1
|
Zhao S, Liu P, Li Y. Biomineralized apoferritin nanoparticles delivering dihydroartemisinin and calcium for synergistic breast cancer therapy. Sci Rep 2024; 14:29402. [PMID: 39592736 PMCID: PMC11599557 DOI: 10.1038/s41598-024-80735-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 11/21/2024] [Indexed: 11/28/2024] Open
Abstract
Breast cancer is one of the most common gynecological malignancies and poses a severe health risk to women. In recent years, ferroptosis therapy has been considered a promising therapeutic strategy for breast cancer by promoting intracellular reactive oxygen species (ROS) production and lipid peroxidation (LPO) accumulation. However, insufficient intracellular ROS levels and suboptimal drug accumulation within breast cancer lesions hinder the efficacy of ferroptosis as a single oncological treatment modality. In this study, we developed a self-targeting biomineralized apoferritin-based nanovector, encapsulating the ferroptosis inducer dihydroartemisinin (DHA), to create a synergistic antitumor nano-platform (Ca/DHA@AFn) capable of achieving dual-mode calcicoptosis and ferroptosis therapy. The Ca/DHA@AFn nanoparticles exhibited uniform distribution, with an average particle size of approximately 20 nm and a drug loading efficiency of 2.32%. MTT assay results demonstrated that Ca/DHA@AFn significantly decreased the viability of 4T1 cells compared to the controls (DHA, Ca@AFn, and DHA@AFn), indicating enhanced therapeutic efficacy. In vivo experiments in mice revealed that Ca/DHA@AFn nanoparticles, through combined calcicoptosis/ferroptosis induction, exhibited superior synergistic antitumor effects compared to single-modality treatments, significantly extending survival and demonstrating high biocompatibility. This study introduces a novel and safe biomineralized apoferritin-based nano-platform leveraging calcicoptosis/ferroptosis dual therapy, showing strong antitumor efficacy against breast cancer cells and presenting a promising strategy for breast cancer treatment.
Collapse
Affiliation(s)
- Shanshan Zhao
- Department of Oncology, The Second Hospital of Dalian Medical University, Dalian, 116000, People's Republic of China
| | - Peng Liu
- Department of Pharmacy, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, People's Republic of China
| | - Yan Li
- Department of International Medicine, The Second Hospital of Dalian Medical University, Dalian, 116000, People's Republic of China.
| |
Collapse
|
2
|
Zhang R, Li JQ, Wang AJ, Song P, Liu W, Feng JJ, Cheang TY. Uniform PtCoRuRhFe high-entropy alloy nanoflowers: Multi-site synergistic signal amplification for colorimetric assay of captopril. Mikrochim Acta 2024; 191:717. [PMID: 39476168 DOI: 10.1007/s00604-024-06746-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/03/2024] [Indexed: 11/10/2024]
Abstract
Uniform PtCoRuRhFe high-entropy alloy nanoflowers (HEANFs) were fabricated by a simple wet-chemical co-reduction method in oleylamine for quantitative colorimetric determination of captopril (CAP) based on multi-site synergistic signal amplification. Specifically, the peroxidase mimetic activity of the PtCoRuRhFe HEANFs was examined through catalysis of 3,3',5,5'-tetramethylbenzidine (TMB) oxidation, whose catalytic mechanism was investigated by electron paramagnetic resonance (EPR) spectroscopy. The role of the ·O2- was figured out during the catalytic procedure. Further, the oxidation of TMB (oxTMB) can be effectively reduced by CAP, accompanied by quickly transforming the solution color from blue to colorless. More importantly, the absorbance at 652 nm is linearly related to the CAP concentration in a range 5.0-50.0 mM with a low detection limit of 2.82 mM. The method has been applied to the determination of CAP in human urine samples. It offers a simple and high-efficiency method for facile and visual detection of CAP in hospitals.
Collapse
Affiliation(s)
- Rui Zhang
- Department of General Surgery, Hui Ya Hospital of The First Affiliated Hospital, Sun Yat-Sen University, Huizhou, 516081, Guangdong, China
- Central Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, 321000, China
| | - Jia-Qi Li
- Central Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, 321000, China
| | - Ai-Jun Wang
- Central Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, 321000, China
| | - Pei Song
- Central Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, 321000, China.
- College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Wen Liu
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Donghu Road 169, Wuhan, 430071, China.
| | - Jiu-Ju Feng
- College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Tuck Yun Cheang
- Department of General Surgery, Hui Ya Hospital of The First Affiliated Hospital, Sun Yat-Sen University, Huizhou, 516081, Guangdong, China.
| |
Collapse
|
3
|
Abdullah KA, Tahir TF, Qader AF, Omer RA, Othman KA. Nanozymes: Classification and Analytical Applications - A Review. J Fluoresc 2024:10.1007/s10895-024-03930-3. [PMID: 39271600 DOI: 10.1007/s10895-024-03930-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024]
Abstract
The recent discovery of a new class of nanomaterials called nanozymes, which have the action of enzymes and are thus of tremendous significance, has altered our understanding of these previously believed to be biologically inert nanomaterials. As a significant and exciting class of synthetic enzymes, nanozymes have distinct advantages over natural enzymes. They are less expensive, more stable, and easier to work with and store, making them a viable substitute. This practical advantage of nanozymes over natural enzymes reassures us about the potential of this new technology. Peroxidase-like nanozymes have been investigated for the purpose of creating adaptable biosensors via the use of molecularly imprinted polymers (MIPs) or particular bio recognition ligands, including enzymes, antibodies, and aptamers. This review delves into the distinctions between synthetic and natural enzymes, explaining their structures and analytical applications. It primarily focuses on carbon-based nanozymes, particularly those that contain both carbon and hydrogen, as well as metal-based nanozymes like Fe, Cu, and Au, along with their metal oxide (FeO, CuO), which have applications in many fields today. Analytical chemistry finds great use for nanozymes for sensing and other applications, particularly in comparison with other classical methods in terms of selectivity and sensitivity. Nanozymes, with their unique catalytic capabilities, have emerged as a crucial tool in the early diagnosis of COVID-19. Their application in nanozyme-based sensing and detection, particularly through colorimetric and fluorometric methods, has significantly advanced our ability to detect the virus at an early stage.
Collapse
Affiliation(s)
- Kurdo A Abdullah
- Department of Chemistry, Faculty of Science and Health, Koya University, Danielle Mitterrand Boulevard, Koya KOY45, Kurdistan Region - F.R., Iraq
| | - Tara F Tahir
- Department of Medical Microbiology, Faculty of Science and Health, Koya University, Danielle Mitterrand Boulevard, Koya KOY45, Kurdistan Region - F.R., Iraq
| | - Aryan F Qader
- Department of Chemistry, Faculty of Science and Health, Koya University, Danielle Mitterrand Boulevard, Koya KOY45, Kurdistan Region - F.R., Iraq.
| | - Rebaz A Omer
- Department of Chemistry, Faculty of Science and Health, Koya University, Danielle Mitterrand Boulevard, Koya KOY45, Kurdistan Region - F.R., Iraq
- Department of Pharmacy, College of Pharmacy, Knowledge University, Erbil, 44001, Iraq
| | - Khdir A Othman
- Department of Chemistry, Faculty of Science and Health, Koya University, Danielle Mitterrand Boulevard, Koya KOY45, Kurdistan Region - F.R., Iraq
| |
Collapse
|
4
|
Meng L, Tang L, Gao F, Zhu L, Liu X, Zhang J, Chang Y, Ma X, Guo Y. Hollow CeO 2-Based Nanozyme with Self-Accelerated Cascade Reactions for Combined Tumor Therapy. Chemistry 2024; 30:e202401640. [PMID: 38935332 DOI: 10.1002/chem.202401640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 06/28/2024]
Abstract
Nanozymes have obvious advantages in improving the efficiency of cancer treatment. However, due to the lack of tissue specificity, low catalytic efficiency, and so on, their clinical applications are limited. Herein, the nanoplatform CeO2@ICG@GOx@HA (CIGH) with self-accelerated cascade reactions is constructed. The as-prepared nanozyme shows the superior oxidase (OXD)-like, superoxide dismutase (SOD)-like, catalase (CAT)-like and peroxidase (POD)-like activities. At the same time, under 808 nm near-infrared (NIR) irradiation, the photodynamic and photothermal capabilities are also significantly enhanced due to the presence of indocyanine green (ICG). We demonstrate that the nanozyme CIGH can efficiently accumulate in the tumor and exhibit amplified cascade antitumor effects with negligible systemic toxicity through the combination of photodynamic therapy (PDT), photothermal therapy (PTT), chemodynamic therapy (CDT) and starvation therapy. The nanozyme prepared in this study provides a promising candidate for catalytic nanomedicines for efficient tumor therapy.
Collapse
Affiliation(s)
- Lili Meng
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Lingxue Tang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Fangli Gao
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Liang Zhu
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Xinhe Liu
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Jie Zhang
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Yi Chang
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Xiaoming Ma
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Yuming Guo
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| |
Collapse
|
5
|
Duan M, Wang Y, Zang J, Lv C, Du M, Zhao G, Zhang T. Construction of An Artificial Photosynthesis System with A Single CdS QDs-Ferritin Hybrid Molecule. SMALL METHODS 2024:e2400915. [PMID: 39205541 DOI: 10.1002/smtd.202400915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Establishing artificial photosynthesis systems in a simple but effective manner to mitigate the greenhouse effect and address the energy crisis remains challenging. The combination of photocatalysis technology with bioengineering is an emerging field with great potential to construct such artificial photosynthesis systems, but so far, it has barely been explored in this area. Herein, an artificial photocatalysis platform is constructed with high CO2 conversion and H2O splitting capability by integration of CdS QDs into the intra-subunit interface of H-type ferritin (Marsupenaeus japonicus), a natural ferroxidase through protein interface redesign. The crystal structure of the synthesized CdS QDs with engineered ferritin molecules as bio-templates confirmed the design at an atomic level. Notably, upon absorbing desirable visible light (≈420 nm), such a single CdS-ferritin hybrid molecule is able to selectively catalyze the reduction of CO2 into HCOOH (≈90%), meanwhile catalyzing the oxidation of H2O into O2 in an aqueous environment. The O2 production rate reached to 180 µmol g-1 h-1, and the HCOOH output hit almost 800 µmol g-1 h-1. This work advances the utilization of the four-helix bundle structure for crafting artificial photosynthesis systems, facilitating the seamless integration of bioengineering and photocatalysis technology.
Collapse
Affiliation(s)
- Maoping Duan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yingjie Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Jiachen Zang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Chenyan Lv
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Ming Du
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, China
| | - Guanghua Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Tuo Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| |
Collapse
|
6
|
Shi L, Li Q, Liu S, Liu X, Yang S, Chen C, Li Z, Liu S. Bimetallic nanozymes synergize to regulate the behavior of oxygen intermediates and substrate HMF adsorption. Chem Commun (Camb) 2024; 60:8860-8863. [PMID: 39081237 DOI: 10.1039/d4cc03213f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
We have constructed a bimetallic (CoNiP) nanozyme, leveraging the synergistic effect of cobalt and nickel, which efficiently catalyzes the oxidation of TMB from colorless to ox-TMB (blue). Density functional theory (DFT) calculations further highlight the pivotal role of this synergistic effect in improving the adsorption energy of oxygen intermediates, accelerating the catalytic process.
Collapse
Affiliation(s)
- Lei Shi
- Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China.
| | - Qiang Li
- Inner Mongolia Institute of Synthetic chemistry, Hohhot, 010010, China.
| | - Shuang Liu
- Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China.
| | - Xinyang Liu
- Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China.
| | - Shucheng Yang
- Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China.
| | - Chunxia Chen
- Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China.
| | - Zhijun Li
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P. R. China.
| | - Song Liu
- Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
7
|
曾 佳, 黄 颂, 杜 方, 曹 素, 高 杨, 邱 逦, 唐 远. [Advances in the Application of Nanozymes in Joint Disease Therapy]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2024; 55:800-806. [PMID: 39170029 PMCID: PMC11334270 DOI: 10.12182/20240760105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Indexed: 08/23/2024]
Abstract
Nanozymes are nanoscale materials with enzyme-mimicking catalytic properties. Nanozymes can mimic the mechanism of natural enzyme molecules. By means of advanced chemical synthesis technology, the size, shape, and surface characteristics of nanozymes can be accurately regulated, and their catalytic properties can be customized according to the specific need. Nanozymes can mimic the function of natural enzymes, including catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx), to scavenge reactive oxygen species (ROS). Reported findings have shown that nanozymes have the advantages of excellent stability, low cost, and adjustable catalytic activity, thereby showing great potential and broad prospects in the application of disease treatment. Herein, we reviewed the advances in the application of nanozymes in the treatment of joint diseases. The common clinical manifestations of joint diseases include joint pain, swelling, stiffness, and limited mobility. In severe cases, joint diseases may lead to joint destruction, deformity, and functional damage, entailing crippling socioeconomic burdens. ROS is a product of oxidative stress. Increased ROS in the joints can induce macrophage M1 type polarization, which in turn induces and aggravates arthritis. Therefore, the key to the treatment of joint diseases lies in ROS scavenging and increasing oxygen (O2) content. Nanozymes have demonstrated promising application potential in the treatment of joint diseases, including rheumatoid arthritis, osteoarthritis, and gouty arthritis. However, how to ensure their biosafety, reduce the toxicity, and increase enzyme activity remains the main challenge in current research. Precise control of the chemical composition, size, shape, and surface modification of nanomaterials is the main development direction for the future.
