1
|
Zhang Y, Doan BT, Gasser G. Metal-Based Photosensitizers as Inducers of Regulated Cell Death Mechanisms. Chem Rev 2023; 123:10135-10155. [PMID: 37534710 DOI: 10.1021/acs.chemrev.3c00161] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Over the last few decades, various forms of regulated cell death (RCD) have been discovered and were found to improve cancer treatment. Although there are several reviews on RCD induced by photodynamic therapy (PDT), a comprehensive summary covering metal-based photosensitizers (PSs) as RCD inducers has not yet been presented. In this review, we systematically summarize the works on metal-based PSs that induce different types of RCD, including ferroptosis, immunogenic cell death (ICD), and pyroptosis. The characteristics and mechanisms of each RCD are explained. At the end of each section, a summary of the reported commonalities between different metal-based PSs inducing the same RCD is emphasized, and future perspectives on metal-based PSs inducing novel forms of RCD are discussed at the end of the review. Considering the essential roles of metal-based PSs and RCD in cancer therapy, we hope that this review will provide the stage for future advances in metal-based PSs as RCD inducers.
Collapse
Affiliation(s)
- Yiyi Zhang
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemistry, 75005 Paris, France
| | - Bich-Thuy Doan
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory of Synthesis, Electrochemistry, Imaging and Analytical Systems for Diagnosis, 75005 Paris, France
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemistry, 75005 Paris, France
| |
Collapse
|
2
|
Abdul Rinshad V, Sahoo J, Venkateswarulu M, Hickey N, De M, Sarathi Mukherjee P. Solvent Induced Conversion of a Self-Assembled Gyrobifastigium to a Barrel and Encapsulation of Zinc-Phthalocyanine within the Barrel for Enhanced Photodynamic Therapy. Angew Chem Int Ed Engl 2023; 62:e202218226. [PMID: 36715420 DOI: 10.1002/anie.202218226] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 01/31/2023]
Abstract
A rare gyrobifastigium architecture (GB) was constructed by self-assembly of a tetradentate donor (L) with PdII acceptor in DMSO. The GB was converted to its isomeric tetragonal barrel (MB) upon treatment with water. The hydrophobic cavity of MB has been explored for the encapsulation of zinc-phthalocyanine (ZnPc), which is an excellent photosensitizer for photodynamic therapy (PDT). However, the poor water-solubility and aggregation tendency are the main reasons for the suboptimal PDT performance of free ZnPc in the aqueous medium. Effective solubilization of ZnPc in an aqueous medium was achieved by encapsulating it in the cavity of MB. The inclusion complex (ZnPc⊂MB) showed enhanced singlet oxygen generation in water. Higher cellular uptake and anticancer activity of the ZnPc⊂MB compared to free ZnPc on HeLa cells indicate that encapsulation of ZnPc in an aqueous host is a potential strategy for enhancement of its PDT activity in water.
Collapse
Affiliation(s)
- Valiyakath Abdul Rinshad
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Jagabandhu Sahoo
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Mangili Venkateswarulu
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Neal Hickey
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, 34127, Italy
| | - Mrinmoy De
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
3
|
Mohamed M, Klenke AK, Anokhin MV, Amadou H, Bothwell PJ, Conroy B, Nesterov EE, Nesterova IV. Zero-Background Small-Molecule Sensors for Near-IR Fluorescent Imaging of Biomacromolecular Targets in Cells. ACS Sens 2023; 8:1109-1118. [PMID: 36866808 PMCID: PMC10515643 DOI: 10.1021/acssensors.2c02342] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
In this study, we report a general approach to the design of a new generation of small-molecule sensors that produce a zero background but are brightly fluorescent in the near-IR spectral range upon selective interaction with a biomolecular target. We developed a fluorescence turn-on/-off mechanism based on the aggregation/deaggregation of phthalocyanine chromophores. As a proof of concept, we designed, prepared, and characterized sensors for in-cell visualization of epidermal growth factor receptor (EGFR) tyrosine kinase. We established a structure/bioavailability correlation, determined conditions for the optimal sensor uptake and imaging, and demonstrated binding specificity and applications over a wide range of treatment options involving live and fixed cells. The new approach enables high-contrast imaging and requires no in-cell chemical assembly or postexposure manipulations (i.e., washes). The general design principles demonstrated in this work can be extended toward sensors and imaging agents for other biomolecular targets.
