou 423000, Hunan, China
| | - Ji-Bao Wu
- Department of Neurology, Chenzhou First People’s HospitalChenzhou 423000, Hunan, China
| | - Xiao-Xi Yao
- Department of Neurology, Chenzhou First People’s HospitalChenzhou 423000, Hunan, China
| |
Collapse
|
31
|
Wang G, Wang JJ, Xu XN, Shi F, Fu XL. Targeting cellular energy metabolism- mediated ferroptosis by small molecule compounds for colorectal cancer therapy. J Drug Target 2022; 30:819-832. [PMID: 35481396 DOI: 10.1080/1061186x.2022.2071909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Alterations in cellular energy metabolism, including glycolysis, glutamine and lipid metabolism that affects ferroptosis in the tumour microenvironment (TME), play a critical role in the development and progression of colorectal cancer (CRC) and offer evolutionary advantages to tumour cells and even enhance their aggressive phenotype. This review summarises the findings on the dysregulated energy metabolism pathways, including lipid and fatty acid metabolism especially for regulating the ferroptosis in TME. Moreover, the cellular energy metabolism and tumour ferroptosis to be regulated by small molecule compounds, which targeting the different aspects of metabolic pathways of energy production as well as metabolic enzymes that connect with the tumour cell growth and ferroptosis in CRC are also discussed. In this review, we will provide a comprehensive summary on small molecule compounds regulatory function of different energy metabolic routes on ferroptosis in tumour cells and discuss those metabolic vulnerabilities for the development of potential ferroptosis-based tumour therapies for colorectal cancer.
Collapse
Affiliation(s)
- Gang Wang
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Jiangsu University, Shanghai, China
| | - Jun-Jie Wang
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Jiangsu University, Shanghai, China
| | - Xiao-Na Xu
- Department of Medicine, Jiangsu University, Zhenjiang City, China
| | - Feng Shi
- Department of Medicine, Jiangsu University, Zhenjiang City, China
| | - Xing-Li Fu
- Department of Medicine, Jiangsu University, Zhenjiang City, China
| |
Collapse
|
32
|
Wang R, Wu Y, Zhu Y, Yao S, Zhu Y. ANKRD22 is a novel therapeutic target for gastric mucosal injury. Pharmacotherapy 2022; 147:112649. [PMID: 35051858 DOI: 10.1016/j.biopha.2022.112649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 11/28/2022]
|
33
|
Alderweireldt E, Grootaert C, De Wever O, Van Camp J. A two-front nutritional environment fuels colorectal cancer: perspectives for dietary intervention. Trends Endocrinol Metab 2022; 33:105-119. [PMID: 34887164 DOI: 10.1016/j.tem.2021.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/31/2021] [Accepted: 11/01/2021] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) develops and progresses in a nutritional environment comprising a continuously changing luminal cocktail of external dietary and microbial factors on the apical side, and a dynamic host-related pool of systemic factors on the serosal side. In this review, we highlight how this two-front environment influences the bioenergetic status of colonocytes throughout CRC development from (cancer) stem cells to cancer cells in nutrient-rich and nutrient-poor conditions, and eventually to metastatic cells, which, upon entry to the circulation and during metastatic seeding, are forced to metabolically adapt. Furthermore, given the influence of diet on the two-front nutritional environment, we discuss dietary strategies that target the specific metabolic preferences of these cells, with a possible impact on colon cancer cell bioenergetics and CRC outcome.
