1
|
Shan J, Wang S, Yin X, Gong W, Liu S, Shi L, Zhuo J, Sun J, Zhang D, Cheng J, Wang J. Phase engineered amorphous-crystalline MIL-101(CuFe)@AuNPs with enhanced photothermal activity for sensitive immunochromatographic bimodal detection of streptomycin. Biosens Bioelectron 2025; 271:117002. [PMID: 39615222 DOI: 10.1016/j.bios.2024.117002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/17/2024] [Accepted: 11/25/2024] [Indexed: 01/06/2025]
Abstract
Phase engineering-assisted tuning of the plasma resonance properties of multifunctional nanocomposites provides an excellent opportunity to improve analytical performance. It is anticipated to break the dominating bottleneck of insufficient signal brightness in identifying imperceptible variation of the target concentration and further enhance the sensitive immunochromatographic assays (ICAs) analysis. Herein, by simply assembling isolated gold nanoparticles (AuNPs) on the surface of MIL-101(CuFe) (named MCF) with a tunable size and crystal phase, we synthesized amorphous-crystalline MCF@AuNPs nanocomposites as immuno signal tracers. For the first time, we utilized phase transformation to assist in realizing the effective regulation of the plasma resonance properties of MCF@AuNPs. It exhibits extraordinary colorimetric intensity, photothermal conversion efficiency (59.1%), stability, and dispersion, all of which facilitate the construction of sensitive and accurate bimodal complementary ICA. With a proof-of-concept for streptomycin, the MCF@AuNPs-ICA showed the limit of detection (LOD) at 0.14 ng mL-1 with remarkable university in different samples. This work demonstrates the importance of the rational design of phase-transformation-assisted tuning plasma resonance properties to improve analytical performance with terrific potential for point-of-care (POC) diagnostic applications.
Collapse
Affiliation(s)
- Jinrui Shan
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Shaochi Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Xuechi Yin
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Weijie Gong
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Sijie Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Longhua Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Junchen Zhuo
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Jing Sun
- Qinghai Provincial Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai, 810008, People's Republic of China
| | - Daohong Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Jie Cheng
- Institute of Quality Standards and Testing Technologies for Agro-Products, Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South St., Haidian District, Beijing, 100081, People's Republic of China.
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
| |
Collapse
|
2
|
Chen X, Liu Q, Zhang J, Tan L, Li J, Ke ML, Tang BZ, Li Y. Fully Inter-restricted Assembly of Aggregation-Induced Emission Luminogens and Polymers Enables Ultra-bright Nanoparticles for Sensitive Point-of-Care Diagnosis. ACS NANO 2025. [PMID: 39900513 DOI: 10.1021/acsnano.4c15372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
Fluorescent lateral flow immunoassay (LFIA) is recognized as a leading quantitative point-of-care (POC) platform for precise clinical diagnostics. However, conventional fluorescent nanoprobes are hampered by low quantum yield (QY), which constrain the sensitivity of fluorescent LFIA. Herein, we employed a butterfly aggregation-induced emission luminogen (AIEgen) and developed the fully inter-restricted assembly with a polyphenyl polymer poly(maleicanhydride-styrene) (PMPS) to create highly fluorescent homogeneous nanoparticles (ho-AIENPs) with QY over 91%. Compared to conventional fluorescent nanoparticles with a core-shell heterostructure (he-AIENPs), ho-AIENPs demonstrate a homogeneous structure with AIEgens uniformly dispersed in the PMPS matrix nanoparticles. The robust and broad intermolecular interaction (e.g., π-π interactions) between PMPS and AIEgens effectively restricts the molecular motion of AIEgens, producing a 30% increase in the QY of ho-AIENPs than he-AIENPs. Ho-AIENPs exhibit a 5-fold and 80-fold improved sensitivity compared to traditional he-AIENP-based fluorescent LFIAs and AuNP-based colorimetric LFIAs. Owing to the excellent optical properties of ho-AIENPs, we developed ho-AIENP-based multiplex LFIAs, which can simultaneously detect lung cancer biomarkers with exceptionally high sensitivity. In contrast to the conventional core-shell assembly and physical encapsulation strategies, the fully inter-restricted assembly strategy is promising, versatile, and efficient in enhancing the polymer matrix-derived fluorescent particles and sensitizing the immunoassays.
Collapse
Affiliation(s)
- Xirui Chen
- Innovation Research Center for AIE Pharmaceutical Biology,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, P. R. China
| | - Qi Liu
- Innovation Research Center for AIE Pharmaceutical Biology,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, P. R. China
| | - Jiangjiang Zhang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Linjie Tan
- Innovation Research Center for AIE Pharmaceutical Biology,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, P. R. China
| | - Jiangao Li
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou 350117, P. R. China
| | - Miao-La Ke
- Department of Blood Transfusion, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, the Chinese University of Hong Kong Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong 518172, P. R. China
| | - Ying Li
- Innovation Research Center for AIE Pharmaceutical Biology,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, P. R. China
| |
Collapse
|
3
|
Wang Y, Zhang Q, Huang M, Ai G, Liu X, Zhang Y, Li R, Wu J. A colorimetric and SERS-based LFIA for sensitive and simultaneous detection of three stroke biomarkers: An ultra-fast and sensitive point-of-care testing platform. Talanta 2025; 283:127166. [PMID: 39509900 DOI: 10.1016/j.talanta.2024.127166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/28/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Stroke ranks as the second leading cause of disability and mortality globally. Biomarker detection represents a promising avenue for predicting disease severity and prognosis. The expression levels of metalloproteinase-9 (MMP-9), neuron-specific enolase (NSE), and N-terminal pro-brain natriuretic peptide (NT-pro BNP) in blood correlate with stroke severity. Hence, monitoring these biomarkers is crucial for stroke diagnosis and management. Point-of-care testing (POCT) offers on-site diagnostic capabilities, with lateral flow immunoassay (LFIA) being the most widely used method currently. However, traditional LFIA sensitivity requires enhancement. This study introduces an ultra-sensitive surface-enhanced Raman scattering-based lateral flow immunoassay (SERS-based LFIA) strip for simultaneous detection of the three stroke biomarkers using SERS immune tags. Bimetallic core-shell structured SERS immune tags leverage the advantages of two metals, ensuring stability and enhancing Raman signals through plasmon resonance. This development of a POCT based on SERS-based LFIA strips offers rapid, sensitive, and multiplex detection of stroke biomarkers. The limits of detection (LODs) for MMP-9, NSE, and NT-pro BNP were 0.00020 ng mL-1, 0.00016 ng mL-1, and 0.00012 ng mL-1, respectively. Furthermore, enzyme-linked immunosorbent assay (ELISA) validated the accuracy of SERS-based LFIA. Clinical sample analysis demonstrated consistency between outcomes obtained by SERS-based LFIA and ELISA. Thus, SERS-based LFIA presents a novel POCT approach for stroke diagnosis.
Collapse
Affiliation(s)
- Yutong Wang
- Yan'an Key Laboratory of Green Chemical Energy, Key Laboratory of New Energy & New Functional Materials, National Center for Quality supervision and Inspection of Oil and Gas products (Yan'an), College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, 716000, China
| | - Qianchun Zhang
- School of Biology and Chemistry, Key Laboratory for Analytical Science of Food and Environment Pollution of Qianxinan, Xingyi Normal University for Nationalities, Xingyi, 562400, China
| | - Mengping Huang
- Yan'an Key Laboratory of Green Chemical Energy, Key Laboratory of New Energy & New Functional Materials, National Center for Quality supervision and Inspection of Oil and Gas products (Yan'an), College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, 716000, China
| | - Ganggang Ai
- Yan'an Key Laboratory of Green Chemical Energy, Key Laboratory of New Energy & New Functional Materials, National Center for Quality supervision and Inspection of Oil and Gas products (Yan'an), College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, 716000, China
| | - Xiaofeng Liu
- Guangxi Key Laboratory of Urban Water Environment, Baise University, Baise, 533000, China
| | - Yuqi Zhang
- Yan'an Key Laboratory of Green Chemical Energy, Key Laboratory of New Energy & New Functional Materials, National Center for Quality supervision and Inspection of Oil and Gas products (Yan'an), College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, 716000, China.
| | - Ran Li
- Yan'an Key Laboratory of Green Chemical Energy, Key Laboratory of New Energy & New Functional Materials, National Center for Quality supervision and Inspection of Oil and Gas products (Yan'an), College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, 716000, China.
| | - Jie Wu
- School of Public Health, Shenyang Medical College, Liaoning Medical Functional Food Professional Technology Innovation Center, Shenyang, 110034, China.
| |
Collapse
|
4
|
Li Y, Yao Y, Hua Q, Li J. Quantitative and rapid lateral flow immunoassay for cardiac troponin I using dendritic mesoporous silica nanoparticles and gold nanoparticles. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:698-707. [PMID: 39679475 DOI: 10.1039/d4ay02060j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Acute myocardial infarction (AMI) is considered to be one of the predominant causes of human death; therefore, a rapid and accurate diagnostic method for AMI is urgently required. In this work, a highly sensitive lateral flow immunoassay (LFIA) platform was designed and fabricated for the quantitative determination of cardiac troponin I (cTnI) using a scanner, a smartphone and a colloidal gold immunoassay analyzer. To overcome the limitation of low sensitivity of traditional colloidal gold-based LFIA, three-dimensionally assembled gold nanoparticles (AuNPs) within a dendritic mesoporous silica nanoparticle (DMSN) scaffold were fabricated as signal labels. The assembly structure greatly enhanced the light extinction ability of a single label for signal amplification. The DMSNs@Au-based LFIA strips exhibited excellent detection performance including a high sensitivity (LOD = 70 pg mL-1) and wide linear range (0.5-40 ng mL-1) and precision with good specificity. The successful determination of cTnI by the test strips provides the ability to diagnose AMI at an early stage and expands the diagnostic window of AMI, while also having advantages such as low cost and user-friendliness. Therefore, we believe that the test strips fabricated in this work have great potential to be applied for practical clinical applications for the early and accurate diagnosis of AMI.
Collapse
Affiliation(s)
- Yafei Li
- Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, China.
| | - Yu Yao
- Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, China.
| | - Qingqing Hua
- Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, China.
| | - Jishun Li
- Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, China.
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| |
Collapse
|
5
|
Ding M, Dou L, Bu T, Li Z, Mao Y, Dang M, Huang X, Song L, Wang Z, Zhang X. Nanometal surface energy transfer-based lateral flow immunoassay for T2 toxin detection. Biosens Bioelectron 2025; 267:116779. [PMID: 39288706 DOI: 10.1016/j.bios.2024.116779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/04/2024] [Accepted: 09/10/2024] [Indexed: 09/19/2024]
Abstract
In this study, we incorporated nanometal surface energy transfer (NSET) in lateral flow immunoassay (LFIA) and explored the relationship between fluorescence quenching efficiency and detection sensitivity to improve sensitivity of NSET-LFIA system. We developed nine gold nanoparticles (GNPs) with absorption spectrum in the range of 520-605 nm as acceptors and quantum dot microspheres (QDMs) with emission spectrum of 530, 570, and 610 nm as donors. By analyzing the overlap integral area, fluorescence quenching efficiency, and detection sensitivity of 27 donor-acceptor pairs, we observed that the larger overlap integral area led to higher fluorescence quenching efficiency and detection sensitivity. A maximum fluorescence quenching efficiency of 91.0% was obtained from the combination of GNPs at 605 nm and QDMs at 610 nm, achieving the highest detection sensitivity. We developed NSET-LFIA for the detection of T2 toxin with a limit of detection of 0.04 ng/mL, which was 10-times higher than that obtained via conventional GNP-LFIA. NSET-LFIA represents a versatile, ultrasensitive and valuable screening tool for small molecules in real samples.
