1
|
Zhang T, Zhang Y, Li X, Zhang F, Cheng Z, Shi Y, Zhou X, Wang X. An anti-sense lncRNA of the A-FABP gene regulates the proliferation of hair follicle stem cells via the chi-miR-335-5p/DKK1/β-catenin axis. Int J Biol Macromol 2024; 283:137511. [PMID: 39547602 DOI: 10.1016/j.ijbiomac.2024.137511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 11/02/2024] [Accepted: 11/09/2024] [Indexed: 11/17/2024]
Abstract
Hair follicle development relies on both the epithelial-mesenchymal interaction (EMI) and the proliferation of hair follicle stem cells (HFSCs). This intricate process involves numerous regulatory molecules. Increasing evidence suggests that long non-coding RNAs (lncRNAs) play a crucial role in hair follicle development. However, the functions and molecular mechanisms of many lncRNAs in hair follicle development of cashmere goats remain unclear. Based on our previous lncRNA sequencing results in cashmere goats, an unannotated lncRNA differentially expressed at various stages of hair follicle development, named FABP_AS, was detected. Consequently, we aimed at exploring the function and molecular mechanisms of FABP_AS. We constructed a CRISPR/Cas9 knockout system to specifically knock down FABP_AS, providing a reference model for target lncRNA knockout in animal primary cells. Functional experiment results demonstrated that FABP_AS significantly inhibited HFSCs proliferation. Mechanism experiment results revealed that FABP_AS competitively bond to chi-miR-335-5p, promoted DKK1 gene expression, and reduced Wnt/β-catenin signaling pathway activity. In summary, our findings indicated that FABP_AS acted as a miRNA sponge, sequestering chi-miR-335-5p away from the DKK1 gene, thereby suppressing HFSCs proliferation, which would lay the groundwork for a better understanding of the molecular mechanisms of hair follicle development and provide therapeutic targets for hair loss.
Collapse
Affiliation(s)
- Tongtong Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yuelang Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; Hainan Institute of Zhejiang University, Sanya 572024, China
| | - Xiang Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Fan Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Zixi Cheng
- School of Electronic Science & Engineering, Southeast University, Nanjing 211000, China
| | - Yujie Shi
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xiongbo Zhou
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xin Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
2
|
Tian ML, Li B, Li Y, Fan HW, Du NY, Kang S. LncRNA LINC00261 associates with chemoresistance and clinical prognosis in patients with epithelial ovarian cancer. J Obstet Gynaecol Res 2024. [PMID: 39390648 DOI: 10.1111/jog.16077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 08/25/2024] [Indexed: 10/12/2024]
Abstract
OBJECTIVE The purpose of this experiment is to explore the role of long intergenic noncoding RNA 261 (LINC00261) gene in the chemoresistance and clinical prognosis of epithelial ovarian cancer (EOC). METHODS We used matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry to detect the methylation levels of the LINC00261 promoter region in EOC patient specimens. The expression levels of LINC00261, miR-545-3p, and MT1M in EOC patients were evaluated by quantitative real-time reverse transcriptase PCR (RT-qPCR). Spearman's correlation analysis was used for relevance analyses and clinical prognosis was counted by Kaplan-Meier analysis. Stable overexpressed LINC00261 SKOV3 cells were established to test the influence of LINC00261 on proliferation, platinum sensitivity, migration, and invasion. RESULTS The promoter region methylation level of the LINC00261 was hypermethylated and LINC00261 was significantly downregulated in platinum-resistant EOC tissues. The methylation level of LINC00261was significantly negative correlated with its RNA expression in EOC. Moreover, hypermethylation and lower expression of LINC00261 in EOC patients were related to shorter progression-free survival (PFS) and overall survival (OS). Furthermore, Spearman's correlation analysis showed that the expression of miR-545-3p had a negative relevance with LINC00261. According to the website prediction, MT1M might be the downstream target gene of LINC00261. Expression of MT1M was negatively correlated with miR-545-3p and positively with LINC00261 in EOC tissues. And lower MT1M mRNA expression was correlated with chemotherapy resistance and worse prognosis. In vitro, overexpression of LINC00261 could inhibit cisplatin resistance, proliferation, and suppression of migration and invasion in SKOV3 cells. CONCLUSIONS This research indicates that the aberrant hypermethylation and low expression of LINC00261 were associated with platinum resistance and adverse outcomes in EOC patients.
Collapse
Affiliation(s)
- Mei-Ling Tian
- Department of Obstetrics and Gynecology, Fourth Hospital, Hebei Medical University, Shijiazhuang, China
- Department of Obstetrics and Gynecology, Hebei General Hospital, Shijiazhuang, China
| | - Bin Li
- Department of Gynecology, Handan Central Hospital, Handan, Hebei, China
| | - Yan Li
- Department of Molecular Biology, Fourth Hospital, Hebei Medical University, Shijiazhuang, China
| | - Hong-Wei Fan
- Department of Obstetrics and Gynecology, Fourth Hospital, Hebei Medical University, Shijiazhuang, China
| | - Nai-Yi Du
- Department of Obstetrics and Gynecology, Fourth Hospital, Hebei Medical University, Shijiazhuang, China
| | - Shan Kang
- Department of Obstetrics and Gynecology, Fourth Hospital, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
3
|
Xue Z, Zhang Y, Zhao R, Liu X, Grützmann K, Klink B, Zhang X, Wang S, Zhao W, Sun Y, Han M, Wang X, Hu Y, Liu X, Yang N, Qiu C, Li W, Huang B, Li X, Bjerkvig R, Wang J, Zhou W. The dopamine receptor D1 inhibitor, SKF83566, suppresses GBM stemness and invasion through the DRD1-c-Myc-UHRF1 interactions. J Exp Clin Cancer Res 2024; 43:25. [PMID: 38246990 PMCID: PMC10801958 DOI: 10.1186/s13046-024-02947-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/06/2024] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND Extensive local invasion of glioblastoma (GBM) cells within the central nervous system (CNS) is one factor that severely limits current treatments. The aim of this study was to uncover genes involved in the invasion process, which could also serve as therapeutic targets. For the isolation of invasive GBM cells from non-invasive cells, we used a three-dimensional organotypic co-culture system where glioma stem cell (GSC) spheres were confronted with brain organoids (BOs). Using ultra-low input RNA sequencing (ui-RNA Seq), an invasive gene signature was obtained that was exploited in a therapeutic context. METHODS GFP-labeled tumor cells were sorted from invasive and non-invasive regions within co-cultures. Ui-RNA sequencing analysis was performed to find a gene cluster up-regulated in the invasive compartment. This gene cluster was further analyzed using the Connectivity MAP (CMap) database. This led to the identification of SKF83566, an antagonist of the D1 dopamine receptor (DRD1), as a candidate therapeutic molecule. Knockdown and overexpression experiments were performed to find molecular pathways responsible for the therapeutic effects of SKF83566. Finally, the effects of SKF83566 were validated in orthotopic xenograft models in vivo. RESULTS Ui-RNA seq analysis of three GSC cell models (P3, BG5 and BG7) yielded a set of 27 differentially expressed genes between invasive and non-invasive cells. Using CMap analysis, SKF83566 was identified as a selective inhibitor targeting both DRD1 and DRD5. In vitro studies demonstrated that SKF83566 inhibited tumor cell proliferation, GSC sphere formation, and invasion. RNA sequencing analysis of SKF83566-treated P3, BG5, BG7, and control cell populations yielded a total of 32 differentially expressed genes, that were predicted to be regulated by c-Myc. Of these, the UHRF1 gene emerged as the most downregulated gene following treatment, and ChIP experiments revealed that c-Myc binds to its promoter region. Finally, SKF83566, or stable DRD1 knockdown, inhibited the growth of orthotopic GSC (BG5) derived xenografts in nude mice. CONCLUSIONS DRD1 contributes to GBM invasion and progression by regulating c-Myc entry into the nucleus that affects the transcription of the UHRF1 gene. SKF83566 inhibits the transmembrane protein DRD1, and as such represents a candidate small therapeutic molecule for GBMs.