Collapse
Affiliation(s)
- Elien Alderweireldt
- Laboratory of Food Chemistry and Human Nutrition, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Charlotte Grootaert
- Laboratory of Food Chemistry and Human Nutrition, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Olivier De Wever
- Laboratory of Experimental Cancer Research, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium.
| | - John Van Camp
- Laboratory of Food Chemistry and Human Nutrition, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.
| |
Collapse
|
34
|
Li T, Zhang S, Zhang J, Song Y, Bao X, Xu F, Zhang J. Analysis of Serum Biochemical Indexes, Egg Quality, and Liver Transcriptome in Laying Hens Fed Diets Supplemented with Gynostemma pentaphyllum Powder. Genes (Basel) 2021; 12:genes12121942. [PMID: 34946891 PMCID: PMC8701024 DOI: 10.3390/genes12121942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/24/2021] [Accepted: 11/29/2021] [Indexed: 11/22/2022] Open
Abstract
Gynostemma pentaphyllum (GP), known as “southern ginseng”, can reduce the blood pressure and blood lipid levels. In this study, 300 layer chicks of one day old were divided randomly into three groups (control group (base diet), high addition group (base diet with 1% GP), and low addition group (base diet with 0.5% GP)). After 29 weeks, the growth performance, egg quality, and serum index were determined. Additionally, liver mRNA was identified using RNA-seq to investigate the molecular mechanisms. The results indicated that the serum total cholesterol and triglycerides decreased significantly in the GP addition group. The addition of GP increased the egg weight, Haugh unit and redness (a*) of the egg yolk color, and reduced the yolk cholesterol concentration. Moreover, 95 differentially expressed genes (DEGs) were screened between the control and GP addition group. GO and the KEGG analysis showed that the PPAR pathway was significantly enriched. Five fatty acid metabolism-related genes (FABP3, CYP7A1, ANKRD22, SCD1, and PCK1) were validated by qRT-PCR analysis, which confirmed the tendency of the expression. These DEGs in the PPAR pathway may be the key factors of GP affecting fatty acid metabolism. These results may provide a theoretical basis for further research and new insights into GP as a feed additive.
Collapse
Affiliation(s)
- Tao Li
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China; (T.L.); (S.Z.); (J.Z.); (Y.S.); (X.B.)
| | - Shuya Zhang
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China; (T.L.); (S.Z.); (J.Z.); (Y.S.); (X.B.)
| | - Jiqiao Zhang
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China; (T.L.); (S.Z.); (J.Z.); (Y.S.); (X.B.)
| | - Yiping Song
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China; (T.L.); (S.Z.); (J.Z.); (Y.S.); (X.B.)
| | - Xiuyu Bao
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China; (T.L.); (S.Z.); (J.Z.); (Y.S.); (X.B.)
| | - Fengwen Xu
- Animal Husbandry and Veterinary Center of Ankang City, Ankang 725000, China;
| | - Jianqin Zhang
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China; (T.L.); (S.Z.); (J.Z.); (Y.S.); (X.B.)
- Correspondence:
| |
Collapse
|
35
|
Kłos P, Dabravolski SA. The Role of Mitochondria Dysfunction in Inflammatory Bowel Diseases and Colorectal Cancer. Int J Mol Sci 2021; 22:11673. [PMID: 34769108 PMCID: PMC8584106 DOI: 10.3390/ijms222111673] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/24/2021] [Accepted: 10/26/2021] [Indexed: 12/30/2022] Open
Abstract
Inflammatory bowel disease (IBD) is one of the leading gut chronic inflammation disorders, especially prevalent in Western countries. Recent research suggests that mitochondria play a crucial role in IBD development and progression to the more severe disease-colorectal cancer (CRC). In this review, we focus on the role of mitochondrial mutations and dysfunctions in IBD and CRC. In addition, main mitochondria-related molecular pathways involved in IBD to CRC transition are discussed. Additionally, recent publications dedicated to mitochondria-targeted therapeutic approaches to cure IBD and prevent CRC progression are discussed.