Collapse
Affiliation(s)
- 佳 曾
- 成都市双流区第一人民医院-四川大学华西空港医院 超声医学科 (成都 610200)Department of Ultrasound, The First People's Hospital of Shuangliu District, Chengdu & West China (Airport) Hospital, Sichuan University, Chengdu 610200, China
| | - 颂雅 黄
- 成都市双流区第一人民医院-四川大学华西空港医院 超声医学科 (成都 610200)Department of Ultrasound, The First People's Hospital of Shuangliu District, Chengdu & West China (Airport) Hospital, Sichuan University, Chengdu 610200, China
| | - 方雪 杜
- 成都市双流区第一人民医院-四川大学华西空港医院 超声医学科 (成都 610200)Department of Ultrasound, The First People's Hospital of Shuangliu District, Chengdu & West China (Airport) Hospital, Sichuan University, Chengdu 610200, China
| | - 素娇 曹
- 成都市双流区第一人民医院-四川大学华西空港医院 超声医学科 (成都 610200)Department of Ultrasound, The First People's Hospital of Shuangliu District, Chengdu & West China (Airport) Hospital, Sichuan University, Chengdu 610200, China
| | - 杨 高
- 成都市双流区第一人民医院-四川大学华西空港医院 超声医学科 (成都 610200)Department of Ultrasound, The First People's Hospital of Shuangliu District, Chengdu & West China (Airport) Hospital, Sichuan University, Chengdu 610200, China
| | - 逦 邱
- 成都市双流区第一人民医院-四川大学华西空港医院 超声医学科 (成都 610200)Department of Ultrasound, The First People's Hospital of Shuangliu District, Chengdu & West China (Airport) Hospital, Sichuan University, Chengdu 610200, China
| | - 远姣 唐
- 成都市双流区第一人民医院-四川大学华西空港医院 超声医学科 (成都 610200)Department of Ultrasound, The First People's Hospital of Shuangliu District, Chengdu & West China (Airport) Hospital, Sichuan University, Chengdu 610200, China
| |
Collapse
|
8
|
Wang H, Bo W, Feng X, Zhang J, Li G, Chen Y. Strategies and Recent Advances on Improving Efficient Antitumor of Lenvatinib Based on Nanoparticle Delivery System. Int J Nanomedicine 2024; 19:5581-5603. [PMID: 38882543 PMCID: PMC11177867 DOI: 10.2147/ijn.s460844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/28/2024] [Indexed: 06/18/2024] Open
Abstract
Lenvatinib (LVN) is a potentially effective multiple-targeted receptor tyrosine kinase inhibitor approved for treating hepatocellular carcinoma, metastatic renal cell carcinoma and thyroid cancer. Nonetheless, poor pharmacokinetic properties including poor water solubility and rapid metabolic, complex tumor microenvironment, and drug resistance have impeded its satisfactory therapeutic efficacy. This article comprehensively reviews the uses of nanotechnology in LVN to improve antitumor effects. With the characteristic of high modifiability and loading capacity of the nano-drug delivery system, an active targeting approach, controllable drug release, and biomimetic strategies have been devised to deliver LVN to target tumors in sequence, compensating for the lack of passive targeting. The existing applications and advances of LVN in improving therapeutic efficacy include improving longer-term efficiency, achieving higher efficiency, combination therapy, tracking and diagnosing application and reducing toxicity. Therefore, using multiple strategies combined with photothermal, photodynamic, and immunoregulatory therapies potentially overcomes multi-drug resistance, regulates unfavorable tumor microenvironment, and yields higher synergistic antitumor effects. In brief, the nano-LVN delivery system has brought light to the war against cancer while at the same time improving the antitumor effect. More intelligent and multifunctional nanoparticles should be investigated and further converted into clinical applications in the future.
Collapse
Affiliation(s)
- Haiqing Wang
- Department of Hepatopancreatobiliary Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Wentao Bo
- Department of Hepatopancreatobiliary Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Xielin Feng
- Department of Hepatopancreatobiliary Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Jinliang Zhang
- Department of Hepatopancreatobiliary Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Ge Li
- Department of Emergency, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Yan Chen
- Department of Pharmacy, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| |
Collapse
|
9
|
Wang Y, Wei X, Liu Y, Li S, Pan W, Dai J, Yang Z. Towards broad-spectrum protection: the development and challenges of combined respiratory virus vaccines. Front Cell Infect Microbiol 2024; 14:1412478. [PMID: 38903942 PMCID: PMC11188343 DOI: 10.3389/fcimb.2024.1412478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/22/2024] [Indexed: 06/22/2024] Open
Abstract
In the post-COVID-19 era, the co-circulation of respiratory viruses, including influenza, SARS-CoV-2, and respiratory syncytial virus (RSV), continues to have significant health impacts and presents ongoing public health challenges. Vaccination remains the most effective measure for preventing viral infections. To address the concurrent circulation of these respiratory viruses, extensive efforts have been dedicated to the development of combined vaccines. These vaccines utilize a range of platforms, including mRNA-based vaccines, viral vector vaccines, and subunit vaccines, providing opportunities in addressing multiple pathogens at once. This review delves into the major advancements in the field of combined vaccine research, underscoring the strategic use of various platforms to tackle the simultaneous circulation of respiratory viruses effectively.
Collapse
Affiliation(s)
- Yang Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangzhou National Laboratory, Guangzhou, China
| | - Xiaotong Wei
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yang Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangzhou Customs Technology Center, Guangzhou, China
| | - Shengfeng Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Weiqi Pan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Respiratory Disease AI Laboratory on Epidemic and Medical Big Data Instrument Applications, Faculty of Innovation Engineering, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Jun Dai
- Guangzhou National Laboratory, Guangzhou, China
- Guangzhou Customs Technology Center, Guangzhou, China
| | - Zifeng Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangzhou National Laboratory, Guangzhou, China
- Respiratory Disease AI Laboratory on Epidemic and Medical Big Data Instrument Applications, Faculty of Innovation Engineering, Macau University of Science and Technology, Macao, Macao SAR, China
| |
Collapse
|
10
|
Zhang J, Pan Y, Liu L, Xu Y, Zhao C, Liu W, Rao L. Genetically Edited Cascade Nanozymes for Cancer Immunotherapy. ACS NANO 2024; 18:12295-12310. [PMID: 38695532 DOI: 10.1021/acsnano.4c01229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2024]
Abstract
Immune checkpoint blockade (ICB) has brought tremendous clinical progress, but its therapeutic outcome can be limited due to insufficient activation of dendritic cells (DCs) and insufficient infiltration of cytotoxic T lymphocytes (CTLs). Evoking immunogenic cell death (ICD) is one promising strategy to promote DC maturation and elicit T-cell immunity, whereas low levels of ICD induction of solid tumors restrict durable antitumor efficacy. Herein, we report a genetically edited cell membrane-coated cascade nanozyme (gCM@MnAu) for enhanced cancer immunotherapy by inducing ICD and activating the stimulator of the interferon genes (STING) pathway. In the tumor microenvironment (TME), the gCM@MnAu initiates a cascade reaction and generates abundant cytotoxic hydroxyl (•OH), resulting in improved chemodynamic therapy (CDT) and boosted ICD activation. In addition, released Mn2+ during the cascade reaction activates the STING pathway and further promotes the DC maturation. More importantly, activated immunogenicity in the TME significantly improves gCM-mediated PD-1/PD-L1 checkpoint blockade therapy by eliciting systemic antitumor responses. In breast cancer subcutaneous and lung metastasis models, the gCM@MnAu showed synergistically enhanced therapeutic effects and significantly prolonged the survival of mice. This work develops a genetically edited nanozyme-based therapeutic strategy to improve DC-mediated cross-priming of T cells against poorly immunogenic solid tumors.
Collapse
Affiliation(s)
- Jing Zhang
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Yuanwei Pan
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Lujie Liu
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Yangtao Xu
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Chenchen Zhao
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Wei Liu
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
- School of Mathematical and Physical Sciences, Wuhan Textile University, Wuhan 430200, China
| | - Lang Rao
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
| |
Collapse
|
11
|
Wang W, Xi H, Fu D, Ma D, Gong W, Zhao Y, Li X, Wu L, Guo Y, Zhao G, Wang H. Growth Process of Fe-O Nanoclusters with Different Sizes Biosynthesized by Protein Nanocages. J Am Chem Soc 2024; 146:11657-11668. [PMID: 38641862 DOI: 10.1021/jacs.3c13830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
All protein-directed syntheses of metal nanoclusters (NCs) and nanoparticles (NPs) have attracted considerable attention because protein scaffolds provide a unique metal coordination environment and can adjust the shape and morphology of NCs and NPs. However, the detailed formation mechanisms of NCs or NPs directed by protein templates remain unclear. In this study, by taking advantage of the ferritin nanocage as a biotemplate to monitor the growth of Fe-O NCs as a function of time, we synthesized a series of iron NCs with different sizes and shapes and subsequently solved their corresponding three-dimensional atomic-scale structures by X-ray protein crystallography and cryo-electron microscopy. The time-dependent structure analyses revealed the growth process of these Fe-O NCs with the 4-fold channel of ferritin as nucleation sites. To our knowledge, the newly biosynthesized Fe35O23Glu12 represents the largest Fe-O NCs with a definite atomic structure. This study contributes to our understanding of the formation mechanism of iron NCs and provides an effective method for metal NC synthesis.
Collapse
Affiliation(s)
- Wenming Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Hongfang Xi
- Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Dan Fu
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Danyang Ma
- Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Wenjun Gong
- Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Yaqin Zhao
- Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Xiaomei Li
- Shanxi Provincial Key Laboratory of Protein Structure Determination, Shanxi Academy of Advanced Research and Innovation, Taiyuan 030012, China
| | - Lijie Wu
- IHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Yu Guo
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Guanghua Zhao
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Hongfei Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
12
|
Liu Q, Wang C, Zhu M, Liu J, Duan Q, Midgley AC, Liu R, Jiang B, Kong D, Chen Q, Zhuang J, Huang X. Self-Assembly of Heterogeneous Ferritin Nanocages for Tumor Uptake and Penetration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309271. [PMID: 38368258 PMCID: PMC11077646 DOI: 10.1002/advs.202309271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/05/2024] [Indexed: 02/19/2024]
Abstract
Well-defined nanostructures are crucial for precisely understanding nano-bio interactions. However, nanoparticles (NPs) fabricated through conventional synthesis approaches often lack poor controllability and reproducibility. Herein, a synthetic biology-based strategy is introduced to fabricate uniformly reproducible protein-based NPs, achieving precise control over heterogeneous components of the NPs. Specifically, a ferritin assembly toolbox system is developed that enables intracellular assembly of ferritin subunits/variants in Escherichia coli. Using this strategy, a proof-of-concept study is provided to explore the interplay between ligand density of NPs and their tumor targets/penetration. Various ferritin hybrid nanocages (FHn) containing human ferritin heavy chains (FH) and light chains are accurately assembled, leveraging their intrinsic binding with tumor cells and prolonged circulation time in blood, respectively. Further studies reveal that tumor cell uptake is FH density-dependent through active binding with transferrin receptor 1, whereas in vivo tumor accumulation and tissue penetration are found to be correlated to heterogeneous assembly of FHn and vascular permeability of tumors. Densities of 3.7 FH/100 nm2 on the nanoparticle surface exhibit the highest degree of tumor accumulation and penetration, particularly in tumors with high permeability compared to those with low permeability. This study underscores the significance of nanoparticle heterogeneity in determining particle fate in biological systems.