Collapse
Affiliation(s)
- Zhiyi Xue
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Yan Zhang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Ruiqi Zhao
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Xiaofei Liu
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Konrad Grützmann
- Core Unit for Molecular Tumour Diagnostics (CMTD), National Center for Tumour Diseases (NCT) Dresden, Dresden, Germany
- Institute for Medical Informatics and Biometry, Medical Faculty, TU Dresden, Dresden, Germany
| | - Barbara Klink
- Department of Genetics, Laboratoire National de Santé, Dudelange, Luxembourg
| | - Xun Zhang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Shuai Wang
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Wenbo Zhao
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Yanfei Sun
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Mingzhi Han
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Xu Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yaotian Hu
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Xuemeng Liu
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Ning Yang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Chen Qiu
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, China
| | - Wenjie Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Bin Huang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Xingang Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Rolf Bjerkvig
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, Bergen, 5009, Norway
| | - Jian Wang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China.
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, Bergen, 5009, Norway.
| | - Wenjing Zhou
- Department of Blood Transfusion, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| |
Collapse
|
4
|
Wu Y, Mou J, Liu Y, Zheng W. Association of LncRNA PCBP1-AS1 with cancer occurrence and development: A review. Medicine (Baltimore) 2023; 102:e35631. [PMID: 37904442 PMCID: PMC10615425 DOI: 10.1097/md.0000000000035631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 09/22/2023] [Indexed: 11/01/2023] Open
Abstract
Long-stranded noncoding RNAs (LncRNAs) are noncoding RNAs >200 nucleotides in length. Polycytidine binding protein 1 antisense LncRNA is abbreviated as LncRNA polycytosine binding protein 1 antisense1 (PCBP1-AS1). Since studies in recent years have revealed the importance of PCBP1-AS1 in human genetic analysis, it is an important member of the LncRNA family. Genetically engineered group analysis of PCBP1-AS1 regulates the progression of cancer in biology. Therefore, it may be an important RNA in the regulation of human cancer. This article summarizes the molecular mechanism and clinical role of PCBP1-AS1 in various tumor types. Taking "PCBP1-AS1" and "cancer" as keywords, this paper analyzed the relationship between PCBP1-AS1 and various tumors by searching PubMed and Geen Medical, and summarized the related regulatory mechanism of PCBP1-AS1. PCBP1-AS1 is a valuable tumor-associated LncRNA that plays different biological roles in different cancers. Overall, it can both promote and inhibit the development of cancer. For example, abnormally high expression in castration-resitant prostate cancer, hepatocellular carcinoma, cervical cancer, glioma, and colorectal cancer promotes the proliferation and progression of these cancers; in contrast, PCBP1-AS1 inhibits cancer proliferation, metastasis, invasion, and recurrence when highly expressed in vulvar squamous cell carcinoma, Hodgkin lymphoma, and lung adenocarcinoma. PCBP1-AS1 regulates the development of multiple tumors, and the specific mechanism needs to be further investigated, which may become a new tumor marker and potential therapeutic target.
Collapse
Affiliation(s)
- Yanping Wu
- Department of Gynecology and Obstetrics, The First college of China Medical Science, China Three Gorges University/Yichang Central People’s Hospital, Yichang, Hubei, China
| | - Jie Mou
- Department of Gynecology and Obstetrics, The First college of China Medical Science, China Three Gorges University/Yichang Central People’s Hospital, Yichang, Hubei, China
| | - Yuling Liu
- Department of Gynecology and Obstetrics, The First college of China Medical Science, China Three Gorges University/Yichang Central People’s Hospital, Yichang, Hubei, China
| | - Wenfei Zheng
- Department of Gynecology and Obstetrics, The First college of China Medical Science, China Three Gorges University/Yichang Central People’s Hospital, Yichang, Hubei, China
| |
Collapse
|
5
|
Jiang XY, Zhu QC, Zhang XJ, Duan T, Feng J, Sui XB, Sun XN, Mou YP. Roles of lncRNAs in pancreatic ductal adenocarcinoma: Diagnosis, treatment, and the development of drug resistance. Hepatobiliary Pancreat Dis Int 2023; 22:128-139. [PMID: 36543619 DOI: 10.1016/j.hbpd.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 12/07/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers, primarily due to its late diagnosis, high propensity to metastasis, and the development of resistance to chemo-/radiotherapy. Accumulating evidence suggests that long non-coding RNAs (lncRNAs) are intimately involved in the treatment resistance of pancreatic cancer cells via interacting with critical signaling pathways and may serve as potential diagnostic/prognostic markers or therapeutic targets in PDAC. DATA SOURCES We carried out a systematic review on lncRNAs-based research in the context of pancreatic cancer and presented an overview of the updated information regarding the molecular mechanisms underlying lncRNAs-modulated pancreatic cancer progression and drug resistance, together with their potential value in diagnosis, prognosis, and treatment of PDAC. Literature mining was performed in PubMed with the following keywords: long non-coding RNA, pancreatic ductal adenocarcinoma, pancreatic cancer up to January 2022. Publications relevant to the roles of lncRNAs in diagnosis, prognosis, drug resistance, and therapy of PDAC were collected and systematically reviewed. RESULTS LncRNAs, such as HOTAIR, HOTTIP, and PVT1, play essential roles in regulating pancreatic cancer cell proliferation, invasion, migration, and drug resistance, thus may serve as potential diagnostic/prognostic markers or therapeutic targets in PDAC. They participate in tumorigenesis mainly by targeting miRNAs, interacting with signaling molecules, and involving in the epithelial-mesenchymal transition process. CONCLUSIONS The functional lncRNAs play essential roles in pancreatic cancer cell proliferation, invasion, migration, and drug resistance and have potential values in diagnosis, prognostic prediction, and treatment of PDAC.