Collapse
Affiliation(s)
- Patrycja Kłos
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, 72 Al. Powstańców Wlkp., 70-111 Szczecin, Poland;
| | - Siarhei A. Dabravolski
- Department of Clinical Diagnostics, Vitebsk State Academy of Veterinary Medicine [UO VGAVM], 7/11 Dovatora Str., 210026 Vitebsk, Belarus
| |
Collapse
|
36
|
Area-Level Determinants in Colorectal Cancer Spatial Clustering Studies: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph181910486. [PMID: 34639786 PMCID: PMC8508304 DOI: 10.3390/ijerph181910486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/01/2021] [Accepted: 10/03/2021] [Indexed: 12/12/2022]
Abstract
The increasing pattern of colorectal cancer (CRC) in specific geographic region, compounded by interaction of multifactorial determinants, showed the tendency to cluster. The review aimed to identify and synthesize available evidence on clustering patterns of CRC incidence, specifically related to the associated determinants. Articles were systematically searched from four databases, Scopus, Web of Science, PubMed, and EBSCOHost. The approach for identification of the final articles follows PRISMA guidelines. Selected full-text articles were published between 2016 and 2021 of English language and spatial studies focusing on CRC cluster identification. Articles of systematic reviews, conference proceedings, book chapters, and reports were excluded. Of the final 12 articles, data on the spatial statistics used and associated factors were extracted. Identified factors linked with CRC cluster were further classified into ecology (health care accessibility, urbanicity, dirty streets, tree coverage), biology (age, sex, ethnicity, overweight and obesity, daily consumption of milk and fruit), and social determinants (median income level, smoking status, health cost, employment status, housing violations, and domestic violence). Future spatial studies that incorporate physical environment related to CRC cluster and the potential interaction between the ecology, biology and social determinants are warranted to provide more insights to the complex mechanism of CRC cluster pattern.
Collapse
|
37
|
Hu J, Zhang L, Chen W, Shen L, Jiang J, Sun S, Chen Z. Role of Intra- and Extracellular Lipid Signals in Cancer Stemness and Potential Therapeutic Strategy. Front Pharmacol 2021; 12:730751. [PMID: 34603046 PMCID: PMC8479196 DOI: 10.3389/fphar.2021.730751] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/01/2021] [Indexed: 12/12/2022] Open
Abstract
Accumulating evidence showed that cancer stem cells (CSCs) play significant roles in cancer initiation, resistance to therapy, recurrence and metastasis. Cancer stem cells possess the ability of self-renewal and can initiate tumor growth and avoid lethal factors through flexible metabolic reprogramming. Abnormal lipid metabolism has been reported to be involved in the cancer stemness and promote the development of cancer. Lipid metabolism includes lipid uptake, lipolysis, fatty acid oxidation, de novo lipogenesis, and lipid desaturation. Abnormal lipid metabolism leads to ferroptosis of CSCs. In this review, we comprehensively summarized the role of intra- and extracellular lipid signals in cancer stemness, and explored the feasibility of using lipid metabolism-related treatment strategies for future cancer.
Collapse
Affiliation(s)
- Jianming Hu
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China
| | - Leyi Zhang
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China
| | - Wuzhen Chen
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China
| | - Lesang Shen
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China
| | - Jingxin Jiang
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China
| | - Shanshan Sun
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China
| | - Zhigang Chen
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China
| |
Collapse
|
38
|
ANKRD22 is an N-myristoylated hairpin-like monotopic membrane protein specifically localized to lipid droplets. Sci Rep 2021; 11:19233. [PMID: 34584137 PMCID: PMC8478909 DOI: 10.1038/s41598-021-98486-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022] Open
Abstract
The membrane topology and intracellular localization of ANKRD22, a novel human N-myristoylated protein with a predicted single-pass transmembrane domain that was recently reported to be overexpressed in cancer, were examined. Immunofluorescence staining of COS-1 cells transfected with cDNA encoding ANKRD22 coupled with organelle markers revealed that ANKRD22 localized specifically to lipid droplets (LD). Analysis of the intracellular localization of ANKRD22 mutants C-terminally fused to glycosylatable tumor necrosis factor (GLCTNF) and assessment of their susceptibility to protein N-glycosylation revealed that ANKRD22 is synthesized on the endoplasmic reticulum (ER) membrane as an N-myristoylated hairpin-like monotopic membrane protein with the amino- and carboxyl termini facing the cytoplasm and then sorted to LD. Pro98 located at the center of the predicted membrane domain was found to be essential for the formation of the hairpin-like monotopic topology of ANKRD22. Moreover, the hairpin-like monotopic topology, and positively charged residues located near the C-terminus were demonstrated to be required for the sorting of ANKRD22 from ER to LD. Protein N-myristoylation was found to positively affect the LD localization. Thus, multiple factors, including hairpin-like monotopic membrane topology, C-terminal positively charged residues, and protein N-myristoylation cooperatively affected the intracellular targeting of ANKRD22 to LD.