Collapse
Affiliation(s)
- Mingyue Ding
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, 63 Nongye Road, Zhengzhou, Henan, 450002, China
| | - Leina Dou
- College of Veterinary Medicine, Northwest A&F University, 22 Xinong Road, Yangling, 712100, China
| | - Tong Bu
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, 63 Nongye Road, Zhengzhou, Henan, 450002, China
| | - Zizhe Li
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, 63 Nongye Road, Zhengzhou, Henan, 450002, China
| | - Yexuan Mao
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, 63 Nongye Road, Zhengzhou, Henan, 450002, China
| | - Meng Dang
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, 63 Nongye Road, Zhengzhou, Henan, 450002, China
| | - Xianqing Huang
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, 63 Nongye Road, Zhengzhou, Henan, 450002, China
| | - Lianjun Song
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, 63 Nongye Road, Zhengzhou, Henan, 450002, China
| | - Zhanhui Wang
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, 100193, Beijing, China
| | - Xiya Zhang
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, 63 Nongye Road, Zhengzhou, Henan, 450002, China.
| |
Collapse
|
6
|
Ma D, Wang Y, Zhang Q, Wang C, Du Y, Liang D, Shen J, Pan X, Sheng E, Zhu D. Hierarchical magneto-colorimetric labels for immediate lateral flow immunoassay of chlorothalonil residues. Talanta 2024; 280:126743. [PMID: 39178512 DOI: 10.1016/j.talanta.2024.126743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/01/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
Quantitative detection of pesticide residues in food and environmental samples using an improved lateral flow immunoassay (LFIA) is of considerable importance for real-time analysis. This paper proposes a highly sensitive LFIA platform based on a hierarchical magneto-colorimetric compact. This compact serves as both the target magnetic enrichment substrate and a photosensitive label. Initially, a large porous dendritic silica template is prepared and doped with superparamagnetic ferric oxide nanoparticles (Fe3O4 NPs) and colloidal gold nanoparticles (AuNPs) at high densities within its vertical channels. The sequential assembly of central-radial channels allow for the three-dimensional integration of these two components, enabling independent control of their discrete functions without mutual interference. Following alkyl organosilicon encapsulation and silica sealing, the composite spheres are then applied in LFIA to detect chlorothalonil residues. Fe3O4 NPs enhance the binding efficiency to target analytes, while AuNPs amplify the signal, leveraging their high loading densities and robust optical properties. The developed LFIA platform exhibited a detection limit of 0.34 ng/mL for chlorothalonil and a linear range of 0.0085-824 ng/mL. The recoveries varied between 85.1 % and 103.1 %, and the relative standard deviations were 1.25%-8.84 %. This LFIA approach demonstrates high sensitivity, specificity, reproducibility and flexible detection modes, making it highly suitable for the on-site monitoring of pesticide residues.
Collapse
Affiliation(s)
- Dandan Ma
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210002, PR China
| | - Yuting Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210002, PR China
| | - Qijia Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210002, PR China
| | - Chao Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210002, PR China
| | - Yixuan Du
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210002, PR China
| | - Dongbing Liang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210002, PR China
| | - Jiachen Shen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210002, PR China
| | - Xing Pan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210002, PR China
| | - Enze Sheng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210002, PR China.
| | - Dong Zhu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210002, PR China.
| |
Collapse
|
7
|
Duan H, Zhao L, Wang J, Wang X, Zheng L, Huang X. Integrating lateral flow device with controllable gold in situ growth for sensitive detection of staphylococcal enterotoxin A in milk. Anal Chim Acta 2024; 1329:343233. [PMID: 39396296 DOI: 10.1016/j.aca.2024.343233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/19/2024] [Accepted: 09/09/2024] [Indexed: 10/15/2024]
Abstract
Gold nanoparticle-based lateral flow immunoassays (AuNP-LFIA) are widely used for pathogen monitoring to prevent foodborne illness outbreaks. However, conventional AuNP-LFIA exhibits poor sensitivity and limited quantitative capacity due to the low colorimetric signal intensity of AuNPs. Herein, we introduced a low-background gold in situ growth (GISG) strategy by lowering the pH of the growth solution to weaken the reducibility of hydroxylamine, thereby enhancing the sensitivity of AuNP-LFIA. Additionally, we developed a universal and manufacturable lateral flow device to streamline the GISG process. We applied this device to detect staphylococcal enterotoxin A (SEA), an exotoxin produced by Staphylococcus aureus. Under optimal conditions, the proposed device demonstrated superior practicality and excellent sensitivity for SEA detection, achieving a detection limit of 0.061 ng/mL with the total detection time of 37 min, showing 311 times more sensitive than the unamplified AuNP-LFIA. Furthermore, SEA detection in milk samples showed a strong correlation (R2 = 0.8845) with results obtained from a conventional ELISA kit. Therefore, this promising LFIA device offers a novel strategy with high sensitivity and practicality for in-field detection of Staphylococcus aureus and can be easily adapted for screening other foodborne pathogens.
Collapse
Affiliation(s)
- Hong Duan
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology & Business University, Beijing, 100048, PR China
| | - Lirong Zhao
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology & Business University, Beijing, 100048, PR China
| | - Jiali Wang
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology & Business University, Beijing, 100048, PR China
| | - Xue Wang
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology & Business University, Beijing, 100048, PR China
| | - Lingyan Zheng
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology & Business University, Beijing, 100048, PR China.
| | - Xiaolin Huang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China.
| |
Collapse
|
8
|
Wang S, Zhu Y, Zhou Z, Luo Y, Huang Y, Liu Y, Xu T. Integrated Ultrasound-Enrichment and Machine Learning in Colorimetric Lateral Flow Assay for Accurate and Sensitive Clinical Alzheimer's Biomarker Diagnosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406196. [PMID: 39297315 PMCID: PMC11558096 DOI: 10.1002/advs.202406196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/05/2024] [Indexed: 11/14/2024]
Abstract
The colloidal gold nanoparticle (AuNP)-based colorimetric lateral flow assay (LFA) is one of the most promising analytical tools for point-of-care disease diagnosis. However, the low sensitivity and insufficient accuracy still limit its clinical application. In this work, a machine learning (ML)-optimized colorimetric LFA with ultrasound enrichment is developed to achieve the sensitive and accurate detection of tau proteins for early screening of Alzheimer's disease (AD). The LFA device is integrated with a portable ultrasonic actuator to rapidly enrich microparticles using ultrasound, which is essential for sample pre-enrichment to improve the sensitivity, followed by ML algorithms to classify and predict the enhanced colorimetric signals. The results of the undiluted serum sample testing show that the protocol enables efficient classification and accurate quantification of the AD biomarker tau protein concentration with an average classification accuracy of 98.11% and an average prediction accuracy of 99.99%, achieving a limit of detection (LOD) as sensitive as 10.30 pg mL-1. Further point-of-care testing (POCT) of human plasma samples demonstrates the potential use of LFA in clinical trials. Such a reliable lateral flow immunosensor with high precision and superb sensing performance is expected to put LFA in perspective as an AD clinical diagnostic platform.
Collapse
Affiliation(s)
- Shuqing Wang
- School of Biomedical EngineeringCollege of Chemistry and Environmental EngineeringThe Institute for Advanced Study (IAS)Shenzhen UniversityShenzhenGuangdong518060P. R. China
| | - Yan Zhu
- School of Biomedical EngineeringCollege of Chemistry and Environmental EngineeringThe Institute for Advanced Study (IAS)Shenzhen UniversityShenzhenGuangdong518060P. R. China
| | - Zhongzeng Zhou
- School of Biomedical EngineeringCollege of Chemistry and Environmental EngineeringThe Institute for Advanced Study (IAS)Shenzhen UniversityShenzhenGuangdong518060P. R. China
| | - Yong Luo
- Beijing Key Laboratory for Bioengineering and Sensing TechnologyUniversity of Science and Technology BeijingBeijing100083P. R. China
| | - Yan Huang
- Beijing Key Laboratory for Bioengineering and Sensing TechnologyUniversity of Science and Technology BeijingBeijing100083P. R. China
| | - Yibiao Liu
- Longgang District Central Hospital of ShenzhenShenzhenGuangdong518116P. R. China
| | - Tailin Xu
- School of Biomedical EngineeringCollege of Chemistry and Environmental EngineeringThe Institute for Advanced Study (IAS)Shenzhen UniversityShenzhenGuangdong518060P. R. China
| |
Collapse
|
9
|
Shen XA, Zhou H, Chen X, Wu J, Su Y, Huang X, Xiong Y. Janus plasmonic-aggregation induced emission nanobeads as high-performance colorimetric-fluorescent probe of immunochromatographic assay for the ultrasensitive detection of staphylococcal enterotoxin B in milk. Biosens Bioelectron 2024; 261:116458. [PMID: 38852321 DOI: 10.1016/j.bios.2024.116458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/11/2024]
Abstract
Herein, a colorimetric-fluorescent hybrid bifunctional nanobead with Janus structure (J-cf-HBN) was synthesized via one-pot microemulsification. Oleylamine-coated AuNPs and aggregation-induced emission luminogens (AIEgens) were suggested as building blocks to obtain high-performance colorimetric-fluorescent signals. The as-prepared J-cf-HBNs were used as a signal amplification probe to construct an immunochromatographic assay (J-cf-HBNs-ICA) platform for the ultrasensitive detection of staphylococcal enterotoxin B (SEB) in milk samples. Owing to the rational spatial distribution of AuNPs and AIEgens, the J-cf-HBNs present a highly retained photoluminescence and enhanced colorimetric signals. Combined with a pair of highly affinitive anti-SEB antibodies, the J-cf-HBN-ICA platform enabled the fast naked-eye visualization and fluorescent quantitative detection of SEB in various milk matrices. Given the advantages of the dual-mode high-performance J-cf-HBNs, the proposed strip achieved a high sensitivity for SEB qualitative determination with a visual limit of detection (LOD) of 1.56 ng mL-1 and exhibited ultrasensitivity for SEB quantitative detection with a LOD of 0.09 ng mL-1, which is 139-fold lower than that of ELISA using same antibodies. In conclusion, this work provides new insights into the construction of multimode immunochromatographic methods for food safety detection in the field.
Collapse
Affiliation(s)
- Xuan-Ang Shen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, PR China
| | - Haoxiang Zhou
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, PR China
| | - Xirui Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, PR China
| | - Jingyu Wu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, PR China
| | - Yu Su
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, PR China.
| | - Xiaolin Huang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, PR China; Jiangxi Medicine Academy of Nutrition and Health Management, Nanchang, 330006, PR China
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, PR China; Jiangxi Medicine Academy of Nutrition and Health Management, Nanchang, 330006, PR China; Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang, 330047, PR China.
| |
Collapse
|
10
|
Zhu Y, Chen L, Xu X, Ye W, Ni Z, Huo S, Hua J, Yun T, Yao H, Wang H, Zhang C. Development of a multienzyme isothermal and lateral flow dipstick combination assay for the rapid detection of goose astrovirus II. Front Cell Infect Microbiol 2024; 14:1424212. [PMID: 39165916 PMCID: PMC11333440 DOI: 10.3389/fcimb.2024.1424212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/17/2024] [Indexed: 08/22/2024] Open
Abstract
Introduction Goose astrovirus (GAstV) is a newly emerging pathogen that is currently widespread among geese, causing visceral gout and leading to substantial gosling mortalities, posing a severe threat to the waterfowl industry. GAstV II is the predominant epidemic strain, characterized by its high morbidity and mortality rate. Consequently, there is an urgent necessity to develop an effective diagnostic approach to control the dissemination of GAstV II, particularly in clinical farms with limited laboratory resources. Methods In this study, a novel multi-enzyme isothermal rapid amplification (MIRA) and lateral flow dipstick (LFD) combined assay was developed. Different primers designed specific targeting a highly conserved region within the viral RdRp gene for the detection of GAstV II. Primers optimized and MIRA-LFD assay analyzed its performance regarding limits of detection, specificity, and efficiency of detection. Results The developed MIRA amplification is conducted at a constant temperature and accomplished within 10 minutes. Subsequent naked-eye observation of the LFD strips merely takes 5 minutes. The established MIRA-LFD method exhibits high specificity, with no cross-reaction with other pathogens and attains a detection sensitivity of 1 copy/μl, which is consistent with the reverse transcription quantitative PCR (RT-qPCR) assay. Further evaluation with clinical samples indicates that the accuracy of this MIRA-LFD method correlates well with RT-qPCR for the detection of GAstV II. Conclusion In summary, the convenience, sensitivity, and rapidity of this newly developed detection method offer a significant advantage for on-site diagnosis of GAstV II.