Collapse
Affiliation(s)
- Xiao-Yin Jiang
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, China; Department of Gastrointestinal and Pancreatic Surgery, Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou 310014, China; School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Qi-Cong Zhu
- Department of Gastrointestinal and Pancreatic Surgery, Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Xiao-Jian Zhang
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ting Duan
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Jiao Feng
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Xin-Bing Sui
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Xue-Ni Sun
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Yi-Ping Mou
- Department of Gastrointestinal and Pancreatic Surgery, Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou 310014, China.
| |
Collapse
|
6
|
Agrawal R, Natarajan KN. Oncogenic signaling pathways in pancreatic ductal adenocarcinoma. Adv Cancer Res 2023; 159:251-283. [PMID: 37268398 DOI: 10.1016/bs.acr.2023.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common (∼90% cases) pancreatic neoplasm and one of the most lethal cancer among all malignances. PDAC harbor aberrant oncogenic signaling that may result from the multiple genetic and epigenetic alterations such as the mutation in driver genes (KRAS, CDKN2A, p53), genomic amplification of regulatory genes (MYC, IGF2BP2, ROIK3), deregulation of chromatin-modifying proteins (HDAC, WDR5) among others. A key event is the formation of Pancreatic Intraepithelial Neoplasia (PanIN) that often results from the activating mutation in KRAS. Mutated KRAS can direct a variety of signaling pathways and modulate downstream targets including MYC, which play an important role in cancer progression. In this review, we discuss recent literature shedding light on the origins of PDAC from the perspective of major oncogenic signaling pathways. We highlight how MYC directly and indirectly, with cooperation with KRAS, affect epigenetic reprogramming and metastasis. Additionally, we summarize the recent findings from single cell genomic approaches that highlight heterogeneity in PDAC and tumor microenvironment, and provide molecular avenues for PDAC treatment in the future.
Collapse
Affiliation(s)
- Rahul Agrawal
- DTU Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | | |
Collapse
|
7
|
Abstract
C-Myc overexpression is a common finding in pancreatic cancer and predicts the aggressive behavior of cancer cells. It binds to the promoter of different genes, thereby regulating their transcription. C-Myc is downstream of KRAS and interacts with several oncogenic and proliferative pathways in pancreatic cancer. C-Myc enhances aerobic glycolysis in cancer cells and regulates glutamate biosynthesis from glutamine. It provides enough energy for cancer cells' metabolism and sufficient substrate for the synthesis of organic molecules. C-Myc overexpression is associated with chemoresistance, intra-tumor angiogenesis, epithelial-mesenchymal transition (EMT), and metastasis in pancreatic cancer. Despite its title, c-Myc is not "undruggable" and recent studies unveiled that it can be targeted, directly or indirectly. Small molecules that accelerate c-Myc ubiquitination and degradation have been effective in preclinical studies. Small molecules that hinder c-Myc-MAX heterodimerization or c-Myc/MAX/DNA complex formation can functionally inhibit c-Myc. In addition, c-Myc can be targeted through transcriptional, post-transcriptional, and translational modifications.
Collapse
Affiliation(s)
- Moein Ala
- School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
8
|
Yang Z, Xu F, Teschendorff AE, Zhao Y, Yao L, Li J, He Y. Insights into the role of long non-coding RNAs in DNA methylation mediated transcriptional regulation. Front Mol Biosci 2022; 9:1067406. [PMID: 36533073 PMCID: PMC9755597 DOI: 10.3389/fmolb.2022.1067406] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/17/2022] [Indexed: 09/12/2023] Open
Abstract
DNA methylation is one of the most important epigenetic mechanisms that governing regulation of gene expression, aberrant DNA methylation patterns are strongly associated with human malignancies. Long non-coding RNAs (lncRNAs) have being discovered as a significant regulator on gene expression at the epigenetic level. Emerging evidences have indicated the intricate regulatory effects between lncRNAs and DNA methylation. On one hand, transcription of lncRNAs are controlled by the promoter methylation, which is similar to protein coding genes, on the other hand, lncRNA could interact with enzymes involved in DNA methylation to affect the methylation pattern of downstream genes, thus regulating their expression. In addition, circular RNAs (circRNAs) being an important class of noncoding RNA are also found to participate in this complex regulatory network. In this review, we summarize recent research progress on this crosstalk between lncRNA, circRNA, and DNA methylation as well as their potential functions in complex diseases including cancer. This work reveals a hidden layer for gene transcriptional regulation and enhances our understanding for epigenetics regarding detailed mechanisms on lncRNA regulatory function in human cancers.
Collapse
Affiliation(s)
- Zhen Yang
- Center for Medical Research and Innovation of Pudong Hospital, The Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Feng Xu
- Center for Medical Research and Innovation of Pudong Hospital, The Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Andrew E. Teschendorff
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yi Zhao
- Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
| | - Lei Yao
- Experiment Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Jian Li
- Center for Medical Research and Innovation of Pudong Hospital, The Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yungang He
- Center for Medical Research and Innovation of Pudong Hospital, The Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| |
Collapse
|
9
|
Tang Z, Wang Q, Chen P, Guo H, Shi J, Pan Y, Li C, Zhou C. Computational recognition of LncRNA signatures in tumor-associated neutrophils could have implications for immunotherapy and prognostic outcome of non-small cell lung cancer. Front Genet 2022; 13:1002699. [PMID: 36386809 PMCID: PMC9649922 DOI: 10.3389/fgene.2022.1002699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/18/2022] [Indexed: 12/05/2022] Open
Abstract
Cancer immune function and tumor microenvironment are governed by long noncoding RNAs (lncRNAs). Nevertheless, it has yet to be established whether lncRNAs play a role in tumor-associated neutrophils (TANs). Here, a computing framework based on machine learning was used to identify neutrophil-specific lncRNA with prognostic significance in squamous cell carcinoma and lung adenocarcinoma using univariate Cox regression to comprehensively analyze immune, lncRNA, and clinical characteristics. The risk score was determined using LASSO Cox regression analysis. Meanwhile, we named this risk score as “TANlncSig.” TANlncSig was able to distinguish between better and worse survival outcomes in various patient datasets independently of other clinical variables. Functional assessment of TANlncSig showed it is a marker of myeloid cell infiltration into tumor infiltration and myeloid cells directly or indirectly inhibit the anti-tumor immune response by secreting cytokines, expressing immunosuppressive receptors, and altering metabolic processes. Our findings highlighted the value of TANlncSig in TME as a marker of immune cell infiltration and showed the values of lncRNAs as indicators of immunotherapy.