Collapse
|
39
|
Liu J, Wu J, Wang R, Zhong D, Qiu Y, Wang H, Song Z, Zhu Y. ANKRD22 Drives Rapid Proliferation of Lgr5 + Cells and Acts as a Promising Therapeutic Target in Gastric Mucosal Injury. Cell Mol Gastroenterol Hepatol 2021; 12:1433-1455. [PMID: 34217895 PMCID: PMC8488249 DOI: 10.1016/j.jcmgh.2021.06.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND & AIMS Rapid gastric epithelial progenitor cell (EPC) proliferation and inflammatory response inhibition play key roles in promoting the repair of gastric mucosal damage. However, specific targets inducing these effects are unknown. In this study, we explored the effects of a potential target, Ankyrin repeat domain 22 (ANKRD22). METHODS An acute gastric mucosal injury model was established with Ankrd22-/- and Ankrd22+/+ mice by intragastric administration of acidified ethanol. Organoid culture and flow cytometry were performed to evaluate the effects of ANKRD22 on leucine-rich repeat-containing G-protein-coupled receptor 5-positive (Lgr5+) gastric EPC proliferation. The mechanisms by which ANKRD22 affects gastric EPC proliferation and inflammatory responses were explored by mitochondrial Ca2+ influx and immunoblotting. Candidate ANKRD22 inhibitors then were screened virtually and validated in vitro and in vivo. RESULTS After acute gastric mucosal injury, the number of Lgr5+ gastric EPCs was increased significantly in Ankrd22-/- mice compared with that in Ankrd22+/+ mice. Moreover, Ankrd22 knockout attenuated inflammatory cell infiltration into damaged gastric tissues. ANKRD22 deletion also reduced mitochondrial Ca2+ influx and cytoplasmic nuclear factor of activated T cells in gastric epithelial cells and macrophages, which further induced Lgr5+ gastric EPC proliferation and decreased macrophage release of tumor necrosis factor-α and interleukin 1α. In addition, a small molecule, AV023, was found to show similar effects to those produced by ANKRD22 deletion in vitro. Intraperitoneal injection of AV023 into the mouse model promoted the repair of gastric mucosal damage, with increased proliferation of Lgr5+ gastric EPCs and visible relief of inflammation. CONCLUSIONS ANKRD22 inhibition is a potential target-based therapeutic approach for promoting the repair of gastric mucosal damage.
Collapse
Affiliation(s)
- Jingwen Liu
- Laboratory of Gastroenterology, Hangzhou, Zhejiang, China
| | - Jingni Wu
- Laboratory of Gastroenterology, Hangzhou, Zhejiang, China
| | - Rui Wang
- Laboratory of Gastroenterology, Hangzhou, Zhejiang, China
| | - Dandan Zhong
- Laboratory of Gastroenterology, Hangzhou, Zhejiang, China
| | - Yiqing Qiu
- Department of Urology Surgery, Hangzhou, Zhejiang, China
| | - Hongping Wang
- Laboratory of Gastroenterology, Hangzhou, Zhejiang, China
| | - Zhenya Song
- Department of International Healthcare Center and General Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China,Zhenya Song, MD, Department of International Healthcare Center and General Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China. fax: (86)-571-87214404
| | - Yongliang Zhu
- Laboratory of Gastroenterology, Hangzhou, Zhejiang, China,Key Laboratory of Tumor Microenviroment and Immune Therapy of Zhejiang Province, Hangzhou, Zhejiang, China,Correspondence Address correspondence to: Yongliang Zhu, PhD, Laboratory of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.
