1
|
Liu Y, Yu D, Ge X, Huang L, Pan PY, Shen H, Pettigrew RI, Chen SH, Mai J. Novel platinum therapeutics induce rapid cancer cell death through triggering intracellular ROS storm. Biomaterials 2025; 314:122835. [PMID: 39276409 PMCID: PMC11560510 DOI: 10.1016/j.biomaterials.2024.122835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/31/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
Induction of reactive oxygen species (ROS) production in cancer cells plays a critical role for cancer treatment. However, therapeutic efficiency remains challenging due to insufficient ROS production of current ROS inducers. We designed a novel platinum (Pt)-based drug named "carrier-platin" that integrates ultrasmall Pt-based nanoparticles uniformly confined within a poly(amino acids) carrier. Carrier-platin dramatically triggered a burst of ROS in cancer cells, leading to cancer cell death as quick as 30 min. Unlike traditional Pt-based drugs which induce cell apoptosis through DNA intercalation, carrier-platin with superior ROS catalytic activities induces a unique pattern of cancer cell death that is neither apoptosis nor ferroptosis and operates independently of DNA damage. Importantly, carrier-platin demonstrates superior anti-tumor efficacy against a broad spectrum of cancers, particularly those with multidrug resistance, while maintaining minimal systemic toxicity. Our findings reveal a distinct mechanism of action of Pt in cancer cell eradication, positioning carrier-platin as a novel category of anti-cancer chemotherapeutics.
Collapse
Affiliation(s)
- Yongbin Liu
- Department of Nanomedicine, Houston Methodist Academic Institute, Houston, TX, 77030, USA.
| | - Dongfang Yu
- Department of Nanomedicine, Houston Methodist Academic Institute, Houston, TX, 77030, USA
| | - Xueying Ge
- School of Engineering Medicine/ENMED, Texas A&M University and Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Lingyi Huang
- Department of Nanomedicine, Houston Methodist Academic Institute, Houston, TX, 77030, USA
| | - Ping-Ying Pan
- Center for Immunotherapy and Neal Cancer Center, Houston Methodist Academic Institute, Houston, TX, 77030, USA
| | - Haifa Shen
- Department of Nanomedicine, Houston Methodist Academic Institute, Houston, TX, 77030, USA
| | - Roderic I Pettigrew
- School of Engineering Medicine/ENMED, Texas A&M University and Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Shu-Hsia Chen
- Center for Immunotherapy and Neal Cancer Center, Houston Methodist Academic Institute, Houston, TX, 77030, USA; Weill Cornell Medical College, New York, NY, 10065, USA.
| | - Junhua Mai
- Department of Nanomedicine, Houston Methodist Academic Institute, Houston, TX, 77030, USA.
| |
Collapse
|
2
|
Liu S, Jiang Y, Cheng X, Wang Y, Fang T, Yan X, Tang H, You Q. Mitochondria-targeting nanozyme for catalytical therapy and radiotherapy with activation of cGAS-STING. Colloids Surf B Biointerfaces 2024; 244:114137. [PMID: 39116601 DOI: 10.1016/j.colsurfb.2024.114137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/27/2024] [Accepted: 08/03/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND Overcoming radio-resistance and enhance radio-sensitivity to obtain desired therapeutic outcome plays an important role in treating cancer. METHODS Here we constructed a versatile enzyme-like nano-radiosensitizer MDP. MDP is composed of MnCO decorated and Ru-based nanozyme with triphenylphosphine (TPP) group coordinated on the surface. RESULTS Due to the mitochondria-targeting ability of TPP and enhanced permeability and retention effect (EPR) effect of MDP, MDP accumulated in the mitochondria of tumor cells. Therefore, quantities of reactive oxygen species were produced via multiple enzyme-like properties including peroxidase (POD) and catalase (CAT) in a tumor microenvironment mimicking status. In additional, more energy of radiation ionizing was deposed in tumor site via Compton effect and secondary electron scattering by Ru element. Impressively, it was disclosed that the nanozyme can act as a cGAS-STING agonist to provoke immune response of the system, which hereby further elevated this combined therapy. CONCLUSIONS Collectively, we fabricated a novel nanozyme with POD and CAT mimicking properties for the combination therapy of catalytical therapy, radiotherapy as well as immune therapy to eliminate cancer.
Collapse
Affiliation(s)
- Shijian Liu
- Department of Kidney, the 2nd Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Yi Jiang
- Guangxi Medical University Cancer Hospital, Nanning 530000, China
| | - Xuebin Cheng
- Department of Kidney, the 2nd Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Yuxin Wang
- Department of Kidney, the 2nd Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Tianyi Fang
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin 150000, China
| | - Xiuchun Yan
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin 150000, China
| | - Han Tang
- Key Laboratory of Artificial Micro, and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072, China
| | - Qi You
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin 150000, China.
| |
Collapse
|
3
|
Lima AF, Justo GZ, Sousa AA. Realizing active targeting in cancer nanomedicine with ultrasmall nanoparticles. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:1208-1226. [PMID: 39376728 PMCID: PMC11457047 DOI: 10.3762/bjnano.15.98] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/04/2024] [Indexed: 10/09/2024]
Abstract
Ultrasmall nanoparticles (usNPs) have emerged as promising theranostic tools in cancer nanomedicine. With sizes comparable to globular proteins, usNPs exhibit unique physicochemical properties and physiological behavior distinct from larger particles, including lack of protein corona formation, efficient renal clearance, and reduced recognition and sequestration by the reticuloendothelial system. In cancer treatment, usNPs demonstrate favorable tumor penetration and intratumoral diffusion. Active targeting strategies, incorporating ligands for specific tumor receptor binding, serve to further enhance usNP tumor selectivity and therapeutic performance. Numerous preclinical studies have already demonstrated the potential of actively targeted usNPs, revealing increased tumor accumulation and retention compared to non-targeted counterparts. In this review, we explore actively targeted inorganic usNPs, highlighting their biological properties and behavior, along with applications in both preclinical and clinical settings.
Collapse
Affiliation(s)
- André F Lima
- Department of Biochemistry, Federal University of São Paulo, São Paulo, SP 04044-020, Brazil
| | - Giselle Z Justo
- Department of Biochemistry, Federal University of São Paulo, São Paulo, SP 04044-020, Brazil
| | - Alioscka A Sousa
- Department of Biochemistry, Federal University of São Paulo, São Paulo, SP 04044-020, Brazil
| |
Collapse
|
4
|
Gao Y, Huo S, Chen C, Du S, Xia R, Liu J, Chen D, Diao Z, Han X, Yin Z. Gold nanorods as biocompatible nano-agents for the enhanced photothermal therapy in skin disorders. J Biomed Res 2024; 38:1-17. [PMID: 39375931 DOI: 10.7555/jbr.38.20240119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024] Open
Abstract
Rod-shaped gold nanomaterials, known as gold nanorods (GNRs), may undergo specific surface alterations, because of their straightforward surface chemistry. This feature makes them appropriate for use as functional and biocompatible nano-formulations. By optimizing the absorption of longitudinally localized surface plasmon resonance (LSPR) in the near-infrared (NIR) region, which corresponds to the NIR bio-tissue window, GNRs with appropriate modifications may improve the results of photothermal treatment (PTT). In dermatology, potential noninvasive uses of GNRs to enhance wound healing, manage infections, combat cutaneous malignancies, and remodel skin tissues via PTT have attracted research attention in recent years. In this review, the basic properties of GNRs, such as shape, size, optical performance, photothermal efficiency, and metabolism, are discussed firstly. Then, the disadvantages of using these particles in photodynamic therapy (PDT) are proposed. Next, biological applications of GNRs-based PTT are summarized in detail. Finally, the limitations and future perspectives of this research are summarized, providing a comprehensive outlook for prospective GNRs with PTT.
Collapse
Affiliation(s)
- Yamei Gao
- Department of Dermatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Shaohu Huo
- Department of Pediatrics, the First Affiliated Hospital of Anhui Medical University, Anhui 230022, China
| | - Chao Chen
- Industrialization of Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Shiyu Du
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, Jiangsu 210008, China
| | - Ruiyuan Xia
- Department of Dermatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jian Liu
- Department of Dermatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Dandan Chen
- Department of Dermatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Ziyue Diao
- Department of Dermatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xin Han
- Industrialization of Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Zhiqiang Yin
- Department of Dermatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
5
|
Zhang J, Zhou J, Tang L, Ma J, Wang Y, Yang H, Wang X, Fan W. Custom-Design of Multi-Stimuli-Responsive Degradable Silica Nanoparticles for Advanced Cancer-Specific Chemotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400353. [PMID: 38651235 DOI: 10.1002/smll.202400353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/24/2024] [Indexed: 04/25/2024]
Abstract
Chemotherapy is crucial in oncology for combating malignant tumors but often encounters obatacles such as severe adverse effects, drug resistance, and biocompatibility issues. The advantages of degradable silica nanoparticles in tumor diagnosis and treatment lie in their ability to target drug delivery, minimizing toxicity to normal tissues while enhancing therapeutic efficacy. Moreover, their responsiveness to both endogenous and exogenous stimuli opens up new possibilities for integrating multiple treatment modalities. This review scrutinizes the burgeoning utility of degradable silica nanoparticles in combination with chemotherapy and other treatment modalities. Commencing the elucidation of degradable silica synthesis and degradation mechanisms, emphasis is placed on the responsiveness of these materials to endogenous (e.g., pH, redox reactions, hypoxia, and enzymes) and exogenous stimuli (e.g., light and high-intensity focused ultrasound). Moreover, this exploration delves into strategies harnessing degradable silica nanoparticles in chemotherapy alone, coupled with radiotherapy, photothermal therapy, photodynamic therapy, gas therapy, immunotherapy, starvation therapy, and chemodynamic therapy, elucidating multimodal synergies. Concluding with an assessment of advances, challenges, and constraints in oncology, despite hurdles, future investigations are anticipated to augment the role of degradable silica in cancer therapy. These insights can serve as a compass for devising more efficacious combined tumor treatment strategies.