Collapse
Affiliation(s)
- Yinchu Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Liu Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xin Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Weicheng Ye
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Zheng Ni
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Suxin Huo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jionggang Hua
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Tao Yun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Huochun Yao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Hongyu Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Cun Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
11
|
Shao S, Wang X, Sorial C, Sun X, Xia X. Sensitive Colorimetric Lateral Flow Assays Enabled by Platinum-Group Metal Nanoparticles with Peroxidase-Like Activities. Adv Healthc Mater 2024:e2401677. [PMID: 39108051 PMCID: PMC11799360 DOI: 10.1002/adhm.202401677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/07/2024] [Indexed: 02/07/2025]
Abstract
The last several decades have witnessed the success and popularity of colorimetric lateral flow assay (CLFA) in point-of-care testing. Driven by increasing demand, great efforts have been directed toward enhancing the detection sensitivity of CLFA. Recently, platinum-group metal nanoparticles (PGM NPs) with peroxidase-like activities have emerged as a type of promising colorimetric labels for enhancing the sensitivity of CLFA. By incorporating a simple and rapid post-treatment process, the PGM NP-based CLFAs are orders of magnitude more sensitive than conventional gold nanoparticle-based CLFAs. In this perspective, the study begins with introducing the design, synthesis, and characterization of PGM NPs with peroxidase-like activities. The current techniques for surface modification of PGM NPs are then discussed, followed by operation and optimization of PGM NP-based CLFAs. Afterward, opinions are provided on the social impact of PGM NP-based CLFAs. Lastly, this perspective is concluded with an outlook of future research directions in this emerging field, where the challenges and opportunities are discussed.
Collapse
Affiliation(s)
- Shikuan Shao
- Department of Chemistry, University of Central Florida, Orlando, Florida 32816, United States
| | - Xiaochuan Wang
- School of Social Work, College of Health Professions and Sciences, University of Central Florida, Orlando, Florida 32816, United States
| | - Caroline Sorial
- Department of Health Sciences, College of Health Professions and Sciences, University of Central Florida, Orlando, Florida 32816, United States
| | - Xiaohan Sun
- Department of Chemistry, University of Central Florida, Orlando, Florida 32816, United States
| | - Xiaohu Xia
- Department of Chemistry, University of Central Florida, Orlando, Florida 32816, United States
| |
Collapse
|
12
|
Xu X, Yue S, Tu K, Yuan B, Bi S, Yu J, Qiu H, Zhang H, Zhang L, Wu HF, Chen XJ, Zhao S, Zhang W, Zhang JN, Jiang LP, Zhang JR, Zhu JJ. Multi-Shell Nanourchin-Integrated Dual Mode Lateral Flow Immunoassay for Sensitive and Rapid Detection of Clinical Cardiac Myosin-Binding Protein C. Anal Chem 2024; 96:11853-11861. [PMID: 38989993 DOI: 10.1021/acs.analchem.4c01514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Cardiac myosin-binding protein C (cMyBP-C) is a novel cardiac marker of acute myocardial infarction (AMI) and acute cardiac injuries (ACI). Construction of point-of-care testing techniques capable of sensing cMyBP-C with high sensitivity and precision is urgently needed. Herein, we synthesized an Au@NGQDs@Au/Ag multi-shell nanoUrchins (MSNUs), and then applied it in a colorimetric/SERS dual-mode immunoassay for detection of cMyBP-C. The MSNUs displayed superior stability, colorimetric brightness, and SERS enhancement ability with an enhanced factor of 5.4 × 109, which were beneficial to improve the detection capability of test strips. The developed MSNU-based test strips can achieve an ultrasensitive immunochromatographic assay of cMyBP-C in both colorimetric and SERS modes with the limits of detection as low as 19.3 and 0.77 pg/mL, respectively. Strikingly, this strip was successfully applied to analyze actual plasma samples with significantly better sensitivity, negative predictive value, and accuracy than commercially available gold test strips. Notably, this method possessed a wide range of application scenarios via combining with a color recognizer application named Color Grab on the smartphone, which can meet various needs of different users. Overall, our MSNU-based test strip as a mobile health monitoring tool shows excellent sensitivity, reproducibility, and rapid detection of the cMyBP-C, which holds great potential for the early clinic diagnosis of AMI and ACI.
Collapse
Affiliation(s)
- Xuan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Shuzhen Yue
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Keke Tu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Baozhen Yuan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Sai Bi
- College of Chemistry and Chemical Engineering, Key Laboratory of Shandong Provincial Universities for Functional Molecules and Materials, Qingdao University, Qingdao 266071, P. R. China
| | - Jinjin Yu
- Nanjing Bottests Biotech CO., LTD, Nanjing 211112, P. R. China
| | - Hui Qiu
- Nanjing Bottests Biotech CO., LTD, Nanjing 211112, P. R. China
| | - Haotian Zhang
- Nanjing Bottests Biotech CO., LTD, Nanjing 211112, P. R. China
| | - Lei Zhang
- Nanjing Bottests Biotech CO., LTD, Nanjing 211112, P. R. China
| | - Heng-Fang Wu
- Institute of Cardiovascular Disease, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, P. R. China
| | - Xiang-Jian Chen
- Institute of Cardiovascular Disease, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, P. R. China
| | - Sheng Zhao
- Institute of Cardiovascular Disease, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, P. R. China
| | - Wei Zhang
- Institute of Cardiovascular Disease, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, P. R. China
| | - Ji-Nan Zhang
- Institute of Cardiovascular Disease, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, P. R. China
| | - Li-Ping Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Jian-Rong Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
13
|
Gao F, Ye S, Huang L, Gu Z. A nanoparticle-assisted signal-enhancement technique for lateral flow immunoassays. J Mater Chem B 2024; 12:6735-6756. [PMID: 38920348 DOI: 10.1039/d4tb00865k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Lateral flow immunoassay (LFIA), an affordable and rapid paper-based detection technology, is employed extensively in clinical diagnosis, environmental monitoring, and food safety analysis. The COVID-19 pandemic underscored the validity and adoption of LFIA in performing large-scale clinical and public health testing. The unprecedented demand for prompt diagnostic responses and advances in nanotechnology have fueled the rise of next-generation LFIA technologies. The utilization of nanoparticles to amplify signals represents an innovative approach aimed at augmenting LFIA sensitivity. This review probes the nanoparticle-assisted amplification strategies in LFIA applications to secure low detection limits and expedited response rates. Emphasis is placed on comprehending the correlation between the physicochemical properties of nanoparticles and LFIA performance. Lastly, we shed light on the challenges and opportunities in this prolific field.
Collapse
Affiliation(s)
- Fang Gao
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Shaonian Ye
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Lin Huang
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Zhengying Gu
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| |
Collapse
|
14
|
Yin L, Cai J, Ma L, You T, Arslan M, Jayan H, Zou X, Gong Y. Dual function of magnetic nanocomposites-based SERS lateral flow strip for simultaneous detection of aflatoxin B1 and zearalenone. Food Chem 2024; 446:138817. [PMID: 38401299 DOI: 10.1016/j.foodchem.2024.138817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 02/26/2024]
Abstract
Aflatoxin B1 (AFB1) and zearalenone (ZEN) are two mycotoxins that often co-occur in corn. A surface-enhanced Raman scattering-based lateral flow immunoassay (SERS-LFIA) that can simultaneously detect AFB1 and ZEN in corn samples was developed employing the core-interlayer-satellite magnetic nanocomposites (Fe3O4@PEI/AuMBA@AgMBA) as dual-functional SERS tags. Under the optimal conditions, the detection ranges of AFB1 and ZEN in corn samples were 0.1-10 μg/kg and 4-400 μg/kg, respectively. Moreover, the test results for two mycotoxins in contaminated corn samples employing the suggested SERS-LFIA was in line with those of the HPLC technique. In view of its satisfactory sensitivity, accuracy, precision and short testing time (20 min), the developed system has a promising application prospect in the on-site simultaneous detection of AFB1 and ZEN.
Collapse
Affiliation(s)
- Limei Yin
- International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China; China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Jianrong Cai
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Lixin Ma
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Tianyan You
- International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Muhammad Arslan
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Heera Jayan
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiaobo Zou
- China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yunyun Gong
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
15
|
Zhang J, Chai F, Li J, Wang S, Zhang S, Li F, Liang A, Luo A, Wang D, Jiang X. Weakly ionized gold nanoparticles amplify immunoassays for ultrasensitive point-of-care sensors. SCIENCE ADVANCES 2024; 10:eadn5698. [PMID: 38985882 PMCID: PMC11235179 DOI: 10.1126/sciadv.adn5698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 06/04/2024] [Indexed: 07/12/2024]
Abstract
Gold nanoparticle-based lateral flow immunoassays (AuNP LFIAs) are widely used point-of-care (POC) sensors for in vitro diagnostics. However, the sensitivity limitation of conventional AuNP LFIAs impedes the detection of trace biomarkers. Several studies have explored the size and shape factors of AuNPs and derivative nanohybrids, showing limited improvements or enhanced sensitivity at the cost of convenience and affordability. Here, we investigated surface chemistry on the sensitivity of AuNP LFIAs. By modifying surface ligands, a surface chemistry strategy involving weakly ionized AuNPs enables ultrasensitive naked-eye LFIAs (~100-fold enhanced sensitivity). We demonstrated how this surface chemistry-amplified immunoassay approach modulates nanointerfacial bindings to promote antibody adsorption and higher activity of adsorbed antibodies. This surface chemistry design eliminates complex nanosynthesis, auxiliary devices, or additional reagents while efficiently improving sensitivity with advantages: simplified fabrication process, excellent reproducibility and reliability, and ultrasensitivity toward various biomarkers. The surface chemistry using weakly ionized AuNPs represents a versatile approach for sensitizing POC sensors.
Collapse
Affiliation(s)
- Jiangjiang Zhang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
- Key Laboratory of Molecular Medicine and Biotherapy, the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Fengli Chai
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Jia’an Li
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Saijie Wang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Shuailong Zhang
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Fenggang Li
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Axin Liang
- Key Laboratory of Molecular Medicine and Biotherapy, the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Aiqin Luo
- Key Laboratory of Molecular Medicine and Biotherapy, the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Dou Wang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Xingyu Jiang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| |
Collapse
|
16
|
Wu Q, Yin X, Cheng Y, Wang C, Ma J, Zhang Q, Liu H, Youssef A, Wang J, Zhang D. Layer-By-Layer Designed Spark-Type AuCuPt Alloy with Robust Broadband Absorption to Enhance Sensitivity in Flexible Detection of Estriol by a Lateral Flow Immunoassay. Anal Chem 2024; 96:10714-10723. [PMID: 38913030 DOI: 10.1021/acs.analchem.4c01634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Excessive intake of estrogen poses significant health risks to the human body; hence, there is a necessity to develop rapid detection methods to monitor its levels of addition. Gold nanoparticles (AuNPs), commonly utilized as colorimetric signal labels, find extensive application in lateral flow immunoassay (LFIA). However, the detection sensitivity of traditional AuNPs-LFIA is typically constrained by low molar extinction coefficients and reliance on a single signal. Herein, in this work, unique spark-type AuCuPt nanoflowers modified with tannic acid (AuCuPt@TA) were precisely designed by reasonable layer-by-layer element composition and green modification. The obtained AuCuPt displays robust broadband absorption spanning the visible to near-infrared spectrum, showcasing a notable molar extinction coefficient of 2.38 × 1012 M-1 cm-1 and a photothermal conversion efficiency of 48.5%. Based on this, selecting estriol (E3) as a model analyte, colorimetric/photothermal dual-signal LFIA (CLFIA and PLFIA) was developed. Limits of detection (LOD) of the CLFIA and PLFIA were achieved at 0.033 ng mL-1 and 0.021 ng mL-1, respectively, which represent a 9.3- and 14.6-fold improvement compared to the visual LOD of AuNPs-LFIA. Moreover, the application feasibility of the immunoassay was further evaluated in the milk and pork with satisfactory recoveries ranging from 86.21% to 117.91%. Thus, this work has enhanced the performance of LFIA for E3 detection and exhibited enormous potential for other sensing platform construction.