Collapse
Affiliation(s)
- Zhuoran Tang
- Tongji University Medical School Cancer Institute, Tongji University, Shanghai, China
| | - Qi Wang
- Department of Medical Oncology, Tongji University Affiliated Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University, Shanghai, China
| | - Peixin Chen
- Tongji University Medical School Cancer Institute, Tongji University, Shanghai, China
| | - Haoyue Guo
- Tongji University Medical School Cancer Institute, Tongji University, Shanghai, China
| | - Jinpeng Shi
- Tongji University Medical School Cancer Institute, Tongji University, Shanghai, China
| | - Yingying Pan
- Tongji University Medical School Cancer Institute, Tongji University, Shanghai, China
| | - Chunyu Li
- Department of Integrated Traditional Chinese and Western Medicine, International Medical School, Tianjin Medical University, Tianjin, China
- *Correspondence: Caicun Zhou, ; Chunyu Li,
| | - Caicun Zhou
- Department of Medical Oncology, Tongji University Affiliated Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University, Shanghai, China
- *Correspondence: Caicun Zhou, ; Chunyu Li,
| |
Collapse
|
10
|
Zhou M, Lv S, Hou Y, Zhang R, Wang W, Yan Z, Li T, Gan W, Zeng Z, Zhang F, Yang M. Characterization of sialylation-related long noncoding RNAs to develop a novel signature for predicting prognosis, immune landscape, and chemotherapy response in colorectal cancer. Front Immunol 2022; 13:994874. [PMID: 36330513 PMCID: PMC9623420 DOI: 10.3389/fimmu.2022.994874] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/03/2022] [Indexed: 08/22/2023] Open
Abstract
Aberrant sialylation plays a key biological role in tumorigenesis and metastasis, including tumor cell survival and invasion, immune evasion, angiogenesis, and resistance to therapy. It has been proposed as a possible cancer biomarker and a potential therapeutic target of tumors. Nevertheless, the prognostic significance and biological features of sialylation-related long noncoding RNAs (lncRNAs) in colorectal cancer (CRC) remain unclear. This study aimed to develop a novel sialylation-related lncRNA signature to accurately evaluate the prognosis of patients with CRC and explore the potential molecular mechanisms of the sialylation-related lncRNAs. Here, we identified sialylation-related lncRNAs using the Pearson correlation analysis on The Cancer Genome Atlas (TCGA) dataset. Univariate and stepwise multivariable Cox analysis were used to establish a signature based on seven sialylation-related lncRNAs in the TCGA dataset, and the risk model was validated in the Gene Expression Omnibus dataset. Kaplan-Meier curve analysis revealed that CRC patients in the low-risk subgroup had a better survival outcome than those in the high-risk subgroup in the training set, testing set, and overall set. Multivariate analysis demonstrated that the sialylation-related lncRNA signature was an independent prognostic factor for overall survival, progression-free survival, and disease-specific survival prediction. The sialylation lncRNA signature-based nomogram exhibited a robust prognostic performance. Furthermore, enrichment analysis showed that cancer hallmarks and oncogenic signaling were enriched in the high-risk group, while inflammatory responses and immune-related pathways were enriched in the low-risk group. The comprehensive analysis suggested that low-risk patients had higher activity of immune response pathways, greater immune cell infiltration, and higher expression of immune stimulators. In addition, we determined the sialylation level in normal colonic cells and CRC cell lines by flow cytometry combined with immunofluorescence, and verified the expression levels of seven lncRNAs using real-time quantitative polymerase chain reaction. Finally, combined drug sensitivity analysis using the Genomics of Drug Sensitivity in Cancer, Cancer Therapeutics Response Portal, and Profiling Relative Inhibition Simultaneously in Mixtures indicated that the sialylation-related lncRNA signature could serve as a potential predictor for chemosensitivity. Collectively, this is the first sialylation lncRNA-based signature for predicting the prognosis, immune landscape, and chemotherapeutic response in CRC, and may provide vital guidance to facilitate risk stratification and optimize individualized therapy for CRC patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Min Yang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
11
|
Xue J, Song Y, Xu W, Zhu Y. The CDK1-Related lncRNA and CXCL8 Mediated Immune Resistance in Lung Adenocarcinoma. Cells 2022; 11:cells11172688. [PMID: 36078096 PMCID: PMC9454767 DOI: 10.3390/cells11172688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 12/15/2022] Open
Abstract
Background: Limited therapeutic options are available for advanced LUAD without driver gene mutations. Anti-CDK therapy has shown effectiveness in several kind of cancers, however, the mechanisms still need to be elucidated. Materials and Methods: The lncRNA associated with CDK1 and the immunomodulatory factors that regulate CDK1 were found by bioinformatics analysis and experimental verification. The prognostic model and immune resistance mechanism of lung adenocarcinoma were revealed by single cell analysis, immune infiltration analysis, and signal pathway analysis. Results: LINC00261 was found to be an important CDK1-related lncRNA with a better prognosis in LUAD. In addition, high CDK1 expression indicates a poor immunotherapy response, which may be associated with overexpression of CXCL8. CXCL8 decreased in patients who were immunotherapy-responsive but increased in patients who were immunotherapy-resistant. Signaling pathway analysis suggested that increased CXCL8 and decreased LINC00261 may participate in hypoxia-induced tumor angiogenesis and cause a poor prognosis for the patients. CXCL8 and CDK1 may change G2-M transformation and EMT and promote tumor proliferation. Conclusion: This study explained that LINC00261, CDK1, and CXCL8 may have a mutual regulation relationship, which affects the occurrence of LUAD and the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Jinmin Xue
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Department of Oncology, Jinshan Hospital of the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Chongqing Clinical Cancer Research Center, Chongqing 400016, China
| | - Yang Song
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Department of Oncology, Jinshan Hospital of the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Wenwen Xu
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Department of Oncology, Jinshan Hospital of the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yuxi Zhu
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Department of Oncology, Jinshan Hospital of the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Chongqing Clinical Cancer Research Center, Chongqing 400016, China
- Correspondence: ; Tel.: +86-023-88955813
| |
Collapse
|
12
|
Yang K, Liang X, Wen K. Long non‑coding RNAs interact with RNA‑binding proteins to regulate genomic instability in cancer cells (Review). Oncol Rep 2022; 48:175. [PMID: 36004472 PMCID: PMC9478986 DOI: 10.3892/or.2022.8390] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/27/2022] [Indexed: 11/05/2022] Open
Abstract
Genomic instability, a feature of most cancers, contributes to malignant cell transformation and cancer progression due to the accumulation of genetic alterations. Genomic instability is reflected at numerous levels, from single nucleotide to the chromosome levels. However, the exact molecular mechanisms and regulators of genomic instability in cancer remain unclear. Growing evidence indicates that the binding of long non-coding RNAs (lncRNAs) to protein chaperones confers a variety of regulatory functions, including managing of genomic instability. The aim of the present review was to examine the roles of mitosis, telomeres, DNA repair, and epigenetics in genomic instability, and the mechanisms by which lncRNAs regulate them by binding proteins in cancer cells. This review contributes to our understanding of the role of lncRNAs and genomic instability in cancer and can potentially provide entry points and molecular targets for cancer therapies.