| |
Collapse
|
40
|
Zhang W, Lin L, Xia L, Cai W, Dai W, Zou C, Yin L, Tang D, Xu Y, Dai Y. Multi-omics analyses of human colorectal cancer revealed three mitochondrial genes potentially associated with poor outcomes of patients. J Transl Med 2021; 19:273. [PMID: 34174878 PMCID: PMC8236205 DOI: 10.1186/s12967-021-02939-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 06/13/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The identification of novel functional biomarkers is essential for recognizing high-risk patients, predicting recurrence, and searching for appropriate treatment. However, no prognostic biomarker has been applied for colorectal cancer (CRC) in the clinic. METHODS Integrated with transcriptomic data from public databases, multi-omics examinations were conducted to search prognostic biomarkers for CRC. Moreover, the potential biological functions and regulatory mechanism of these predictive genes were also explored. RESULTS In this study, we revealed that three mitochondrial genes were associated with the poor prognosis of CRC. Integrated analyses of transcriptome and proteome of CRC patients disclosed numerous down-regulated mitochondrial genes at both mRNA and protein levels, suggesting a vital role of mitochondria in carcinogenesis. Combined with the bioinformatics studies of transcriptomic datasets of 538 CRC patients, three mitochondrial prognostic genes were eventually selected out, including HIGD1A, SUCLG2, and SLC25A24. The expression of HIGD1A exhibited a significant reduction in two subtypes of adenoma and six subtypes of CRC, while the down-regulation of SUCLG2 and SLC25A24 showed more advantages in rectal mucinous adenocarcinoma. Moreover, we unveiled that these three genes had common expressions and might collaboratively participate in the synthesis of ribosomes. Our original multi-omics datasets, including DNA methylation, structural variants, chromatin accessibility, and phosphoproteome, further depicted the altered modifications on their potential transcriptional factors. CONCLUSIONS In summary, HIGD1A, SUCLG2, and SLC25A24 might serve as predictive biomarkers for CRC. The biological activities they involved in and their upstream regulators we uncovered would provide a functional context for the further-in-depth mechanism study.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, China.,The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Liewen Lin
- Department of Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, China
| | - Ligang Xia
- Department of Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, China
| | - Wanxia Cai
- Department of Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, China
| | - Weier Dai
- College of Natural Science, University of Texas at Austin, Austin, 78721, USA
| | - Chang Zou
- Department of Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, China
| | - Lianghong Yin
- Department of Nephrology, Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510632, China
| | - Donge Tang
- Department of Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, China.
| | - Yong Xu
- The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518028, China.
| | - Yong Dai
- Department of Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, China.