Collapse
Affiliation(s)
- Qiaoying Wu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xuechi Yin
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuanyuan Cheng
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chaoying Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiaqi Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qingzhe Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huihui Liu
- Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource and Environment Research Institute, No. 216 Changjiang Road, Economic and Technological Development Zone, Shandong, Yantai 264006, China
| | - Ahmed Youssef
- Environmental Engineering Program, University of Science and Technology, Zewail City, Giza 12578, Egypt
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Daohong Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
- College of Food Engineering, Ludong University, Shandong, Yantai 264025, China
| |
Collapse
|
17
|
Gong H, Gai S, Tao Y, Du Y, Wang Q, Ansari AA, Ding H, Wang Q, Yang P. Colorimetric and Photothermal Dual-Modal Switching Lateral Flow Immunoassay Based on a Forced Dispersion Prussian Blue Nanocomposite for the Sensitive Detection of Prostate-Specific Antigen. Anal Chem 2024; 96:8665-8673. [PMID: 38722711 DOI: 10.1021/acs.analchem.4c00862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Prostate-specific antigen (PSA) is a key marker for a prostate cancer diagnosis. The low sensitivity of traditional lateral flow immunoassay (LFIA) methods makes them unsuitable for point-of-care testing. Herein, we designed a nanozyme by in situ growth of Prussian blue (PB) within the pores of dendritic mesoporous silica (DMSN). The PB was forcibly dispersed into the pores of DMSN, leading to an increase in exposed active sites. Consequently, the atom utilization is enhanced, resulting in superior peroxidase (POD)-like activity compared to that of cubic PB. Antibody-modified DMSN@PB nanozymes serve as immunological probes in an enzymatic-enhanced colorimetric and photothermal dual-signal LFIA for PSA detection. After systematic optimization, the LFIA based on DMSN@PB successfully achieves a 4-fold amplification of the colorimetric signal within 7 min through catalytic oxidation of the chromogenic substrate by POD-like activity. Moreover, DMSN@PB exhibits an excellent photothermal conversion ability under 808 nm laser irradiation. Accordingly, photothermal signals are introduced to improve the anti-interference ability and sensitivity of LFIA, exhibiting a wide linear range (1-40 ng mL-1) and a low PSA detection limit (0.202 ng mL-1), which satisfies the early detection level of prostate cancer. This research provides a more accurate and reliable visualization analysis methodology for the early diagnosis of prostate cancer.
Collapse
Affiliation(s)
- Haijiang Gong
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Shili Gai
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
- Yantai Research Institute, Harbin Engineering University, Yantai, 264000, P. R. China
| | - Yuelin Tao
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Yaqian Du
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Qingyu Wang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | | | - He Ding
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Qingqing Wang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
- Yantai Research Institute, Harbin Engineering University, Yantai, 264000, P. R. China
| |
Collapse
|
18
|
Wu Q, Xi J, Li L, Li X, Yang M, Wang L. "Cave Effect" Induces Self-Assembled Bimetallic Hollow Structure for Three-in-One Lateral Flow Immunoassay. NANO LETTERS 2024; 24:5993-6001. [PMID: 38655913 DOI: 10.1021/acs.nanolett.4c00543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Bimetallic hollow structures have attracted much attention due to their unique properties, but they still face the problems of nonuniform alloys and excessive etching leading to structural collapse. Here, uniform bimetallic hollow nanospheres are constructed by pore engineering and then highly loaded with hemin (Hemin@MOF). Interestingly, in the presence of polydopamine (PDA), the competitive coordination between anionic polymer (γ-PGA) and dimethylimidazole does not lead to the collapse of the external framework but self-assembly into a hollow structure. By constructing the Hemin@MOF immune platform and using E. coli O157:H7 as the detection object, we find that the visual detection limits can reach 10, 3, and 3 CFU/mL in colorimetric, photothermal, and catalytic modes, which is 4 orders of magnitude lower than the traditional gold standard. This study provides a new idea for the morphological modification of the metal-organic skeleton and multifunctional immunochromatography detection.
Collapse
Affiliation(s)
- Qiushuang Wu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jia Xi
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Lihua Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xin Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Mingran Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Li Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| |
Collapse
|
19
|
Huang J, Zu Y, Zhang L, Cui W. Progress in Procalcitonin Detection Based on Immunoassay. RESEARCH (WASHINGTON, D.C.) 2024; 7:0345. [PMID: 38711476 PMCID: PMC11070848 DOI: 10.34133/research.0345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 03/04/2024] [Indexed: 05/08/2024]
Abstract
Procalcitonin (PCT) serves as a crucial biomarker utilized in diverse clinical contexts, including sepsis diagnosis and emergency departments. Its applications extend to identifying pathogens, assessing infection severity, guiding drug administration, and implementing theranostic strategies. However, current clinical deployed methods cannot meet the needs for accurate or real-time quantitative monitoring of PCT. This review aims to introduce these emerging PCT immunoassay technologies, focusing on analyzing their advantages in improving detection performances, such as easy operation and high precision. The fundamental principles and characteristics of state-of-the-art methods are first introduced, including chemiluminescence, immunofluorescence, latex-enhanced turbidity, enzyme-linked immunosorbent, colloidal gold immunochromatography, and radioimmunoassay. Then, improved methods using new materials and new technologies are briefly described, for instance, the combination with responsive nanomaterials, Raman spectroscopy, and digital microfluidics. Finally, the detection performance parameters of these methods and the clinical importance of PCT detection are also discussed.
Collapse
Affiliation(s)
- Jiayue Huang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy,
Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yan Zu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health); Wenzhou Institute,
University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, P.R. China
| | - Lexiang Zhang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health); Wenzhou Institute,
University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, P.R. China
- Joint Centre of Translational Medicine,
the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, P.R. China
| | - Wenguo Cui
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy,
Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
- Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases,
Shanghai Institute of Traumatology and Orthopedics,Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, P.R. China
| |
Collapse
|
20
|
Mei X, Zhang G, Liu T, Hu H, Lai X, Chen W, Wang Y, Peng J, Lai W. Biomineralization-powered integrated immunoprobe and its application in Immunochromatographic assay. Biosens Bioelectron 2024; 248:115945. [PMID: 38150802 DOI: 10.1016/j.bios.2023.115945] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/07/2023] [Accepted: 12/19/2023] [Indexed: 12/29/2023]
Abstract
Immunochromatographic assay (ICA) has attracted widespread attention owing to its advantages of economy, simplicity, and rapidity. However, the synthesis of immunoprobes is still limited by complicated design ideas and multistep operations from preparing nanoparticles to conjugating monoclonal antibodies (mAb) onto nanoparticles. Inspired by the biomineralization of zeolitic imidazolate framework-8 (ZIF-8), we proposed a strategy for the rapid synthesis of an integrated immunoprobe (ZIF-8@QDs-mAb), achieving a one-step integration with strong fluorescent signal output capability and specific recognition ability. In addition, different fluorescent colors of ZIF-8@QDs-mAb were generated by doping red and green quantum dots (QDs) in various ratios. With a smart detection platform, the developed ZIF-8@QDs-mAb-based multiplex ICA (ZIF-8@QDs-mAb-mICA) achieved the on-site quantitative detection of enrofloxacin, sulfamethazine, and kanamycin in milk within 15 min, with the limit of detection (LOD) of 0.052, 0.186 and 0.216 ng mL-1, which were 5.69, 2.20 and 4.40 times higher than that of gold nanoparticles-based mICA, respectively. The quantitative detection of alpha-fetoprotein and human chorionic gonadotropin was also achieved with LOD of 0.516 ng mL-1 and 0.225 mIU mL-1, respectively, which verified the universality of the strategy. This work provides a novel idea for the design of an efficient integrated immunoprobe and has broad application prospects in ICA.
Collapse
Affiliation(s)
- Xi Mei
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, China
| | - Gan Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, China
| | - Tingting Liu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, China
| | - Hong Hu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Xiaocui Lai
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, China
| | - Wenyao Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, China
| | - Yumeng Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, China
| | - Juan Peng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, China
| | - Weihua Lai
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, China.
| |
Collapse
|
21
|
Gao S, Niu L, Zhou R, Wang C, Zheng X, Zhang D, Huang X, Guo Z, Zou X. Significance of the antibody orientation for the lateral flow immunoassays: A mini-review. Int J Biol Macromol 2024; 257:128621. [PMID: 38070797 DOI: 10.1016/j.ijbiomac.2023.128621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/01/2023] [Accepted: 12/02/2023] [Indexed: 01/26/2024]
Abstract
Lateral flow immunoassays (LFIAs) are well-established and broadly commercialized tools in the field of point-of-care testing due to their simplicity, rapidity, cost-effectiveness, and low requirements for users and equipment. However, the insensitivity and the possibility of producing inaccurate results associated with conventional LFIAs have impeded their wide-ranging implementation, especially for monitoring ultra-trace level of analytes. Moreover, the heterogeneous distribution of amino acids on the surface of antibody (Ab) results in a lack of precise control over their orientation, which ultimately leads to unsatisfactory detection performance. To address those concerns, herein we provide an overview of the emerging efforts to prepare well-established LFIAs from the perspective of orientation manipulation of immobilized Abs on the nanoprobes or membranes. The preparation of excellent nanoprobes with Abs being oriented immobilized, consisting of the nanoprobe types, Ab types, and their conjugation chemistries, are reviewed. Followed by the introduction of efforts highlight the importance of directionally immobilized Ab on the membrane. The effects of Ab orientation on the analytical performance of LFIA platforms in terms of sensitivity, specificity, rapidity, reliability, cost-effectiveness, and stability are also summarized. Finally, the future development and challenges of Ab-oriented immobilization-assisted LFIAs are also discussed.
Collapse
Affiliation(s)
- Shipeng Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Lidan Niu
- Key Laboratory of Condiment Supervision Technology for State Market Regulation, Chongqing Institute for Food and Drug Control, Chongqing 401121, China
| | - Ruiyun Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Chen Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xueyun Zheng
- Key Laboratory of Fermentation Engineering (Ministry of Education), School of Biological Engineering and Food, Hubei University of Technology, Wuhan 430068, China
| | - Di Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xianliang Huang
- Key Laboratory of Condiment Supervision Technology for State Market Regulation, Chongqing Institute for Food and Drug Control, Chongqing 401121, China
| | - Zhiming Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing (Jiangsu University), Jiangsu Education Department, Zhenjiang 212013, China.
| | - Xiaobo Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; China Light Industry Key Laboratory of Food Intelligent Detection & Processing, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
22
|
Fan L, Yan W, Chen Q, Tan F, Tang Y, Han H, Yu R, Xie N, Gao S, Chen W, Chen Z, Zhang P. One-Component Dual-Readout Aggregation-Induced Emission Nanobeads for Qualitative and Quantitative Detection of C-Reactive Protein at the Point of Care. Anal Chem 2024; 96:401-408. [PMID: 38134291 DOI: 10.1021/acs.analchem.3c04441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
Fluorescent lateral flow immunoassay (LFA) systems are versatile tools for sensitive and quantitative detection of disease markers at the point of care. However, traditional fluorescent nanoparticle-based lateral flow immunoassays are not visible under room light, necessitate an additional fluorescent reader, and lack flexibility for different application scenarios. Herein, we report a dual-readout LFA system for the rapid and sensitive detection of C-reactive protein (CRP) in clinical samples. The system relied on the aggregation-induced emission nanobeads (AIENBs) encapsulated with red AIE luminogen, which possesses both highly fluorescent and colorimetric properties. The AIENB-based LFA in the naked-eye mode was able to qualitatively detect CRP levels as low as 8.0 mg/L, while in the fluorescent mode, it was able to quantitatively measure high-sensitivity CRP (hs-CRP) with a limit of detection of 0.16 mg/L. The AIENB-based LFA system also showed a good correlation with the clinically used immunoturbidimetric method for CRP and hs-CRP detection in human plasma. This dual-modal AIENB-based LFA system offers the convenience of colorimetric testing and highly sensitive and quantitative detection of disease biomarkers and medical diagnostics in various scenarios.
Collapse
Affiliation(s)
- Lingzhi Fan
- Department of Central Laboratory, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China
| | - Wannian Yan
- Department of Central Laboratory, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China
| | - Qilong Chen
- Department of Central Laboratory, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China
| | - Fei Tan
- Department of Central Laboratory, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China
| | - Yijie Tang
- Department of Central Laboratory, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China
| | - Huanxing Han
- Department of Pharmacy, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Rujia Yu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Ni Xie
- AUISET Biotechnology Co., Ltd., Kwai Chung, New Territories, Hong Kong S.A.R. 000000, China
- AIEgen Biotech Co., Ltd., 28 Yee Wo Street, Causeway Bay, Hong Kong S.A.R. 000000, China
| | - Shouhong Gao
- Department of Pharmacy, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Wansheng Chen
- Department of Pharmacy, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhongjian Chen
- Department of Central Laboratory, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China
- Shanghai Engineering Research Center for External Chinese Medicine, Shanghai 200433, China
| | - Pengfei Zhang
- Department of Central Laboratory, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China
| |
Collapse
|
23
|
Xu K, Zhang S, Zhuang X, Zhang G, Tang Y, Pang H. Recent progress of MOF-functionalized nanocomposites: From structure to properties. Adv Colloid Interface Sci 2024; 323:103050. [PMID: 38086152 DOI: 10.1016/j.cis.2023.103050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/29/2023] [Accepted: 11/06/2023] [Indexed: 01/13/2024]
Abstract
Metal-organic frameworks (MOFs) are novel crystalline porous materials assembled from metal ions and organic ligands. The adaptability of their design and the fine-tuning of the pore structures make them stand out in porous materials. Furthermore, by integrating MOF guest functional materials with other hosts, the novel composites have synergistic benefits in numerous fields such as batteries, supercapacitors, catalysis, gas storage and separation, sensors, and drug delivery. This article starts by examining the structural relationship between the host and guest materials, providing a comprehensive overview of the research advancements in various types of MOF-functionalized composites reported to date. The review focuses specifically on four types of spatial structures, including MOFs being (1) embedded in nanopores, (2) immobilized on surface, (3) coated as shells and (4) assembled into hybrids. In addition, specific design ideas for these four MOF-based composites are presented. Some of them involve in situ synthesis method, solvothermal method, etc. The specific properties and applications of these materials are also mentioned. Finally, a brief summary of the advantages of these four types of MOF composites is given. Hopefully, this article will help researchers in the design of MOF composite structures.