Collapse
Affiliation(s)
- Kai Yang
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Xiaoxiang Liang
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Kunming Wen
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| |
Collapse
|
13
|
Ma Y, Di Y, Li Q, Zhan Q, He X, Liu S, Zou H, Corpe C, Chen L, Wang J. LncRNAs as epigenetic regulators of epithelial to mesenchymal transition in pancreatic cancer. Discov Oncol 2022; 13:61. [PMID: 35819532 PMCID: PMC9276894 DOI: 10.1007/s12672-022-00522-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 07/01/2022] [Indexed: 11/04/2022] Open
Abstract
Pancreatic cancer is the leading cause of cancer-related mortality because of tumor metastasis. Activation of the epithelial-to-mesenchymal transition (EMT) pathway has been confirmed to be an important driver of pancreatic cancer progression from initiation to metastasis. Long noncoding RNAs (lncRNAs) have been reported to exert essential physiological functions in pancreatic cancer progression by regulating the EMT program. In this review, we have summarized the role of EMT-related lncRNAs in human pancreatic cancer and the potential molecular mechanisms by which lncRNAs can be vital epigenetic regulators of epithelial to mesenchymal transition. Specifically, EMT-activating transcription factors (EMT-TFs) regulate EMT via TGF-β/Smad, Wnt/β-catenin, and JAK/STAT pathways. In addition, the interaction between lncRNAs and HIF-1α and m6A RNA methylation also have an impact on tumor metastasis and EMT in pancreatic cancer. This review will provide insights into lncRNAs as promising biomarkers for tumor metastasis and potential therapeutic strategies for pancreatic cancer.
Collapse
Affiliation(s)
- Yan Ma
- Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Jinshan District, Shanghai, 201508, People's Republic of China
| | - Yang Di
- Department of Pancreatic Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Qiuyue Li
- Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Jinshan District, Shanghai, 201508, People's Republic of China
| | - Qilin Zhan
- Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Jinshan District, Shanghai, 201508, People's Republic of China
| | - Xiaomeng He
- Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Jinshan District, Shanghai, 201508, People's Republic of China
| | - Shanshan Liu
- Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Jinshan District, Shanghai, 201508, People's Republic of China
| | - Heng Zou
- Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Jinshan District, Shanghai, 201508, People's Republic of China
| | - Christopher Corpe
- King's College London, Nutritional Science Department, 150 Stamford Street, Waterloo, London, SE19NH, UK
| | - Litian Chen
- Department of Hepatobiliary Surgery, Shanghai Jiaotong University School of Medicine Xinhua Hospital, Kongjiang Road 1665, Shanghai, China.
| | - Jin Wang
- Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Jinshan District, Shanghai, 201508, People's Republic of China.
| |
Collapse
|
14
|
Molecular landscape of c-Myc signaling in prostate cancer: A roadmap to clinical translation. Pathol Res Pract 2022; 233:153851. [DOI: 10.1016/j.prp.2022.153851] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/02/2022] [Accepted: 03/17/2022] [Indexed: 12/16/2022]
|
15
|
Yang B, Ma H, Bian Y. LINC00261 Inhibits Esophageal Cancer Radioresistance by Down-Regulating microRNA-552-3p and Promoting DIRAS1. Cancer Manag Res 2021; 13:8559-8573. [PMID: 34803403 PMCID: PMC8597985 DOI: 10.2147/cmar.s332640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/14/2021] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVE Esophageal cancer (EC) represents a life-threatening tumor with an ever-increasing incidence rate. Long intergenic non-protein coding RNAs (LINCs) have also become a topic of interest in EC. In a similar light, the current study aimed to investigate the role of LINC00261 in EC radioresistance. METHODS Firstly, radioresistant EC cell lines TE-1-R and TE-5-R were established using TE-1 and TE-5 cells. Subsequently, LINC00261, microRNA (miR)-552-3p, and DIRAS1 expression patterns in EC tissues and adjacent normal tissues and EC cells were evaluated. In addition, survival fraction (SF), colony formation, apoptosis, and γ-H2AX levels were analyzed, followed by the detection of the binding relation between LINC00261 and miR-552-3p and between miR-552-3p and DIRAS1. Lastly, xenograft transplantation was carried out to confirm the effects of LINC00261 on EC radioresistance in vivo. RESULTS LINC00261 and DIRAS1 were poorly-expressed in EC tissues and cells, but miR-552-3p was over-expressed. In EC cells with X-ray radiation, over-expression of LINC00261 reduced SF and cell viability, strengthened γ-H2AX levels, and promoted apoptosis, while all these trends were counteracted by miR-522-3p over-expression or DIRAS1 silencing. Mechanistic investigation further validated the binding relation between LINC00261 and miR-552-3p, and between miR-552-3p and DIRAS1. Moreover, LINC00261 over-expression suppressed tumor growth and reduced EC radioresistance in vivo. CONCLUSION Altogether, our findings indicated that LINC00261 exerts a suppressive effect on EC radioresistance via the competing endogenous RNA network to sponge miR-552-3p and up-regulate DIRAS1 transcription.
Collapse
Affiliation(s)
- Baolong Yang
- Department of Radiotherapy Oncology, The Second Affiliated Hospital of Xi ‘an Jiaotong University, Xi ‘an, Shanxi Province, 710004, People’s Republic of China
| | - Hongbing Ma
- Department of Radiotherapy Oncology, The Second Affiliated Hospital of Xi ‘an Jiaotong University, Xi ‘an, Shanxi Province, 710004, People’s Republic of China
| | - Yan Bian
- Department of Radiotherapy Oncology, The Second Affiliated Hospital of Xi ‘an Jiaotong University, Xi ‘an, Shanxi Province, 710004, People’s Republic of China
| |
Collapse
|
16
|
Xiong G, Pan S, Jin J, Wang X, He R, Peng F, Li X, Wang M, Zheng J, Zhu F, Qin R. Long Noncoding Competing Endogenous RNA Networks in Pancreatic Cancer. Front Oncol 2021; 11:765216. [PMID: 34760707 PMCID: PMC8573238 DOI: 10.3389/fonc.2021.765216] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancer (PC) is a highly malignant disease characterized by insidious onset, rapid progress, and poor therapeutic effects. The molecular mechanisms associated with PC initiation and progression are largely insufficient, hampering the exploitation of novel diagnostic biomarkers and development of efficient therapeutic strategies. Emerging evidence recently reveals that noncoding RNAs (ncRNAs), including long ncRNAs (lncRNAs) and microRNAs (miRNAs), extensively participate in PC pathogenesis. Specifically, lncRNAs can function as competing endogenous RNAs (ceRNAs), competitively sequestering miRNAs, therefore modulating the expression levels of their downstream target genes. Such complex lncRNA/miRNA/mRNA networks, namely, ceRNA networks, play crucial roles in the biological processes of PC by regulating cell growth and survival, epithelial-mesenchymal transition and metastasis, cancer stem cell maintenance, metabolism, autophagy, chemoresistance, and angiogenesis. In this review, the emerging knowledge on the lncRNA-associated ceRNA networks involved in PC initiation and progression will be summarized, and the potentials of the competitive crosstalk as diagnostic, prognostic, and therapeutic targets will be comprehensively discussed.