Collapse
Affiliation(s)
- Junjie Zhang
- School of Fundamental Sciences, Bengbu Medical University, Bengbu, 233030, P. R. China
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Jiani Zhou
- School of Fundamental Sciences, Bengbu Medical University, Bengbu, 233030, P. R. China
| | | | - Jiayi Ma
- School of Fundamental Sciences, Bengbu Medical University, Bengbu, 233030, P. R. China
| | - Ying Wang
- School of Fundamental Sciences, Bengbu Medical University, Bengbu, 233030, P. R. China
| | - Hui Yang
- School of Fundamental Sciences, Bengbu Medical University, Bengbu, 233030, P. R. China
| | - Xiaoxiao Wang
- Biochemical Engineering Research Center, School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, 243032, P. R. China
| | - Wenpei Fan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing, 211198, P. R. China
| |
Collapse
|
6
|
Agarwal H, Bynum RC, Saleh N, Harris D, MacCuaig WM, Kim V, Sanderson EJ, Dennahy IS, Singh R, Behkam B, Gomez-Gutierrez JG, Jain A, Edil BH, McNally LR. Theranostic nanoparticles for detection and treatment of pancreatic cancer. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1983. [PMID: 39140128 PMCID: PMC11328968 DOI: 10.1002/wnan.1983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 06/21/2024] [Accepted: 07/12/2024] [Indexed: 08/15/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most recalcitrant cancers due to its late diagnosis, poor therapeutic response, and highly heterogeneous microenvironment. Nanotechnology has the potential to overcome some of the challenges to improve diagnostics and tumor-specific drug delivery but they have not been plausibly viable in clinical settings. The review focuses on active targeting strategies to enhance pancreatic tumor-specific uptake for nanoparticles. Additionally, this review highlights using actively targeted liposomes, micelles, gold nanoparticles, silica nanoparticles, and iron oxide nanoparticles to improve pancreatic tumor targeting. Active targeting of nanoparticles toward either differentially expressed receptors or PDAC tumor microenvironment (TME) using peptides, antibodies, small molecules, polysaccharides, and hormones has been presented. We focus on microenvironment-based hallmarks of PDAC and the potential for actively targeted nanoparticles to overcome the challenges presented in PDAC. It describes the use of nanoparticles as contrast agents for improved diagnosis and the delivery of chemotherapeutic agents that target various aspects within the TME of PDAC. Additionally, we review emerging nano-contrast agents detected using imaging-based technologies and the role of nanoparticles in energy-based treatments of PDAC. This article is categorized under: Implantable Materials and Surgical Technologies > Nanoscale Tools and Techniques in Surgery Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Diagnostic Tools > In Vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Happy Agarwal
- Stephenson Cancer Center, University of Oklahoma Health Science, Oklahoma City, Oklahoma, USA
| | - Ryan C Bynum
- Department of Surgery, University of Oklahoma Health Science, Oklahoma City, Oklahoma, USA
| | - Nada Saleh
- Stephenson Cancer Center, University of Oklahoma Health Science, Oklahoma City, Oklahoma, USA
| | - Danielle Harris
- Department of Surgery, University of Oklahoma Health Science, Oklahoma City, Oklahoma, USA
| | - William M MacCuaig
- Stephenson Cancer Center, University of Oklahoma Health Science, Oklahoma City, Oklahoma, USA
| | - Vung Kim
- Department of Surgery, University of Oklahoma Health Science, Oklahoma City, Oklahoma, USA
| | - Emma J Sanderson
- Stephenson Cancer Center, University of Oklahoma Health Science, Oklahoma City, Oklahoma, USA
| | - Isabel S Dennahy
- Department of Surgery, University of Oklahoma Health Science, Oklahoma City, Oklahoma, USA
| | - Rohit Singh
- Stephenson Cancer Center, University of Oklahoma Health Science, Oklahoma City, Oklahoma, USA
| | - Bahareh Behkam
- Department of Mechanical Engineering, Virginia Tech University, Blacksburg, Virginia, USA
| | | | - Ajay Jain
- Department of Surgery, University of Oklahoma Health Science, Oklahoma City, Oklahoma, USA
| | - Barish H Edil
- Department of Surgery, University of Oklahoma Health Science, Oklahoma City, Oklahoma, USA
| | - Lacey R McNally
- Department of Surgery, University of Oklahoma Health Science, Oklahoma City, Oklahoma, USA
| |
Collapse
|
7
|
Mu R, Zhu D, Abdulmalik S, Wijekoon S, Wei G, Kumbar SG. Stimuli-responsive peptide assemblies: Design, self-assembly, modulation, and biomedical applications. Bioact Mater 2024; 35:181-207. [PMID: 38327824 PMCID: PMC10847779 DOI: 10.1016/j.bioactmat.2024.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 02/09/2024] Open
Abstract
Peptide molecules have design flexibility, self-assembly ability, high biocompatibility, good biodegradability, and easy functionalization, which promote their applications as versatile biomaterials for tissue engineering and biomedicine. In addition, the functionalization of self-assembled peptide nanomaterials with other additive components enhances their stimuli-responsive functions, promoting function-specific applications that induced by both internal and external stimulations. In this review, we demonstrate recent advance in the peptide molecular design, self-assembly, functional tailoring, and biomedical applications of peptide-based nanomaterials. The strategies on the design and synthesis of single, dual, and multiple stimuli-responsive peptide-based nanomaterials with various dimensions are analyzed, and the functional regulation of peptide nanomaterials with active components such as metal/metal oxide, DNA/RNA, polysaccharides, photosensitizers, 2D materials, and others are discussed. In addition, the designed peptide-based nanomaterials with temperature-, pH-, ion-, light-, enzyme-, and ROS-responsive abilities for drug delivery, bioimaging, cancer therapy, gene therapy, antibacterial, as well as wound healing and dressing applications are presented and discussed. This comprehensive review provides detailed methodologies and advanced techniques on the synthesis of peptide nanomaterials from molecular biology, materials science, and nanotechnology, which will guide and inspire the molecular level design of peptides with specific and multiple functions for function-specific applications.
Collapse
Affiliation(s)
- Rongqiu Mu
- College of Chemistry and Chemical Engineering, Qingdao University, 266071, Qingdao, China
| | - Danzhu Zhu
- College of Chemistry and Chemical Engineering, Qingdao University, 266071, Qingdao, China
| | - Sama Abdulmalik
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, 06030, USA
| | - Suranji Wijekoon
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, 06030, USA
| | - Gang Wei
- College of Chemistry and Chemical Engineering, Qingdao University, 266071, Qingdao, China
| | - Sangamesh G. Kumbar
- Department of Biomedical Engineering & Department of Materials Science and Engineering, University of Connecticut, Storrs, 06269, USA
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, 06030, USA
| |
Collapse
|
8
|
Gupta A, Sood A, Bhardwaj D, Shrimali N, Singhmar R, Chaturvedi S, Guchhait P, Agrawal G. Functionalized Chitosan Decorated Hafnium Oxide@Gold Core–Shell Nanoparticles for Multimodal Cancer Therapy. ADVANCED THERAPEUTICS 2024; 7. [DOI: 10.1002/adtp.202300165] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Indexed: 01/06/2025]
Abstract
AbstractHerein, the fabrication of chitosan stabilized multifunctional hafnium oxide@gold core–shell nanoparticles (HAT NPs) (≈12 nm) is described. The developed nanoparticulate system offers multimodal action by providing stimuli responsive anticancer drug delivery along with imparting radiosensitization to cancer cells, thereby protecting surrounding normal tissues from damage. HAT NPs exhibit good capability of loading doxorubicin (DOX), an anticancer drug with ≈87% encapsulation efficiency. DOX loaded HAT NPs are able to release ≈91% DOX under GSH reducing conditions, that is a representative of the cancer cell microenvironment. The cytotoxicity of the developed DOX loaded HAT NPs is tested against breast cancer cells (MDA‐MB‐231) showing higher cytotoxicity as compared to free DOX. In addition, the ability of HAT NPs to generate ROS activity upon irradiation by gamma radiations (0.5 & 5 Gy) is also analyzed in cancer cells to demonstrate the ability of synthesized system as a potent candidate to present radio sensitization. Further, in vivo biodistribution studies are executed to understand the tissue specific retention of HAT NPs for their future utility in targeted cancer treatment applications.
Collapse
Affiliation(s)
- Aastha Gupta
- School of Chemical Sciences and Advanced Materials Research Centre Indian Institute of Technology Mandi Mandi Himachal Pradesh 175075 India
| | - Ankur Sood
- School of Chemical Sciences and Advanced Materials Research Centre Indian Institute of Technology Mandi Mandi Himachal Pradesh 175075 India
| | - Dimpy Bhardwaj
- School of Chemical Sciences and Advanced Materials Research Centre Indian Institute of Technology Mandi Mandi Himachal Pradesh 175075 India
| | - Nishith Shrimali
- Disease Biology Laboratory Regional Centre for Biotechnology National Capital Region Biotech Science Cluster Faridabad Haryana 121001 India
| | - Ritu Singhmar
- School of Chemical Sciences and Advanced Materials Research Centre Indian Institute of Technology Mandi Mandi Himachal Pradesh 175075 India
| | - Shubhra Chaturvedi
- Institute of Nuclear Medicine and Allied Sciences (INMAS) Defence Research and Development Organization (DRDO) Lucknow Road, Timarpur New Delhi 110054 India
| | - Prasenjit Guchhait
- Disease Biology Laboratory Regional Centre for Biotechnology National Capital Region Biotech Science Cluster Faridabad Haryana 121001 India
| | - Garima Agrawal
- School of Chemical Sciences and Advanced Materials Research Centre Indian Institute of Technology Mandi Mandi Himachal Pradesh 175075 India
| |
Collapse
|
9
|
Chen H, Zhang Q. Polypeptides as alternatives to PEGylation of therapeutic agents. Expert Opin Drug Deliv 2024; 21:1-12. [PMID: 38116624 DOI: 10.1080/17425247.2023.2297937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/18/2023] [Indexed: 12/21/2023]
Abstract
INTRODUCTION Due to the concerns raised by the extensive application of PEGylation, polypeptides have stood out as excellent candidates with adequate biocompatibility and biodegradability with tunable hydrophilicity. AREAS COVERED In this review, polypeptides with the potential to replace PEGylation have been summarized and their application has been reviewed, including XTEN, PASylation, polysarcosine, zwitterion polypeptides, ELPylation, etc. Besides their strengths, the remaining challenges have also been discussed and the future perspectives have been provided. EXPERT OPINION Polypeptides have been applied in the designing of peptide/protein drugs as well as nanomedicines, and some of the pharmaceutics have made it into the clinical trials and got approved. These polypeptides showed similar hydrophilic properties to PEGylation, which increased the hydrodynamic volumes of protein drugs, reduced kidney elimination, decreased protein-polymer interaction and potentially improved the drug delivery efficiency due to the extended circulation time in the system. Moreover, they demonstrated superior biodegradability and biocompatibility, compensating for the deficiencies for polymers such as PEG.
Collapse
Affiliation(s)
- Huali Chen
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Qianyu Zhang
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| |
Collapse
|
10
|
Lu S, Zhang C, Wang J, Zhao L, Li G. Research progress in nano-drug delivery systems based on the characteristics of the liver cancer microenvironment. Biomed Pharmacother 2024; 170:116059. [PMID: 38154273 DOI: 10.1016/j.biopha.2023.116059] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/08/2023] [Accepted: 12/21/2023] [Indexed: 12/30/2023] Open
Abstract
The liver cancer has microenvironmental features such as low pH, M2 tumor-associated macrophage enrichment, low oxygen, rich blood supply and susceptibility to hematotropic metastasis, high chemokine expression, enzyme overexpression, high redox level, and strong immunosuppression, which not only promotes the progression of the disease, but also seriously affects the clinical effectiveness of traditional therapeutic approaches. However, nanotechnology, due to its unique advantages of size effect and functionalized modifiability, can be utilized to develop various responsive nano-drug delivery system (NDDS) by using these characteristic signals of the liver cancer microenvironment as a source of stimulation, which in turn can realize the intelligent release of the drug under the specific microenvironment, and significantly increase the concentration of the drug at the target site. Therefore, researchers have designed a series of stimuli-responsive NDDS based on the characteristics of the liver cancer microenvironment, such as hypoxia, weak acidity, and abnormal expression of proteases, and they have been widely investigated for improving anti-tumor therapeutic efficacy and reducing the related side effects. This paper provides a review of the current application and progress of NDDS developed based on the response and regulation of the microenvironment in the treatment of liver cancer, compares the effects of the microenvironment and the NDDS, and provides a reference for building more advanced NDDS.
Collapse
Affiliation(s)
- Shijia Lu
- Shengjing Hospital of China Medical University, Department of Pharmacy, No. 36, Sanhao Street, Shenyang 110004, China
| | - Chenxiao Zhang
- Shengjing Hospital of China Medical University, Department of Pharmacy, No. 36, Sanhao Street, Shenyang 110004, China
| | - Jinglong Wang
- Shengjing Hospital of China Medical University, Department of Pharmacy, No. 36, Sanhao Street, Shenyang 110004, China
| | - Limei Zhao
- Shengjing Hospital of China Medical University, Department of Pharmacy, No. 36, Sanhao Street, Shenyang 110004, China
| | - Guofei Li
- Shengjing Hospital of China Medical University, Department of Pharmacy, No. 36, Sanhao Street, Shenyang 110004, China.
| |
Collapse
|
11
|
Xiao W, Zhao L, Sun Y, Yang X, Fu Q. Stimuli-Responsive Nanoradiosensitizers for Enhanced Cancer Radiotherapy. SMALL METHODS 2024; 8:e2301131. [PMID: 37906050 DOI: 10.1002/smtd.202301131] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/10/2023] [Indexed: 11/02/2023]
Abstract
Radiotherapy (RT) has been a classical therapeutic method of cancer for several decades. It attracts tremendous attention for the precise and efficient treatment of local tumors with stimuli-responsive nanomaterials, which enhance RT. However, there are few systematic reviews summarizing the newly emerging stimuli-responsive mechanisms and strategies used for tumor radio-sensitization. Hence, this review provides a comprehensive overview of recently reported studies on stimuli-responsive nanomaterials for radio-sensitization. It includes four different approaches for sensitized RT, namely endogenous response, exogenous response, dual stimuli-response, and multi stimuli-response. Endogenous response involves various stimuli such as pH, hypoxia, GSH, and reactive oxygen species (ROS), and enzymes. On the other hand, exogenous response encompasses X-ray, light, and ultrasound. Dual stimuli-response combines pH/enzyme, pH/ultrasound, and ROS/light. Lastly, multi stimuli-response involves the combination of pH/ROS/GSH and X-ray/ROS/GSH. By elaborating on these responsive mechanisms and applying them to clinical RT diagnosis and treatment, these methods can enhance radiosensitive efficiency and minimize damage to surrounding normal tissues. Finally, this review discusses the additional challenges and perspectives related to stimuli-responsive nanomaterials for tumor radio-sensitization.
Collapse
Affiliation(s)
- Wenjing Xiao
- Department of Radiotherapy, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266021, China
| | - Lin Zhao
- Department of Radiotherapy, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266021, China
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Yang Sun
- Department of Radiotherapy, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266021, China
| | - Xiao Yang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Qinrui Fu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| |
Collapse
|
12
|
Li X, Gao Y, Li H, Majoral JP, Shi X, Pich A. Smart and bioinspired systems for overcoming biological barriers and enhancing disease theranostics. PROGRESS IN MATERIALS SCIENCE 2023; 140:101170. [DOI: 10.1016/j.pmatsci.2023.101170] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
13
|
Gupta A, Singhmar R, Sood A, Bhardwaj D, Kumaran SS, Chaturvedi S, Agrawal G. Gd/hafnium oxide@gold@chitosan core-shell nanoparticles as a platform for multimodal theranostics in oncology research. Chem Commun (Camb) 2023; 59:11819-11822. [PMID: 37721201 DOI: 10.1039/d3cc02971a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
In the current study, we synthesized thiolated chitosan-stabilized gold-coated, gadolinium-doped hafnium oxide nanoparticles (CAuGH NPs) with the capability of acting as a multifunctional system to deliver anticancer drug doxorubicin (DOX), to enhance radiosensitization by ROS generation, and to provide magnetic resonance (MR) imaging contrast for biomedical applications.