Collapse
Affiliation(s)
- Kun Xu
- School of Chemistry and Chemical Engineering, Testing Center, Yangzhou University, Yangzhou 225009, PR China
| | - Songtao Zhang
- School of Chemistry and Chemical Engineering, Testing Center, Yangzhou University, Yangzhou 225009, PR China
| | - Xiaoli Zhuang
- School of Chemistry and Chemical Engineering, Testing Center, Yangzhou University, Yangzhou 225009, PR China
| | - Guangxun Zhang
- School of Chemistry and Chemical Engineering, Testing Center, Yangzhou University, Yangzhou 225009, PR China
| | - Yijian Tang
- School of Chemistry and Chemical Engineering, Testing Center, Yangzhou University, Yangzhou 225009, PR China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Testing Center, Yangzhou University, Yangzhou 225009, PR China.
| |
Collapse
|
24
|
Wang M, Liu H, Fan K. Signal Amplification Strategy Design in Nanozyme-Based Biosensors for Highly Sensitive Detection of Trace Biomarkers. SMALL METHODS 2023; 7:e2301049. [PMID: 37817364 DOI: 10.1002/smtd.202301049] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/12/2023] [Indexed: 10/12/2023]
Abstract
Nanozymes show great promise in enhancing disease biomarker sensing by leveraging their physicochemical properties and enzymatic activities. These qualities facilitate signal amplification and matrix effects reduction, thus boosting biomarker sensing performance. In this review, recent studies from the last five years, concentrating on disease biomarker detection improvement through nanozyme-based biosensing are examined. This enhancement primarily involves the modulations of the size, morphology, doping, modification, electromagnetic mechanisms, electron conduction efficiency, and surface plasmon resonance effects of nanozymes for increased sensitivity. In addition, a comprehensive description of the synthesis and tuning strategies employed for nanozymes has been provided. This includes a detailed elucidation of their catalytic mechanisms in alignment with the fundamental principles of enhanced sensing technology, accompanied by the presentation of quantitatively analyzed results. Moreover, the diverse applications of nanozymes in strip sensing, colorimetric sensing, electrochemical sensing, and surface-enhanced Raman scattering have been outlined. Additionally, the limitations, challenges, and corresponding recommendations concerning the application of nanozymes in biosensing have been summarized. Furthermore, insights have been offered into the future development and outlook of nanozymes for biosensing. This review aims to serve not only as a reference for enhancing the sensitivity of nanozyme-based biosensors but also as a catalyst for exploring nanozyme properties and their broader applications in biosensing.
Collapse
Affiliation(s)
- Mengting Wang
- Guangdong Provincial Key Laboratory of Urology, Guangdong Engineering Research Center of Urinary Minimally Invasive Surgery Robot and Intelligent Equipment, Guangzhou Institute of Urology, Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510230, China
| | - Hongxing Liu
- Guangdong Provincial Key Laboratory of Urology, Guangdong Engineering Research Center of Urinary Minimally Invasive Surgery Robot and Intelligent Equipment, Guangzhou Institute of Urology, Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510230, China
| | - Kelong Fan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
25
|
Hong D, Jo EJ, Bang D, Jung C, Lee YE, Noh YS, Shin MG, Kim MG. Plasmonic Approach to Fluorescence Enhancement of Mesoporous Silica-Coated Gold Nanorods for Highly Sensitive Influenza A Virus Detection Using Lateral Flow Immunosensor. ACS NANO 2023; 17:16607-16619. [PMID: 37595106 DOI: 10.1021/acsnano.3c02651] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
Abstract
Rapid diagnostic tests based on the lateral flow immunoassay (LFI) enable early identification of viral infection, owing to simple interpretation, short turnaround time, and timely isolation of patients to minimize viral transmission among communities. However, the LFI system requires improvement in the detection sensitivity to match the accuracy of nucleic acid amplification tests. Fluorescence-based LFIs are more sensitive and specific than absorption-based LFIs, but their performance is significantly affected by fundamental issues related to the quantum yield and photobleaching of fluorophores. Metal-enhanced fluorescence (MEF), which is a plasmonic effect in the vicinity of metallic nanoparticles, can be an effective strategy to improve the detection sensitivity of fluorescence-based LFIs. The key factors for obtaining a strong plasmonic effect include the distance and spectral overlap of the metal and fluorophore in the MEF system. In this study, MEF probes were designed based on core-shell nanostructures employing a gold nanorod core, mesoporous silica shell, and cyanine 5 fluorophore. To optimize the efficiency of MEF probes incorporated on the LFI platform (MEF-LFI), we experimentally and theoretically investigated the distance dependence of plasmonic coupling between cyanine 5 and gold nanorods by adjusting the shell thickness, resulting in significant fluorescence enhancement. The proposed MEF-LFI enabled highly sensitive detection of influenza A virus (IAV) nucleocapsid protein with a detection limit of 0.52 pg mL-1 within 20 min and showed high specificity and accuracy for determining IAV clinical samples. Overall, our findings demonstrate the potential of this method as an effective tool for molecular diagnosis under emergency conditions.
Collapse
Affiliation(s)
- Donggu Hong
- Department of Chemistry, School of Physics and Chemistry, Gwangju Institute of Science & Technology (GIST), 123 Cheomdangwagi-ro, Gwangju 61005, Republic of Korea
| | - Eun-Jung Jo
- Department of Chemistry, School of Physics and Chemistry, Gwangju Institute of Science & Technology (GIST), 123 Cheomdangwagi-ro, Gwangju 61005, Republic of Korea
| | - Doyeon Bang
- College of AI Convergence, Chonnam National University, 77 Yongbong-ro, Gwangju 61186, Republic of Korea
- Korea Institute of Medical Microrobotics, 208 Cheomdangwagi-ro, Gwangju 61011, Republic of Korea
| | - Chaewon Jung
- Department of Chemistry, School of Physics and Chemistry, Gwangju Institute of Science & Technology (GIST), 123 Cheomdangwagi-ro, Gwangju 61005, Republic of Korea
| | - Young Eun Lee
- Department of Laboratory Medicine, Chonnam National University Medical School and Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun-eup, Hwasun-gun, Jeollanam-do 58128, Republic of Korea
| | - Yu-Seon Noh
- Nano Bio Research Center JBF, 123, Nanosandan-ro, Nam-Myun, Jangseong-gun, Jeollanam-do 57248, Republic of Korea
| | - Myung Geun Shin
- Department of Laboratory Medicine, Chonnam National University Medical School and Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun-eup, Hwasun-gun, Jeollanam-do 58128, Republic of Korea
| | - Min-Gon Kim
- Department of Chemistry, School of Physics and Chemistry, Gwangju Institute of Science & Technology (GIST), 123 Cheomdangwagi-ro, Gwangju 61005, Republic of Korea
| |
Collapse
|
26
|
Chen G, Chen X, Xu G, Wei X, Lin X, Su Y, Xiong Y, Huang X. Ultrabright orange-yellow aggregation-induced emission nanoparticles for highly sensitive immunochromatographic quantification of ochratoxin A in corn. Food Chem 2023; 412:135580. [PMID: 36736185 DOI: 10.1016/j.foodchem.2023.135580] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 01/16/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023]
Abstract
Herein, we report a novel aggregation-induced emission nanoparticles (AIENPs)-based immunochromatography assay (ICA) platform to detect ochratoxin A (OTA) using orange-yellow-emitting AIENPs as fluorescent nanoprobes. Immunochromatographic strip is used for the quantitative detection of OTA in crop matrix using AIENPs coupled with anti-OTA ascites. Under optimal conditions, AIENPs-ICA exhibits stronger signal output capacity and higher sensitivity than traditional gold nanoparticles-based ICA. The half-maximal inhibitory concentration is as low as 0.149 ng mL-1, and the limit detection is 0.042 ng mL-1 at 10 % competitive inhibition concentration. The average recovery of AIENPs-ICA ranges from 82.60 % to 113.14 % with the coefficient of variation ranging from 1.26 % to 11.57 %, proving the proposed method possesses good reliability and reproducibility. Moreover, the developed AIENPs-ICA exhibits negligible cross-reactions with other mycotoxins. We believe the presented AIENPs-ICA platform holds promising potential as a powerful tool for on-site detection of OTA and other molecules detection in food samples.
Collapse
Affiliation(s)
- Guoxin Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Xirui Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Ge Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Xiaxia Wei
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Xiangkai Lin
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Yu Su
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China.
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang 330047, PR China
| | - Xiaolin Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China.
| |
Collapse
|
27
|
Abu N, Mohd Bakhori N, Shueb RH. Lateral Flow Assay for Hepatitis B Detection: A Review of Current and New Assays. MICROMACHINES 2023; 14:1239. [PMID: 37374824 DOI: 10.3390/mi14061239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/03/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023]
Abstract
From acute to chronic hepatitis, cirrhosis, and hepatocellular cancer, hepatitis B infection causes a broad spectrum of liver diseases. Molecular and serological tests have been used to diagnose hepatitis B-related illnesses. Due to technology limitations, it is challenging to identify hepatitis B infection cases at an early stage, particularly in a low- and middle-income country with constrained resources. Generally, the gold-standard methods to detect hepatitis B virus (HBV) infection requires dedicated personnel, bulky, expensive equipment and reagents, and long processing times which delay the diagnosis of HBV. Thus, lateral flow assay (LFA), which is inexpensive, straightforward, portable, and operates reliably, has dominated point-of-care diagnostics. LFA consists of four parts: a sample pad where samples are dropped; a conjugate pad where labeled tags and biomarker components are combined; a nitrocellulose membrane with test and control lines for target DNA-probe DNA hybridization or antigen-antibody interaction; and a wicking pad where waste is stored. By modifying the pre-treatment during the sample preparation process or enhancing the signal of the biomarker probes on the membrane pad, the accuracy of the LFA for qualitative and quantitative analysis can be improved. In this review, we assembled the most recent developments in LFA technologies for the progress of hepatitis B infection detection. Prospects for ongoing development in this area are also covered.
Collapse
Affiliation(s)
- Norhidayah Abu
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
- Advanced Materials Research Centre (AMREC), SIRIM Berhad, Lot 34, Jalan Hi-Tech 2/3, Kulim Hi-Tech Park, Kulim 09000, Kedah, Malaysia
| | - Noremylia Mohd Bakhori
- Advanced Materials Research Centre (AMREC), SIRIM Berhad, Lot 34, Jalan Hi-Tech 2/3, Kulim Hi-Tech Park, Kulim 09000, Kedah, Malaysia
| | - Rafidah Hanim Shueb
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| |
Collapse
|
28
|
Borah R, Ag KR, Minja AC, Verbruggen SW. A Review on Self-Assembly of Colloidal Nanoparticles into Clusters, Patterns, and Films: Emerging Synthesis Techniques and Applications. SMALL METHODS 2023; 7:e2201536. [PMID: 36856157 DOI: 10.1002/smtd.202201536] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/25/2023] [Indexed: 06/09/2023]
Abstract
The colloidal synthesis of functional nanoparticles has gained tremendous scientific attention in the last decades. In parallel to these advancements, another rapidly growing area is the self-assembly or self-organization of these colloidal nanoparticles. First, the organization of nanoparticles into ordered structures is important for obtaining functional interfaces that extend or even amplify the intrinsic properties of the constituting nanoparticles at a larger scale. The synthesis of large-scale interfaces using complex or intricately designed nanostructures as building blocks, requires highly controllable self-assembly techniques down to the nanoscale. In certain cases, for example, when dealing with plasmonic nanoparticles, the assembly of the nanoparticles further enhances their properties by coupling phenomena. In other cases, the process of self-assembly itself is useful in the final application such as in sensing and drug delivery, amongst others. In view of the growing importance of this field, this review provides a comprehensive overview of the recent developments in the field of nanoparticle self-assembly and their applications. For clarity, the self-assembled nanostructures are classified into two broad categories: finite clusters/patterns, and infinite films. Different state-of-the-art techniques to obtain these nanostructures are discussed in detail, before discussing the applications where the self-assembly significantly enhances the performance of the process.