Collapse
Affiliation(s)
- Qiqi Liu
- State Key Laboratory of Medicinal Chemical BiologyKey Laboratory of Bioactive Materials for the Ministry of EducationCollege of Life Sciencesand Frontier of Science Center for Cell ResponseNankai UniversityTianjin300071China
| | - Chunyu Wang
- State Key Laboratory of Medicinal Chemical BiologyKey Laboratory of Bioactive Materials for the Ministry of EducationCollege of Life Sciencesand Frontier of Science Center for Cell ResponseNankai UniversityTianjin300071China
| | - Mingsheng Zhu
- State Key Laboratory of Medicinal Chemical BiologyKey Laboratory of Bioactive Materials for the Ministry of EducationCollege of Life Sciencesand Frontier of Science Center for Cell ResponseNankai UniversityTianjin300071China
| | - Jinming Liu
- State Key Laboratory of Medicinal Chemical BiologyKey Laboratory of Bioactive Materials for the Ministry of EducationCollege of Life Sciencesand Frontier of Science Center for Cell ResponseNankai UniversityTianjin300071China
| | - Qiannan Duan
- State Key Laboratory of Medicinal Chemical BiologyKey Laboratory of Bioactive Materials for the Ministry of EducationCollege of Life Sciencesand Frontier of Science Center for Cell ResponseNankai UniversityTianjin300071China
| | - Adam C. Midgley
- State Key Laboratory of Medicinal Chemical BiologyKey Laboratory of Bioactive Materials for the Ministry of EducationCollege of Life Sciencesand Frontier of Science Center for Cell ResponseNankai UniversityTianjin300071China
| | - Ruming Liu
- State Key Laboratory of Medicinal Chemical BiologyKey Laboratory of Bioactive Materials for the Ministry of EducationCollege of Life Sciencesand Frontier of Science Center for Cell ResponseNankai UniversityTianjin300071China
| | - Bing Jiang
- Nanozyme Medical CenterSchool of Basic Medical SciencesZhengzhou UniversityZhengzhou450001China
| | - Deling Kong
- State Key Laboratory of Medicinal Chemical BiologyKey Laboratory of Bioactive Materials for the Ministry of EducationCollege of Life Sciencesand Frontier of Science Center for Cell ResponseNankai UniversityTianjin300071China
| | - Quan Chen
- State Key Laboratory of Medicinal Chemical BiologyKey Laboratory of Bioactive Materials for the Ministry of EducationCollege of Life Sciencesand Frontier of Science Center for Cell ResponseNankai UniversityTianjin300071China
| | - Jie Zhuang
- School of MedicineNankai UniversityTianjin300071China
| | - Xinglu Huang
- State Key Laboratory of Medicinal Chemical BiologyKey Laboratory of Bioactive Materials for the Ministry of EducationCollege of Life Sciencesand Frontier of Science Center for Cell ResponseNankai UniversityTianjin300071China
| |
Collapse
|
13
|
Jiang B, Chen X, Wang S, Wang S, Ma S, Lu Y, Ma L, Liang Q, Xiao H, Zhang L, Yan X, Fan K. Structure-Guided Design of Ferritin-Platinum Prodrugs for Targeted Therapy of Esophageal Squamous Cell Carcinoma. ACS NANO 2024; 18:11217-11233. [PMID: 38627234 DOI: 10.1021/acsnano.4c00212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Due to its intrinsic tumor-targeting attribute, limited immunogenicity, and cage architecture, ferritin emerges as a highly promising nanocarrier for targeted drug delivery. In the effort to develop ferritin cage-encapsulated cisplatin (CDDP) as a therapeutic agent, we found unexpectedly that the encapsulation led to inactivation of the drug. Guided by the structural information, we deciphered the interactions between ferritin cages and CDDP, and we proposed a potential mechanism responsible for attenuating the antitumor efficacy of CDDP encapsulated within the cage. Six platinum prodrugs were then designed to avoid the inactivation. The antitumor activities of these ferritin-platinum prodrug complexes were then evaluated in cells of esophageal squamous cell carcinoma (ESCC). Compared with free CDDP, the complexes were more effective in delivering and retaining platinum in the cells, leading to increased DNA damage and enhanced cytotoxic action. They also exhibited improved pharmacokinetics and stronger antitumor activities in mice bearing ESCC cell-derived xenografts as well as patient-derived xenografts. The successful encapsulation also illustrates the critical significance of comprehending the interactions between small molecular drugs and ferritin cages for the development of precision-engineered nanocarriers.
Collapse
Affiliation(s)
- Bing Jiang
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Nanozyme Laboratory in Zhongyuan, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan 451163, China
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xuehui Chen
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Shenghui Wang
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Shuyu Wang
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Saiyu Ma
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yu Lu
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Long Ma
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Qian Liang
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Polymer Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Lirong Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou, Henan 450001, China
| | - Xiyun Yan
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Nanozyme Laboratory in Zhongyuan, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan 451163, China
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Kelong Fan
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Nanozyme Laboratory in Zhongyuan, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan 451163, China
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
14
|
Xia X, Li H, Zang J, Cheng S, Du M. Advancements of the Molecular Directed Design and Structure-Activity Relationship of Ferritin Nanocage. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7629-7654. [PMID: 38518374 DOI: 10.1021/acs.jafc.3c09903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
Ferritin nanocages possess remarkable structural properties and biological functions, making them highly attractive for applications in functional materials and biomedicine. This comprehensive review presents an overview of the molecular characteristics, extraction and identification of ferritin, ferritin receptors, as well as the advancements in the directional design of high-order assemblies of ferritin and the applications based on its unique structural properties. Specifically, this Review focuses on the regulation of ferritin assembly from one to three dimensions, leveraging the symmetry of ferritin and modifications on key interfaces. Furthermore, it discusses targeted delivery of nutrition and drugs through facile loading and functional modification of ferritin. The aim of this Review is to inspire the design of micro/nano functional materials using ferritin and the development of nanodelivery vehicles for nutritional fortification and disease treatment.
Collapse
Affiliation(s)
- Xiaoyu Xia
- SKL of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- National Engineering Research Center of Seafood, Collaborative Innovation Centre of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Han Li
- SKL of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- National Engineering Research Center of Seafood, Collaborative Innovation Centre of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Jiachen Zang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Shuzhen Cheng
- SKL of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- National Engineering Research Center of Seafood, Collaborative Innovation Centre of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Ming Du
- SKL of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- National Engineering Research Center of Seafood, Collaborative Innovation Centre of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
15
|
Zhai Z, Wang W, Chai Z, Yuan Y, Zhu Q, Ge J, Li Z. A ratiometric fluorescence platform based on WS 2 QDs/CoOOH nanosheet system for α-glucosidase activity detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 310:123959. [PMID: 38290280 DOI: 10.1016/j.saa.2024.123959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 02/01/2024]
Abstract
In this study, we have constructed a ratiometric fluorescence sensor for sensitive sensing of α-glucosidase activity based on WS2 QDs/ CoOOH nanosheet system. In this system, as an oxidase-imimicking nanomaterial, CoOOH nanosheet could convert o-phenylenediamine into 2,3-diaminophenazine (DAP), which had a high fluorescence emission at 575 nm. The DAP subsequently could quench the fluorescence of WS2 QDs via the inner filter effect (IFE). L-Ascorbic acid-2-O-α-D-glucopyranose could be hydrolyzed by α-glucosidase to yield ascorbic acid. CoOOH nanosheet can be converted to Co2+ ions by ascorbic acid, leading to the fluorescence decrease of DAP and the fluorescence recovery of WS2 QDs. Therefore, a novel ratio fluorescence sensing strategy was established for α-glucosidase detection based on WS2 QDs/CoOOH nanosheet system. This WS2 QDs/CoOOH nanosheet system has a low detection limit of 0.009 U/mL for α-Glu assay. The proposed strategy succeeded in detecting α-Glu in human serum samples.
Collapse
Affiliation(s)
- Zhiyao Zhai
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Zhengzhou University, Zhengzhou 450001, PR China
| | - Weixia Wang
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Zhengzhou University, Zhengzhou 450001, PR China
| | - Ziwei Chai
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Zhengzhou University, Zhengzhou 450001, PR China
| | - Yating Yuan
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Zhengzhou University, Zhengzhou 450001, PR China
| | - Qianqian Zhu
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Zhengzhou University, Zhengzhou 450001, PR China
| | - Jia Ge
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Zhengzhou University, Zhengzhou 450001, PR China.
| | - Zhaohui Li
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Zhengzhou University, Zhengzhou 450001, PR China.
| |
Collapse
|
16
|
Wang W, An J, Zhao R, Geng X, Jiang W, Yan X, Jiang B. Nanozymes: a new approach for leukemia therapy. J Mater Chem B 2024; 12:2459-2470. [PMID: 38345341 DOI: 10.1039/d3tb02819d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Leukemia is a type of clonal disorder of hematopoietic stem and progenitor cells characterized by bone marrow failure, differentiation arrest, and lineage skewing. Despite leukemia being a complex disease and it being difficult to identify a single driving force, redox homeostasis, the balance between reactive oxygen species (ROS) producers and cellular antioxidant systems, is normally impaired during leukemogenesis. In this context, the modulation of ROS in leukemia cells can be harnessed for therapeutic purposes. Nanozymes are functional nanomaterials with enzyme-like characteristics, which address the intrinsic limitations of natural enzymes and exhibit great potential in synergistic antitumor therapy. Nanozymes possess catalytic activities (e.g., peroxidase-like activity, catalase-like activity, superoxide dismutase-like activity, and oxidase-like activity) to regulate ROS levels in vitro and in vivo, making them promising for leukemia therapy. On account of the rapid development of nanozymes recently, their application potentials in leukemia therapy are gradually being explored. To highlight the achievements of nanozymes in the leukemia field, this review summarizes the recent studies of nanozymes with anti-leukemia efficacy and the underlying mechanism. In addition, the challenges and prospects of nanozyme research in leukemia therapy are discussed.
Collapse
Affiliation(s)
- Wei Wang
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Jingyi An
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Runze Zhao
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Xin Geng
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Wei Jiang
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Xiyun Yan
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China.
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Nanozyme Laboratory in Zhongyuan, Zhengzhou, Henan, 451163, China
| | - Bing Jiang
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China.
- Nanozyme Laboratory in Zhongyuan, Zhengzhou, Henan, 451163, China
| |
Collapse
|
17
|
Wu A, Han M, Ni Z, Li H, Chen Y, Yang Z, Feng Y, He Z, Zhen H, Wang X. Multifunctional Sr/Se co-doped ZIF-8 nanozyme for chemo/chemodynamic synergistic tumor therapy via apoptosis and ferroptosis. Theranostics 2024; 14:1939-1955. [PMID: 38505601 PMCID: PMC10945335 DOI: 10.7150/thno.92663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/18/2024] [Indexed: 03/21/2024] Open
Abstract
Rationale: Cancer continues to be a significant public health issue. Traditional treatments such as surgery, radiotherapy, and chemotherapy often fall short because of intrinsic issues such as lack of specificity and poor drug delivery, leading to insufficient drug concentration at the tumor site and/or potential side effects. Consequently, improving the delivery of conventional chemotherapy drugs like doxorubicin (DOX) is crucial for their therapeutic efficacy. Successful cancer treatment is achieved when regulated cell death (RCD) of cancer cells, which includes apoptotic and non-apoptotic processes such as ferroptosis, is fundamental to successful cancer treatment. The developing field of nanozymes holds considerable promise for innovative cancer treatment approaches. Methods: A dual-metallic nanozyme system encapsulated with DOX was created, derived from metal-organic frameworks (MOFs), designed to combat tumors by depleting glutathione (GSH) and concurrently liberating DOX. The initial phase of the study examined the GSH oxidase-mimicking function of the dimetallic nanozyme (ZIF-8/SrSe) through enzyme kinetic assays and Density Functional Theory (DFT) simulations. Following this, we probed the ability of ZIF-8/SrSe@DOX to release DOX in response to the tumor microenvironment in vitro, alongside examining its anticancer capabilities and mechanisms prompting apoptosis or ferroptosis in cancer cells. Moreover, we established tumor-bearing animal models to corroborate the anti-tumor effectiveness of our nanozyme complex and to identify the involved apoptotic and ferroptotic pathways implicated. Results: Enzyme kinetic analyses demonstrated that the ZIF-8/SrSe nanozyme exhibits substantial GSH oxidase-like activity, effectively oxidizing reduced GSH to glutathione disulfide (GSSG), while also inhibiting glutathione peroxidase 4 (GPX4) and solute carrier family 7 member 11 (SLC7A11). This inhibition led to an imbalance in iron homeostasis, pronounced caspase activation, and subsequent induction of apoptosis and ferroptosis in tumor cells. Additionally, the ZIF-8/SrSe@DOX nanoparticles efficiently delivered DOX, causing DNA damage and further promoting apoptotic and ferroptotic pathways. Conclusions: This research outlines the design of a novel platform that combines chemotherapeutic agents with a Fenton reaction catalyst, offering a promising strategy for cancer therapy that leverages the synergistic effects of apoptosis and ferroptosis.
Collapse
Affiliation(s)
- Aimin Wu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Ming Han
- College of Science, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Zihan Ni
- College Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Haoran Li
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Yinyin Chen
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Zhouping Yang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Yumei Feng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu 611130, Sichuan, China
| | - Zufeng He
- Institute of New Rural Development, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Hua Zhen
- College of Science, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Xianxiang Wang
- College of Science, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| |
Collapse
|
18
|
Jiao R, Zhao G, Zhang T. Structural Insights into the Reaction between Hydrogen Peroxide and Di-iron Complexes at the Ferroxidase Center of Ferritin. Inorg Chem 2024; 63:3359-3365. [PMID: 38315811 DOI: 10.1021/acs.inorgchem.3c03889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
The Fe(II) oxidation mechanism in the ferroxidase center of heavy chain ferritin has been studied extensively. However, the actual production of H2O2 was found to be substantially lower than expected at low flux of Fe(II) to ferritin subunits. Here, we demonstrated that H2O2 could interact with the di-iron nuclear center, leading to the production of hydroxyl radicals and oxygen. Two reaction intermediates were captured in the ferroxidase center by using the time-lapse crystallographic techniques in a shellfish ferritin. The crystal structures revealed the binding of H2O2 as a μ -1,2-peroxo-diferric species and the binding of O2 to the diferric structure. This investigation sheds light on the reaction between the di-iron nuclear center and H2O2 and provides insights for the exploitation of metalloenzymes.