Collapse
Affiliation(s)
- Aastha Gupta
- School of Chemical Sciences and Advanced Materials Research Centre, Indian Institute of Technology Mandi, H.P.-175075, India.
| | - Ritu Singhmar
- School of Chemical Sciences and Advanced Materials Research Centre, Indian Institute of Technology Mandi, H.P.-175075, India.
| | - Ankur Sood
- School of Chemical Sciences and Advanced Materials Research Centre, Indian Institute of Technology Mandi, H.P.-175075, India.
| | - Dimpy Bhardwaj
- School of Chemical Sciences and Advanced Materials Research Centre, Indian Institute of Technology Mandi, H.P.-175075, India.
| | - S Senthil Kumaran
- Department of Nuclear Magnetic Resonance (NMR), All India Institute of Medical Sciences (AIIMS), Ansari Nagar, New Delhi 110029, India
| | - Shubhra Chaturvedi
- Institute of Nuclear Medicine and Allied Sciences (INMAS), Defence Research and Development Organization (DRDO), Lucknow Road, Timarpur, New Delhi, India
| | - Garima Agrawal
- School of Chemical Sciences and Advanced Materials Research Centre, Indian Institute of Technology Mandi, H.P.-175075, India.
| |
Collapse
|
14
|
Martinov MP, Fletcher EM, Thomson RM. Multiscale Monte Carlo simulations of gold nanoparticle dose-enhanced radiotherapy I: Cellular dose enhancement in microscopic models. Med Phys 2023; 50:5853-5864. [PMID: 37211878 DOI: 10.1002/mp.16454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 03/28/2023] [Accepted: 04/21/2023] [Indexed: 05/23/2023] Open
Abstract
BACKGROUND The introduction of Gold NanoParticles (GNPs) in radiotherapy treatments necessitates considerations such as GNP size, location, and quantity, as well as patient geometry and beam quality. Physics considerations span length scales across many orders of magnitude (nanometer-to-centimeter), presenting challenges that often limit the scope of dosimetric studies to either micro- or macroscopic scales. PURPOSE To investigate GNP dose-enhanced radiation Therapy (GNPT) through Monte Carlo (MC) simulations that bridge micro-to-macroscopic scales. The work is presented in two parts, with Part I (this work) investigating accurate and efficient MC modeling at the single cell level to calculate nucleus and cytoplasm Dose Enhancement Factors (n,cDEFs), considering a broad parameter space including GNP concentration, GNP intracellular distribution, cell size, and incident photon energy. Part II then evaluates cell dose enhancement factors across macroscopic (tumor) length scales. METHODS Different methods of modeling gold within cells are compared, from a contiguous volume of either pure gold or gold-tissue mixture to discrete GNPs in a hexagonal close-packed lattice. MC simulations with EGSnrc are performed to calculate n,cDEF for a cell with radiusr cell = 7.35 $r_{\rm cell}=7.35$ µm and nucleusr nuc = 5 $r_{\rm nuc} = 5$ µm considering 10 to 370 keV incident photons, gold concentrations from 4 to 24 mgAu /gtissue , and three different GNP configurations within the cell: GNPs distributed around the surface of the nucleus (perinuclear) or GNPs packed into one (or four) endosome(s). Select simulations are extended to cells with different cell (and nucleus) sizes: 5 µm (2, 3, and 4 µm), 7.35 µm (4 and 6 µm), and 10 µm (7, 8, and 9 µm). RESULTS n,cDEFs are sensitive to the method of modeling gold in the cell, with differences of up to 17% observed; the hexagonal lattice of GNPs is chosen (as the most realistic model) for all subsequent simulations. Across cell/nucleus radii, source energies, and gold concentrations, both nDEF and cDEF are highest for GNPs in the perinuclear configuration, compared with GNPs in one (or four) endosome(s). Across all simulations of the (rcell , rnuc ) = (7.35, 5) µm cell, nDEFs and cDEFs range from unity to 6.83 and 3.87, respectively. Including different cell sizes, nDEFs and cDEFs as high as 21.5 and 5.5, respectively, are observed. Both nDEF and cDEF are maximized at photon energies above the K- or L-edges of gold by 10 to 20 keV. CONCLUSIONS Considering 5000 unique simulation scenarios, this work comprehensively investigates many physics trends on DEFs at the cellular level, including demonstrating that cellular DEFs are sensitive to gold modeling approach, intracellular GNP configuration, cell/nucleus size, gold concentration, and incident source energy. These data should prove especially useful in research as well as treatment planning, allowing one to optimize or estimate DEF using not only GNP uptake, but also account for average tumor cell size, incident photon energy, and intracellular configuration of GNPs. Part II will expand the investigation, taking the Part I cell model and applying it in cm-scale phantoms.
Collapse
Affiliation(s)
- Martin P Martinov
- Carleton Laboratory for Radiotherapy Physics, Department of Physics, Carleton University, Ottawa, Canada
| | - Elizabeth M Fletcher
- Carleton Laboratory for Radiotherapy Physics, Department of Physics, Carleton University, Ottawa, Canada
| | - Rowan M Thomson
- Carleton Laboratory for Radiotherapy Physics, Department of Physics, Carleton University, Ottawa, Canada
| |
Collapse
|
15
|
Fakhri S, Moradi SZ, Faraji F, Farhadi T, Hesami O, Iranpanah A, Webber K, Bishayee A. Current advances in nanoformulations of therapeutic agents targeting tumor microenvironment to overcome drug resistance. Cancer Metastasis Rev 2023; 42:959-1020. [PMID: 37505336 DOI: 10.1007/s10555-023-10119-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/13/2023] [Indexed: 07/29/2023]
Abstract
The tumor microenvironment (TME) plays a pivotal role in cancer development and progression. In this line, revealing the precise mechanisms of the TME and associated signaling pathways of tumor resistance could pave the road for cancer prevention and efficient treatment. The use of nanomedicine could be a step forward in overcoming the barriers in tumor-targeted therapy. Novel delivery systems benefit from enhanced permeability and retention effect, decreasing tumor resistance, reducing tumor hypoxia, and targeting tumor-associated factors, including immune cells, endothelial cells, and fibroblasts. Emerging evidence also indicates the engagement of multiple dysregulated mediators in the TME, such as matrix metalloproteinase, vascular endothelial growth factor, cytokines/chemokines, Wnt/β-catenin, Notch, Hedgehog, and related inflammatory and apoptotic pathways. Hence, investigating novel multitargeted agents using a novel delivery system could be a promising strategy for regulating TME and drug resistance. In recent years, small molecules from natural sources have shown favorable anticancer responses by targeting TME components. Nanoformulations of natural compounds are promising therapeutic agents in simultaneously targeting multiple dysregulated factors and mediators of TME, reducing tumor resistance mechanisms, overcoming interstitial fluid pressure and pericyte coverage, and involvement of basement membrane. The novel nanoformulations employ a vascular normalization strategy, stromal/matrix normalization, and stress alleviation mechanisms to exert higher efficacy and lower side effects. Accordingly, the nanoformulations of anticancer monoclonal antibodies and conventional chemotherapeutic agents also improved their efficacy and lessened the pharmacokinetic limitations. Additionally, the coadministration of nanoformulations of natural compounds along with conventional chemotherapeutic agents, monoclonal antibodies, and nanomedicine-based radiotherapy exhibits encouraging results. This critical review evaluates the current body of knowledge in targeting TME components by nanoformulation-based delivery systems of natural small molecules, monoclonal antibodies, conventional chemotherapeutic agents, and combination therapies in both preclinical and clinical settings. Current challenges, pitfalls, limitations, and future perspectives are also discussed.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Farahnaz Faraji
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, 6517838678, Iran
| | - Tara Farhadi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, 6714415153, Iran
| | - Osman Hesami
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Amin Iranpanah
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Kassidy Webber
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA.
| |
Collapse
|
16
|
Villalobos Gutiérrez PT, Muñoz Carrillo JL, Sandoval Salazar C, Viveros Paredes JM, Gutiérrez Coronado O. Functionalized Metal Nanoparticles in Cancer Therapy. Pharmaceutics 2023; 15:1932. [PMID: 37514119 PMCID: PMC10383728 DOI: 10.3390/pharmaceutics15071932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Currently, there are many studies on the application of nanotechnology in therapy. Metallic nanoparticles are promising nanomaterials in cancer therapy; however, functionalization of these nanoparticles with biomolecules has become relevant as their effect on cancer cells is considerably increased by photothermal and photodynamic therapies, drug nanocarriers, and specificity by antibodies, resulting in new therapies that are more specific against different types of cancer. This review describes studies on the effect of functionalized palladium, gold, silver and platinum nanoparticles in the treatment of cancer, these nanoparticles themselves show an anticancer effect. This effect is further enhanced when the NPs are functionalized with either antibodies, DNA, RNA, peptides, proteins, or folic acid and other molecules. These NPs can penetrate the cell and accumulate in the tumor tissue, resulting in a cytotoxic effect through the generation of ROS, the induction of apoptosis, cell cycle arrest, DNA fragmentation, and a photothermal effect. NP-based therapy is a new strategy that can be used synergistically with chemotherapy and radiotherapy to achieve more effective therapies and reduce side effects.
Collapse
Affiliation(s)
| | | | - Cuauhtémoc Sandoval Salazar
- División de Ciencias de la Salud e Ingenierías, Campus Celaya-Salvatierra, Universidad de Guanajuato, Celaya 38060, Mexico
| | - Juan Manuel Viveros Paredes
- Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara 44430, Mexico
| | | |
Collapse
|
17
|
Entezari M, Yousef Abad GG, Sedghi B, Ettehadi R, Asadi S, Beiranvand R, Haratian N, Karimian SS, Jebali A, Khorrami R, Zandieh MA, Saebfar H, Hushmandi K, Salimimoghadam S, Rashidi M, Taheriazam A, Hashemi M, Ertas YN. Gold nanostructure-mediated delivery of anticancer agents: Biomedical applications, reversing drug resistance, and stimuli-responsive nanocarriers. ENVIRONMENTAL RESEARCH 2023; 225:115673. [PMID: 36906270 DOI: 10.1016/j.envres.2023.115673] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/05/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
The application of nanoarchitectures in cancer therapy seems to be beneficial for the delivery of antitumor drugs. In recent years, attempts have been made to reverse drug resistance, one of the factors threatening the lives of cancer patients worldwide. Gold nanoparticles (GNPs) are metal nanostructures with a variety of advantageous properties, such as tunable size and shape, continuous release of chemicals, and simple surface modification. This review focuses on the application of GNPs for the delivery of chemotherapy agents in cancer therapy. Utilizing GNPs results in targeted delivery and increased intracellular accumulation. Besides, GNPs can provide a platform for the co-delivery of anticancer agents and genetic tools with chemotherapeutic compounds to exert a synergistic impact. Furthermore, GNPs can promote oxidative damage and apoptosis by triggering chemosensitivity. Due to their capacity for providing photothermal therapy, GNPs can enhance the cytotoxicity of chemotherapeutic agents against tumor cells. The pH-, redox-, and light-responsive GNPs are beneficial for drug release at the tumor site. For the selective targeting of cancer cells, surface modification of GNPs with ligands has been performed. In addition to improving cytotoxicity, GNPs can prevent the development of drug resistance in tumor cells by facilitating prolonged release and loading low concentrations of chemotherapeutics while maintaining their high antitumor activity. As described in this study, the clinical use of chemotherapeutic drug-loaded GNPs is contingent on enhancing their biocompatibility.