Collapse
Affiliation(s)
- Rituraj Borah
- Sustainable Energy, Air & Water Technology (DuEL), Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020, Belgium
| | - Karthick Raj Ag
- Sustainable Energy, Air & Water Technology (DuEL), Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020, Belgium
| | - Antony Charles Minja
- Sustainable Energy, Air & Water Technology (DuEL), Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020, Belgium
| | - Sammy W Verbruggen
- Sustainable Energy, Air & Water Technology (DuEL), Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020, Belgium
| |
Collapse
|
29
|
Zhou M, Chen X, Shen XA, Lin X, Chen P, Qiao Z, Li X, Xiong Y, Huang X. Highly Sensitive Immunochromatographic Detection of Zearalenone Based on Ultrabright Red-Emitted Aggregation-Induced Luminescence Nanoprobes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:4408-4416. [PMID: 36866978 DOI: 10.1021/acs.jafc.3c00276] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Highly luminescent nanospheres have been demonstrated in enhancing the sensitivity of lateral flow immunoassay (LFIA) due to their loading numerous luminescent dyes. However, the photoluminescence intensities of existing luminescent nanospheres are limited due to the aggregation-caused quenching effect. Herein, highly luminescent aggregation-induced emission luminogens embedded nanospheres (AIENPs) with red emission were introduced as signal amplification probes of LFIA for quantitative detection of zearalenone (ZEN). Optical properties of red-emitted AIENPs were compared with time-resolved dye-embedded nanoparticles (TRNPs). Results showed that red-emitted AIENPs have stronger photoluminescence intensity on the nitrocellulose membrane and superior environmental tolerance. Additionally, we benchmarked the performance of AIENP-LFIA against TRNP-LFIA using the same set of antibodies, materials, and strip readers. Results showed that AIENP-LFIA exhibits good dynamic linearity with the ZEN concentration from 0.195 to 6.25 ng/mL, with half competitive inhibitory concentration (IC50) and detection of limit (LOD) at 0.78 and 0.11 ng/mL, respectively. The IC50 and LOD are 2.07- and 2.36-fold lower than those of TRNP-LFIA. Encouragingly, the precision, accuracy, specificity, practicality, and reliability of this AIENP-LFIA for ZEN quantitation were further characterized. The results verified that the AIENP-LFIA has good practicability for the rapid, sensitive, specific, and accurate quantitative detection of ZEN in corn samples.
Collapse
Affiliation(s)
- Mengjun Zhou
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
- School of Food Science and Technology, Nanchang University, Nanchang 330031, P. R. China
- Jiangxi General Institute of Testing and Certification Instituto for Food Control, Nanchang 330052, P. R. China
| | - Xirui Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
- School of Food Science and Technology, Nanchang University, Nanchang 330031, P. R. China
| | - Xuan-Ang Shen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
- School of Food Science and Technology, Nanchang University, Nanchang 330031, P. R. China
| | - Xiangkai Lin
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
- School of Food Science and Technology, Nanchang University, Nanchang 330031, P. R. China
| | - Ping Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
- School of Food Science and Technology, Nanchang University, Nanchang 330031, P. R. China
| | - Zhaohui Qiao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, P. R. China
| | - Xiangmin Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
- School of Food Science and Technology, Nanchang University, Nanchang 330031, P. R. China
- Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang 330047, P. R. China
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
- School of Food Science and Technology, Nanchang University, Nanchang 330031, P. R. China
- Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang 330047, P. R. China
| | - Xiaolin Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
- School of Food Science and Technology, Nanchang University, Nanchang 330031, P. R. China
| |
Collapse
|
30
|
Wang Z, Guo Y, Xianyu Y. Applications of self-assembly strategies in immunoassays: A review. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
31
|
Aggregation-Induced Red Emission Nanoparticle-Based Lateral Flow Immunoassay for Highly Sensitive Detection of Staphylococcal Enterotoxin A. Toxins (Basel) 2023; 15:toxins15020113. [PMID: 36828428 PMCID: PMC9964500 DOI: 10.3390/toxins15020113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/31/2023] Open
Abstract
Staphylococcal enterotoxin A (SEA) has presented enormous difficulties in dairy food safety and the sensitive detection of SEA provides opportunities for effective food safety controls and staphylococcal food poisoning tracebacks. Herein, a novel aggregation-induced emission (AIE)-based sandwich lateral flow immunoassay (LFIA) was introduced to detect SEA by using red-emissive AIE nanoparticles (AIENPs) as the fluorescent nanoprobe. The nanoprobe was constructed by directly immobilising antibodies on boronate-tagged AIENPs (PBA-AIENPs) via a boronate affinity reaction, which exhibited a high SEA-specific affinity and remarkable fluorescent performance. Under optimal conditions, the ultrasensitive detection of SEA in pasteurised milk was achieved within 20 min with a limit of detection of 0.04 ng mL-1. The average recoveries of the PBA-AIENP-LFIA ranged from 91.3% to 117.6% and the coefficient of variation was below 15%. It was also demonstrated that the PBA-AIENP-LFIA had an excellent selectivity against other SE serotypes. Taking advantage of the excellent sensitivity of this approach, real chicken and salad samples were further analysed, with a high versatility and accuracy. The proposed PBA-AIENP-LFIA platform shows promise as a potent tool for the identification of additional compounds in food samples as well as an ideal test method for on-site detections.
Collapse
|
32
|
Chen X, Wei X, Cheng S, Liu Z, Su Y, Xiong Y, Huang X. High-performance green-emitting AIE nanoparticles for lateral flow immunoassay applications. Mikrochim Acta 2023; 190:56. [PMID: 36645516 DOI: 10.1007/s00604-022-05616-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/06/2022] [Indexed: 01/17/2023]
Abstract
Ultrabright green-emissive AIE nanoparticles (AIENPs) were used as signal-amplification probes to enhance the detectability of lateral flow immunoassay (LFIA). The detection performances of the green-emissive AIENP probes in both sandwich and competitive LFIA formats were systematically evaluated. Benefiting from its remarkable fluorescent brightness, the developed AIENP-LFIA showed versatile applicability for the detection of small molecules and macromolecules by using ochratoxin A (OTA) and procalcitonin (PCT) as model analytes, respectively. Under the optimum conditions, the detection limits (LODs) of the fabricated AIENP-LFIA for OTA and PCT were 0.043 ng mL-1 and 0.019 ng mL-1, respectively. These LOD values are significantly lower than those of conventional LFIA methods using gold nanoparticles as signal reporters. In addition, we demonstrated the practical application potential of AIENP-LFIA for the detection of OTA in real maize samples and PCT in real serum samples. These results indicated that the ultrabright green-emissive AIENPs were promising as signal output materials for building high-performance LFIA platform and broadening the application scenarios of LFIA.
Collapse
Affiliation(s)
- Xirui Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, People's Republic of China
- School of Food Science and Technology, Nanchang University, Nanchang, 330047, People's Republic of China
| | - Xiaxia Wei
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, People's Republic of China
- School of Food Science and Technology, Nanchang University, Nanchang, 330047, People's Republic of China
| | - Song Cheng
- Guangzhou Development District, AIE Institute, Guangzhou, 510530, Huangpu, People's Republic of China
| | - Zilong Liu
- School of Food Science and Engineering, Hainan University, Haikou, 570228, China
| | - Yu Su
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, People's Republic of China.
- School of Food Science and Technology, Nanchang University, Nanchang, 330047, People's Republic of China.
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, People's Republic of China
- School of Food Science and Technology, Nanchang University, Nanchang, 330047, People's Republic of China
- Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang, 330047, People's Republic of China
| | - Xiaolin Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, People's Republic of China.
- School of Food Science and Technology, Nanchang University, Nanchang, 330047, People's Republic of China.
| |
Collapse
|
33
|
Fang B, Xiong Q, Duan H, Xiong Y, Lai W. Tailored quantum dots for enhancing sensing performance of lateral flow immunoassay. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
34
|
Zhu K, Zou H, Chen J, Hu J, Xiong S, Fu J, Xiong Y, Huang X. Rapid and sensitive determination of lactoferrin in milk powder by boronate affinity amplified dynamic light scattering immunosensor. Food Chem 2022; 405:134983. [DOI: 10.1016/j.foodchem.2022.134983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 10/30/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
|
35
|
Hong D, Jo EJ, Jung C, Kim MG. Absorption-Modulated SiO 2@Au Core-Satellite Nanoparticles for Highly Sensitive Detection of SARS-CoV-2 Nucleocapsid Protein in Lateral Flow Immunosensors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:45189-45200. [PMID: 36191048 PMCID: PMC9578370 DOI: 10.1021/acsami.2c13303] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
The worldwide spread of coronavirus disease 2019 (COVID-19) highlights the need for rapid, simple, and accurate tests to detect various variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The antigen test, based on the lateral flow immunoassay (LFI), is a suitable "first line of defense" test that enables early identification and timely isolation of patients to minimize viral transmission among communities. However, it is generally less accurate than nucleic acid testing, and its sensitivity needs improvement. Here, a novel rapid detection method is designed to sensitively detect SARS-CoV-2 using isolated gold nanoparticle (AuNP)-assembled SiO2 core-satellite nanoparticles (SiO2@Au CSNPs). Well-grown AuNP satellites in the synthesis of SiO2@Au CSNPs significantly enhanced their light absorption, increased the detection sensitivity, and lowered the detection limit by 2 orders of magnitude relative to conventional gold colloids. The proposed system enabled highly sensitive detection of the SARS-CoV-2 nucleocapsid protein with a detection limit of 0.24 pg mL-1 within 20 min. This is the first study to develop a highly sensitive antigen test using the absorption-modulated SiO2@Au CSNPs. Our findings demonstrate the capacity of this platform to serve as an effective sensing strategy for managing pandemic conditions and preventing the spread of viral infections.
Collapse
Affiliation(s)
| | | | - Chaewon Jung
- Department of Chemistry, School of
Physics and Chemistry, Gwangju Institute
of Science & Technology (GIST), 123 Cheomdan-gwagiro, Gwangju 61005, Republic of Korea
| | - Min-Gon Kim
- Department of Chemistry, School of
Physics and Chemistry, Gwangju Institute
of Science & Technology (GIST), 123 Cheomdan-gwagiro, Gwangju 61005, Republic of Korea
| |
Collapse
|
36
|
Xu H, Lan H, Pan D, Xu J, Wang X. Visual Detection of Chicken Adulteration Based on a Lateral Flow Strip-PCR Strategy. Foods 2022; 11:foods11152351. [PMID: 35954117 PMCID: PMC9368418 DOI: 10.3390/foods11152351] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/02/2022] [Indexed: 11/23/2022] Open
Abstract
The aim of this study was to develop an accurate, easy-to-use, and cost-effective method for the detection of chicken adulteration based on polymerase chain reaction (PCR) and lateral flow strip (LFS). We compared six DNA extraction methods, namely the cetyltrimethylammonium bromide (CTAB) method, salt method, urea method, SDS method, guanidine isothiocyanate method, and commercial kit method. The chicken cytb gene was used as a target to design specific primers. The specificity and sensitivity of the PCR-LFS system were tested using a self-assembled lateral flow measurement sensor. The results showed that the DNA concentration obtained by salt methods is up to 533 ± 84 ng µL−1, is a suitable replacement for commercial kits. The PCR-LFS method exhibits high specificity at an annealing temperature of 62 °C and does not cross-react with other animal sources. This strategy is also highly sensitive, being able to detect 0.1% of chicken in artificial adulterated meat. The results of the test strips can be observed with the naked eye within 5 min, and this result is consistent with the electrophoresis result, demonstrating its high accuracy. Moreover, the detection system has already been successfully used to detect chicken in commercial samples. Hence, this PCR-LFS strategy provides a potential tool to verify the authenticity of chicken.