| |
Collapse
|
41
|
Wu Y, Liu H, Gong Y, Zhang B, Chen W. ANKRD22 enhances breast cancer cell malignancy by activating the Wnt/β-catenin pathway via modulating NuSAP1 expression. Bosn J Basic Med Sci 2021; 21:294-304. [PMID: 32651974 PMCID: PMC8112564 DOI: 10.17305/bjbms.2020.4701] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/11/2020] [Indexed: 02/07/2023] Open
Abstract
Breast cancer is one of the most prevalent malignancies in women worldwide. Although great advancements have been achieved in the diagnosis and treatment of breast cancer, the prognosis of patients with breast cancer is still poor due to distal recurrence and metastasis after surgery. This study aimed to assess the role of ankyrin repeat domain 22 (ANKRD22) in the progression of breast cancer and investigate the molecular mechanism. Using immunohistochemistry, we demonstrated that the expression level of ANKRD22 in human breast cancer tissues was significantly higher than that in normal breast tissues. ANKRD22 knockdown inhibited the proliferation, invasion, and epithelial-mesenchymal transition (EMT) of breast cancer cells, as confirmed by BrdU, colony formation, transwell, and immunoblot assays. Immunoblot assays further indicated that ANKRD22 regulated the expression of nucleolar and spindle-associated protein 1 (NuSAP1) and then caused the activation of Wnt/β-catenin signaling pathway. Moreover, overexpression of NUSAP1 reversed the inhibitory effects of ANKRD22 knockdown on the proliferation, invasion, and EMT of breast cancer cells. In summary, this study demonstrated that ANKRD22 enhanced breast cancer cell malignancy by activating the Wnt/β-catenin pathway via modulating NuSAP1 expression, which might shed light on new therapeutic approaches for breast cancer.
Collapse
Affiliation(s)
- Yange Wu
- Department of Pathology, Pingshan District People's Hospital of Shenzhen, Pingshan General Hospital of Southern Medical University, Shenzhen, China
| | - Hongxia Liu
- Department of Pathology, Pingshan District People's Hospital of Shenzhen, Pingshan General Hospital of Southern Medical University, Shenzhen, China
| | - Yufeng Gong
- Department of Pathology, Pingshan District People's Hospital of Shenzhen, Pingshan General Hospital of Southern Medical University, Shenzhen, China
| | - Bo Zhang
- Department of Pathology, Pingshan District People's Hospital of Shenzhen, Pingshan General Hospital of Southern Medical University, Shenzhen, China
| | - Wenxiu Chen
- Department of Pathology, Pingshan District People's Hospital of Shenzhen, Pingshan General Hospital of Southern Medical University, Shenzhen, China
| |
Collapse
|
42
|
Zhang X, Su Q, Zhou J, Yang Z, Liu Z, Ji L, Gao H, Jiang G. To betray or to fight? The dual identity of the mitochondria in cancer. Future Oncol 2021; 17:723-743. [DOI: 10.2217/fon-2020-0362] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mitochondria are highly dynamic organelles that provide energy for oxidative phosphorylation in cells. Equally, they are the major sites for the metabolism of amino acids, lipids and iron. When cells become cancerous, the morphology, cellular location and metabolic mode of the mitochondria change accordingly. These mitochondrial changes can have two opposing effects on cancer: procancer and anticancer effects. Specifically, mitochondria play roles in the fight against cancer by participating in processes such as ferroptosis, mitophagy and antitumor immunity. Contrastingly, cancer cells can also enslave mitochondria to give them the conditions necessary for growth and metastasis. Moreover, through mitochondria, cancer cells can escape from immune surveillance, resulting in their immune escape and enhanced malignant transformation ability. At present, cancer-related studies of mitochondria are one-sided; therefore, we aim to provide a comprehensive understanding by systematically reviewing the two-sided cancer-related properties of mitochondria. Mitochondrial-targeted drugs are gradually emerging and showing significant advantages in cancer treatment; thus, our in-depth exploration of mitochondria in cancer will help to provide theoretical support for the future provision of efficient and low-toxicity cancer treatments.