Collapse
Affiliation(s)
- Guangbing Xiong
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shutao Pan
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jikuan Jin
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoxiang Wang
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ruizhi He
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Peng
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xu Li
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Wang
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianwei Zheng
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Zhu
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Renyi Qin
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
17
|
Isotretinoin and Thalidomide Down-Regulate c-MYC Gene Expression and Modify Proteins Associated with Cancer in Hepatic Cells. Molecules 2021; 26:molecules26195742. [PMID: 34641286 PMCID: PMC8510077 DOI: 10.3390/molecules26195742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/15/2021] [Accepted: 09/19/2021] [Indexed: 11/17/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common form of liver cancer. The number of cases is increasing and the trend for the next few years is not encouraging. HCC is usually detected in the advanced stages of the disease, and pharmacological therapies are not entirely effective. For this reason, it is necessary to search for new therapeutic options. The objective of this work was to evaluate the effect of the drugs isotretinoin and thalidomide on c-MYC expression and cancer-related proteins in an HCC cellular model. The expression of c-MYC was measured using RT-qPCR and western blot assays. In addition, luciferase activity assays were performed for the c-MYC promoters P1 and P2 using recombinant plasmids. Dose-response-time analyses were performed for isotretinoin or thalidomide in cells transfected with the c-MYC promoters. Finally, a proteome profile analysis of cells exposed to these two drugs was performed and the results were validated by western blot. We demonstrated that in HepG2 cells, isotretinoin and thalidomide reduced c-MYC mRNA expression levels, but this decrease in expression was linked to the regulation of P1 and P1-P2 c-MYC promoter activity in isotretinoin only. Thalidomide did not exert any effect on c-MYC promoters. Also, isotretinoin and thalidomide were capable of inducing and repressing proteins associated with cancer. In conclusion, isotretinoin and thalidomide down-regulate c-MYC mRNA expression and this is partially due to P1 or P2 promoter activity, suggesting that these drugs could be promising options for modulating the expression of oncogenes and tumor suppressor genes in HCC.
Collapse
|
18
|
Jahangiri L, Pucci P, Ishola T, Trigg RM, Williams JA, Pereira J, Cavanagh ML, Turner SD, Gkoutos GV, Tsaprouni L. The Contribution of Autophagy and LncRNAs to MYC-Driven Gene Regulatory Networks in Cancers. Int J Mol Sci 2021; 22:ijms22168527. [PMID: 34445233 PMCID: PMC8395220 DOI: 10.3390/ijms22168527] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/30/2021] [Accepted: 08/05/2021] [Indexed: 12/12/2022] Open
Abstract
MYC is a target of the Wnt signalling pathway and governs numerous cellular and developmental programmes hijacked in cancers. The amplification of MYC is a frequently occurring genetic alteration in cancer genomes, and this transcription factor is implicated in metabolic reprogramming, cell death, and angiogenesis in cancers. In this review, we analyse MYC gene networks in solid cancers. We investigate the interaction of MYC with long non-coding RNAs (lncRNAs). Furthermore, we investigate the role of MYC regulatory networks in inducing changes to cellular processes, including autophagy and mitophagy. Finally, we review the interaction and mutual regulation between MYC and lncRNAs, and autophagic processes and analyse these networks as unexplored areas of targeting and manipulation for therapeutic gain in MYC-driven malignancies.
Collapse
Affiliation(s)
- Leila Jahangiri
- Department of Life Sciences, Birmingham City University, Birmingham B15 3TN, UK; (L.J.); (T.I.); (M.L.C.)
| | - Perla Pucci
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge CB2 0QQ, UK; (P.P.); (S.D.T.)
| | - Tala Ishola
- Department of Life Sciences, Birmingham City University, Birmingham B15 3TN, UK; (L.J.); (T.I.); (M.L.C.)
| | - Ricky M. Trigg
- Department of Functional Genomics, GlaxoSmithKline, Stevenage SG1 2NY, UK;
| | - John A. Williams
- Institute of Translational Medicine, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2TH, UK; (J.A.W.); (G.V.G.)
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2SY, UK
| | - Joao Pereira
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA;
| | - Megan L. Cavanagh
- Department of Life Sciences, Birmingham City University, Birmingham B15 3TN, UK; (L.J.); (T.I.); (M.L.C.)
| | - Suzanne D. Turner
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge CB2 0QQ, UK; (P.P.); (S.D.T.)
- CEITEC, Masaryk University, 625 00 Brno, Czech Republic
| | - Georgios V. Gkoutos
- Institute of Translational Medicine, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2TH, UK; (J.A.W.); (G.V.G.)
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2SY, UK
- Mammalian Genetics Unit, Medical Research Council Harwell Institute, Oxfordshire OX11 0RD, UK
- MRC Health Data Research, Birmingham B15 2TT, UK
- NIHR Experimental Cancer Medicine Centre, Birmingham B15 2TT, UK
- NIHR Surgical Reconstruction and Microbiology Research Centre, Birmingham B15 2TT, UK
- NIHR Biomedical Research Centre, Birmingham B15 2TT, UK
| | - Loukia Tsaprouni
- Department of Life Sciences, Birmingham City University, Birmingham B15 3TN, UK; (L.J.); (T.I.); (M.L.C.)
- Correspondence:
| |
Collapse
|
19
|
Wang L, Wang X, Yan P, Liu Y, Jiang X. LINC00261 Suppresses Cisplatin Resistance of Esophageal Squamous Cell Carcinoma Through miR-545-3p/MT1M Axis. Front Cell Dev Biol 2021; 9:687788. [PMID: 34336838 PMCID: PMC8320661 DOI: 10.3389/fcell.2021.687788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/24/2021] [Indexed: 12/24/2022] Open
Abstract
To improve the survival rate and cure rate of patients, it is necessary to find a new treatment scheme according to the molecular composition of (ESCC) in esophageal squamous cell carcinoma. Long non-coding RNAs (lncRNAs) regulate the progression of ESCC by various pathophysiological pathways. We explored the possible function of the lncRNA LINC00261 (LINC00261) on cisplatin (DDP) resistance of ESCC and its relative molecular mechanisms. In the study, we found that LINC00261 was downregulated in ESCC tissues, cell lines, and DDP-resistant ESCC patients. Besides, overexpression of LINC00261 not only inhibited cell proliferation, and DDP resistance but also promotes cell apoptosis. Further mechanistic research showed that LINC00261 sponged miR-545-3p which was negatively correlated with the expression of LINC00261. In addition, functional experiments revealed that upregulation of miR-766-5p promoted proliferation and enhanced DDP resistance. Subsequently, MT1M was testified to be the downstream target gene of miR-545-3p. Rescue experiments revealed that overexpression of MT1M largely restores miR-545-3p mimics-mediated function on ESCC progression. Our results demonstrate that the LINC00261 suppressed the DDP resistance of ESCC through miR-545-3p/MT1M axis.