Collapse
Affiliation(s)
- Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ghazaleh Gholamiyan Yousef Abad
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Behnaz Sedghi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Reyhaneh Ettehadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shafagh Asadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Razieh Beiranvand
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Negar Haratian
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Seyedeh Sara Karimian
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ali Jebali
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Medical Nanotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Hamidreza Saebfar
- European University Association, League of European Research Universities, University of Milan, Italy
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, 4815733971, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, 4815733971, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey; ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, Turkey.
| |
Collapse
|
18
|
Ping J, Du J, Ouyang R, Miao Y, Li Y. Recent advances in stimuli-responsive nano-heterojunctions for tumor therapy. Colloids Surf B Biointerfaces 2023; 226:113303. [PMID: 37086684 DOI: 10.1016/j.colsurfb.2023.113303] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/29/2023] [Accepted: 04/07/2023] [Indexed: 04/24/2023]
Abstract
Stimuli-responsive catalytic therapy based on nano-catalysts has attracted much attention in the field of biomedicine for tumor therapy, due to its excellent and unique properties. However, the complex tumor microenvironment conditions and the rapid charge recombination in the catalyst limit catalytic therapy's effectiveness and further development. Effective heterojunction nanomaterials are constructed to address these problems to improve catalytic performance. Specifically, on the one hand, the band gap of the material is adjusted through the heterojunction structure to promote the charge separation efficiency under exogenous stimulation and further improve the catalytic capacity. On the other hand, the construction of a heterojunction structure can not only preserve the function of the original catalyst but also achieve significantly enhanced synergistic therapy ability. This review summarized the construction and functions of stimuli-responsive heterojunction nanomaterials under the excitation of X-rays, visible-near infrared light, and ultrasound in recent years, and further introduces their application in cancer therapy. Hopefully, the summary of stimuli-responsive heterojunction nanomaterials' applications will help researchers promote the development of nanomaterials in cancer therapy.
Collapse
Affiliation(s)
- Jing Ping
- School of Materials and Chemistry & Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jun Du
- School of Materials and Chemistry & Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Ruizhuo Ouyang
- School of Materials and Chemistry & Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yuqing Miao
- School of Materials and Chemistry & Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yuhao Li
- School of Materials and Chemistry & Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
19
|
Haque M, Shakil MS, Mahmud KM. The Promise of Nanoparticles-Based Radiotherapy in Cancer Treatment. Cancers (Basel) 2023; 15:cancers15061892. [PMID: 36980778 PMCID: PMC10047050 DOI: 10.3390/cancers15061892] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Radiation has been utilized for a long time for the treatment of cancer patients. However, radiotherapy (RT) has many constraints, among which non-selectivity is the primary one. The implementation of nanoparticles (NPs) with RT not only localizes radiation in targeted tissue but also provides significant tumoricidal effect(s) compared to radiation alone. NPs can be functionalized with both biomolecules and therapeutic agents, and their combination significantly reduces the side effects of RT. NP-based RT destroys cancer cells through multiple mechanisms, including ROS generation, which in turn damages DNA and other cellular organelles, inhibiting of the DNA double-strand damage-repair system, obstructing of the cell cycle, regulating of the tumor microenvironment, and killing of cancer stem cells. Furthermore, such combined treatments overcome radioresistance and drug resistance to chemotherapy. Additionally, NP-based RT in combined treatments have shown synergistic therapeutic benefit(s) and enhanced the therapeutic window. Furthermore, a combination of phototherapy, i.e., photodynamic therapy and photothermal therapy with NP-based RT, not only reduces phototoxicity but also offers excellent therapeutic benefits. Moreover, using NPs with RT has shown promise in cancer treatment and shown excellent therapeutic outcomes in clinical trials. Therefore, extensive research in this field will pave the way toward improved RT in cancer treatment.
Collapse
Affiliation(s)
- Munima Haque
- Department of Mathematics and Natural Sciences, BRAC University, Dhaka 1212, Bangladesh
| | - Md Salman Shakil
- Department of Mathematics and Natural Sciences, BRAC University, Dhaka 1212, Bangladesh
| | - Kazi Mustafa Mahmud
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| |
Collapse
|
20
|
Wu Y, Zhu K, Zhang X, Du W, Song J, Yang H. Emerging plasmonic nanoparticles and their assemblies for cancer radiotherapy. Adv Drug Deliv Rev 2023; 194:114710. [PMID: 36708774 DOI: 10.1016/j.addr.2023.114710] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/07/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023]
Abstract
Plasmonic nanoparticles and their assemblies have been widely used in biosensing, optical imaging, and biomedicine over the past few decades. Especially in the field of radiotherapy, the physicochemical properties of high-Z plasmonic nanomaterials endow them with the ability to sensitize radiotherapy. Compared with single particles, the assembled structure with tunable properties leads to versatile applications in drug delivery and cancer treatment. In this review, we focus on plasmonic nanoparticles and their assemblies for cancer radiotherapy. First, the sensitization mechanism of plasmonic radiosensitizers is briefly introduced. Subsequently, the recent progress in cancer radiotherapy is systematically discussed according to the structure and shape classification. Finally, the current challenges and future perspectives in this field are also discussed in detail.
Collapse
Affiliation(s)
- Ying Wu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 10010, PR China
| | - Kang Zhu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 10010, PR China
| | - Xuan Zhang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350116, PR China
| | - Wei Du
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350116, PR China
| | - Jibin Song
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 10010, PR China.
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350116, PR China.
| |
Collapse
|
21
|
Lin Q, Peng Y, Wen Y, Li X, Du D, Dai W, Tian W, Meng Y. Recent progress in cancer cell membrane-based nanoparticles for biomedical applications. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2023; 14:262-279. [PMID: 36895440 PMCID: PMC9989677 DOI: 10.3762/bjnano.14.24] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Immune clearance and insufficient targeting have limited the efficacy of existing therapeutic strategies for cancer. Toxic side effects and individual differences in response to treatment have further limited the benefits of clinical treatment for patients. Biomimetic cancer cell membrane-based nanotechnology has provided a new approach for biomedicine to overcome these obstacles. Biomimetic nanoparticles exhibit various effects (e.g., homotypic targeting, prolonging drug circulation, regulating the immune system, and penetrating biological barriers) after encapsulation by cancer cell membranes. The sensitivity and specificity of diagnostic methods will also be improved by utilizing the properties of cancer cell membranes. In this review, different properties and functions of cancer cell membranes are presented. Utilizing these advantages, nanoparticles can exhibit unique therapeutic capabilities in various types of diseases, such as solid tumors, hematological malignancies, immune system diseases, and cardiovascular diseases. Furthermore, cancer cell membrane-encapsulated nanoparticles show improved effectiveness and efficiency in combination with current diagnostic and therapeutic methods, which will contribute to the development of individualized treatments. This strategy has promising clinical translation prospects, and the associated challenges are discussed.
Collapse
Affiliation(s)
- Qixiong Lin
- The Ninth Clinical Medical School of Shanxi Medical University, Taiyuan, Shanxi 030009, China
| | - Yueyou Peng
- Department of MRI, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi 030009, China
| | - Yanyan Wen
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Xiaoqiong Li
- Department of MRI, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi 030009, China
| | - Donglian Du
- Department of MRI, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi 030009, China
| | - Weibin Dai
- Department of MRI, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi 030009, China
| | - Wei Tian
- Department of General Surgery, Shanxi Cardiovascular Hospital, Taiyuan, Shanxi 030024, China
| | - Yanfeng Meng
- Department of MRI, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi 030009, China
| |
Collapse
|
22
|
Haemmerich D, Ramajayam KK, Newton DA. Review of the Delivery Kinetics of Thermosensitive Liposomes. Cancers (Basel) 2023; 15:cancers15020398. [PMID: 36672347 PMCID: PMC9856714 DOI: 10.3390/cancers15020398] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/10/2023] Open
Abstract
Thermosensitive liposomes (TSL) are triggered nanoparticles that release the encapsulated drug in response to hyperthermia. Combined with localized hyperthermia, TSL enabled loco-regional drug delivery to tumors with reduced systemic toxicities. More recent TSL formulations are based on intravascular triggered release, where drug release occurs within the microvasculature. Thus, this delivery strategy does not require enhanced permeability and retention (EPR). Compared to traditional nanoparticle drug delivery systems based on EPR with passive or active tumor targeting (typically <5%ID/g tumor), TSL can achieve superior tumor drug uptake (>10%ID/g tumor). Numerous TSL formulations have been combined with various drugs and hyperthermia devices in preclinical and clinical studies over the last four decades. Here, we review how the properties of TSL dictate delivery and discuss the advantages of rapid drug release from TSL. We show the benefits of selecting a drug with rapid extraction by tissue, and with quick cellular uptake. Furthermore, the optimal characteristics of hyperthermia devices are reviewed, and impact of tumor biology and cancer cell characteristics are discussed. Thus, this review provides guidelines on how to improve drug delivery with TSL by optimizing the combination of TSL, drug, and hyperthermia method. Many of the concepts discussed are applicable to a variety of other triggered drug delivery systems.
Collapse
Affiliation(s)
- Dieter Haemmerich
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Bioengineering, Clemson University, Clemson, SC 29634, USA
- Correspondence:
| | - Krishna K. Ramajayam
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Danforth A. Newton
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
23
|
Wang F, Duan H, Xu W, Sheng G, Sun Z, Chu H. Light-activated nanomaterials for tumor immunotherapy. Front Chem 2022; 10:1031811. [PMID: 36277335 PMCID: PMC9585221 DOI: 10.3389/fchem.2022.1031811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/20/2022] [Indexed: 11/20/2022] Open
Abstract
Tumor immunotherapy mainly relies on activating the immune system to achieve antitumor treatment. However, the present tumor immunotherapy used in the clinic showed low treatment efficacy with high systematic toxicity. To overcome the shortcomings of traditional drugs for immunotherapy, a series of antitumor immunotherapies based on nanomaterials have been developed to enhance the body’s antitumor immune response and reduce systematic toxicity. Due to the noninvasiveness, remote controllability, and high temporal and spatial resolution of light, photocontrolled nanomaterials irradiated by excitation light have been widely used in drug delivery and photocontrolled switching. This review aims to highlight recent advances in antitumor immunotherapy based on photocontrolled nanomaterials. We emphasized the advantages of nanocomposites for antitumor immunotherapy and highlighted the latest progress of antitumor immunotherapy based on photoactivated nanomaterials. Finally, the challenges and future prospects of light-activated nanomaterials in antitumor immunity are discussed.
Collapse
Affiliation(s)
- Fang Wang
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Huijuan Duan
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Weizhe Xu
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Gang Sheng
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Zhaogang Sun
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Hongqian Chu
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
- *Correspondence: Hongqian Chu,
| |
Collapse
|
24
|
Xu M, Yang L, Lin Y, Lu Y, Bi X, Jiang T, Deng W, Zhang L, Yi W, Xie Y, Li M. Emerging nanobiotechnology for precise theranostics of hepatocellular carcinoma. J Nanobiotechnology 2022; 20:427. [PMID: 36175957 PMCID: PMC9524074 DOI: 10.1186/s12951-022-01615-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 08/31/2022] [Indexed: 11/18/2022] Open
Abstract
Primary liver cancer has become the second most fatal cancer in the world, and its five-year survival rate is only 10%. Most patients are in the middle and advanced stages at the time of diagnosis, losing the opportunity for radical treatment. Liver cancer is not sensitive to chemotherapy or radiotherapy. At present, conventional molecularly targeted drugs for liver cancer show some problems, such as short residence time, poor drug enrichment, and drug resistance. Therefore, developing new diagnosis and treatment methods to effectively improve the diagnosis, treatment, and long-term prognosis of liver cancer is urgent. As an emerging discipline, nanobiotechnology, based on safe, stable, and efficient nanomaterials, constructs highly targeted nanocarriers according to the unique characteristics of tumors and further derives a variety of efficient diagnosis and treatment methods based on this transport system, providing a new method for the accurate diagnosis and treatment of liver cancer. This paper aims to summarize the latest progress in this field according to existing research and the latest clinical diagnosis and treatment guidelines in hepatocellular carcinoma (HCC), as well as clarify the role, application limitations, and prospects of research on nanomaterials and the development and application of nanotechnology in the diagnosis and treatment of HCC.