Collapse
Affiliation(s)
- Ruonan Jiao
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Guanghua Zhao
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Tuo Zhang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
19
|
Fang L, Zhang R, Shi L, Xie J, Ma L, Yang Y, Yan X, Fan K. Protein-Nanocaged Selenium Induces t(8;21) Leukemia Cell Differentiation via Epigenetic Regulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300698. [PMID: 37888866 PMCID: PMC10724402 DOI: 10.1002/advs.202300698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 08/13/2023] [Indexed: 10/28/2023]
Abstract
The success of arsenic in degrading PML-RARα oncoprotein illustrates the great anti-leukemia value of inorganics. Inspired by this, the therapeutic effect of inorganic selenium on t(8; 21) leukemia is studied, which has shown promising anti-cancer effects on solid tumors. A leukemia-targeting selenium nanomedicine is rationally built with bioengineered protein nanocage and is demonstrated to be an effective epigenetic drug for inducing the differentiation of t(8;21) leukemia. The selenium drug significantly induces the differentiation of t(8;21) leukemia cells into more mature myeloid cells. Mechanistic analysis shows that the selenium is metabolized into bioactive forms in cells, which drives the degradation of the AML1-ETO oncoprotein by inhibiting histone deacetylases activity, resulting in the regulation of AML1-ETO target genes. The regulation results in a significant increase in the expression levels of myeloid differentiation transcription factors PU.1 and C/EBPα, and a significant decrease in the expression level of C-KIT protein, a member of the type III receptor tyrosine kinase family. This study demonstrates that this protein-nanocaged selenium is a potential therapeutic drug against t(8;21) leukemia through epigenetic regulation.
Collapse
Affiliation(s)
- Long Fang
- Savaid Medical SchoolUniversity of Chinese Academy of SciencesBeijing100049China
- CAS Engineering Laboratory for NanozymeKey Laboratory of BiomacromoleculesInstitute of BiophysicsChinese Academy of SciencesBeijing100101China
| | - Ruofei Zhang
- CAS Engineering Laboratory for NanozymeKey Laboratory of BiomacromoleculesInstitute of BiophysicsChinese Academy of SciencesBeijing100101China
| | - Lin Shi
- Department of HematologyPeking University International HospitalBeijing102206China
| | - Jiaying Xie
- CAS Engineering Laboratory for NanozymeKey Laboratory of BiomacromoleculesInstitute of BiophysicsChinese Academy of SciencesBeijing100101China
| | - Long Ma
- CAS Engineering Laboratory for NanozymeKey Laboratory of BiomacromoleculesInstitute of BiophysicsChinese Academy of SciencesBeijing100101China
| | - Yili Yang
- China Regional Research CentreInternational Centre of Genetic Engineering and BiotechnologyTaizhou212200China
| | - Xiyun Yan
- CAS Engineering Laboratory for NanozymeKey Laboratory of BiomacromoleculesInstitute of BiophysicsChinese Academy of SciencesBeijing100101China
- Nanozyme Medical CenterSchool of Basic Medical SciencesZhengzhou UniversityZhengzhou450052China
| | - Kelong Fan
- CAS Engineering Laboratory for NanozymeKey Laboratory of BiomacromoleculesInstitute of BiophysicsChinese Academy of SciencesBeijing100101China
- Nanozyme Medical CenterSchool of Basic Medical SciencesZhengzhou UniversityZhengzhou450052China
| |
Collapse
|
20
|
Li Y, Gao H, Nepovimova E, Wu Q, Adam V, Kuca K. Recombinant ferritins for multimodal nanomedicine. J Enzyme Inhib Med Chem 2023; 38:2219868. [PMID: 37263586 DOI: 10.1080/14756366.2023.2219868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/03/2023] Open
Abstract
In all living organisms, ferritins are a group of proteins important for maintaining iron homeostasis. Increasing amount of studies has shown that recombinant ferritins can be widely used in multimodal nanomedicine, especially for anticancer treatment and vaccination. Recombinant particles prepared by fusing viral proteins and ferritin subunits produce a better immune response and higher antibody titres. Moreover, actively-targeted ferritin nanoparticles can recognise receptors and deliver natural or chemical drugs specifically to the tumour tissue. In addition, ferritin-linked or loaded with contrast agents or fluorescent dyes can be used as multimodal particles useful cancer theranostics. In this review, we fully summarised the unitisation of recombinant ferritins in multimodal nanomedicine. The research progress of using recombinant ferritins as nanovaccines, nanozymes, and bioengineered nanocarriers for targeted therapy and bioimaging is emphasised.
Collapse
Affiliation(s)
- Yihao Li
- College of Life Science, Yangtze University, Jingzhou, China
| | - Haoyu Gao
- College of Life Science, Yangtze University, Jingzhou, China
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Králové, Czech Republic
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, China
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Králové, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Králové, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
21
|
Sun M, Huang S, Jiang S, Su G, Lu Z, Wu C, Ye Q, Feng B, Zhuo Y, Jiang X, Xu S, Wu D, Liu D, Song X, Song C, Yan X, Rao H. The mechanism of nanozyme activity of ZnO-Co 3O 4-v: Oxygen vacancy dynamic change and bilayer electron transfer pathway for wound healing and virtual reality revealing. J Colloid Interface Sci 2023; 650:1786-1800. [PMID: 37506419 DOI: 10.1016/j.jcis.2023.06.140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023]
Abstract
Since the catalyst's surface was the major active location, the inner structure's contribution to catalytic activity was typically overlooked. Here, ZnO-Co3O4-v nanozymes with several surfaces and bulk oxygen vacancies were created. The O atoms of H2O2 moved inward to preferentially fill the oxygen vacancies in the interior and form new "lattice oxygen" by the X-ray photoelectron spectroscopy depth analysis and X-ray absorption fine structure. The internal Co2+ continually transferred electrons to the surface for a continuous catalytic reaction, which generated a significant amount of reactive oxygen species. Inner and outer double-layer electron cycles accompanied this process. A three-dimensional model of ZnO-Co3O4-v was constructed using virtual reality interactive modelling technology to illustrate nanozyme catalysis. Moreover, the bactericidal rate of ZnO-Co3O4-v for Methionine-resistant Staphylococcus aureus and Multiple drug resistant Escherichia coli was as high as 99%. ZnO-Co3O4-v was biocompatible and might be utilized to heal wounds following Methionine-resistant Staphylococcus aureus infection. This work offered a new idea for nanozymes to replace of conventional antibacterial medications.
Collapse
Affiliation(s)
- Mengmeng Sun
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Shu Huang
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Shaojuan Jiang
- School of Biological and Chemical Engineering, Panzhihua University, Panzhihua 617000, PR China
| | - Gehong Su
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Zhiwei Lu
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Chun Wu
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Qiaobo Ye
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Bin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, P.R. China
| | - Yong Zhuo
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, P.R. China
| | - Xuemei Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, P.R. China
| | - Shengyu Xu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, P.R. China
| | - De Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, P.R. China
| | - Danni Liu
- School of Arts and Media, Sichuan Agricultural University, Ya'an 625014, PR China
| | - Xianyang Song
- School of Arts and Media, Sichuan Agricultural University, Ya'an 625014, PR China
| | - Chang Song
- School of Arts and Media, Sichuan Agricultural University, Ya'an 625014, PR China
| | - Xiaorong Yan
- Ya'an People's Hospital, City Back Road, Yucheng District, Ya'an 625014, PR China
| | - Hanbing Rao
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China.
| |
Collapse
|
22
|
Hu P, Tang Y, Zhu H, Xia C, Liu J, Liu B, Niu X. Multifunctional light-controllable nanozyme enabled bimodal fluorometric/colorimetric sensing of mercury ions at ambient pH. Biosens Bioelectron 2023; 238:115602. [PMID: 37595475 DOI: 10.1016/j.bios.2023.115602] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/11/2023] [Accepted: 08/13/2023] [Indexed: 08/20/2023]
Abstract
Nanomaterials with enzyme-like catalytic features (nanozymes) find wide use in analytical sensing. Apart from catalytic characteristics, some other interesting functions coexist in the materials. How to combine these properties to design multifunctional nanozymes for new sensing strategy development is challenging. Besides, in nanozymes it is still a challenge to conveniently control the catalytic process, which also hinders their further applications in advanced biochemical analysis. To remove the above barriers, here we design a light-controllable multifunctional nanozyme, namely manganese-inserted cadmium telluride (Mn-CdTe) particles, that integrates oxidase-like activity with luminescence together, to achieve the fluorometric/colorimetric dual-mode detection of toxic mercury ions (Hg2+) at ambient pH. The Mn-CdTe exhibits a light-triggered oxidase-mimicking catalytic behavior to induce chromogenic reactions, thus enabling one to start or stop the catalytic progress easily via applying or withdrawing light irradiation. Meanwhile, the quantum dot material can exhibit bright photoluminescence, which provides the fluorometric channel to sense targets. When Hg2+ is introduced, it rapidly leans toward Mn-CdTe through electrostatic interaction and Te-Hg bonding and induces the aggregation of the latter. As a result, the luminescence of Mn-CdTe is dynamically quenched, and the masking of active sites in aggregated Mn-CdTe leads to the decrease of light-initiated oxidase-mimetic activity. According to this principle, a new fluorometric/colorimetric bimodal method was established for Hg2+ determination with excellent performance. A 3D-printed portable platform combining paper-based test strips and an App-equipped smartphone was further fabricated, making it possible to achieve in-field sensing of the analyte in various matrices.
Collapse
Affiliation(s)
- Panwang Hu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Yuhan Tang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Hengjia Zhu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Changkun Xia
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China.
| | - Jinjin Liu
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, PR China
| | - Bangxiang Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Xiangheng Niu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China; School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, PR China.
| |
Collapse
|
23
|
Yu HH, Lin PH, Chen ZB, Chen ZW, Chen YJ, Liu WM, Liu CP. Molecular Engineering to Boost the Photo-Oxidase Activity of Molecular Rotors in Colorimetric Sensing of Temperatures. Chemistry 2023; 29:e202301591. [PMID: 37476914 DOI: 10.1002/chem.202301591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/22/2023]
Abstract
Some organic dyes and photosensitizers with strong visible absorption can behave as photo-responsive oxidase mimics. However, the relationship between the photo-oxidase activity and molecular structure remains unclear to date. In this work, a new type of photosensitizer with the characteristics of molecular rotors, namely DPPy, served as the molecular scaffold for further investigation. To adjust the photocatalytic oxidation ability, DAPy and CBPy were designed and synthesized based on the enhancement and diminishment of the intramolecular charge transfer (ICT) process, respectively. Kinetic studies revealed that DAPy and CBPy both exhibited highly efficient photo-activated oxidase-like activity with 3,3',5,5'-tetramethylbenzidine (TMB) as the substrate, which were in good accordance with their molecular engineering to promote either type I or type II reactive oxygen species (ROS) generation. Impressively a colorimetric method based on the visible light induced oxidase-like activity of molecular rotors was developed to determine the environmental temperature for the first time. Both DAPy and CBPy showed distinct sensitivities toward temperature as compared with several molecular rotors based on the typical fluorimetric detection. This work provides a new strategy for the application of molecular rotors to overcome the non-emissive challenge in temperature sensing.
Collapse
Affiliation(s)
- Hui-Hsuan Yu
- Department of Chemistry, Fu Jen Catholic University, No. 510, Zhongzheng Rd., Xinzhuang Dist., New Taipei City, 242062, Taiwan (R.O.C
| | - Pin-Han Lin
- Department of Chemistry, Fu Jen Catholic University, No. 510, Zhongzheng Rd., Xinzhuang Dist., New Taipei City, 242062, Taiwan (R.O.C
| | - Zhao-Bin Chen
- Department of Chemistry, Fu Jen Catholic University, No. 510, Zhongzheng Rd., Xinzhuang Dist., New Taipei City, 242062, Taiwan (R.O.C
| | - Zhi-Wen Chen
- Department of Chemistry, Fu Jen Catholic University, No. 510, Zhongzheng Rd., Xinzhuang Dist., New Taipei City, 242062, Taiwan (R.O.C
| | - Yen-Jen Chen
- Department of Chemistry, Fu Jen Catholic University, No. 510, Zhongzheng Rd., Xinzhuang Dist., New Taipei City, 242062, Taiwan (R.O.C
| | - Wei-Min Liu
- Department of Chemistry, Fu Jen Catholic University, No. 510, Zhongzheng Rd., Xinzhuang Dist., New Taipei City, 242062, Taiwan (R.O.C
| | - Ching-Ping Liu
- Department of Chemistry, Fu Jen Catholic University, No. 510, Zhongzheng Rd., Xinzhuang Dist., New Taipei City, 242062, Taiwan (R.O.C
| |
Collapse
|
24
|
Ma T, Huang K, Cheng N. Recent Advances in Nanozyme-Mediated Strategies for Pathogen Detection and Control. Int J Mol Sci 2023; 24:13342. [PMID: 37686145 PMCID: PMC10487713 DOI: 10.3390/ijms241713342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/13/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Pathogen detection and control have long presented formidable challenges in the domains of medicine and public health. This review paper underscores the potential of nanozymes as emerging bio-mimetic enzymes that hold promise in effectively tackling these challenges. The key features and advantages of nanozymes are introduced, encompassing their comparable catalytic activity to natural enzymes, enhanced stability and reliability, cost effectiveness, and straightforward preparation methods. Subsequently, the paper delves into the detailed utilization of nanozymes for pathogen detection. This includes their application as biosensors, facilitating rapid and sensitive identification of diverse pathogens, including bacteria, viruses, and plasmodium. Furthermore, the paper explores strategies employing nanozymes for pathogen control, such as the regulation of reactive oxygen species (ROS), HOBr/Cl regulation, and clearance of extracellular DNA to impede pathogen growth and transmission. The review underscores the vast potential of nanozymes in pathogen detection and control through numerous specific examples and case studies. The authors highlight the efficiency, rapidity, and specificity of pathogen detection achieved with nanozymes, employing various strategies. They also demonstrate the feasibility of nanozymes in hindering pathogen growth and transmission. These innovative approaches employing nanozymes are projected to provide novel options for early disease diagnoses, treatment, and prevention. Through a comprehensive discourse on the characteristics and advantages of nanozymes, as well as diverse application approaches, this paper serves as a crucial reference and guide for further research and development in nanozyme technology. The expectation is that such advancements will significantly contribute to enhancing disease control measures and improving public health outcomes.