Collapse
Affiliation(s)
- Haoyi Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
| | - Hangzhen Lan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
- Correspondence: (H.L.); (X.W.)
| | - Daodong Pan
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang Province and College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Junfeng Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Hangzhou 310021, China
| | - Xiaofu Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Correspondence: (H.L.); (X.W.)
| |
Collapse
|
37
|
Highly sensitive pregnancy test kit via oriented antibody conjugation on brush-type ligand-coated quantum beads. Biosens Bioelectron 2022; 213:114441. [PMID: 35696868 DOI: 10.1016/j.bios.2022.114441] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/15/2022] [Accepted: 05/29/2022] [Indexed: 11/21/2022]
Abstract
Lateral flow assays (LFA) enable development of portable and rapid diagnostic kits; however, their capacity to detect low levels of disease markers remains poor. Here, we report a highly sensitive pregnancy test kit as a proof of concept, by combining brush-type ligand-coated quantum beads (B-type QBs) and nanobody, which can control the antibody orientation and enhance sensitivity. The brush-type ligand provided excellent dispersion stability and high-binding capacity toward antibody. Fc-binding nanobody increased the antigen-binding capacity of conjugated antibodies on the B-type QBs. To facilitate convenient acquisition of the LFA results, we developed a smartphone-based reader with a 3D-printed optical imaging module, and validated the diagnostic performance of the sensing platform. The pregnancy test kit achieved a 5.1 pg mL-1 limit of detection, corresponding to the levels for early-stage detection of heart disease and malaria. Our LFA application can potentially be expanded to diagnosis other diseases by simply changing the antibody pair in the kit.
Collapse
|
38
|
Engineering light-initiated afterglow lateral flow immunoassay for infectious disease diagnostics. Biosens Bioelectron 2022; 212:114411. [PMID: 35623251 PMCID: PMC9119864 DOI: 10.1016/j.bios.2022.114411] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 02/07/2023]
Abstract
The pandemic of highly contagious diseases has put forward urgent requirements for high sensitivity and adaptive capacity of point-of-care testing (POCT). Herein, for the first time, we report an aggregation-induced emission (AIE) dye-energized light-initiated afterglow nanoprobes (named LiAGNPs), implemented onto a lateral flow immunoassay (LFIA) test strip, for diagnosis of two highly contagious diseases, human immunodeficiency virus (HIV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as model validation. The primary working mechanism relies on the cyclically generated singlet oxygen (1O2)-triggered time-resolved luminescent signals of LiAGNPs in which AIE dyes (TTMN) and chemiluminescent substrates (SO) are loaded. The designed LiAGNPs were found 2-fold and 32-fold sensitive than the currently used Eu(III)-based time-resolved fluorescent nanoparticles and gold nanoparticles in lateral flow immunoassay (LFIA), respectively. In addition, the extra optical behaviors of nude color and fluorescence of LiAGNPs enable the LFIA platform with the capability of the naked eye and fluorescent detection to satisfy the applications under varying scenarios. In short, the versatile LiAGNPs have great potential as a novel time-resolved reporter in enhancing detection sensitivity and application flexibility with LFIA platform for rapid but sensitive infectious disease diagnostics.
Collapse
|
39
|
Panraksa Y, Jang I, Carrell CS, Amin AG, Chailapakul O, Chatterjee D, Henry CS. Simple manipulation of enzyme-linked immunosorbent assay (ELISA) using an automated microfluidic interface. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:1774-1781. [PMID: 35481474 PMCID: PMC9119197 DOI: 10.1039/d2ay00326k] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Among lateral flow immunoassay (LFIA) platforms, enzyme-based LFIAs provide signal amplification to improve sensitivity. However, most enzyme-based LFIAs require multiple timed steps, complicating their utility in point-of-care testing (POCT). Here, we report a microfluidic interface for LFIAs that automates sample, buffer, and reagent addition, greatly simplifying operation while achieving the high analytical stringency associated with more complex assays. The microfluidic interface also maintains the low cost and small footprint of standard LFIAs. The platform is fabricated from a combination of polyester film, double-sided adhesive tape, and nitrocellulose, and fits in the palm of your hand. All reagents are dried on the nitrocellulose to facilitate sequential reagent delivery, and the sample is used as the wash buffer to minimize steps. After the sample addition, a user simply waits 15 min for a colorimetric result. This manuscript discusses the development and optimization of the channel geometry to achieve a simple step enzyme amplified immunoassay. As a proof-of-concept target, we selected lipoarabinomannan (LAM), a WHO identified urinary biomarker of active tuberculosis, to demonstrate the device feasibility and reliability. The results revealed that the device successfully detected LAM in phosphate buffer (PBS) as well as spiked urine samples within 15 min after sample loading. The minimum concentration of color change was achieved at 25 ng mL-1.
Collapse
Affiliation(s)
- Yosita Panraksa
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, 1682 Campus Delivery, Fort Collins, CO, 80523, USA.
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Patumwan, Bangkok, 10330, Thailand
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Patumwan, Bangkok, 10330, Thailand.
| | - Ilhoon Jang
- Department of Chemistry, Colorado State University, CO, USA, 80523.
- Institute of Nano Science and Technology, Hanyang University, Seoul, Korea, 04763
| | - Cody S Carrell
- Department of Chemistry, Colorado State University, CO, USA, 80523.
| | - Anita G Amin
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, 1682 Campus Delivery, Fort Collins, CO, 80523, USA.
| | - Orawon Chailapakul
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Patumwan, Bangkok, 10330, Thailand.
| | - Delphi Chatterjee
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, 1682 Campus Delivery, Fort Collins, CO, 80523, USA.
| | - Charles S Henry
- Department of Chemistry, Colorado State University, CO, USA, 80523.
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Soi Chula 12, Phayathai Road, Pathumwan, Bangkok 10330, Thailand
| |
Collapse
|
40
|
Nano-labeled materials as detection tags for signal amplification in immunochromatographic assay. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
41
|
Zhu K, Chen J, Hu J, Xiong S, Zeng L, Huang X, Xiong Y. Low-sample-consumption and ultrasensitive detection of procalcitonin by boronate affinity recognition-enhanced dynamic light scattering biosensor. Biosens Bioelectron 2022; 200:113914. [PMID: 34973568 DOI: 10.1016/j.bios.2021.113914] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 11/16/2022]
Abstract
Accurate determination of procalcitonin (PCT) is highly crucial in bacterial infection diagnosis. Many biosensors previously developed suffer from large sample consumption or lengthy waiting time, which raise difficulties for more vulnerable patients, such as infants, old people, and other critically ill patients. To address this dilemma, we present an innovative boronate affinity recognition (BAR)-enhanced dynamic light scattering (DLS) biosensor to achieve ultrasensitive PCT detection. In this biosensing system, monoclonal antibody-modified magnetic nanoparticles (MNP@mAb) are designed as probes to capture PCT from serum samples and generate DLS signal transduction. Polyvalent phenylboronic acid-labeled bovine serum albumin (BSA@PBA) is used as scaffold to aggregate MNP@mAb and PCT (MNP@mAb-PCT) complex because of the specific interaction of cis-diol-containing PCT with boronic acid ligands on the surface of BSA@PBA. The BAR-enhanced DLS biosensor shows ultrahigh sensitivity to PCT determination due to high binding affinity, with the limit of detection of 0.03 pg/mL. The total detection time of PCT in whole blood or serum is less than 15 min with small sample consumption (about 1 μL) due to the rapid magnetic separation and aggregation of MNP@mAb-PCT triggered by BSA@PBA. In addition, the proposed DLS biosensor exhibits a high specificity for PCT quantitative detection. Therefore, this work provides a promising and versatile strategy for extending DLS biosensor to rapid and ultrasensitive detection of trace PCT for broader patients and more urgent cases.
Collapse
Affiliation(s)
- Kang Zhu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China
| | - Jing Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China
| | - Jiaqi Hu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China
| | - Sicheng Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China; Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States.
| | - Lifeng Zeng
- The People's Hospital in Jiangxi Province, Nanchang, Jiangxi, 330006, PR China
| | - Xiaolin Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China.
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China
| |
Collapse
|
42
|
Chen R, Chen X, Zhou Y, Lin T, Leng Y, Huang X, Xiong Y. "Three-in-One" Multifunctional Nanohybrids with Colorimetric Magnetic Catalytic Activities to Enhance Immunochromatographic Diagnosis. ACS NANO 2022; 16:3351-3361. [PMID: 35137583 DOI: 10.1021/acsnano.2c00008] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Colorimetric lateral flow immunoassay (LFIA) with gold nanoparticles (AuNPs) as signal reporters has been widely used in point-of-care testing. Nonetheless, the potential of traditional AuNP-based LFIA for the early diagnosis of disease is often compromised by limited sensitivity due to the insufficient colorimetric signal brightness of AuNPs. Herein, we develop a "three-in-one" multifunctional catalytic colorimetric nanohybrid (Fe3O4@MOF@Pt) composed of Fe3O4 nanoparticles, MIL-100(Fe), and platinum (Pt) nanoparticles. Fe3O4@MOF@Pt displays enhanced colorimetric signal brightness, fast magnetic response, and ultrahigh peroxidase-mimicking activity, which are beneficial to the enhancement of the sensitivity of LFIA by coupling with magnetic separation and catalytic amplification. When integrated with the dual-antibody sandwich LFIA platform, the developed Fe3O4@MOF@Pt can achieve an ultrasensitive immunochromatographic assay of procalcitonin with a sensitivity of 0.5 pg mL-1, which is approximately 2280-fold higher than that of conventional AuNP-based LFIA and superior to previously published immunoassays. Therefore, this work suggests that the proposed catalytic colorimetric nanohybrid can act as promising signal reporters to enable ultrasensitive immunochromatographic disease diagnostics.
Collapse
Affiliation(s)
- Rui Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P.R. China
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xirui Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P.R. China
| | - Yaofeng Zhou
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang 330047, P.R. China
| | - Tong Lin
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang 330047, P.R. China
| | - Yuankui Leng
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang 330047, P.R. China
| | - Xiaolin Huang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang 330047, P.R. China
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang 330047, P.R. China
- Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang 330047, P.R. China
| |
Collapse
|
43
|
Oh HK, Kim K, Park J, Im H, Maher S, Kim MG. Plasmon color-preserved gold nanoparticle clusters for high sensitivity detection of SARS-CoV-2 based on lateral flow immunoassay. Biosens Bioelectron 2022; 205:114094. [PMID: 35202985 PMCID: PMC8851749 DOI: 10.1016/j.bios.2022.114094] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/30/2022] [Accepted: 02/10/2022] [Indexed: 12/23/2022]
Abstract
Lateral flow immunoassays (LFI) have shown great promise for point-of-care (POC) sensing applications, however, its clinical translation is often hindered by insufficient sensitivity for early detection of diseases, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This is mainly due to weak absorption signals of single gold nanoparticles (AuNPs). Here, we developed AuNP clusters that maintain the red color of isolated individual AuNPs, but increase the colorimetric readout to improve the detection sensitivity. The plasmon color-preserved (PLASCOP) AuNP clusters is simply made by mixing streptavidin-coated AuNP core with satellite AuNPs coated with biotinylated antibodies. The biotinylated antibody-streptavidin linker forms a gap size over 15 nm to avoid plasmon coupling between AuNPs, thus maintaining the plasmonic color while increasing the overall light absorption. LFI sensing using PLASCOP AuNP clusters composed of 40 nm AuNPs showed a high detection sensitivity for SARS-CoV-2 nucleocapsid proteins with a limit of detection (LOD) of 0.038 ng mL−1, which was 23.8- and 5.9-times lower value than that of single 15 nm and 40 nm AuNP conjugates, respectively. The PLASCOP AuNP clusters-based LFI sensing also shows good specificity for SARS-CoV-2 nucleocapsid proteins from other influenza and coronaviruses. In a clinical feasibility test, we demonstrated that SARS-CoV-2 particles spiked in human saliva could be detected with an LOD of 54 TCID50 mL−1. The developed PLASCOP AuNP clusters are promising colorimetric sensing reporters that present improved sensitivity in LFI sensing for broad POC sensing applications beyond SARS-CoV-2 detection.