Collapse
Affiliation(s)
- Mengjiao Xu
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, 8 Jingshun East Street, Chaoyang District, Beijing, 100015, China
| | - Liu Yang
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, 8 Jingshun East Street, Chaoyang District, Beijing, 100015, China
| | - Yanjie Lin
- Department of Hepatology Division 2, Peking University Ditan Teaching Hospital, 8 Jingshun East Street, Chaoyang District, Beijing, 100015, China
| | - Yao Lu
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, 8 Jingshun East Street, Chaoyang District, Beijing, 100015, China
| | - Xiaoyue Bi
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, 8 Jingshun East Street, Chaoyang District, Beijing, 100015, China
| | - Tingting Jiang
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, 8 Jingshun East Street, Chaoyang District, Beijing, 100015, China
| | - Wen Deng
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, 8 Jingshun East Street, Chaoyang District, Beijing, 100015, China
| | - Lu Zhang
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, 8 Jingshun East Street, Chaoyang District, Beijing, 100015, China
| | - Wei Yi
- Department of Gynecology and Obstetrics, Beijing Ditan Hospital, Capital Medical University, 8 Jingshun East Street, Chaoyang District, Beijing, 100015, China.
| | - Yao Xie
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, 8 Jingshun East Street, Chaoyang District, Beijing, 100015, China. .,Department of Hepatology Division 2, Peking University Ditan Teaching Hospital, 8 Jingshun East Street, Chaoyang District, Beijing, 100015, China.
| | - Minghui Li
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, 8 Jingshun East Street, Chaoyang District, Beijing, 100015, China. .,Department of Hepatology Division 2, Peking University Ditan Teaching Hospital, 8 Jingshun East Street, Chaoyang District, Beijing, 100015, China.
| |
Collapse
|
25
|
Zhao Y, Feng Y, Li J, Cui C, Wang A, Fang J, Zhang Y, Ye S, Mao Q, Wang X, Shi H. Endogenous ROS-Mediated Covalent Immobilization of Gold Nanoparticles in Mitochondria: A “Sharp Sword” in Tumor Radiotherapy. ACS Chem Biol 2022; 17:2355-2365. [DOI: 10.1021/acschembio.2c00475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yan Zhao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| | - Yali Feng
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| | - Jiachen Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| | - Chaoxiang Cui
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| | - Anna Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| | - Jing Fang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| | - Yuqi Zhang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| | - Shuyue Ye
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| | - Qiulian Mao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| | - Xiaoyan Wang
- Department of Ultrasound, Heping Hospital Affiliated to Changzhi Medical College, Changzhi 046000, P. R. China
| | - Haibin Shi
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
26
|
Bloise N, Strada S, Dacarro G, Visai L. Gold Nanoparticles Contact with Cancer Cell: A Brief Update. Int J Mol Sci 2022; 23:7683. [PMID: 35887030 PMCID: PMC9325171 DOI: 10.3390/ijms23147683] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/02/2022] [Accepted: 07/09/2022] [Indexed: 12/10/2022] Open
Abstract
The fine-tuning of the physicochemical properties of gold nanoparticles has facilitated the rapid development of multifunctional gold-based nanomaterials with diagnostic, therapeutic, and therapeutic applications. Work on gold nanoparticles is increasingly focusing on their cancer application. This review provides a summary of the main biological effects exerted by gold nanoparticles on cancer cells and highlights some critical factors involved in the interaction process (protein corona, tumor microenvironment, surface functionalization). The review also contains a brief discussion of the application of gold nanoparticles in target discovery.
Collapse
Affiliation(s)
- Nora Bloise
- Department of Molecular Medicine, Centre for Health Technologies (CHT), INSTM UdR of Pavia, University of Pavia, 27100 Pavia, Italy; (S.S.); (L.V.)
- Medicina Clinica-Specialistica, UOR5 Laboratorio di Nanotecnologie, ICS Maugeri, IRCCS, 27100 Pavia, Italy
| | - Silvia Strada
- Department of Molecular Medicine, Centre for Health Technologies (CHT), INSTM UdR of Pavia, University of Pavia, 27100 Pavia, Italy; (S.S.); (L.V.)
| | - Giacomo Dacarro
- Department of Chemistry, University of Pavia, 27100 Pavia, Italy;
| | - Livia Visai
- Department of Molecular Medicine, Centre for Health Technologies (CHT), INSTM UdR of Pavia, University of Pavia, 27100 Pavia, Italy; (S.S.); (L.V.)
- Medicina Clinica-Specialistica, UOR5 Laboratorio di Nanotecnologie, ICS Maugeri, IRCCS, 27100 Pavia, Italy
| |
Collapse
|
27
|
Alle M, Sharma G, Lee SH, Kim JC. Next-generation engineered nanogold for multimodal cancer therapy and imaging: a clinical perspectives. J Nanobiotechnology 2022; 20:222. [PMID: 35778747 PMCID: PMC9250257 DOI: 10.1186/s12951-022-01402-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/28/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer is one of the significant threats to human life. Although various latest technologies are currently available to treat cancer, it still accounts for millions of death each year worldwide. Thus, creating a need for more developed and novel technologies to combat this deadly condition. Nanoparticles-based cancer therapeutics have offered a promising approach to treat cancer effectively while minimizing adverse events. Among various nanoparticles, nanogold (AuNPs) are biocompatible and have proved their efficiency in treating cancer because they can reach tumors via enhanced permeability and retention effect. The size and shape of the AuNPs are responsible for their diverse therapeutic behavior. Thus, to modulate their therapeutic values, the AuNPs can be synthesized in various shapes, such as spheres, cages, flowers, shells, prisms, rods, clusters, etc. Also, attaching AuNPs with single or multiple targeting agents can facilitate the active targeting of AuNPs to the tumor tissue. The AuNPs have been much explored for photothermal therapy (PTT) to treat cancer. In addition to PTT, AuNPs-based nanoplatforms have been investigated for combinational multimodal therapies in the last few years, including photodynamic therapy, chemotherapy, radiotherapy, immunotherapy, etc., to ablate cancer cells. Thus, the present review focuses on the recent advancements in the functionalization of AuNPs-based nanoconstructs for cancer imaging and therapy using combinatorial multimodal approaches to treat various cancers.
Collapse
Affiliation(s)
- Madhusudhan Alle
- Institute of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Garima Sharma
- Department of Biomedical Science & Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Seung-Hwan Lee
- Institute of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea.
- Department of Forest Biomaterials Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Jin-Chul Kim
- Department of Biomedical Science & Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
28
|
Zhang J, Jiang D, Lyu M, Ren S, Zhou Y, Cao Z. Synergistic Radiosensitization Mediated by Chemodynamic Therapy via a Novel Biodegradable Peroxidases Mimicking Nanohybrid. Front Oncol 2022; 12:872502. [PMID: 35619898 PMCID: PMC9128550 DOI: 10.3389/fonc.2022.872502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/23/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose Reactive oxygen species (ROS) are practically essential in radiotherapy to damage cancer cells; however, they are always inadequate for some malignant entities. Here, we designed a biodegradable mesoporous silica decorated with hemin and glucose oxidase (GOD@Hemin-MSN) to generate a chemodynamic therapy in order to enhance the killing capacity of radiotherapy. Methods Mesoporous silica, as an outstanding drug carrier, can deliver hemin and glucose oxidase to the tumor site. With high level of metabolism activity, cancer cells are abundant in glucose, which can be oxidized into H2O2 by glucose oxidase (GOD) on site. The generated H2O2 is subsequently converted into intracellular ROS, especially hydroxyl radical within the tumor microenvironment, by hemin, which has mimetic peroxidase properties. By this means, the ROS can be supplemented or enriched to facilitate the killing of tumor cells. Results The chemodynamic therapy induced by GOD@Hemin-MSN produced quantities of ROS, which compensated for their inadequacy as a result of radiotherapy, and exhibited remarkable antitumor efficacy, with a tumor inhibition rate of 91.5% in A549 tumor-bearing mice. Conclusion This work has validated GOD@Hemin-MSN as a radiosensitizer in chemodynamic therapy, which showed biocompatibility and potential for translational application.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Dazhen Jiang
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Meng Lyu
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Shiqi Ren
- BGI College & Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yunfeng Zhou
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhen Cao
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
29
|
Huang J, Chen X, Jiang Y, Zhang C, He S, Wang H, Pu K. Renal clearable polyfluorophore nanosensors for early diagnosis of cancer and allograft rejection. NATURE MATERIALS 2022; 21:598-607. [PMID: 35422505 DOI: 10.1038/s41563-022-01224-2] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Optical nanoparticles are promising diagnostic tools; however, their shallow optical imaging depth and slow clearance from the body have impeded their use for in vivo disease detection. To address these limitations, we develop activatable polyfluorophore nanosensors with biomarker-triggered nanoparticle-to-molecule pharmacokinetic conversion and near-infrared fluorogenic turn-on response. Activatable polyfluorophore nanosensors can accumulate at the disease site and react with disease-associated proteases to undergo in situ enzyme-catalysed depolymerization. This disease-specific interaction liberates renal-clearable fluorogenic fragments from activatable polyfluorophore nanosensors for non-invasive longitudinal urinalysis and outperforms the gold standard blood and urine assays, providing a level of sensitivity and specificity comparable to those of invasive biopsy and flow cytometry analysis. In rodent models, activatable polyfluorophore nanosensors enable ultrasensitive detection of tumours (1.6 mm diameter) and early diagnosis of acute liver allograft rejection. We anticipate that our modular nanosensor platform may be applied for early diagnosis of a range of diseases via a simple urine test.
Collapse
Affiliation(s)
- Jiaguo Huang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Xiaona Chen
- The First Affiliated Hospital, Zhejiang University School of Medicine; NHC Key Laboratory of Combined Multi-Organ Transplantation; Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Zhejiang Province, Hangzhou, P. R. China
| | - Yuyan Jiang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Chi Zhang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Shasha He
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Hangxiang Wang
- The First Affiliated Hospital, Zhejiang University School of Medicine; NHC Key Laboratory of Combined Multi-Organ Transplantation; Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Zhejiang Province, Hangzhou, P. R. China
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
30
|
Roy I, Krishnan S, Kabashin AV, Zavestovskaya IN, Prasad PN. Transforming Nuclear Medicine with Nanoradiopharmaceuticals. ACS NANO 2022; 16:5036-5061. [PMID: 35294165 DOI: 10.1021/acsnano.1c10550] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nuclear medicine is expected to make major advances in cancer diagnosis and therapy; tumor-targeted radiopharmaceuticals preferentially eradicate tumors while causing minimal damage to healthy tissues. The current scope of nuclear medicine can be significantly expanded by integration with nanomedicine, which utilizes nanoparticles for cancer diagnosis and therapy by capitalizing on the increased surface area-to-volume ratio, the passive/active targeting ability and high loading capacity, the greater interaction cross section with biological tissues, the rich surface properties of nanomaterials, the facile decoration of nanomaterials with a plethora of functionalities, and the potential for multiplexing several functionalities within one construct. This review provides a comprehensive discussion of nuclear nanomedicine using tumor-targeted nanoparticles for cancer radiation therapy with either pre-embedded radionuclides or nonradioactive materials which can be extrinsically triggered using various external nuclear particle sources to produce in situ radioactivity. In addition, it describes the prospect of combining nuclear nanomedicine with other modalities to enable synergistically enhanced combination therapies. The review also discusses advances in the fabrication of radionuclides as well as describes laser ablation technologies for producing nanoradiopharmaceuticals, which combine the ease of production with exceptional purity and rapid biodegradability, along with additional imaging or therapeutic functionalities. From a practical standpoint, these attributes of nanoradiopharmaceuticals may provide distinct advantages in diagnostic/therapeutic sensitivity and specificity, imaging resolution, and scalability of turnkey platforms. Coupling image-guided targeted radiation therapy with the possibility of in situ activation of nanomaterials as well as combining with other therapeutic modalities using a multifunctional nanoplatform could herald an era of exciting technological and therapeutic advances to radically transform the landscape of nuclear medicine. The review concludes with a discussion of current challenges and presents the authors' views on future opportunities to stimulate further research in this rewarding field of high societal impact.
Collapse
Affiliation(s)
- Indrajit Roy
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Sunil Krishnan
- Department of Radiation Oncology, Mayo Clinic Florida, Jacksonville, Florida 32224, United States
| | - Andrei V Kabashin
- Aix Marseille University, CNRS, LP3, Campus de Luminy - Case 917, 13288 Marseille, France
- MEPhI, Institute of Engineering Physics for Biomedicine (PhysBio), 115409 Moscow, Russia
| | - Irina N Zavestovskaya
- MEPhI, Institute of Engineering Physics for Biomedicine (PhysBio), 115409 Moscow, Russia
- Nuclear Physics and Astrophysics Department, LPI of RAS, 119991 Moscow, Russia
| | - Paras N Prasad
- MEPhI, Institute of Engineering Physics for Biomedicine (PhysBio), 115409 Moscow, Russia
- Department of Chemistry and Institute for Lasers, Photonics, and Biophotonics, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| |
Collapse
|
31
|
Luo D, Wang X, Walker E, Springer S, Ramamurthy G, Burda C, Basilion JP. Targeted Chemoradiotherapy of Prostate Cancer Using Gold Nanoclusters with Protease Activatable Monomethyl Auristatin E. ACS APPLIED MATERIALS & INTERFACES 2022; 14:14916-14927. [PMID: 35316026 PMCID: PMC9153066 DOI: 10.1021/acsami.1c23780] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Combined radiotherapy (RT) and chemotherapy are prescribed to patients with advanced prostate cancer (PCa) to increase their survival; however, radiation-related side effects and systematic toxicity caused by chemotherapeutic drugs are unavoidable. To improve the precision and efficacy of concurrent RT and chemotherapy, we have developed a PCa-targeted gold nanocluster radiosensitizer conjugated with a highly potent cytotoxin, monomethyl auristatin E, PSMA-AuNC-MMAE, for RT and chemotherapy of PCa. This approach resulted in enhanced uptake of NCs by PSMA-positive cancer cells, targeted chemotherapy, and increased efficacy of RT both in vitro and in vivo. In addition, the combination of gold and MMAE further increased the efficacy of either of the agents delivered alone or simultaneously but not covalently linked. The PSMA-AuNC-MMAE conjugates improve the specificity and efficacy of radiation and chemotherapy, potentially reducing the toxicity of each therapy and making this an attractive avenue for clinical treatment of advanced PCa.