Collapse
Affiliation(s)
- Tianyi Ma
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (T.M.); (K.H.)
| | - Kunlun Huang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (T.M.); (K.H.)
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing 100083, China
| | - Nan Cheng
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (T.M.); (K.H.)
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing 100083, China
| |
Collapse
|
25
|
Wang C, Liu Q, Huang X, Zhuang J. Ferritin nanocages: a versatile platform for nanozyme design. J Mater Chem B 2023; 11:4153-4170. [PMID: 37158014 DOI: 10.1039/d3tb00192j] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Nanozymes are a class of nanomaterials with enzyme-like activities and have attracted increasing attention due to their potential applications in biomedicine. However, nanozyme design incorporating the desired properties remains challenging. Natural or genetically engineered protein scaffolds, such as ferritin nanocages, have emerged as a promising platform for nanozyme design due to their unique protein structure, natural biomineralization capacity, self-assembly properties, and high biocompatibility. In this review, we highlight the intrinsic properties of ferritin nanocages, especially for nanozyme design. We also discuss the advantages of genetically engineered ferritin in the versatile design of nanozymes over natural ferritin. Additionally, we summarize the bioapplications of ferritin-based nanozymes based on their enzyme-mimicking activities. In this perspective, we mainly provide potential insights into the utilization of ferritin nanocages for nanozyme design.
Collapse
Affiliation(s)
- Chunyu Wang
- School of Medicine, Nankai University, Tianjin 300071, China.
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, China.
| | - Qiqi Liu
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, China.
| | - Xinglu Huang
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, China.
| | - Jie Zhuang
- School of Medicine, Nankai University, Tianjin 300071, China.
| |
Collapse
|
26
|
Li J, Zhang Z, Zhang B, Yan X, Fan K. Transferrin receptor 1 targeted nanomedicine for brain tumor therapy. Biomater Sci 2023; 11:3394-3413. [PMID: 36847174 DOI: 10.1039/d2bm02152h] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Achieving effective drug delivery to traverse the blood-brain barrier (BBB) and target tumor cells remains the greatest challenge for brain tumor therapy. Importantly, the overexpressed membrane receptors on the brain endothelial cells, especially transferrin receptor 1 (TfR1), which mediate their ligands/antibodies to overcome the BBB by transcytosis, have been emerging as promising targets for brain tumor therapy. By employing ligands (e.g., transferrin, H-ferritin), antibodies or targeting peptides of TfR1 or aptamers, various functional nano-formulations have been developed in the last decade. These agents showed great potential for the treatment of brain diseases due to their ideal size, high loading capacity, controlled drug release and suitable pharmacokinetics. Herein, we summarize the latest advances on TfR1-targeted nanomedicine for brain tumor therapy. Moreover, we also discuss the strategies of improving stability, targeting ability and accumulation of nano-formulations in brain tumors for better outcomes. In this review, we hope to provide inspiration for the rational design of TfR1-targeted nanomedicine against brain tumors.
Collapse
Affiliation(s)
- Jianru Li
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P. R. China.
| | - Zixia Zhang
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P. R. China.
| | - Baoli Zhang
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P. R. China.
| | - Xiyun Yan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P. R. China. .,Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450052, China.,University of Chinese Academy of Sciences, Beijing 101408, China
| | - Kelong Fan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P. R. China. .,Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450052, China.,University of Chinese Academy of Sciences, Beijing 101408, China
| |
Collapse
|
27
|
Shen Y, Zhang R, Wang Y. One-pot hydrothermal synthesis of metal-doped carbon dot nanozymes using protein cages as precursors. RSC Adv 2023; 13:6760-6767. [PMID: 36860527 PMCID: PMC9969420 DOI: 10.1039/d2ra07222j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/10/2023] [Indexed: 03/02/2023] Open
Abstract
Metal-doped carbon dots represent a new class of promising nanomaterials with enzyme-like activity, whose properties such as fluorescence properties and enzyme-like activity are determined by the precursors and the conditions used to prepare them. Nowadays, the synthesis of carbon dots using naturally occurring precursors has attracted increasing attention. Here, using metal-loaded horse spleen ferritin as a precursor, we report a facile one-pot hydrothermal strategy to synthesise metal-doped fluorescent carbon dots with enzyme-like activity. The as-prepared metal-doped carbon dots exhibit high water solubility, uniform size distribution, and good fluorescence. In particular, the Fe-doped carbon dots exhibit prominent oxidoreductase catalytic activities, including peroxidase-like, oxidase-like, catalase-like, and superoxide dismutase-like activities. This study provides a green synthetic strategy for developing metal-doped carbon dots with enzymatic catalytic activity.
Collapse
Affiliation(s)
- Yanfang Shen
- Department of Nuclear Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University Zhuhai City Guangdong Province 519000 China
| | - Ruofei Zhang
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences Beijing 100101 China
| | - Ying Wang
- Department of Nuclear Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University Zhuhai City Guangdong Province 519000 China
| |
Collapse
|
28
|
Protein encapsulation of nanocatalysts: A feasible approach to facilitate catalytic theranostics. Adv Drug Deliv Rev 2023; 192:114648. [PMID: 36513163 DOI: 10.1016/j.addr.2022.114648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/14/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
Enzyme-mimicking nanocatalysts, also termed nanozymes, have attracted much attention in recent years. They are considered potential alternatives to natural enzymes due to their multiple catalytic activities and high stability. However, concerns regarding the colloidal stability, catalytic specificity, efficiency and biosafety of nanomaterials in biomedical applications still need to be addressed. Proteins are biodegradable macromolecules that exhibit superior biocompatibility and inherent bioactivities; hence, the protein modification of nanocatalysts is expected to improve their bioavailability to match clinical needs. The diversity of amino acid residues in proteins provides abundant functional groups for the conjugation or encapsulation of nanocatalysts. Moreover, protein encapsulation can not only improve the overall performance of nanocatalysts in biological systems, but also bestow materials with new features, such as targeting and retention in pathological sites. This review aims to report the recent developments and perspectives of protein-encapsulated catalysts in their functional improvements, modification methods and applications in biomedicine.
Collapse
|
29
|
Xu G, Du X, Wang W, Qu Y, Liu X, Zhao M, Li W, Li YQ. Plasmonic Nanozymes: Leveraging Localized Surface Plasmon Resonance to Boost the Enzyme-Mimicking Activity of Nanomaterials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204131. [PMID: 36161698 DOI: 10.1002/smll.202204131] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/25/2022] [Indexed: 06/16/2023]
Abstract
Nanozymes, a type of nanomaterials that function similarly to natural enzymes, receive extensive attention in biomedical fields. However, the widespread applications of nanozymes are greatly plagued by their unsatisfactory enzyme-mimicking activity. Localized surface plasmon resonance (LSPR), a nanoscale physical phenomenon described as the collective oscillation of surface free electrons in plasmonic nanoparticles under light irradiation, offers a robust universal paradigm to boost the catalytic performance of nanozymes. Plasmonic nanozymes (PNzymes) with elevated enzyme-mimicking activity by leveraging LSPR, emerge and provide unprecedented opportunities for biocatalysis. In this review, the physical mechanisms behind PNzymes are thoroughly revealed including near-field enhancement, hot carriers, and the photothermal effect. The rational design and applications of PNzymes in biosensing, cancer therapy, and bacterial infections elimination are systematically introduced. Current challenges and further perspectives of PNzymes are also summarized and discussed to stimulate their clinical translation. It is hoped that this review can attract more researchers to further advance the promising field of PNzymes and open up a new avenue for optimizing the enzyme-mimicking activity of nanozymes to create superior nanocatalysts for biomedical applications.
Collapse
Affiliation(s)
- Guopeng Xu
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan, 250100, China
| | - Xuancheng Du
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan, 250100, China
| | - Weijie Wang
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan, 250100, China
| | - Yuanyuan Qu
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan, 250100, China
| | - Xiangdong Liu
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan, 250100, China
| | - Mingwen Zhao
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan, 250100, China
| | - Weifeng Li
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan, 250100, China
| | - Yong-Qiang Li
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan, 250100, China
- Suzhou Research Institute, Shandong University, Suzhou, 215123, China
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, China
| |
Collapse
|
30
|
Mou X, Wu Q, Zhang Z, Liu Y, Zhang J, Zhang C, Chen X, Fan K, Liu H. Nanozymes for Regenerative Medicine. SMALL METHODS 2022; 6:e2200997. [PMID: 36202750 DOI: 10.1002/smtd.202200997] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/09/2022] [Indexed: 06/16/2023]
Abstract
Nanozymes refer to nanomaterials that catalyze enzyme substrates into products under relevant physiological conditions following enzyme kinetics. Compared to natural enzymes, nanozymes possess the characteristics of higher stability, easier preparation, and lower cost. Importantly, nanozymes possess the magnetic, fluorescent, and electrical properties of nanomaterials, making them promising replacements for natural enzymes in industrial, biological, and medical fields. On account of the rapid development of nanozymes recently, their application potentials in regeneration medicine are gradually being explored. To highlight the achievements in the regeneration medicine field, this review summarizes the catalytic mechanism of four types of representative nanozymes. Then, the strategies to improve the biocompatibility of nanozymes are discussed. Importantly, this review covers the recent advances in nanozymes in tissue regeneration medicine including wound healing, nerve defect repair, bone regeneration, and cardiovascular disease treatment. In addition, challenges and prospects of nanozyme researches in regeneration medicine are summarized.
Collapse
Affiliation(s)
- Xiaozhou Mou
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, China
- Clinical Research Institute, Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, China
| | - Qingyuan Wu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Zheao Zhang
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, P. R. China
| | - Yunhang Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Jungang Zhang
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, China
| | - Chengwu Zhang
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, China
| | - Xiaoyi Chen
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, China
- Clinical Research Institute, Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, China
| | - Kelong Fan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, P. R. China
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Huiyu Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
31
|
Wu J, Wei Y, Lan J, Hu X, Gao F, Zhang X, Gao Z, Liu Q, Sun Z, Chen R, Zhao H, Fan K, Yan X, Zhuang J, Huang X. Screening of Protein-Based Ultrasmall Nanozymes for Building Cell-Mimicking Catalytic Vesicles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202145. [PMID: 36026572 DOI: 10.1002/smll.202202145] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Enzymes are an important component for bottom-up building of synthetic/artificial cells. Nanozymes are nanomaterials with intrinsic enzyme-like properties, however, the construction of synthetic cells using nanozymes is difficult owing to their high surface energy or large size. Herein, the authors show a protein-based general platform that biomimetically integrates various ultrasmall metal nanozymes into protein shells. Specifically, eight metal-based ultrasmall nano-particles/clusters are in situ incorporated into ferritin nanocages that are self-assembled by 24 subunits of ferritin heavy chain. As a nanozyme generator, such a platform is suitable for screening the desired enzyme-like activities, including peroxidase (POD), oxidase (OXD), catalase (CAT) and superoxide dismutase (SOD). After screening, it is found that Ru intrinsically possesses the highest POD-like and CAT-like activities, while Mn and Pt show the highest OXD-like and SOD-like activities, respectively. Additionally, the inducers/inhibitors of various nanozymes are screened from more than 50 compounds to improve or inhibit their enzyme-like activities. Based on the screened nanozymes and their inhibitors, a proof-of-conceptually constructs cell-mimicking catalytic vesicles to mimic or modulate the events of redox homeostasis in living cells. This study offers a type of artificial metalloenzyme based on nanotechnology and shows a choice for bottom-up enzyme-based synthetic cell systems in a fully synthetic manner.
Collapse
Affiliation(s)
- Jin Wu
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
- Joint Laboratory of Nanozymes, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yonghua Wei
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
- Joint Laboratory of Nanozymes, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jingping Lan
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
- Joint Laboratory of Nanozymes, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xueyan Hu
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
| | - Fangli Gao
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
| | - Xiangyun Zhang
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
| | - Zhanxia Gao
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Qiqi Liu
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
| | - Zhiyuan Sun
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
| | - Rui Chen
- CAS Engineering Laboratory for Nanozymes, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hanqing Zhao
- School of Material Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Kelong Fan
- CAS Engineering Laboratory for Nanozymes, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiyun Yan
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
- Joint Laboratory of Nanozymes, College of Life Sciences, Nankai University, Tianjin, 300071, China
- CAS Engineering Laboratory for Nanozymes, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jie Zhuang
- Joint Laboratory of Nanozymes, College of Life Sciences, Nankai University, Tianjin, 300071, China
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Xinglu Huang
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
- Joint Laboratory of Nanozymes, College of Life Sciences, Nankai University, Tianjin, 300071, China
| |
Collapse
|
32
|
Yao L, Zhao MM, Luo QW, Zhang YC, Liu TT, Yang Z, Liao M, Tu P, Zeng KW. Carbon Quantum Dots-Based Nanozyme from Coffee Induces Cancer Cell Ferroptosis to Activate Antitumor Immunity. ACS NANO 2022; 16:9228-9239. [PMID: 35622408 DOI: 10.1021/acsnano.2c01619] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Carbon quantum dots (CQDs) offer huge potential due to their enzymatic properties as compared to natural enzymes. Thus, discovery of CQDs-based nanozymes with low toxicity from natural resources, especially daily food, implies a promising direction for exploring treatment strategies for human diseases. Here, we report a CQDs-based biocompatible nanozyme prepared from chlorogenic acid (ChA), a major bioactive natural product from coffee. We found that ChA CQDs exhibited obvious GSH oxidase-like activities and subsequently promoted cancer cell ferroptosis by perturbation of GPX4-catalyzed lipid repair systems. In vivo, ChA CQDs dramatically suppressed the tumor growth in HepG2-tumor-bearing mice with negligible side toxicity. Particularly, in hepatoma H22-bearing mice, ChA CQDs recruited massive tumor-infiltrating immune cells including T cells, NK cells, and macrophages, thereby converting "cold" to "hot" tumors for activating systemic antitumor immune responses. Taken together, our study suggests that natural product-derived CQDs from coffee can serve as biologically safe nanozymes for anticancer therapeutics and may aid the development of nanotechnology-based immunotherapeutic.