Collapse
Affiliation(s)
- Lijun Wang
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaojun Wang
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Pengwei Yan
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Yatian Liu
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Xuesong Jiang
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
20
|
Xu J, Wang J, He Z, Chen P, Jiang X, Chen Y, Liu X, Jiang J. LncRNA CERS6-AS1 promotes proliferation and metastasis through the upregulation of YWHAG and activation of ERK signaling in pancreatic cancer. Cell Death Dis 2021; 12:648. [PMID: 34168120 PMCID: PMC8225895 DOI: 10.1038/s41419-021-03921-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 06/05/2021] [Accepted: 06/07/2021] [Indexed: 12/11/2022]
Abstract
LncRNAs play essential regulatory roles in pancreatic cancer (PC) tumorigenesis and progression. We aimed to investigate the role of lncRNA CERS6-AS1 in PC. CERS6-AS1 expression was determined in PC tissues and cell lines by PCR analysis. The roles of CERS6-AS1 on proliferation, migration, invasion, and epithelial to mesenchymal transition (EMT) were confirmed via CCK-8 assay, EDU assay, transwell assay, wound healing assay, and western blot assay. Besides, the interaction between CERS6-AS1 and their target genes was verified by luciferase report assays and RIP assays. Animal assays and clinical data analysis were performed to validate the functions in vivo. We found that lncRNA CERS6-AS1 was highly expressed in PC tissues and cells. Additionally, high expression of CERS6-AS1 was obviously associated with poor prognosis. Functional assays demonstrated that CERS6-AS1 downregulation significantly inhibited PC cell growth and migration. Moreover, CERS6-AS1 exerted as a molecular sponge for miR-217-5p (miR-217), and miR-217 was confirmed as a potential target of CERS6-AS1. Subsequently, miR-217 suppressed PC cell proliferation and metastasis by directly targeting YWHAG, which interacted with RAF1 and promoted its phosphorylation, leading to RAF1-mediated ERK signaling activation and translocation of phosphorylated ERK from the cytoplasm to the nucleus. Mechanically, CERS6-AS1 silencing significantly inhibited PC cell proliferation and metastasis via a miR-217/YWHAG/RAF1 signaling axis. CERS6-AS1 exerts as a carcinogen in PC to promote malignant features and behaves as a competitive endogenous RNA for miR-217. We identified CERS6-AS1 as a potential biomarker or therapeutic target to improve PC diagnosis and treatment outcomes.
Collapse
Affiliation(s)
- Jian Xu
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jie Wang
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhiwei He
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Peng Chen
- Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xueyi Jiang
- Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yankun Chen
- Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xinyuan Liu
- Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Jianxin Jiang
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
21
|
Zhang M, Gao F, Yu X, Zhang Q, Sun Z, He Y, Guo W. LINC00261: a burgeoning long noncoding RNA related to cancer. Cancer Cell Int 2021; 21:274. [PMID: 34022894 PMCID: PMC8141177 DOI: 10.1186/s12935-021-01988-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/15/2021] [Indexed: 02/07/2023] Open
Abstract
Long noncoding RNAs (lncRNAs), are transcripts longer than 200 nucleotides that are considered to be vital regulators of many cellular processes, particularly in tumorigenesis and cancer progression. long intergenic non-protein coding RNA 261 (LINC00261), a recently discovered lncRNA, is abnormally expressed in a variety of human malignancies, including pancreatic cancer, gastric cancer, colorectal cancer, lung cancer, hepatocellular carcinoma, breast cancer, laryngeal carcinoma, endometrial carcinoma, esophageal cancer, prostate cancer, choriocarcinoma, and cholangiocarcinoma. LINC00261 mainly functions as a tumor suppressor that regulates a variety of biological processes in the above-mentioned cancers, such as cell proliferation, apoptosis, motility, chemoresistance, and tumorigenesis. In addition, the up-regulation of LINC00261 is closely correlated with both favorable prognoses and many clinical characteristics. In the present review, we summarize recent research documenting the expression and biological mechanisms of LINC00261 in tumor development. These findings suggest that LINC00261, as a tumor suppressor, has bright prospects both as a biomarker and a therapeutic target.
Collapse
Affiliation(s)
- Menggang Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshedong Road, Erqi District, Zhengzhou, 450052, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ, Transplantation at Henan Universities, 450052, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China
| | - Fang Gao
- Health Management Center, Binzhou People's Hospital, Binzhou, 256600, China
| | - Xiao Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshedong Road, Erqi District, Zhengzhou, 450052, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ, Transplantation at Henan Universities, 450052, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China
| | - Qiyao Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshedong Road, Erqi District, Zhengzhou, 450052, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ, Transplantation at Henan Universities, 450052, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China
| | - Zongzong Sun
- Department of Obstetrics and Gynaecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yuting He
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshedong Road, Erqi District, Zhengzhou, 450052, China.
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ, Transplantation at Henan Universities, 450052, Zhengzhou, China.
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China.
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshedong Road, Erqi District, Zhengzhou, 450052, China.
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ, Transplantation at Henan Universities, 450052, Zhengzhou, China.
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China.
| |
Collapse
|
22
|
Tian C, Gao L, Zucker IH. Regulation of Nrf2 signaling pathway in heart failure: Role of extracellular vesicles and non-coding RNAs. Free Radic Biol Med 2021; 167:218-231. [PMID: 33741451 PMCID: PMC8096694 DOI: 10.1016/j.freeradbiomed.2021.03.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/26/2021] [Accepted: 03/11/2021] [Indexed: 12/11/2022]
Abstract
The balance between pro- and antioxidant molecules has been established as an important driving force in the pathogenesis of cardiovascular disease. Chronic heart failure is associated with oxidative stress in the myocardium and globally. Redox balance in the heart and brain is controlled, in part, by antioxidant proteins regulated by the transcription factor Nuclear factor erythroid 2-related factor 2 (Nrf2), which is reduced in the heart failure state. Nrf2 can, in turn, be regulated by a variety of mechanisms including circulating microRNAs (miRNAs) encapsulated in extracellular vesicles (EVs) derived from multiple cell types in the heart. Here, we review the role of the Nrf2 and antioxidant enzyme signaling pathway in mediating redox balance in the myocardium and the brain in the heart failure state. This review focuses on Nrf2 and antioxidant protein regulation in the heart and brain by miRNA-enriched EVs in the setting of heart failure. We discuss EV-mediated intra- and inter-organ communications especially, communication between the heart and brain via an EV pathway that mediates cardiac function and sympatho-excitation in heart failure. Importantly, we speculate how engineered EVs with specific miRNAs or antagomirs may be used in a therapeutic manner in heart failure.
Collapse
Affiliation(s)
- Changhai Tian
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Lie Gao
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, 68198-5850, USA
| | - Irving H Zucker
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, 68198-5850, USA.
| |
Collapse
|
23
|
Ma D, Wei J, Chen S, Wang H, Ning L, Luo SH, Liu CL, Song G, Yao Q. Fucoidan Inhibits the Progression of Hepatocellular Carcinoma via Causing lncRNA LINC00261 Overexpression. Front Oncol 2021; 11:653902. [PMID: 33928038 PMCID: PMC8078595 DOI: 10.3389/fonc.2021.653902] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/12/2021] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) as a main type of primary liver cancers has become one of the most deadly tumors because of its high morbidity and poor prognosis. Fucoidan is a family of natural, heparin-like sulfated polysaccharides extracted from brown algae. It is not only a widely used dietary supplement, but also participates in many biological activities, such as anti-oxidation, anti-inflammation and anti-tumor. However, the mechanism of fucoidan induced inhibition of HCC is elusive. In our study, we demonstrated that fucoidan contributes to inhibiting cell proliferation in vivo and in vitro, restraining cell motility and invasion and inducing cell cycle arrest and apoptosis. According to High-Throughput sequencing of long-non-coding RNA (lncRNA) in MHCC-97H cells treated with 0.5 mg/mL fucoidan, we found that 56 and 49 lncRNAs were correspondingly up- and down-regulated. LINC00261, which was related to the progression of tumor, was highly expressed in fucoidan treated MHCC-97H cells. Moreover, knocking down LINC00261 promoted cell proliferation by promoting the expression level of miR-522-3p, which further decreased the expression level of downstream SFRP2. Taken together, our results verified that fucoidan effectively inhibits the progression of HCC via causing lncRNA LINC00261 overexpression.