Collapse
|
32
|
Xue Y, Bai S, Wang L, Luo S, Zhang Z, Gong T, Zhang L. A dual-responsive nanoplatform with feedback amplification improves antitumor efficacy of photodynamic therapy. NANOSCALE 2022; 14:2758-2770. [PMID: 35113116 DOI: 10.1039/d1nr06875j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A good photosensitizer (PS) delivery system could enhance the efficiency and reduce the side effects of anti-tumor photodynamic therapy (PDT) by improving accumulation in the tumor, uptake by tumor cells, and intracellular release of the PS. Thus, we rationally developed a multi-stimulus-responsive PS nanocarrier with a double-layered core-shell structure: mPEG-azo-hyaluronic acid-sulfide-Ce6 (PaHAsC). In PaHAsC, the mPEG coat provides protection before entering the hypoxic tumor microenvironment, where mPEG leaves to expose the HA layer. HA then targets overexpressed CD44 on tumor cells for enhanced internalization. Finally, GSH-mediated intracellular release of Ce6 augments ROS generation and O2 consumption under light stimulation. This also aggravates hypoxia in tumor sites to accelerate mPEG removal, forming a positive feedback loop. Data show that PaHAsC dramatically improved the PDT efficacy of Ce6, eliminating most tumors and 80% of tumor-bearing mice survived. With a safe profile, PaHAsC has potential for further development and is a useful example of a PS delivery system.
Collapse
Affiliation(s)
- Yuan Xue
- Key Laboratory of Drug-Targeting and Drug Delivery Systems of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Shuting Bai
- Key Laboratory of Drug-Targeting and Drug Delivery Systems of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Leilei Wang
- Key Laboratory of Drug-Targeting and Drug Delivery Systems of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Shi Luo
- Key Laboratory of Drug-Targeting and Drug Delivery Systems of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhirong Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery Systems of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Tao Gong
- Key Laboratory of Drug-Targeting and Drug Delivery Systems of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Ling Zhang
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
33
|
González-Ballesteros MM, Mejía C, Ruiz-Azuara L. Metallodrugs, an approach against invasion and metastasis in cancer treatment. FEBS Open Bio 2022; 12:880-899. [PMID: 35170871 PMCID: PMC9063434 DOI: 10.1002/2211-5463.13381] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/21/2022] [Accepted: 02/15/2022] [Indexed: 11/24/2022] Open
Abstract
Cancer is a heterogeneous and multifactorial disease that causes high mortality throughout the world; therefore, finding the most effective therapies is a major research challenge. Currently, most anticancer drugs present a limited number of well‐established targets, such as cell proliferation or death; however, it is important to consider that the worse progression of cancer toward pathological stages implies invasion and metastasis processes. Medicinal Inorganic Chemistry (MIC) is a young area that deals with the design, synthesis, characterization, preclinical evaluation, and mechanism of action of new inorganic compounds, called metallodrugs. The properties of metallic ions allow enriching of strategies for the design of new drugs, enabling the adjustment of physicochemical and stereochemical properties. Metallodrugs can adopt geometries, such as tetrahedral, octahedral, square planar, and square planar pyramid, which adjusts their arrangement and facilitates binding with a wide variety of targets. The redox properties of some metal ions can be modulated by the presence of the bound ligands to adjust their interaction, thereby opening a range of mechanisms of action. In this regard, the mechanisms of action that trigger the biological activity of metallodrugs have been generally identified by: (a) coordination of the metal to biomolecules (for instance, cisplatin binds to the N7 in DNA guanine, as Pt‐N via coordination of the inhibition of enzymes); (b) redox‐active; and (c) ROS production. For this reason, a series of metallodrugs can interact with several specific targets in the anti‐invasive processes of cancer and can prevent metastasis. The structural base of several metal compounds shows great anticancer potential by inhibiting the signaling pathways related to cancer progression. In this minireview, we present the advances in the field of antimetastatic effects of metallodrugs.
Collapse
Affiliation(s)
- Mauricio M González-Ballesteros
- Departamento de Química Inorgánica y Nuclear, Facultad de Química, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Ciudad de México, CP, 04510, Mexico
| | - Carmen Mejía
- Laboratorio de Biología Celular, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Querétaro, C.P, 76230, México
| | - Lena Ruiz-Azuara
- Departamento de Química Inorgánica y Nuclear, Facultad de Química, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Ciudad de México, CP, 04510, Mexico
| |
Collapse
|
34
|
Wang Z, Wang L, Liu S, Zhang M, Li Y, Rong L, Liu Y, Zhang H. Z-Scheme heterostructures for glucose oxidase-sensitized radiocatalysis and starvation therapy of tumors. NANOSCALE 2022; 14:2186-2198. [PMID: 34951616 DOI: 10.1039/d1nr07096g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Although many semiconductor heterojunctions have been prepared to promote radiation-generated exciton separation for radiocatalysis therapy (RCT), most of them inevitably sacrifice the redox ability of radiation-generated electrons and holes. Herein, we design and construct BiOI/Bi2S3@polydopamine nanosheets modified by amine-polyethylene glycol-folic acid and glucose oxidase for glucose oxidase-sensitized RCT and starvation therapy (ST) synergistic therapy of tumors. The unique Z-scheme energy level arrangement between BiOI and Bi2S3 can elevate the charge separation efficiency, as well as maximize the redox ability of radiation-generated electrons and holes, leading to the enhancement of the therapeutic efficacy of RCT. Since glucose oxidase can supply excess H2O2 for RCT to produce ˙OH on one hand, but efficiently cut off the energy supply of tumor cells via ST, on the other hand, our nanosheets exhibit superior tumor therapeutic efficacy to any single treatment benefiting from the cascade and synergy effects between RCT and ST.
Collapse
Affiliation(s)
- Ze Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
| | - Lu Wang
- Department of Oral Pathology, School and Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Shuwei Liu
- Optical Functional Theranostics Joint Laboratory of Medicine and Chemistry, The First Hospital of Jilin University, Changchun 130021, P. R. China
| | - Mengsi Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
| | - Yunfeng Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
- Optical Functional Theranostics Joint Laboratory of Medicine and Chemistry, The First Hospital of Jilin University, Changchun 130021, P. R. China
| | - Li Rong
- Optical Functional Theranostics Joint Laboratory of Medicine and Chemistry, The First Hospital of Jilin University, Changchun 130021, P. R. China
| | - Yi Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
| | - Hao Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
- Optical Functional Theranostics Joint Laboratory of Medicine and Chemistry, The First Hospital of Jilin University, Changchun 130021, P. R. China
| |
Collapse
|
35
|
Ding Y, Tong Z, Jin L, Ye B, Zhou J, Sun Z, Yang H, Hong L, Huang F, Wang W, Mao Z. An NIR Discrete Metallacycle Constructed from Perylene Bisimide and Tetraphenylethylene Fluorophores for Imaging-Guided Cancer Radio-Chemotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106388. [PMID: 34821416 DOI: 10.1002/adma.202106388] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 10/17/2021] [Indexed: 06/13/2023]
Abstract
To promote the clinical theranostic performances of platinum-based anticancer drugs, imaging capability is urgently desired, and their chemotherapeutic efficacy needs to be upgraded. Herein, a theranostic metallacycle (M) is developed for imaging-guided cancer radio-chemotherapy using perylene bisimide fluorophore (PPy) and tetraphenylethylene-based di-Pt(II) organometallic precursor (TPE-Pt) as building blocks. The formation of this discrete supramolecular coordination complex facilitates the encapsulation of M by a glutathione (GSH)-responsive amphiphilic block copolymer to prepare M-loaded nanoparticles (MNPs). TPE-Pt acts as a chemotherapeutic drug and also an excellent radiosensitizer, thus incorporating radiotherapy into the nanomedicine to accelerate the therapeutic efficacy and overcome drug resistance. The NIR-emission of PPy is employed to detect the intracellular delivery and tissue distribution of MNPs in real time. In vitro and in vivo investigations demonstrate the excellent anticancer efficacy combining chemotherapy and radiotherapy; the administration of this nanomedicine effectively inhibits the tumor growth and greatly extends the survival rate of cisplatin-resistant A2780CIS-tumor-bearing mice. Guided by in vivo fluorescence imaging, radio-chemotherapy is precisely carried out, which facilitates boosting of the therapeutic outcomes and minimizing undesired side effects. The success of this theranostic system brings new hope to supramolecular nanomedicines for their potential clinical translations.
Collapse
Affiliation(s)
- Yuan Ding
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Zhejiang University Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Zongrui Tong
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Zhejiang University, Hangzhou, Zhejiang, 310009, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Lulu Jin
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Binglin Ye
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Zhejiang University Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Jiong Zhou
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, P. R. China
| | - Zhongquan Sun
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Zhejiang University Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Huang Yang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Liangjie Hong
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering, Key Laboratory of Excited-State Materials of Zhejiang Province, Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, China
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Weilin Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Zhejiang University Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Zhengwei Mao
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Zhejiang University, Hangzhou, Zhejiang, 310009, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| |
Collapse
|
36
|
Pan Y, Tang W, Fan W, Zhang J, Chen X. Development of nanotechnology-mediated precision radiotherapy for anti-metastasis and radioprotection. Chem Soc Rev 2022; 51:9759-9830. [DOI: 10.1039/d1cs01145f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Radiotherapy (RT), including external beam RT and internal radiation therapy, uses high-energy ionizing radiation to kill tumor cells.
Collapse
Affiliation(s)
- Yuanbo Pan
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310009, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, 310009, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
| | - Wei Tang
- Departments of Pharmacy and Diagnostic Radiology, Nanomedicine Translational Research Program, Faculty of Science and Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117544, Singapore
| | - Wenpei Fan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing, 210009, China
| | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310009, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, 310009, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| |
Collapse
|
37
|
Wang M, Gao B, Wang X, Li W, Feng Y. Enzyme-responsive strategy as a prospective cue to construct intelligent biomaterials for disease diagnosis and therapy. Biomater Sci 2022; 10:1883-1903. [DOI: 10.1039/d2bm00067a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Stimuli-responsive materials have been widely studied and applied in biomedical field. Under the stimulation of enzymes, the enzyme-responsive materials (ERMs) can be triggered to change their structures, properties and functions....
Collapse
|
38
|
Jin X, Yang H, Mao Z, Wang B. Cathepsin B-responsive multifunctional peptide conjugated gold nanorods for mitochondrial targeting and precise photothermal cancer therapy. J Colloid Interface Sci 2021; 601:714-726. [PMID: 34091318 DOI: 10.1016/j.jcis.2021.05.135] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/18/2021] [Accepted: 05/23/2021] [Indexed: 11/21/2022]
Abstract
Nanomaterials have shown great potential in cancer therapy, but the phenomenon of poor tumor recognition without cellular organelle accumulation usually leads to reduced therapeutic effects and enhanced side effects. Herein, we resolved this issue by employing a multifunctional peptide coating mainly composed of, from the inside out, a mitochondrial targeting segment, a cathepsin B-responsive segment and a zwitterionic antifouling segment. Then gold nanorods were modified with a peptide via ligand exchange, displaying excellent photothermal property and superior stability both before and after enzyme treatment. The in vitro and in vivo results showed that this nanoplatform possessed good biocompatibility, satisfactory mitochondria targeting ability, prolonged blood circulation lifetime and enhanced cellular uptake in tumors. This nanoplatform promoted effective near-infrared light-triggered subcellular hyperthermia treatment in vitro and exhibited excellent tumor ablation ability in vivo. These findings suggested that this multifunctional nanoplatform could significantly enhance the therapeutic efficiency of photothermal therapy based on activated mitochondrial targeting.
Collapse
Affiliation(s)
- Xiaokang Jin
- Department of Polymer Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Huang Yang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Bing Wang
- Department of Polymer Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
39
|
Bucci R, Maggioni D, Locarno S, Ferretti AM, Gelmi ML, Pellegrino S. Exploiting Ultrashort α,β-Peptides in the Colloidal Stabilization of Gold Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:11365-11373. [PMID: 34533956 DOI: 10.1021/acs.langmuir.1c01981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Colloidal gold nanoparticles (GNPs) have found wide-ranging applications in nanomedicine due to their unique optical properties, ease of preparation, and functionalization. To avoid the formation of GNP aggregates in the physiological environment, molecules such as lipids, polysaccharides, or polymers are employed as GNP coatings. Here, we present the colloidal stabilization of GNPs using ultrashort α,β-peptides containing the repeating unit of a diaryl β2,3-amino acid and characterized by an extended conformation. Differently functionalized GNPs have been characterized by ultraviolet, dynamic light scattering, and transmission electron microscopy analysis, allowing us to define the best candidate that inhibits the aggregation of GNPs not only in water but also in mouse serum. In particular, a short tripeptide was found to be able to stabilize GNPs in physiological media over 3 months. This new system has been further capped with albumin, obtaining a material with even more colloidal stability and ability to prevent the formation of a thick protein corona in physiological media.