Collapse
Affiliation(s)
- Lu Yao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Mei-Mei Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Qian-Wei Luo
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yi-Chi Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ting-Ting Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zhuo Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Min Liao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Pengfei Tu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ke-Wu Zeng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
33
|
Zhu Y, Jin D, Liu M, Dai Y, Li L, Zheng X, Wang L, Shen A, Yu J, Wu S, Wu Y, Zhong K, Cheng J, Liu Y. Oxygen Self-Supply Engineering-Ferritin for the Relief of Hypoxia in Tumors and the Enhancement of Photodynamic Therapy Efficacy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200116. [PMID: 35212462 DOI: 10.1002/smll.202200116] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/30/2022] [Indexed: 06/14/2023]
Abstract
Hypoxia is a hallmark of the tumor microenvironment (TME) that promotes tumor development and metastasis. Photodynamic therapy (PDT) is a promising strategy in the treatment of tumors, but it is limited by the lack of oxygen in TME. In this work, an O2 self-supply PDT system is constructed by co-encapsulation of chlorin e6 (Ce6) and a MnO2 core in an engineered ferritin (Ftn), generating a nanozyme promoted PDT nanoformula (Ce6/Ftn@MnO2 ) for tumor therapy. Ce6/Ftn@MnO2 exhibits a uniform small size (15.5 nm) and high stability due to the inherent structure of Ftn. The fluorescence imaging and immunofluorescence analysis demonstrate the pronounced accumulation of Ce6/Ftn@MnO2 in the tumors of mice, and the treatment significantly decreases the expression of hypoxia-inducible factor (HIF)-1α. The Ce6/Ftn@MnO2 nanoplatform exerts a more potent anti-tumor efficacy with negligible damage to normal tissues compared to the treatment with free Ce6. Moreover, the weak acidity and the presence of H2 O2 in TME significantly enhances the r1 relativity of Ce6/Ftn@MnO2 , resulting in a prominent enhancement of MRI imaging in the tumor. This bio-mimic Ftn strategy not only improves the in vivo distribution and retention of Ce6, but also enhances the effectiveness and precision of PDT by TME modulation.
Collapse
Affiliation(s)
- Yang Zhu
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Department of Chemistry, University of Science and Technology of China, Hefei, 230001, China
| | - Duo Jin
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Department of Chemistry, University of Science and Technology of China, Hefei, 230001, China
| | - Manman Liu
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Department of Chemistry, University of Science and Technology of China, Hefei, 230001, China
| | - Yi Dai
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Department of Chemistry, University of Science and Technology of China, Hefei, 230001, China
| | - Li Li
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Department of Chemistry, University of Science and Technology of China, Hefei, 230001, China
| | - Xinwei Zheng
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, 230031, China
| | - Lulu Wang
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, 230031, China
| | - Aizong Shen
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Department of Chemistry, University of Science and Technology of China, Hefei, 230001, China
| | - Jianing Yu
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Department of Chemistry, University of Science and Technology of China, Hefei, 230001, China
| | - Sisi Wu
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Department of Chemistry, University of Science and Technology of China, Hefei, 230001, China
| | - Yun Wu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, 230031, China
| | - Kai Zhong
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, 230031, China
| | - Junjie Cheng
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Department of Chemistry, University of Science and Technology of China, Hefei, 230001, China
| | - Yangzhong Liu
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Department of Chemistry, University of Science and Technology of China, Hefei, 230001, China
| |
Collapse
|
34
|
Zhang X, Zhang Y, Zhang R, Jiang X, Midgley AC, Liu Q, Kang H, Wu J, Khalique A, Qian M, An D, Huang J, Ou L, Zhao Q, Zhuang J, Yan X, Kong D, Huang X. Biomimetic Design of Artificial Hybrid Nanocells for Boosted Vascular Regeneration in Ischemic Tissues. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110352. [PMID: 35107869 DOI: 10.1002/adma.202110352] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Restoration of sufficient blood supply for the treatment of ischemia remains a significant scientific and clinical challenge. Here, a cell-like nanoparticle delivery technology is introduced that is capable of recapitulating multiple cell functions for the spatiotemporal triggering of vascular regeneration. Specifically, a copper-containing protein is successfully prepared using a recombinant protein scaffold based on a de novo design strategy, which facilitates the timely release of nitric oxide and improved accumulation of particles within ischemic tissues. Through closely mimicking physiological cues, the authors demonstrate the benefits of bioactive factors secreted from hypoxic stem cells on promoting angiogenesis. Following this cell-mimicking manner, artificial hybrid nanosized cells (Hynocell) are constructed by integrating the hypoxic stem cell secretome into nanoparticles with surface coatings of cell membranes fused with copper-containing protein. The Hynocell, hybridized with different cell-derived components, provides synergistic effects on targeting ischemic tissues and promoting vascular regeneration in acute hindlimb ischemia and acute myocardial infarction models. This study offers new insights into the utilization of nanotechnology to potentiate the development of cell-free therapeutics.
Collapse
Affiliation(s)
- Xiangyun Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
| | - Yue Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
- Department of Physiology & Pathophysiology, Tianjin Medical University, Tianjin, 300070, China
| | - Ran Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
- Key Laboratory of Hebei Province for Molecular Biophysics, Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin, 300130, China
| | - Xinbang Jiang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
| | - Adam C Midgley
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
| | - Qiqi Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
| | - Helong Kang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
| | - Jin Wu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
| | - Anila Khalique
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
| | - Meng Qian
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
| | - Di An
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
| | - Jing Huang
- Department of Physiology & Pathophysiology, Tianjin Medical University, Tianjin, 300070, China
| | - Lailiang Ou
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
| | - Qiang Zhao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
| | - Jie Zhuang
- School of Medicine, Nankai University, Tianjin, 300071, China
- Joint Laboratory of Nanozymes, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xiyun Yan
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
- Joint Laboratory of Nanozymes, College of Life Sciences, Nankai University, Tianjin, 300071, China
- CAS Engineering Laboratory for Nanozymes, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Deling Kong
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
| | - Xinglu Huang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
- Joint Laboratory of Nanozymes, College of Life Sciences, Nankai University, Tianjin, 300071, China
| |
Collapse
|
35
|
Ming T, Jiang Q, Huo C, Huan H, Wu Y, Su C, Qiu X, Lu C, Zhou J, Li Y, Han J, Zhang Z, Su X. Structural Insights Into the Effects of Interactions With Iron and Copper Ions on Ferritin From the Blood Clam Tegillarca granosa. Front Mol Biosci 2022; 9:800008. [PMID: 35359603 PMCID: PMC8961696 DOI: 10.3389/fmolb.2022.800008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
In addition to its role as an iron storage protein, ferritin can function as a major detoxification component in the innate immune defense, and Cu2+ ions can also play crucial antibacterial roles in the blood clam, Tegillarca granosa. However, the mechanism of interaction between iron and copper in recombinant Tegillarca granosa ferritin (TgFer) remains to be investigated. In this study, we investigated the crystal structure of TgFer and examined the effects of Fe2+ and Cu2+ ions on the TgFer structure and catalytic activity. The crystal structure revealed that TgFer presented a typically 4–3–2 symmetry in a cage-like, spherical shell composed of 24 identical subunits, featuring highly conserved organization in both the ferroxidase center and the 3-fold channel. Structural and biochemical analyses indicated that the 4-fold channel of TgFer could be serviced as potential binding sites of metal ions. Cu2+ ions appear to bind preferentially with the 3-fold channel as well as ferroxidase site over Fe2+ ions, possibly inhibiting the ferroxidase activity of TgFer. Our results present a structural and functional characterization of TgFer, providing mechanistic insight into the interactions between TgFer and both Fe2+ and Cu2+ ions.
Collapse
Affiliation(s)
- Tinghong Ming
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- School of Marine Science, Ningbo University, Ningbo, China
| | - Qinqin Jiang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Chunheng Huo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- School of Marine Science, Ningbo University, Ningbo, China
| | - Hengshang Huan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Yan Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Chang Su
- Zhejiang Collaborative Innovation Center for High Value Utilization of Byproducts from Ethylene Project, Ningbo Polytechnic College, Ningbo, China
| | - Xiaoting Qiu
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Chenyang Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- School of Marine Science, Ningbo University, Ningbo, China
| | - Jun Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- School of Marine Science, Ningbo University, Ningbo, China
| | - Ye Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- School of Marine Science, Ningbo University, Ningbo, China
| | - Jiaojiao Han
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- School of Marine Science, Ningbo University, Ningbo, China
| | - Zhen Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- School of Marine Science, Ningbo University, Ningbo, China
| | - Xiurong Su
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- School of Marine Science, Ningbo University, Ningbo, China
- *Correspondence: Xiurong Su,
| |
Collapse
|
36
|
Zhao C, Sun S, Li S, Lv A, Chen Q, Jiang K, Jiang Z, Li Z, Wu A, Lin H. Programmed Stimuli-Responsive Carbon Dot-Nanogel Hybrids for Imaging-Guided Enhanced Tumor Phototherapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:10142-10153. [PMID: 35175020 DOI: 10.1021/acsami.2c00174] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
For harmonizing the contradiction of nanotheranostic agents between enhanced tumor accumulation and penetration, efficient cell internalization and fast elimination are key tactics for promoting their clinical applications. Herein, programmed stimuli-responsive poly(N-isopropylacrylamide)-carbon dot (PNIPAM-CD) hybrid nanogels are designed to address the abovementioned conflicts. The enlarged particle size of PNIPAM-CDs enables one to effectively improve their accumulation at tumor sites. Once the hybrid nanogels are docked in tumors and exposed to deep-red-light (660 nm) irradiation, heat and reactive oxygen species (ROS) are generated from the CDs, consequently activating photothermal therapy (PTT) and photodynamic therapy (PDT) effects and meanwhile inducing partial degradation of PNIPAM-CDs for deep tissue penetration. Further, enhanced cellular internalization of the functional components can be achieved owing to the pH-responsive charge reversal and temperature-dependent hydrophilic/hydrophobic conversion characteristics of PNIPAM-CDs. Finally, the overexpressed glutathione (GSH) in tumor cells would trigger further cleavage of the partially degraded hybrid nanogels, which is beneficial for their rapid clearance from the body. This work not only proposed a novel strategy to fabricate nanotheranostic agents using just a single functional component (i.e., the versatile CDs) to simplify the preparation process but also achieved effective delivery of agents into tumor cells by overcoming the multiple biological barriers to enhance therapeutic efficacy and decrease side effects.
Collapse
Affiliation(s)
- Chen Zhao
- International Joint Research Center for Photo-Responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
- Cixi Institute of Biomedical Engineering, Chinese Academy of Science (CAS), Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China
- School of Life Science, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China
| | - Shan Sun
- International Joint Research Center for Photo-Responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
- Cixi Institute of Biomedical Engineering, Chinese Academy of Science (CAS), Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China
| | - Si Li
- International Joint Research Center for Photo-Responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - A'man Lv
- Cixi Institute of Biomedical Engineering, Chinese Academy of Science (CAS), Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China
| | - Qiao Chen
- Cixi Institute of Biomedical Engineering, Chinese Academy of Science (CAS), Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China
| | - Kai Jiang
- Cixi Institute of Biomedical Engineering, Chinese Academy of Science (CAS), Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China
| | - Zhenqi Jiang
- School of Life Science, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China
| | - Zhongjun Li
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, Chinese Academy of Science (CAS), Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China
| | - Hengwei Lin
- International Joint Research Center for Photo-Responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
37
|
Xing Y, Ma J, Yao Q, Chen X, Zang J, Zhao G. The Change in the Structure and Functionality of Ferritin during the Production of Pea Seed Milk. Foods 2022; 11:557. [PMID: 35206035 PMCID: PMC8871097 DOI: 10.3390/foods11040557] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/05/2022] [Accepted: 02/10/2022] [Indexed: 02/01/2023] Open
Abstract
Understanding the effect of thermal treatment on the physical and chemical properties of protein and its mechanisms has important theoretical implications in food science. Pea seed ferritin (PSF) is an iron storage protein naturally occurring in pea seeds, which represents a promising iron supplement. However, how thermal processing affects the structure and function of PSF remains unknown. In this work, during the production of pea seed milk, we investigated the effect of thermal treatments at boiling temperature for two different times (5 and 10 min), respectively, on the structure and function of PSF. The results demonstrated that thermal treatment resulted in a pronounced change in the primary, secondary, and tertiary structure, iron content, and iron oxidation activity of PSF. However, the shell-like structure of PSF can be kept during the processing of pea seed milk. Interestingly, upon thermal treatment, both thermal-treated samples exhibit larger higher iron absorption rate by Caco-2 than untreated PSF at the same protein concentration. Such an investigation provides a better understanding of the relationship between the structure and function of food protein, as affected by thermal treatment.