Collapse
Affiliation(s)
- Hyun-Kyung Oh
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea; Department of Electrical Engineering and Electronics, University of Liverpool, Brownlow Hill, Liverpool, L69 3GJ, UK
| | - Kihyeun Kim
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea; Center for Systems Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Jinhee Park
- GMD BIOTECH, INC, Gwangju, 61005, Republic of Korea
| | - Hyungsoon Im
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, 02114, USA; Department of Radiology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Simon Maher
- Department of Electrical Engineering and Electronics, University of Liverpool, Brownlow Hill, Liverpool, L69 3GJ, UK
| | - Min-Gon Kim
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea; GMD BIOTECH, INC, Gwangju, 61005, Republic of Korea.
| |
Collapse
|
44
|
Chen J, Hao L, Hu J, Zhu K, Li Y, Xiong S, Huang X, Xiong Y, Tang BZ. A Universal Boronate‐Affinity Crosslinking‐Amplified Dynamic Light Scattering Immunoassay for Point‐of‐Care Glycoprotein Detection. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jing Chen
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Nanchang University Nanchang 330047 China
| | - Liangwen Hao
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Nanchang University Nanchang 330047 China
| | - Jiaqi Hu
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Nanchang University Nanchang 330047 China
| | - Kang Zhu
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Nanchang University Nanchang 330047 China
| | - Yu Li
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Nanchang University Nanchang 330047 China
| | - Sicheng Xiong
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Nanchang University Nanchang 330047 China
| | - Xiaolin Huang
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Nanchang University Nanchang 330047 China
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Nanchang University Nanchang 330047 China
- Jiangxi-OAI Joint Research Institute Nanchang University Nanchang 330047 China
| | - Ben Zhong Tang
- Shenzhen Institute of Aggregate Science and Technology School of Science and Engineering The Chinese University of Hong Kong Shenzhen Guangdong 518172 China
| |
Collapse
|
45
|
Li D, Huang M, Shi Z, Huang L, Jin J, Jiang C, Yu W, Guo Z, Wang J. Ultrasensitive Competitive Lateral Flow Immunoassay with Visual Semiquantitative Inspection and Flexible Quantification Capabilities. Anal Chem 2022; 94:2996-3004. [PMID: 35107983 DOI: 10.1021/acs.analchem.1c05364] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Antibiotics abuse has caused various problems threatening human health and ecological environment. Monitoring antibiotics residual levels is of great significance, yet still challenging for quantitative point-of-need testing with high-sensitivity and visual capability. Here we developed a competitive lateral flow immunoassay (CLFIA) platform with flexible readout for enrofloxacin (ENR), a regularly added antibiotic. To overcome the limitation of low sensitivity of traditional colloidal gold-based CLFIA, the three-dimensionally assembled gold nanoparticles (AuNPs) within dendritic silica scaffold were fabricated as signal reporters. The assembly structure effectively retained the intrinsic absorption features of hydrophobic AuNPs and greatly enhanced the light extinction ability of a single label for signal amplification. The obtained CLFIA strips can not only achieve qualitative screening of ENR at a very low concentration by naked eye (cutoff value: 0.125 ng/mL), but also enable ultrasensitive quantification of ENR by an optical scanner (limit of detection: 0.00195 ng/mL) or a smartphone (limit of detection: 0.0078 ng/mL). Moreover, to elaborate the visual inspection degree of CLFIA against traditional yes/no interpretation, a novel multirange gradient CLFIA strip was prepared for visually semiquantitative identification of ENR with four concentration ranges. The novel CLFIA platform demonstrated sensitive, specific, and reliable determination of ENR with flexible signal readout and provides a potential and invigorating pathway to point-of-need immunoassay of antibiotics.
Collapse
Affiliation(s)
- Daquan Li
- College of Chemical Engineering, Zhejiang University of Technology. Hangzhou 310014, (PR China)
| | - Mei Huang
- College of Chemical Engineering, Zhejiang University of Technology. Hangzhou 310014, (PR China)
| | - Ziyu Shi
- College of Chemical Engineering, Zhejiang University of Technology. Hangzhou 310014, (PR China)
| | - Liang Huang
- College of Chemical Engineering, Zhejiang University of Technology. Hangzhou 310014, (PR China)
| | - Jiening Jin
- College of Chemical Engineering, Zhejiang University of Technology. Hangzhou 310014, (PR China)
| | - Chenxing Jiang
- College of Chemical Engineering, Zhejiang University of Technology. Hangzhou 310014, (PR China)
| | - Wenbo Yu
- College of Veterinary Medicine, China Agricultural University. Beijing 100193 (PR China)
| | - Zhiyong Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211(PR China)
| | - Jing Wang
- College of Chemical Engineering, Zhejiang University of Technology. Hangzhou 310014, (PR China)
| |
Collapse
|
46
|
Chen X, Ding L, Huang X, Xiong Y. Tailoring noble metal nanoparticle designs to enable sensitive lateral flow immunoassay. Am J Cancer Res 2022; 12:574-602. [PMID: 34976202 PMCID: PMC8692915 DOI: 10.7150/thno.67184] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/09/2021] [Indexed: 12/13/2022] Open
Abstract
Lateral flow immunoassay (LFIA) with gold nanoparticles (AuNPs) as signal reporters is a popular point-of-care diagnostic technique. However, given the weak absorbance of traditional 20-40 nm spherical AuNPs, their sensitivity is low, which greatly limits the wide application of AuNP-based LFIA. With the rapid advances in materials science and nanotechnology, the synthesis of noble metal nanoparticles (NMNPs) has enhanced physicochemical properties such as optical, plasmonic, catalytic, and multifunctional activity by simply engineering their physical parameters, including the size, shape, composition, and external structure. Using these engineered NMNPs as an alternative to traditional AuNPs, the sensitivity of LFIA has been significantly improved, thereby greatly expanding the working range and application scenarios of LFIA, particularly in trace analysis. Therefore, in this review, we will focus on the design of engineered NMNPs and their demonstration in improving LFIA. We highlight the strategies available for tailoring NMNP designs, the effect of NMNP engineering on their performance, and the working principle of each engineering design for enhancing LFIA. Finally, current challenges and future improvements in this field are briefly discussed.
Collapse
|
47
|
Chen J, Hao L, Hu J, Zhu K, Li Y, Xiong S, Huang X, Xiong Y, Tang BZ. A Universal Boronate-Affinity Crosslinking-Amplified Dynamic Light Scattering Immunoassay for Point-of-Care Glycoprotein Detection. Angew Chem Int Ed Engl 2021; 61:e202112031. [PMID: 34881816 DOI: 10.1002/anie.202112031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Indexed: 12/21/2022]
Abstract
Herein, we report a universal boronate-affinity crosslinking-amplified dynamic light scattering (DLS) immunoassay for point-of-care (POC) glycoprotein detection in complex samples. This enhanced DLS immunoassay consists of two elements, i.e., antibody-coated magnetic nanoparticles (MNP@mAb) for target capture and DLS signal transduction, and phenylboronic acid-based boronate-affinity materials as crosslinking amplifiers. Upon the addition of targets, glycoproteins are first captured by MNP@mAb and amplified by target-induced crosslinking stemming from the selective binding between the boronic acid ligand and cis-diol-containing glycoprotein, thereby resulting in a remarkably increased DLS signal in the average nanoparticle size. Benefiting from the multivalent binding and fast boronate-affinity reaction between glycoproteins and crosslinkers, the proposed immunosensing strategy has achieved the ultrasensitive and rapid quantitative assay of glycoproteins at the fM level within 15 min. Overall, this work provides a promising and versatile design strategy for extending the DLS technique to detect glycoproteins even in the field or at POC.
Collapse
Affiliation(s)
- Jing Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Liangwen Hao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Jiaqi Hu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Kang Zhu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Yu Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Sicheng Xiong
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Xiaolin Huang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, 330047, China
- Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang, 330047, China
| | - Ben Zhong Tang
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| |
Collapse
|
48
|
Evaluating gold nanoparticles parameters in competitive Immunochromatographich Assay via Dot Blot and Bradford Assay as new approaches. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
49
|
Zhou Y, Chen Y, Liu W, Fang H, Li X, Hou L, Liu Y, Lai W, Huang X, Xiong Y. Development of a rapid and sensitive quantum dot nanobead-based double-antigen sandwich lateral flow immunoassay and its clinical performance for the detection of SARS-CoV-2 total antibodies. SENSORS AND ACTUATORS. B, CHEMICAL 2021; 343:130139. [PMID: 34035562 DOI: 10.1016/j.snb.2021.130169] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 05/16/2021] [Accepted: 05/17/2021] [Indexed: 05/28/2023]
Abstract
Owing to the over-increasing demands in resisting and managing the coronavirus disease 2019 (COVID-19) pandemic, development of rapid, highly sensitive, accurate, and versatile tools for monitoring total antibody concentrations at the population level has been evolved as an urgent challenge on measuring the fatality rate, tracking the changes in incidence and prevalence, comprehending medical sequelae after recovery, as well as characterizing seroprevalence and vaccine coverage. To this end, herein we prepared highly luminescent quantum dot nanobeads (QBs) by embedding numerous quantum dots into polymer matrix, and then applied it as a signal-amplification label in lateral flow immunoassay (LFIA). After covalently linkage with the expressed recombinant SARS-CoV-2 spike protein (RSSP), the synthesized QBs were used to determine the total antibody levels in sera by virtue of a double-antigen sandwich immunoassay. Under the developed condition, the QB-LFIA can allow the rapid detection of SARS-CoV-2 total antibodies within 15 min with about one order of magnitude improvement in analytical sensitivity compared to conventional gold nanoparticle-based LFIA. In addition, the developed QB-LFIA performed well in clinical study in dynamic monitoring of serum antibody levels in the whole course of SARS-CoV-2 infection. In conclusion, we successfully developed a promising fluorescent immunological sensing tool for characterizing the host immune response to SARS-CoV-2 infection and confirming the acquired immunity to COVID-19 by evaluating the SRAS-CoV-2 total antibody level in the crowd.
Collapse
Affiliation(s)
- Yaofeng Zhou
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
- School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Yuan Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
- Jiangxi YeLi Medical Device Co., Ltd, Nanchang 330096, PR China
| | - Wenjuan Liu
- Jiangxi Weibang Biological Technology Co. Ltd, Nanchang 330096, PR China
| | - Hao Fang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
- School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Xiangmin Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
- School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
- Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang 330047, PR China
| | - Li Hou
- Jiangxi YeLi Medical Device Co., Ltd, Nanchang 330096, PR China
| | - Yuanjie Liu
- College of Information and Electrical Engineering, China Agricultural University, Haidian, Beijing 100083, PR China
| | - Weihua Lai
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
- School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Xiaolin Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
- School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
- School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
- Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang 330047, PR China
| |
Collapse
|
50
|
Zhou Y, Chen Y, Liu W, Fang H, Li X, Hou L, Liu Y, Lai W, Huang X, Xiong Y. Development of a rapid and sensitive quantum dot nanobead-based double-antigen sandwich lateral flow immunoassay and its clinical performance for the detection of SARS-CoV-2 total antibodies. SENSORS AND ACTUATORS. B, CHEMICAL 2021; 343:130139. [PMID: 34035562 PMCID: PMC8137357 DOI: 10.1016/j.snb.2021.130139] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 05/16/2021] [Accepted: 05/17/2021] [Indexed: 05/18/2023]
Abstract
Owing to the over-increasing demands in resisting and managing the coronavirus disease 2019 (COVID-19) pandemic, development of rapid, highly sensitive, accurate, and versatile tools for monitoring total antibody concentrations at the population level has been evolved as an urgent challenge on measuring the fatality rate, tracking the changes in incidence and prevalence, comprehending medical sequelae after recovery, as well as characterizing seroprevalence and vaccine coverage. To this end, herein we prepared highly luminescent quantum dot nanobeads (QBs) by embedding numerous quantum dots into polymer matrix, and then applied it as a signal-amplification label in lateral flow immunoassay (LFIA). After covalently linkage with the expressed recombinant SARS-CoV-2 spike protein (RSSP), the synthesized QBs were used to determine the total antibody levels in sera by virtue of a double-antigen sandwich immunoassay. Under the developed condition, the QB-LFIA can allow the rapid detection of SARS-CoV-2 total antibodies within 15 min with about one order of magnitude improvement in analytical sensitivity compared to conventional gold nanoparticle-based LFIA. In addition, the developed QB-LFIA performed well in clinical study in dynamic monitoring of serum antibody levels in the whole course of SARS-CoV-2 infection. In conclusion, we successfully developed a promising fluorescent immunological sensing tool for characterizing the host immune response to SARS-CoV-2 infection and confirming the acquired immunity to COVID-19 by evaluating the SRAS-CoV-2 total antibody level in the crowd.
Collapse
Affiliation(s)
- Yaofeng Zhou
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
- School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Yuan Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
- Jiangxi YeLi Medical Device Co., Ltd, Nanchang 330096, PR China
| | - Wenjuan Liu
- Jiangxi Weibang Biological Technology Co. Ltd, Nanchang 330096, PR China
| | - Hao Fang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
- School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Xiangmin Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
- School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
- Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang 330047, PR China
| | - Li Hou
- Jiangxi YeLi Medical Device Co., Ltd, Nanchang 330096, PR China
| | - Yuanjie Liu
- College of Information and Electrical Engineering, China Agricultural University, Haidian, Beijing 100083, PR China
| | - Weihua Lai
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
- School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Xiaolin Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
- School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
- School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
- Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang 330047, PR China
| |
Collapse
|