Collapse
Affiliation(s)
- Raffaella Bucci
- DISFARM-Dipartimento di Scienze Farmaceutiche, Sezione Chimica Generale e Organica "A. Marchesini", Università degli Studi di Milano, Via Venezian 21, 20133 Milano, Italy
| | - Daniela Maggioni
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
| | - Silvia Locarno
- Dipartimento di Fisica "Aldo Pontremoli", Università degli Studi di Milano, Via Celoria 16, 20133 Milano, Italy
| | - Anna Maria Ferretti
- Istituto di Scienze e Tecnologie Chimiche ″Giulio Natta″, Consiglio Nazionale Delle Ricerche (SCITEC-CNR), Via G. Fantoli 16/15, 20138 Milano, Italy
| | - Maria Luisa Gelmi
- DISFARM-Dipartimento di Scienze Farmaceutiche, Sezione Chimica Generale e Organica "A. Marchesini", Università degli Studi di Milano, Via Venezian 21, 20133 Milano, Italy
| | - Sara Pellegrino
- DISFARM-Dipartimento di Scienze Farmaceutiche, Sezione Chimica Generale e Organica "A. Marchesini", Università degli Studi di Milano, Via Venezian 21, 20133 Milano, Italy
| |
Collapse
|
40
|
Li X, Li J, Li C, Guo Q, Wu M, Su L, Dou Y, Wu X, Xiao Z, Zhang X. Aminopeptidase N-targeting nanomolecule-assisted delivery of VEGF siRNA to potentiate antitumour therapy by suppressing tumour revascularization and enhancing radiation response. J Mater Chem B 2021; 9:7530-7543. [PMID: 34551051 DOI: 10.1039/d1tb00990g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Tumour revascularization and the consequent radioresistance activated by the up-regulated angiogenic pathway after radiation exposure remain a major bottleneck for improving the tumouricidal effect of radiotherapy (RT) in hepatocellular carcinoma (HCC). Herein, we show that fabricated aminopeptidase N (ANP/CD13)-targeting Gd-hybridized gold nanomolecules (tGd-GNMs) can efficaciously suppress tumour revascularization and the consequent radioresistance, and then synergize in augmenting the RT response. Both in vitro and in vivo experiments demonstrate that the targeted delivery of vascular endothelial growth factor (VEGF) siRNA into the tumour site and the generation of an abundance of intratumourally cytotoxic reactive oxygen species (ROS) under X-ray radiation by the tGd-GNMssiRNA complex has the capability to down-regulate VEGF gene expression and strengthen the radiation response. Furthermore, the tGd-GNMssiRNA complex contributes to excellent active tumour targeting ability, remarkably enhancing tumour contrast in the fluorescence, computed tomography (CT) and magnetic resonance (MR) imaging modalities in real-time with a long imaging time window. Overall, the synthesized tGd-GNMssiRNA complex with excellent potentiation of the antitumour ability and real-time multimodal imaging ability represents a promising visualized theranostic nanoplatform for the treatment of HCC.
Collapse
Affiliation(s)
- Xue Li
- Department of Radiology, Tianjin Medical University Second Hospital, No. 23, Pingjiang Road, Hexi District, Tianjin 300211, P. R. China.
| | - Jiang Li
- Department of Radiology, Tianjin Medical University Second Hospital, No. 23, Pingjiang Road, Hexi District, Tianjin 300211, P. R. China.
| | - Chunyin Li
- Department of Radiotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy Tianjin, Tianjin's Clinical Research Center for Cancer, 300060, P. R. China
| | - Qi Guo
- Department of Radiology, Tianjin Medical University Second Hospital, No. 23, Pingjiang Road, Hexi District, Tianjin 300211, P. R. China.
| | - Menglin Wu
- Department of Radiology, Tianjin Medical University Second Hospital, No. 23, Pingjiang Road, Hexi District, Tianjin 300211, P. R. China.
| | - Lin Su
- Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 251 Fukang Road, Tianjin 300384, China
| | - Yan Dou
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, P. R. China
| | - Xinhong Wu
- Department of Radiology, Tianjin Medical University Second Hospital, No. 23, Pingjiang Road, Hexi District, Tianjin 300211, P. R. China.
| | - Zhaoxun Xiao
- Department of Radiology, Tianjin Medical University Second Hospital, No. 23, Pingjiang Road, Hexi District, Tianjin 300211, P. R. China.
| | - Xuening Zhang
- Department of Radiology, Tianjin Medical University Second Hospital, No. 23, Pingjiang Road, Hexi District, Tianjin 300211, P. R. China.
| |
Collapse
|
41
|
Amukarimi S, Ramakrishna S, Mozafari M. Smart biomaterials—A proposed definition and overview of the field. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2021. [DOI: 10.1016/j.cobme.2021.100311] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
42
|
de Mello LR, Porosk L, Lourenço TC, Garcia BBM, Costa CAR, Han SW, de Souza JS, Langel Ü, da Silva ER. Amyloid-like Self-Assembly of a Hydrophobic Cell-Penetrating Peptide and Its Use as a Carrier for Nucleic Acids. ACS APPLIED BIO MATERIALS 2021; 4:6404-6416. [PMID: 35006917 DOI: 10.1021/acsabm.1c00601] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cell-penetrating peptides (CPPs) are a topical subject potentially exploitable for creating nanotherapeutics for the delivery of bioactive loads. These compounds are often classified into three major categories according to their physicochemical characteristics: cationic, amphiphilic, and hydrophobic. Among them, the group of hydrophobic CPPs has received increasing attention in recent years due to toxicity concerns posed by highly cationic CPPs. The hexapeptide PFVYLI (P, proline; F, phenylalanine; V, valine; Y, tyrosine; L, leucine; and I, isoleucine), a fragment derived from the C-terminal portion of α1-antitrypsin, is a prototypal example of hydrophobic CPP. This sequence shows reduced cytotoxicity and a capacity of nuclear localization, and its small size readily hints at its suitability as a building block to construct nanostructured materials. In this study, we examine the self-assembling properties of PFVYLI and investigate its ability to form noncovalent complexes with nucleic acids. By using a combination of biophysical tools including synchrotron small-angle X-ray scattering and atomic force microscopy-based infrared spectroscopy, we discovered that this CPP self-assembles into discrete nanofibrils with remarkable amyloidogenic features. Over the course of days, these fibrils coalesce into rodlike crystals that easily reach the micrometer range. Despite lacking cationic residues in the composition, PFVYLI forms noncovalent complexes with nucleic acids that retain β-sheet pairing found in amyloid aggregates. In vitro vectorization experiments performed with double-stranded DNA fragments indicate that complexes promote the internalization of nucleic acids, revealing that tropism toward cell membranes is preserved upon complexation. On the other hand, transfection assays with splice-correction oligonucleotides (SCOs) for luciferase expression show limited bioactivity across a narrow concentration window, suggesting that the propensity to form amyloidogenic aggregates may trigger endosomal entrapment. We anticipate that the findings presented here open perspectives for using this archetypical hydrophobic CPP in the fabrication of nanostructured scaffolds, which potentially integrate properties of amyloids and translocation capabilities of CPPs.
Collapse
Affiliation(s)
- Lucas R de Mello
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil
| | - Ly Porosk
- Institute of Technology, University of Tartu, Tartu 50411, Estonia
| | - Thiago C Lourenço
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil
| | - Bianca B M Garcia
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil
| | - Carlos A R Costa
- Laboratório Nacional de Nanotecnologia (LNNano), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas 13083-861, Brazil
| | - Sang W Han
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil
| | - Juliana S de Souza
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André 09210580, Brazil
| | - Ülo Langel
- Institute of Technology, University of Tartu, Tartu 50411, Estonia
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm SE-10691, Sweden
| | - Emerson R da Silva
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil
| |
Collapse
|
43
|
Huang SH, Peng S, Wang QY, Hu QH, Zhang RQ, Liu L, Liu Q, Lin J, Zhou QH. Gold nanorods conjugated with biocompatible zwitterionic polypeptide for combined chemo-photothermal therapy of cervical cancer. Colloids Surf B Biointerfaces 2021; 207:112014. [PMID: 34391166 DOI: 10.1016/j.colsurfb.2021.112014] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 01/19/2023]
Abstract
Combined chemo-photothermal therapy of gold nanorods (GNRs) for cancer treatment shows better therapeutic efficiency than mono-chemotherapy, which has gained worldwide interests of scientists and clinician in both laboratory and clinic application. However, high cytotoxicity, declined delivery efficiency, and unsatisfactory therapy effect of the GNRs are still challenging in anti-cancer treatment. Herein, a series of pH-sensitively zwitterionic polypeptide conjugated GNRs were synthesized via a gold-thiol interaction for combination of chemo-photothermal therapy in cervical cancer treatment. The acid-labile hydrazone bond was utilized to incorporate the doxorubicin (DOX) for pH-sensitive drug release under tumoral environment. The as prepared GNRs conjugates demonstrated pH-triggered surface charge conversion from negative to positive when transporting from blood circulation to tumor extracellular environment, which can facilitate the cellular uptake via electrostatic interaction. After cellular internalization, the drug release was promoted by cleavage of the hydrazone in GNRs conjugates under cancer intracellular acid environment. As the effective near-infrared (NIR) photothermal materials, the as prepared GNRs conjugates can absorb NIR photo energy and convert it into heat under irradiation, which can efficiently kill the tumor cells. In cell assay, the GNRs conjugates displayed excellent biocompatibility against normal cell, enhanced cancer cell uptake, and remarkable cancer cell killing effects. In HeLa tumor-bearing mice, the GNRs conjugates demonstrated enhanced tumor inhibition efficacy by combination of chemo-photothermal therapy.
Collapse
Affiliation(s)
- Shuang-Hui Huang
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, First Ring Road, 4th Section No.16, Chengdu, Sichuan 610041, China
| | - Si Peng
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, First Ring Road, 4th Section No.16, Chengdu, Sichuan 610041, China
| | - Qiu-Yue Wang
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, First Ring Road, 4th Section No.16, Chengdu, Sichuan 610041, China
| | - Qiu-Hui Hu
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, First Ring Road, 4th Section No.16, Chengdu, Sichuan 610041, China
| | - Run-Qin Zhang
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, First Ring Road, 4th Section No.16, Chengdu, Sichuan 610041, China
| | - Ling Liu
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, First Ring Road, 4th Section No.16, Chengdu, Sichuan 610041, China
| | - Qiang Liu
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, First Ring Road, 4th Section No.16, Chengdu, Sichuan 610041, China
| | - Juan Lin
- School of Biomedical Sciences and Technology, Chengdu Medical College, Xindu Road No.783, Chengdu, Sichuan 610500, China.
| | - Qing-Han Zhou
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, First Ring Road, 4th Section No.16, Chengdu, Sichuan 610041, China.
| |
Collapse
|
44
|
Liu Y, Zhang J, Du J, Song K, Liu J, Wang X, Li B, Ouyang R, Miao Y, Sun Y, Li Y. Biodegradable BiOCl platform for oxidative stress injury-enhanced chemodynamic/radiation therapy of hypoxic tumors. Acta Biomater 2021; 129:280-292. [PMID: 34033970 DOI: 10.1016/j.actbio.2021.05.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/07/2021] [Accepted: 05/13/2021] [Indexed: 12/21/2022]
Abstract
Various physiological characteristics of the tumor microenvironment (TME), such as hypoxia, overexpression of glutathione (GSH) and hydrogen peroxide (H2O2), and mild acidity, can severely reduce the efficacy of many cancer therapies. Altering the redox balance of the TME and increasing oxidative stress can accordingly enhance the efficacy of tumor therapy. Herein, we developed a bismuth-based Cu2+-doped BiOCl nanotherapeutic platform, BCHN, able to self-supply H2O2 for TME-regulated chemodynamic therapy (CDT) combined with sensitized radiotherapy (RT). BCHN released H2O2 and consumed GSH to degrade the composite in the slightly acidic TME, and generated hydroxyl radicals (•OH) via a Fenton-like reaction catalyzed by copper ions, to achieve oxidative stress-enhanced CDT. The Fenton-like reaction also catalyzed H2O2 to produce O2 to relieve tumor hypoxia, and combined with the X-ray-blocking property of bismuth to realize TME-enhanced radiotherapy. Synergistic CDT/RT has previously been shown to effectively inhibit tumor cell proliferation and achieve effective tumor control. The current results demonstrated a highly efficient multifunctional bio-degradable nanoplatform for oncotherapy. STATEMENT OF SIGNIFICANCE: Tumor microenvironment-modulated synergy of radiotherapy and chemodynamic therapy is conducive to rapid tumor ablation. Based on this principle, we fabricated a biodegradable BiOCl-based nanocomposite, BCHN. By supplying H2O2, a Fenton-like reaction generated •OH and O2 catalyzed by copper ions, and consumed glutathione to biodegrade the composite. Overall, these actions increased tumor oxidative stress and realized the synergistic anti-tumor actions of chemodynamic therapy combined with bismuth-based sensitization radiotherapy. This strategy thus provides a unique approach to oncology therapy.