Collapse
Affiliation(s)
| | | | | | | | | | - Guanghua Zhao
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.X.); (J.M.); (Q.Y.); (X.C.); (J.Z.)
| |
Collapse
|
38
|
Mao M, Guan X, Wu F, Ma L. CoO Nanozymes with Multiple Catalytic Activities Regulate Atopic Dermatitis. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:638. [PMID: 35214972 PMCID: PMC8878353 DOI: 10.3390/nano12040638] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/08/2022] [Accepted: 02/08/2022] [Indexed: 02/04/2023]
Abstract
Herein, we prepared CoO nanozymes with three types of enzyme catalytic activities for the first time, which have SOD-like, CAT-like, and POD-like catalytic activities. This is the first study to report the preparation of CoO nanoparticles with three types of enzyme catalytic activities by the one-pot method. By modifying the surface of CoO nanozymes with a carboxyl group, its biocompatibility enhanced, so it can be used in the field of life sciences. In vitro cytotoxicity and anti-H2O2-induced ROS experiments proved that CoO nanozymes can protect HaCaT cells against ROS and cytotoxicity induced by H2O2. In addition, an atopic dermatitis (AD) mouse model was established by topical application of MC903, which verified the anti-inflammatory effect of CoO nanozymes on the AD mouse model. Traditional drugs for the treatment of AD, such as dexamethasone, have significant side-effects. The side-effects include skin burns, telangiectasias, and even serious drug dependence. CoO nano-enzymes have a low cytotoxicity and its multiple enzyme-like catalytic activities can effectively protect cells and tissues in ROS environments, which proves that CoO nano-enzymes have high application potential in the field of anti-inflammation.
Collapse
Affiliation(s)
- Mao Mao
- School of Life Sciences, Tsinghua University, Beijing 100084, China; (M.M.); (X.G.); (F.W.)
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Xuejiao Guan
- School of Life Sciences, Tsinghua University, Beijing 100084, China; (M.M.); (X.G.); (F.W.)
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Feng Wu
- School of Life Sciences, Tsinghua University, Beijing 100084, China; (M.M.); (X.G.); (F.W.)
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Lan Ma
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518055, China
| |
Collapse
|
39
|
Ma M, Cao J, Fang A, Xu Z, Zhang T, Shi F. Detection and Difference Analysis of the Enzyme Activity of Colloidal Gold Nanoparticles With Negatively Charged Surfaces Prepared by Different Reducing Agents. Front Chem 2022; 9:812083. [PMID: 35096771 PMCID: PMC8795587 DOI: 10.3389/fchem.2021.812083] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/21/2021] [Indexed: 11/13/2022] Open
Abstract
Nanozymes are particles with diameters in the range of 1–100 nm, which has been widely studied due to their biological enzyme-like properties and stability that natural enzymes do not have. In this study, several reducing agents with different structures (catechol (Cc), hydroquinone (Hq), resorcinol (Rs), vitamin C (Vc), pyrogallic acid (Ga), sodium citrate (Sc), sodium malate (Sm), and sodium tartrate (St)) were used to prepare colloidal gold with a negative charge and similar particle size by controlling the temperature and pH. The affinity analysis of the substrate H2O2 and TMB showed that the order of activities of colloidal gold Nanozymes prepared by different reducing agents was Cc, Hq, Rs, Vc, Ga, Sc, Sm, St. It was also found that the enzyme activity of colloidal gold reduced by benzene rings is higher than that of the colloidal gold enzyme reduced by linear chains. Finally, we discussed the activity of the colloidal gold peroxidase based on the number and position of isomers and functional groups; and demonstrated that the nanozymes activity is affected by the surface activity of colloidal gold, the elimination of hydroxyl radicals and the TMB binding efficiency.
Collapse
|
40
|
Huang XL. What are the inorganic nanozymes? Artificial or inorganic enzymes! NEW J CHEM 2022. [DOI: 10.1039/d2nj02088b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The research on inorganic nanozymes remains very active since the first paper on the “intrinsic peroxidase-like properties of ferromagnetic nanoparticles” was published in Nature Nanotechnology in 2007. However, there is...
Collapse
|
41
|
Abstract
The ongoing SARS-CoV-2 pandemic poses a severe global threat to public health, as do influenza viruses and other coronaviruses. Here, we present chimpanzee adenovirus 68 (AdC68)-based vaccines designed to universally target coronaviruses and influenza. Our design is centered on an immunogen generated by fusing the SARS-CoV-2 receptor-binding domain (RBD) to the conserved stalk of H7N9 hemagglutinin (HA). Remarkably, the constructed vaccine effectively induced both SARS-CoV-2-targeting antibodies and anti-influenza antibodies in mice, consequently affording protection from lethal SARS-CoV-2 and H7N9 challenges as well as effective H3N2 control. We propose our AdC68-vectored coronavirus-influenza vaccine as a universal approach toward curbing respiratory virus-causing pandemics. IMPORTANCE The COVID-19 pandemic exemplifies the severe public health threats of respiratory virus infection and influenza A viruses. The currently envisioned strategy for the prevention of respiratory virus-causing diseases requires the comprehensive administration of vaccines tailored for individual viruses. Here, we present an alternative strategy by designing chimpanzee adenovirus 68-based vaccines which target both the SARS-CoV-2 receptor-binding-domain and the conserved stalk of influenza hemagglutinin. When tested in mice, this strategy attained potent neutralizing antibodies against wild-type SARS-CoV-2 and its emerging variants, enabling an effective protection against lethal SARS-CoV-2 challenge. Notably, it also provided complete protection from lethal H7N9 challenge and efficient control of H3N2-induced morbidity. Our study opens a new avenue to universally curb respiratory virus infection by vaccination.
Collapse
|
42
|
Tan X, Liu Y, Zang J, Zhang T, Zhao G. Hyperthermostability of prawn ferritin nanocage facilitates its application as a robust nanovehicle for nutraceuticals. Int J Biol Macromol 2021; 191:152-160. [PMID: 34547309 DOI: 10.1016/j.ijbiomac.2021.09.067] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/07/2021] [Accepted: 09/11/2021] [Indexed: 10/20/2022]
Abstract
The favorable physicochemical properties are essential for the application of protein-based nanovehicles in the field of biomaterials. Herein, we found that the thermal stability of Marsupenaeus japonicus ferritin (MjFer) (Tm = 109.1 ± 0.4 °C) is markedly higher than human H-chain ferritin (HuHF) (Tm = 87.7 ± 0.3 °C), although they share a high structural similarity. Multiple results indicated that the promoted thermal stability of MjFer is mainly derived from the salt bridges located at the C3 interface. Consequently, MjFer exhibits strong protective effects on encapsulated curcumin upon exposure at high temperatures. In contrast, most of the curcumin loaded HuHF composites precipitated rapidly under the same conditions. These findings elucidated the molecular mechanism of the hyperthermostability of MjFer and illustrated that MjFer could act as a robust insulation nanocarrier for bioactive compounds against various thermal treatments.
Collapse
Affiliation(s)
- Xiaoyi Tan
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing 100083, China; Research Center of Food Colloids and Delivery of Functionality, China Agricultural University, Beijing 100083, China
| | - Yu Liu
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing 100083, China
| | - Jiachen Zang
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing 100083, China
| | - Tuo Zhang
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing 100083, China; Research Center of Food Colloids and Delivery of Functionality, China Agricultural University, Beijing 100083, China.
| | - Guanghua Zhao
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing 100083, China
| |
Collapse
|
43
|
Nazarbek G, Kutzhanova A, Nurtay L, Mu C, Kazybay B, Li X, Ma C, Amin A, Xie Y. Nano-evolution and protein-based enzymatic evolution predicts novel types of natural product nanozymes of traditional Chinese medicine: cases of herbzymes of Taishan-Huangjing ( Rhizoma polygonati) and Goji ( Lycium chinense). NANOSCALE ADVANCES 2021; 3:6728-6738. [PMID: 36132653 PMCID: PMC9418865 DOI: 10.1039/d1na00475a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/09/2021] [Indexed: 06/01/2023]
Abstract
Nanozymes and natural product-derived herbzymes have been identified in different types of enzymes simulating the natural protein-based enzyme function. How to explore and predict enzyme types of novel nanozymes when synthesized remains elusive. An informed analysis might be useful for the prediction. Here, we applied a protein-evolution analysis method to predict novel types of enzymes with experimental validation. First, reported nanozymes were analyzed by chemical classification and nano-evolution. We found that nanozymes are predominantly classified as protein-based EC1 oxidoreductase. In comparison, we analyzed the evolution of protein-based natural enzymes by a phylogenetic tree and the most conserved enzymes were found to be peroxidase and lyase. Therefore, the natural products of Rhizoma polygonati and Goji herbs were analyzed to explore and test the potent new types of natural nanozymes/herbzymes using the simplicity simulation of natural protein enzyme evolution as they contain these conserved enzyme types. The experimental validation showed that the natural products from the total extract of nanoscale traditional Chinese medicine Huangjing (RP, Rhizoma polygonati) from Mount-Tai (Taishan) exhibit fructose-bisphosphate aldolase of lyase while nanoscale Goji (Lycium chinense) extract exhibits peroxidase activities. Thus, the bioinformatics analysis would provide an additional tool for the virtual discovery of natural product nanozymes.
Collapse
Affiliation(s)
- Guldan Nazarbek
- Biology Department, Nazarbayev University 53 Kabanbay Batyr Ave 010000 Nur-Sultan Kazakhstan +7 7172694686
| | - Aidana Kutzhanova
- Biology Department, Nazarbayev University 53 Kabanbay Batyr Ave 010000 Nur-Sultan Kazakhstan +7 7172694686
| | - Lazzat Nurtay
- Biology Department, Nazarbayev University 53 Kabanbay Batyr Ave 010000 Nur-Sultan Kazakhstan +7 7172694686
| | - Chenglin Mu
- Sino-German Joint Research Center on Agricultural Biology, State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University Tai'an 271018 China
| | - Bexultan Kazybay
- Biology Department, Nazarbayev University 53 Kabanbay Batyr Ave 010000 Nur-Sultan Kazakhstan +7 7172694686
| | - Xugang Li
- Sino-German Joint Research Center on Agricultural Biology, State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University Tai'an 271018 China
| | - Cuiping Ma
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology Qingdao 266042 China
| | - Amr Amin
- Biology Department, UAE University Al Ain 15551 UAE
- The College, The University of Chicago Chicago IL 60637 USA
| | - Yingqiu Xie
- Biology Department, Nazarbayev University 53 Kabanbay Batyr Ave 010000 Nur-Sultan Kazakhstan +7 7172694686
| |
Collapse
|
44
|
Liu M, Zhu Y, Jin D, Li L, Cheng J, Liu Y. Hemin-Caged Ferritin Acting as a Peroxidase-like Nanozyme for the Selective Detection of Tumor Cells. Inorg Chem 2021; 60:14515-14519. [PMID: 34505770 DOI: 10.1021/acs.inorgchem.1c01863] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nanozyme is a class of artificial materials that possess enzyme-like activities and can overcome limitations of natural enzymes. However, controllability of the active sites, uniformity of the particles, and dispersion in the physiological media are still challenging for nanomaterial-based nanozymes. In this work, a protein-based nanozyme has been constructed by the encapsulation of hemin into the nanocavity of a recombinant human heavy chain ferritin (Ftn), generating a monodispersed peroxidase-mimetic nanozyme (hemin@Ftn). Hemin@Ftn possesses high peroxidase catalytic activity and high tolerance to the harsh environmental conditions, such as high temperature and chemical denaturant. Remarkably, hemin@Ftn can act as a colorimetric probe for the detection of tumor cells because it can selectively catalyze reactions in tumor cells. This protein-based nanozyme bridges the gap between natural enzymes and nanomaterial-based nanozymes by the incorporation of a catalytically active prosthetic group into a highly stable Ftn.