Collapse
Affiliation(s)
- Xiaoyi Zhang
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, 266021, PR China
| | - Quanzhong Su
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, 266021, PR China
| | - Ji Zhou
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, 266021, PR China
| | - Zhihong Yang
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, 266021, PR China
| | - Zhantao Liu
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, 266021, PR China
| | - Lixia Ji
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, 266021, PR China
| | - Hui Gao
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, 266021, PR China
| | - Guohui Jiang
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, 266021, PR China
| |
Collapse
|
43
|
Luo L, Li Y, Huang C, Lin Y, Su Y, Cen H, Chen Y, Peng S, Ren T, Xie R, Zeng L. A new 7-gene survival score assay for pancreatic cancer patient prognosis prediction. Am J Cancer Res 2021; 11:495-512. [PMID: 33575083 PMCID: PMC7868749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023] Open
Abstract
Gene expression features that are valuable for pancreatic ductal adenocarcinoma (PDAC) prognosis are still largely unknown. We aimed to explore pivotal molecular signatures for PDAC progression and establish an efficient survival score to predict PDAC prognosis. Overall, 163 overlapping genes were identified from three statistical methods, including differentially expressed genes (DEGs), coexpression network analysis (WGCNA), and target genes for miRNAs that were significantly related to PDAC patients' overall survival (OS). Then, according to the optimal value of the cross-validation curve (lambda = 0.031), 7 non-zero coefficients (ARNTL2, DSG3, PTPRR, ANLN, S100A14, ANKRD22, and TSPAN7) were selected to establish a prognostic prediction model of PDAC patients. We further confirmed the expression level of 7 genes using RT-PCR, western blot, and immunohistochemistry staining in PDAC patients' tissues. Our results showed that the ROC curve of the 7-mRNA model indicated good predictive ability for 1- and 2-year OS in three datasets (TCGA: 0.71, 0.69; ICGC: 0.8, 0.74; GEO batch: 0.61, 0.7, respectively). The hazard ratio (HR) of the low-risk group had a similar significant result (TCGA: HR = 0.3723; ICGC: HR = 0.2813; GEO batch: HR = 0.4999; all P < 0.001). Furthermore, Log-rank test results in three cohorts showed that the 7-mRNA assay excellently predicted the prognosis and metastasis, especially in TNM stage I&II subgroups of PDAC. In conclusion, the strong validation of our 7-mRNA signature indicates the promising effectiveness of its clinical application, especially in patients with TNM stages I&II.
Collapse
Affiliation(s)
- Lisi Luo
- Department of Abdominal Oncology, The Cancer Center of The Fifth Affiliated Hospital, Sun Yat-sen UniversityZhuhai 519000, Guangdong Province, China
| | - Yufang Li
- Department of Abdominal Oncology, The Cancer Center of The Fifth Affiliated Hospital, Sun Yat-sen UniversityZhuhai 519000, Guangdong Province, China
| | - Chumei Huang
- Department of Gastroenterology, The Seventh Affiliated Hospital of Sun Yat-sen UniversityShenzhen 518107, China
| | - Yujing Lin
- Department of Pathology, The Fifth Affiliated Hospital of Sun Yat-sen UniversityZhuhai, China
| | - Yonghui Su
- Department of General Surgery, The Fifth Affiliated Hospital of Sun Yat-sen UniversityZhuhai 519000, Guangdong Province, China
| | - Hong Cen
- Department of General Surgery, The Fifth Affiliated Hospital of Sun Yat-sen UniversityZhuhai 519000, Guangdong Province, China
| | - Yutong Chen
- Department of Abdominal Oncology, The Cancer Center of The Fifth Affiliated Hospital, Sun Yat-sen UniversityZhuhai 519000, Guangdong Province, China
| | - Siqi Peng
- Center for Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen UniversityZhuhai 519000, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen UniversityZhuhai 519000, Guangdong Province, China
| | - Tianyi Ren
- Department of Abdominal Oncology, The Cancer Center of The Fifth Affiliated Hospital, Sun Yat-sen UniversityZhuhai 519000, Guangdong Province, China
| | - Rongzhi Xie
- Department of Abdominal Oncology, The Cancer Center of The Fifth Affiliated Hospital, Sun Yat-sen UniversityZhuhai 519000, Guangdong Province, China
| | - Linjuan Zeng
- Department of Abdominal Oncology, The Cancer Center of The Fifth Affiliated Hospital, Sun Yat-sen UniversityZhuhai 519000, Guangdong Province, China
| |
Collapse
|