Collapse
|
45
|
Ding Y, Wang C, Sun Z, Wu Y, You W, Mao Z, Wang W. Mesenchymal Stem Cells Engineered by Nonviral Vectors: A Powerful Tool in Cancer Gene Therapy. Pharmaceutics 2021; 13:pharmaceutics13060913. [PMID: 34205513 PMCID: PMC8235299 DOI: 10.3390/pharmaceutics13060913] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/09/2021] [Accepted: 06/16/2021] [Indexed: 12/14/2022] Open
Abstract
Due to their "tumor homing" and "immune privilege" characteristics, the use of mesenchymal stem cells (MSCs) has been proposed as a novel tool against cancer. MSCs are genetically engineered in vitro and then utilized to deliver tumoricidal agents, including prodrugs and bioactive molecules, to tumors. The genetic modification of MSCs can be achieved by various vectors, and in most cases viral vectors are used; however, viruses may be associated with carcinogenesis and immunogenicity, restricting their clinical translational potential. As such, nonviral vectors have emerged as a potential solution to address these limitations and have gradually attracted increasing attention. In this review, we briefly revisit the current knowledge about MSC-based cancer gene therapy. Then, we summarize the advantages and challenges of nonviral vectors for MSC transfection. Finally, we discuss recent advances in the development of new nonviral vectors, which have provided promising strategies to overcome obstacles in the gene modulation of MSCs.
Collapse
Affiliation(s)
- Yuan Ding
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China; (Y.D.); (C.W.); (Z.S.); (Y.W.); (W.Y.)
- Key Laboratory, Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou 310009, China
- Research Center, Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou 310009, China
- Clinical Medicine Innovation Center, Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease, Zhejiang University, Hangzhou 310009, China
- Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou 310009, China
- Cancer Center, Zhejiang University, Hangzhou 310009, China
| | - Chenyang Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China; (Y.D.); (C.W.); (Z.S.); (Y.W.); (W.Y.)
- Key Laboratory, Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou 310009, China
- Research Center, Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou 310009, China
- Clinical Medicine Innovation Center, Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease, Zhejiang University, Hangzhou 310009, China
- Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou 310009, China
- Cancer Center, Zhejiang University, Hangzhou 310009, China
| | - Zhongquan Sun
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China; (Y.D.); (C.W.); (Z.S.); (Y.W.); (W.Y.)
- Key Laboratory, Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou 310009, China
- Research Center, Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou 310009, China
- Clinical Medicine Innovation Center, Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease, Zhejiang University, Hangzhou 310009, China
- Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou 310009, China
- Cancer Center, Zhejiang University, Hangzhou 310009, China
| | - Yingsheng Wu
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China; (Y.D.); (C.W.); (Z.S.); (Y.W.); (W.Y.)
- Key Laboratory, Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou 310009, China
- Research Center, Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou 310009, China
- Clinical Medicine Innovation Center, Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease, Zhejiang University, Hangzhou 310009, China
- Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou 310009, China
- Cancer Center, Zhejiang University, Hangzhou 310009, China
| | - Wanlu You
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China; (Y.D.); (C.W.); (Z.S.); (Y.W.); (W.Y.)
- Key Laboratory, Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou 310009, China
- Research Center, Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou 310009, China
- Clinical Medicine Innovation Center, Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease, Zhejiang University, Hangzhou 310009, China
- Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou 310009, China
- Cancer Center, Zhejiang University, Hangzhou 310009, China
| | - Zhengwei Mao
- Key Laboratory, Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou 310009, China
- MOE Key Laboratory, Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Correspondence: (Z.M.); (W.W.); Tel.: +86-15168215834 (Z.M.); +86-0571-87783820 (W.W.)
| | - Weilin Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China; (Y.D.); (C.W.); (Z.S.); (Y.W.); (W.Y.)
- Key Laboratory, Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou 310009, China
- Research Center, Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou 310009, China
- Clinical Medicine Innovation Center, Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease, Zhejiang University, Hangzhou 310009, China
- Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou 310009, China
- Cancer Center, Zhejiang University, Hangzhou 310009, China
- Correspondence: (Z.M.); (W.W.); Tel.: +86-15168215834 (Z.M.); +86-0571-87783820 (W.W.)
| |
Collapse
|
46
|
Zhang Z, Niu X, Feng X, Wang X, Yu L, Wang W, Yuan Z. Construction of a pH/TGase "Dual Key"-Responsive Gold Nano-radiosensitizer with Liver Tumor-Targeting Ability. ACS Biomater Sci Eng 2021; 7:3434-3445. [PMID: 34129333 DOI: 10.1021/acsbiomaterials.1c00428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The method of tumor microenvironment (TME)-responsive aggregation has become a promising approach to enhance treatment effect by improving the accumulation of nanoparticles in tumors. The enzymatic cross-linking strategy has widely attracted attention owing to its good aggregation stability and biocompatibility. However, the enzymes in nontumor tissue can also catalyze the cross-linking reaction and reduce accumulation of nanoparticles in tumor. In this work, a "dual key"-responsive strategy is utilized to construct a transglutaminase (TGase)/pH-responsive radiosensitizer (Au@TAcoGal) with specific aggregation behavior in hepatic tumor cells. Au@TAcoGal can retain its stability in blood circulation (pH 7.4) even in the presence of TGase in plasma. On reaching tumor sites, it can be endocytosed by hepatoma cells by the active targeting of phenylboronic acid (PBA) and aggregated under acidity and overexpression of TGase in cells. Due to its specific accumulation in hepatoma cells, radiotherapy can be operated under a lower dose of X-ray. The results show that the cellular accumulation of Au@TAcoGal increases by 30-70%, and the cell survival rate is less than 25% under X-ray irradiation. The antineoplastic results show that Au@TAcoGal exhibits a higher therapeutic effect, and the tumor inhibition rate can reach 84.21%.
Collapse
Affiliation(s)
- Zhenjie Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Xiaoyan Niu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Xiaoyue Feng
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Xiaohui Wang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Licheng Yu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Wei Wang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Zhi Yuan
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| |
Collapse
|
47
|
Chen J, Dai T, Yu J, Dai X, Chen R, Wu J, Li N, Fan L, Mao Z, Sheng G, Li L. Integration of antimicrobial peptides and gold nanorods for bimodal antibacterial applications. Biomater Sci 2021; 8:4447-4457. [PMID: 32691787 DOI: 10.1039/d0bm00782j] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The misuse and abuse of antibiotics have given rise to a severe problem of the drug resistance of bacteria. Solving this problem has been a vitally important task in the modern medical arena. In this work, an antimicrobial peptide (AMP), BF2b, and gold nanorods (AuNRs) were used to develop a specific drug delivery system for killing methicillin-resistant Staphylococcus aureus (MRSA). On the one hand, BF2b has unique anti-bacterial performance and has a lower tendency than traditional antibiotics to engender the drug resistance of bacteria. On the other hand, AuNRs have diverse distinct properties, such as photo-thermal conversion, which can be employed for photo-thermal sterilization. We aimed to integrate the anti-bacterial activity of BF2b and the photo-thermal sterilization of AuNRs to kill drug-resistant bacteria. Fourier-transform infrared spectroscopy, microBCA and zeta potential measurements were utilized to characterize the product, AuNR@PEG/BF2b. Transmittance electron microscopy, UV-vis spectroscopy and photothermal conversion measurement were conducted to verify the stability and photothermal conversion capacity of AuNR@PEG/BF2b. Cell viability and hemolysis assay were carried out to test the biocompatibility of AuNR@PEG/BF2b. Finally, the in vitro and in vivo experiments were performed to demonstrate the excellent bactericidal activity of AuNR@PEG/BF2b.
Collapse
Affiliation(s)
- Jin Chen
- Department of Infectious Disease, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University, Shulan International Medical College, Hangzhou 310022, China and MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Tingting Dai
- Department of Infectious Disease, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University, Shulan International Medical College, Hangzhou 310022, China and State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310022, China.
| | - Jiawei Yu
- Department of Infectious Disease, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University, Shulan International Medical College, Hangzhou 310022, China
| | - Xiahong Dai
- Department of Infectious Disease, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University, Shulan International Medical College, Hangzhou 310022, China
| | - Richai Chen
- Department of Infectious Disease, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University, Shulan International Medical College, Hangzhou 310022, China
| | - Jiajun Wu
- Department of Infectious Disease, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University, Shulan International Medical College, Hangzhou 310022, China
| | - Nan Li
- Department of Infectious Disease, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University, Shulan International Medical College, Hangzhou 310022, China
| | - Linxiao Fan
- Department of Infectious Disease, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University, Shulan International Medical College, Hangzhou 310022, China and State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310022, China.
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Guoping Sheng
- Department of Infectious Disease, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University, Shulan International Medical College, Hangzhou 310022, China and State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310022, China.
| | - Lanjuan Li
- Department of Infectious Disease, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University, Shulan International Medical College, Hangzhou 310022, China and State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310022, China.
| |
Collapse
|
48
|
Liu S, Khan AR, Yang X, Dong B, Ji J, Zhai G. The reversal of chemotherapy-induced multidrug resistance by nanomedicine for cancer therapy. J Control Release 2021; 335:1-20. [PMID: 33991600 DOI: 10.1016/j.jconrel.2021.05.012] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 05/08/2021] [Accepted: 05/11/2021] [Indexed: 12/13/2022]
Abstract
Multidrug resistance (MDR) of cancer is a persistent problem in chemotherapy. Scientists have considered the overexpressed efflux transporters responsible for MDR and chemotherapy failure. MDR extremely limits the therapeutic effect of chemotherapy in cancer treatment. Many strategies have been applied to solve this problem. Multifunctional nanoparticles may be one of the most promising approaches to reverse MDR of tumor. These nanoparticles can keep stability in the blood circulation and selectively accumulated in the tumor microenvironment (TME) either by passive or active targeting. The stimuli-sensitive or organelle-targeting nanoparticles can release the drug at the targeted-site without exposure to normal tissues. In order to better understand reversal of MDR, three main strategies are concluded in this review. First strategy is the synergistic effect of chemotherapeutic drugs and ABC transporter inhibitors. Through directly inhibiting overexpressed ABC transporters, chemotherapeutic drugs can enter into resistant cells without being efflux. Second strategy is based on nanoparticles circumventing over-expressed efflux transporters and directly targeting resistance-related organelles. Third approach is the combination of multiple therapy modes overcoming cancer resistance. At last, numerous researches demonstrated cancer stem-like cells (CSCs) had a deep relation with drug resistance. Here, we discuss two different drug delivery approaches of nanomedicine based on CSC therapy.
Collapse
Affiliation(s)
- Shangui Liu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, PR China
| | - Abdur Rauf Khan
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, PR China
| | - Xiaoye Yang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, PR China
| | - Bo Dong
- Department of cardiovascular medicine, Shandong Provincial Hospital, Jinan 250021, PR China
| | - Jianbo Ji
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, PR China
| | - Guangxi Zhai
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, PR China.
| |
Collapse
|
49
|
Affiliation(s)
- Qinrui Fu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry Fuzhou University Fuzhou China
| | - Xuan Zhang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry Fuzhou University Fuzhou China
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry Fuzhou University Fuzhou China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry Fuzhou University Fuzhou China
| |
Collapse
|
50
|
Gao Q, Zhang J, Gao J, Zhang Z, Zhu H, Wang D. Gold Nanoparticles in Cancer Theranostics. Front Bioeng Biotechnol 2021; 9:647905. [PMID: 33928072 PMCID: PMC8076689 DOI: 10.3389/fbioe.2021.647905] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/04/2021] [Indexed: 12/15/2022] Open
Abstract
Conventional cancer treatments, such as surgical resection, radiotherapy, and chemotherapy, have achieved significant progress in cancer therapy. Nevertheless, some limitations (such as toxic side effects) are still existing for conventional therapies, which motivate efforts toward developing novel theranostic avenues. Owning many merits such as easy surface modification, unique optical properties, and high biocompatibility, gold nanoparticles (AuNPs and GNPs) have been engineered to serve as targeted delivery vehicles, molecular probes, sensors, and so on. Their small size and surface characteristics enable them to extravasate and access the tumor microenvironment (TME), which is a promising solution to realize highly effective treatments. Moreover, stimuli-responsive properties (respond to hypoxia and acidic pH) of nanoparticles to TME enable GNPs’ unrivaled control for effective transport of therapeutic cargos. In this review article, we primarily introduce the basic properties of GNPs, further discuss the recent progress in gold nanoparticles for cancer theranostics, with an additional concern about TME stimuli-responsive studies.
Collapse
Affiliation(s)
- Qinyue Gao
- Department of Radiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Jingjing Zhang
- Department of Radiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Jie Gao
- Department of Radiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zhengyang Zhang
- Department of Radiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Haitao Zhu
- Department of Radiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Dongqing Wang
- Department of Radiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|