Collapse
Affiliation(s)
- Manman Liu
- CAS Key Laboratory of Soft Mater Chemistry, Department of Chemistry, University of Science and Technology of China. Jinzhai Road, Hefei, Anhui 230026, China
| | - Yang Zhu
- CAS Key Laboratory of Soft Mater Chemistry, Department of Chemistry, University of Science and Technology of China. Jinzhai Road, Hefei, Anhui 230026, China
| | - Duo Jin
- CAS Key Laboratory of Soft Mater Chemistry, Department of Chemistry, University of Science and Technology of China. Jinzhai Road, Hefei, Anhui 230026, China
| | - Li Li
- CAS Key Laboratory of Soft Mater Chemistry, Department of Chemistry, University of Science and Technology of China. Jinzhai Road, Hefei, Anhui 230026, China
| | - Junjie Cheng
- CAS Key Laboratory of Soft Mater Chemistry, Department of Chemistry, University of Science and Technology of China. Jinzhai Road, Hefei, Anhui 230026, China
| | - Yangzhong Liu
- CAS Key Laboratory of Soft Mater Chemistry, Department of Chemistry, University of Science and Technology of China. Jinzhai Road, Hefei, Anhui 230026, China
| |
Collapse
|
45
|
Liu Q, Tian J, Liu J, Zhu M, Gao Z, Hu X, Midgley AC, Wu J, Wang X, Kong D, Zhuang J, Liu J, Yan X, Huang X. Modular Assembly of Tumor-Penetrating and Oligomeric Nanozyme Based on Intrinsically Self-Assembling Protein Nanocages. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2103128. [PMID: 34350648 DOI: 10.1002/adma.202103128] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/26/2021] [Indexed: 06/13/2023]
Abstract
Biomimetic design of nanomaterials with enzyme-like characteristics has emerged as a promising method for the generation of novel therapeutics. However, synthesis of nanomaterials while maintaining a high degree of control over both geometry and valency poses a prominent challenge. Herein, the authors introduce a nanomaterial-based synthetic biology strategy for accurate and quantitative tailoring of high-ordered nanostructures that uses a "bottom-up" hierarchical incorporation of protein building blocks. The assembled nano-oligomers possessed tunable protein motifs and multivalent binding domains, which facilitated prolonged blood circulation time, accumulation within tumor cells through direct targeting of cell receptors, and deep tumor tissue penetration via a transcytosis mechanism. Using these protein/protein nano-oligomers as scaffolds, the authors created a new series of artificial nano-scaled metalloenzymes (nanozymes) by the in situ incorporation of metal nanoclusters within the cavity of the protein nanocages. Nanozymes were capable of mimicking peroxidase-like activity and generated cytotoxic free radicals. Compared to nanozyme alone, the systemic delivery of oligomeric nanozymes demonstrated significantly enhanced therapeutic and anti-tumor benefits. This study shows a new insight into nanotechnology by taking advantage of synthetic biotechnology.
Collapse
Affiliation(s)
- Qiqi Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
| | - Jingwei Tian
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
| | - Jinjian Liu
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Mingsheng Zhu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
| | - Zhanxia Gao
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Xueyan Hu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
| | - Adam C Midgley
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
| | - Jin Wu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
- Joint Laboratory of Nanozymes, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xinyue Wang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
| | - Deling Kong
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
| | - Jie Zhuang
- School of Medicine, Nankai University, Tianjin, 300071, China
- Joint Laboratory of Nanozymes, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jianfeng Liu
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Xiyun Yan
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
- Joint Laboratory of Nanozymes, College of Life Sciences, Nankai University, Tianjin, 300071, China
- CAS Engineering Laboratory for Nanozymes, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xinglu Huang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
- Joint Laboratory of Nanozymes, College of Life Sciences, Nankai University, Tianjin, 300071, China
| |
Collapse
|
46
|
Peroxidase-mimicking nanozyme with surface-dispersed Pt atoms for the colorimetric lateral flow immunoassay of C-reactive protein. Mikrochim Acta 2021; 188:309. [PMID: 34453188 DOI: 10.1007/s00604-021-04968-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/30/2021] [Indexed: 02/06/2023]
Abstract
Platinum-containing nanozymes with peroxidase-mimicking activity (PMA) have found a broad application in bioanalytical methods and are potentially able to compete with enzymes as the labels. However, traditionally used methods for the synthesis of nanozymes result in only a small fraction of surface-exposed Pt atoms, which participate in catalysis. To overcome this limitation, we propose a new approach for the synthesis of nanozymes with the efficient dispersion of Pt atoms on particles' surfaces. The synthesis of nanozymes includes three steps: the synthesis of gold nanoparticles (Au NPs), the overgrowth of a silver layer over Au NPs (Au@Ag NPs, 6 types of NPs with different thicknesses of Ag shell), and the galvanic replacement of silver with PtCl62- leading to the formation of trimetallic Au@Ag-Pt NPs with uniformly deposited catalytic sites and high Pt-utilization efficiency. Au@Ag-Pt NPs (23 types of NPs with different concentrations of Pt) with various sizes, morphology, optical properties, and PMA were synthesized and comparatively tested. Using energy-dispersive spectroscopy mapping, we confirm the formation of core@shell Au@Ag NPs and dispersion of surface-exposed Pt. The selected Au@Ag-Pt NPs were conjugated with monoclonal antibodies and used as the colorimetric and catalytic labels in lateral flow immunoassay of the inflammation biomarker: C-reactive protein (CRP). The colorimetric signal enhancement was achieved by the oxidation of 3,3'-diaminobenzidine by H2O2 catalyzed by Au@Ag-Pt NPs directly on the test strip. The use of Au@Ag-Pt NPs as the catalytic label produces a 65-fold lower limit of CRP detection in serum (15 pg mL-1) compared with Au NPs and ensures the lowest limit of detection for equipment-free lateral flow immunoassays. The assay shows a high correlation with data of enzyme-linked immunosorbent assay (R2 = 0.986) and high recovery (83.7-116.2%) in serum and plasma. The assay retains all the benefits of lateral flow immunoassay as a point-of-care method.
Collapse
|
47
|
Wang Y, Zang J, Wang C, Zhang X, Zhao G. Structural Insights for the Stronger Ability of Shrimp Ferritin to Coordinate with Heavy Metal Ions as Compared to Human H-Chain Ferritin. Int J Mol Sci 2021; 22:ijms22157859. [PMID: 34360624 PMCID: PMC8346123 DOI: 10.3390/ijms22157859] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 11/16/2022] Open
Abstract
Although apoferritin has been widely utilized as a new class of natural protein nanovehicles for encapsulation and delivery of nutraceuticals, its ability to remove metal heavy ions has yet to be explored. In this study, for the first time, we demonstrated that the ferritin from kuruma prawns (Marsupenaeus japonicus), named MjF, has a pronouncedly larger ability to resist denaturation induced by Cd2+ and Hg2+ as compared to its analogue, human H-chain ferritin (HuHF), despite the fact that these two proteins share a high similarity in protein structure. Treatment of HuHF with Cd2+ or Hg2+ at a metal ion/protein shell ratio of 100/1 resulted in marked protein aggregation, while the MjF solution was kept constantly clear upon treatment with Cd2+ and Hg2+ at different protein shell/metal ion ratios (50/1, 100/1, 250/1, 500/1, 1000/1, and 2500/1). Structural comparison analyses in conjunction with the newly solved crystal structure of the complex of MjF plus Cd2+ or Hg2+ revealed that cysteine (Cys) is a major residue responsible for such binding, and that the large difference in the ability to resist denaturation induced by these two heavy metal ions between MjF and HuHF is mainly derived from the different positions of Cys residues in these two proteins; namely, Cys residues in HuHF are located on the outer surface, while Cys residues from MjF are buried within the protein shell. All of these findings raise the high possibility that prawn ferritin, as a food-derived protein, could be developed into a novel bio-template to remove heavy metal ions from contaminated food systems.
Collapse
Affiliation(s)
- Yingjie Wang
- College of Food Science & Nutritional Engineering, China Agricultural University, Key Laboratory of Functional Dairy, Ministry of Education, Beijing 100083, China; (Y.W.); (J.Z.)
| | - Jiachen Zang
- College of Food Science & Nutritional Engineering, China Agricultural University, Key Laboratory of Functional Dairy, Ministry of Education, Beijing 100083, China; (Y.W.); (J.Z.)
| | - Chengtao Wang
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University, No. 11 Fucheng Road, Haidian District, Beijing 100048, China;
| | - Xiuqing Zhang
- College of Food Science & Nutritional Engineering, China Agricultural University, Key Laboratory of Functional Dairy, Ministry of Education, Beijing 100083, China; (Y.W.); (J.Z.)
- Correspondence: (X.Z.); (G.Z.); Tel.: +86-10-62736710 (G.Z.); Fax: +86-10-62738737 (G.Z.)
| | - Guanghua Zhao
- College of Food Science & Nutritional Engineering, China Agricultural University, Key Laboratory of Functional Dairy, Ministry of Education, Beijing 100083, China; (Y.W.); (J.Z.)
- Correspondence: (X.Z.); (G.Z.); Tel.: +86-10-62736710 (G.Z.); Fax: +86-10-62738737 (G.Z.)
| |
Collapse
|
48
|
Ashrafi AM, Bytesnikova Z, Barek J, Richtera L, Adam V. A critical comparison of natural enzymes and nanozymes in biosensing and bioassays. Biosens Bioelectron 2021; 192:113494. [PMID: 34303137 DOI: 10.1016/j.bios.2021.113494] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 02/06/2023]
Abstract
Nanozymes (NZs) are nanomaterials that mimic enzyme-like catalytic activity. They have attracted substantial attention due to their inherent physicochemical properties for use as promising alternatives to natural enzymes (NEs) in a variety of research fields. Particularly, in biosensing and bioassays, NZs have opened a new horizon to eliminate the intrinsic limitations of NEs, including their denaturation at extreme pH values and temperatures, poor reusability and recyclability, and high production costs. Moreover, the catalytic activity of NZs can be modulated in the preparation step by following an appropriate synthesis strategy. This review aims to gain insight into the potential substitution of NEs by NZs in biosensing and bioassays while considering both the pros and cons.
Collapse
Affiliation(s)
- Amir M Ashrafi
- Department of Chemistry and Biochemistry, Mendel University in Brno, CZ-613 00, Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, 612 00, Brno, Czech Republic
| | - Zuzana Bytesnikova
- Department of Chemistry and Biochemistry, Mendel University in Brno, CZ-613 00, Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, 612 00, Brno, Czech Republic
| | - Jiri Barek
- Charles University, Faculty of Science, Department of Analytical Chemistry, UNESCO Laboratory of Environmental Electrochemistry, Albertov 6, CZ-12843, Prague 2, Czech Republic
| | - Lukas Richtera
- Department of Chemistry and Biochemistry, Mendel University in Brno, CZ-613 00, Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, 612 00, Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, CZ-613 00, Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, 612 00, Brno, Czech Republic.
| |
Collapse
|
49
|
Liu Q, Zhang A, Wang R, Zhang Q, Cui D. A Review on Metal- and Metal Oxide-Based Nanozymes: Properties, Mechanisms, and Applications. NANO-MICRO LETTERS 2021; 13:154. [PMID: 34241715 PMCID: PMC8271064 DOI: 10.1007/s40820-021-00674-8] [Citation(s) in RCA: 201] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 05/31/2021] [Indexed: 05/19/2023]
Abstract
Since the ferromagnetic (Fe3O4) nanoparticles were firstly reported to exert enzyme-like activity in 2007, extensive research progress in nanozymes has been made with deep investigation of diverse nanozymes and rapid development of related nanotechnologies. As promising alternatives for natural enzymes, nanozymes have broadened the way toward clinical medicine, food safety, environmental monitoring, and chemical production. The past decade has witnessed the rapid development of metal- and metal oxide-based nanozymes owing to their remarkable physicochemical properties in parallel with low cost, high stability, and easy storage. It is widely known that the deep study of catalytic activities and mechanism sheds significant influence on the applications of nanozymes. This review digs into the characteristics and intrinsic properties of metal- and metal oxide-based nanozymes, especially emphasizing their catalytic mechanism and recent applications in biological analysis, relieving inflammation, antibacterial, and cancer therapy. We also conclude the present challenges and provide insights into the future research of nanozymes constituted of metal and metal oxide nanomaterials.
Collapse
Affiliation(s)
- Qianwen Liu
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240, People's Republic of China
- Institute of Nano Biomedicine, National Engineering Research Center for Nanotechnology, 28 Jiangchuan Easternroad, Shanghai, 200241, People's Republic of China
| | - Amin Zhang
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240, People's Republic of China.
- Institute of Nano Biomedicine, National Engineering Research Center for Nanotechnology, 28 Jiangchuan Easternroad, Shanghai, 200241, People's Republic of China.
| | - Ruhao Wang
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240, People's Republic of China
- Institute of Nano Biomedicine, National Engineering Research Center for Nanotechnology, 28 Jiangchuan Easternroad, Shanghai, 200241, People's Republic of China
| | - Qian Zhang
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240, People's Republic of China
- Institute of Nano Biomedicine, National Engineering Research Center for Nanotechnology, 28 Jiangchuan Easternroad, Shanghai, 200241, People's Republic of China
| | - Daxiang Cui
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240, People's Republic of China.
- Institute of Nano Biomedicine, National Engineering Research Center for Nanotechnology, 28 Jiangchuan Easternroad, Shanghai, 200241, People's Republic of China.
| |
Collapse
|
50
|
Tailoring metal-organic frameworks-based nanozymes for bacterial theranostics. Biomaterials 2021; 275:120951. [PMID: 34119883 DOI: 10.1016/j.biomaterials.2021.120951] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 05/24/2021] [Accepted: 05/29/2021] [Indexed: 02/07/2023]
Abstract
Nanozymes are next-generation artificial enzymes having distinguished features such as cost-effective, enhanced surface area, and high stability. However, limited selectivity and moderate activity of nanozymes in the biochemical environment hindered their usage and encouraged researchers to seek alternative catalytic materials. Recently, metal-organic frameworks (MOFs) characterized by distinct crystalline porous structures with large surface area, tunable pores, and uniformly dispersed active sites emerged, that filled the gap between natural enzymes and nanozymes. Moreover, by selecting suitable metal ions and organic linkers, MOFs can be designed for effective bacterial theranostics. In this review, we briefly presented the design and fabrication of MOFs. Then, we demonstrated the applications of MOFs in bacterial theranostics and their safety considerations. Finally, we proposed the major obstacles and opportunities for further development in research on the interface of nanozymes and MOFs. We expect that MOFs based nanozymes with unique physicochemical and intrinsic enzyme-mimicking properties will gain broad interest in both fundamental research and biomedical applications.
Collapse
|