Collapse
Affiliation(s)
- Danhui Ma
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai, China.,Shanghai Institute of Liver Diseases, Shanghai, China
| | - Jiayi Wei
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai, China.,Shanghai Institute of Liver Diseases, Shanghai, China
| | - Sinuo Chen
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai, China.,Shanghai Institute of Liver Diseases, Shanghai, China
| | - Heming Wang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai, China.,Shanghai Institute of Liver Diseases, Shanghai, China
| | - Liuxin Ning
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai, China.,Shanghai Institute of Liver Diseases, Shanghai, China
| | - Shi-Hua Luo
- Department of Traumatology, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chieh-Lun Liu
- Department of Clinical Research and Development, Hi-Q Marine Biotech International Ltd., Taipei, Taiwan
| | - Guangqi Song
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai, China.,Shanghai Institute of Liver Diseases, Shanghai, China
| | - Qunyan Yao
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai, China.,Shanghai Institute of Liver Diseases, Shanghai, China
| |
Collapse
|
24
|
Cheng M, Sun L, Huang K, Yue X, Chen J, Zhang Z, Zhao B, Bian E. A Signature of Nine lncRNA Methylated Genes Predicts Survival in Patients With Glioma. Front Oncol 2021; 11:646409. [PMID: 33828990 PMCID: PMC8019920 DOI: 10.3389/fonc.2021.646409] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 02/24/2021] [Indexed: 12/20/2022] Open
Abstract
Glioma is one of the most common malignant tumors of the central nervous system, and its prognosis is extremely poor. Aberrant methylation of lncRNA promoter region is significantly associated with the prognosis of glioma patients. In this study, we investigated the potential impact of methylation of lncRNA promoter region in glioma patients to establish a signature of nine lncRNA methylated genes for determining glioma patient prognosis. Methylation data and clinical follow-up data were obtained from The Cancer Genome Atlas (TCGA). The multistep screening strategy identified nine lncRNA methylated genes that were significantly associated with the overall survival (OS) of glioma patients. Subsequently, we constructed a risk signature that containing nine lncRNA methylated genes. The risk signature successfully divided the glioma patients into high-risk and low-risk groups. Compared with the low-risk group, the high-risk group had a worse prognosis, higher glioma grade, and older age. Furthermore, we identified two lncRNAs termed PCBP1-AS1 and LINC02875 that may be involved in the malignant progression of glioma cells by using the TCGA database. Loss-of-function assays confirmed that knockdown of PCBP1-AS1 and LINC02875 inhibited the proliferation, migration, and invasion of glioma cells. Therefore, the nine lncRNA methylated genes signature may provide a novel predictor and therapeutic target for glioma patients.
Collapse
Affiliation(s)
- Meng Cheng
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, China
| | - Libo Sun
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, China
| | - Kebing Huang
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, China
| | - Xiaoyu Yue
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, China
| | - Jie Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, China
| | - Zhengwei Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, China
| | - Bing Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, China
| | - Erbao Bian
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, China
| |
Collapse
|
25
|
Exosomal long non-coding RNAs in the diagnosis and oncogenesis of pancreatic cancer. Cancer Lett 2020; 501:55-65. [PMID: 33359452 DOI: 10.1016/j.canlet.2020.12.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/24/2020] [Accepted: 12/03/2020] [Indexed: 12/24/2022]
Abstract
Extracellular vesicles, specifically exosomes, play a significant role as an extracellular messenger through their transporting cargo. Of particular interest are the potential roles they play in pancreatic cancer, one of the leading causes of cancer-related mortality worldwide. Pancreatic Ductal Adenocarcinoma displays high chemo-resistance and metastatic ability, which may be influenced by cancer-derived exosomes carrying proteins, lipids and RNA. To date, among the most extensively examined exosomal molecular cargo there are long non-coding RNAs (lncRNAs) that, despite the increasing interest in their role and functions, are relatively poorly understood compared to other RNA transcripts. Nevertheless, we have witnessed an increasing interest for lncRNAs roles and functions in the past decade. For example, lncRNAs have been investigated as potential biomarkers for diagnosing pancreatic cancer and may have a role as therapeutics targets for precision medicine, but may also directly intervene in tumour progression features such as metastasis, epithelial to mesenchymal transition and resistance of cancer cells towards chemotherapy agents. The function of lncRNAs within various cancer exosomes is still undefined. In this review, we summarize the current knowledge on pancreatic cancer-derived exosome specific lncRNAs having prominent roles in genome integrity, pancreatic cancer progression and in other oncogenic hallmarks.
Collapse
|
26
|
Epigenetic modifications of c-MYC: Role in cancer cell reprogramming, progression and chemoresistance. Semin Cancer Biol 2020; 83:166-176. [PMID: 33220458 DOI: 10.1016/j.semcancer.2020.11.008] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 11/05/2020] [Accepted: 11/08/2020] [Indexed: 12/12/2022]
Abstract
Both genetic and epigenetic mechanisms intimately regulate cancer development and chemoresistance. Different genetic alterations are observed in multiple genes, and most are irreversible. Aside from genetic alterations, epigenetic alterations play a crucial role in cancer. The reversible nature of epigenetic modifications makes them an attractive target for cancer prevention and therapy. Specific epigenetic alteration is also being investigated as a potential biomarker in multiple cancers. c-MYC is one of the most important transcription factors that are centrally implicated in multiple types of cancer cells reprogramming, proliferation, and chemoresistance. c-MYC shows not only genetic alterations but epigenetic changes in multiple cancers. It has been observed that epigenome aberrations can reversibly alter the expression of c-MYC, both transcriptional and translational levels. Understanding the underlying mechanism of the epigenetic alterations of c-MYC, that has its role in multiple levels of cancer pathogenesis, can give a better understanding of various unresolved questions regarding cancer. Recently, some researchers reported that targeting the epigenetic modifiers of c-MYC can successfully inhibit cancer cell proliferation, sensitize the chemoresistant cells, and increase the patient survival rate. As c-MYC is an important transcription factor, epigenetic therapy might be one of the best alternatives for the conventional therapies that assumes the "one-size-fits-all" role. It can also increase the precision of targeting and enhance the effectiveness of treatments among various cancer subtypes. In this review, we highlighted the role of epigenetically modified c-MYC in cancer cell reprogramming, progression, and chemoresistance. We also summarize the potential therapeutic approaches to target these modifications for the prevention of cancer development and chemoresistant phenotypes.
Collapse
|