Collapse
Affiliation(s)
- Myar Mohamed
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA
| | - Anastasia K. Klenke
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA
| | - Maksim V. Anokhin
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA
| | - Harouna Amadou
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA
| | - Paige J. Bothwell
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA
| | - Brigid Conroy
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA
| | - Evgueni E. Nesterov
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA
| | - Irina V. Nesterova
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA
| |
Collapse
|
4
|
Enhancement of the in vitro anticancer photo-sonodynamic combination therapy activity of cationic thiazole-phthalocyanines using gold and silver nanoparticles. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
5
|
Nene LC, Magadla A, Nyokong T. Enhanced mitochondria destruction on MCF-7 and HeLa cell lines in vitro using triphenyl-phosphonium-labelled phthalocyanines in ultrasound-assisted photodynamic therapy activity. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 235:112553. [PMID: 36084362 DOI: 10.1016/j.jphotobiol.2022.112553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/24/2022] [Accepted: 08/30/2022] [Indexed: 11/18/2022]
Abstract
This work reports on the reactive oxygen species (ROS) generation and the therapeutic activities of new triphenyl-phosphonium-labelled phthalocyanines (Pcs), the 2,9,16,23-tetrakis(N-(N-butyl-4-triphenyl-phosphonium)- pyridine-4-yloxy) Zn(II) Pc (3) and 2,9,16,23-tetrakis-(N-(N-butyl-4-triphenyl-phosphonium)-morpholino) Zn(II) Pc (4) upon exposure to light, ultrasound and the combination of light and ultrasound. Two types of ROS were detected: the singlet oxygen (1O2) and hydroxyl radicals. For light irradiations, only the 1O2 was detected. An increase in the ROS generation was observed for samples treated with the combination of light and ultrasound compared to the light and ultrasound mono-treatments. The in vitro anticancer activity through photodynamic (PDT) and sonodynamic (SDT) therapy for the Pcs were also determined and compared to the photo-sonodynamic combination therapy (PSDT). The two cancer cell lines used for the in vitro studies included the Michigan Cancer Foundation-7 (MCF-7) breast cancer and Henrietta Lacks (HeLa) cervical cancer cell lines. The SDT treatments showed improved therapeutic efficacy on the cancer cells for both the Pcs compared to PDT. PSDT showed better therapeutic efficacy compared to both the PDT and SDT mono-treatments.
Collapse
Affiliation(s)
- Lindokuhle Cindy Nene
- Institute of Nanotechnology Innovation, P.O. 94, Rhodes University, Makhanda, South Africa
| | - Aviwe Magadla
- Institute of Nanotechnology Innovation, P.O. 94, Rhodes University, Makhanda, South Africa
| | - Tebello Nyokong
- Institute of Nanotechnology Innovation, P.O. 94, Rhodes University, Makhanda, South Africa.
| |
Collapse
|
6
|
Zhao D, Ouyang A, Wang X, Zhang W, Cheng G, Lv B, Liu W. Synthesis, crystal structure and biological evaluation of thyroid cancer targeting photosensitizer for photodynamic therapy. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
7
|
Gourdon L, Cariou K, Gasser G. Phototherapeutic anticancer strategies with first-row transition metal complexes: a critical review. Chem Soc Rev 2022; 51:1167-1195. [PMID: 35048929 DOI: 10.1039/d1cs00609f] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Photodynamic therapy (PDT) and photoactivated chemotherapy (PACT) are therapeutic techniques based on a photosensitizer (PS) and light. These techniques allow the spatial and temporal control of the activation of drugs with light. Transition metal complexes are attractive compounds as photoactivatable prodrugs since their excited states can be appropriately designed by subtle modifications of the ligands, the metal centre, or the oxidation state. However, most metal-based PSs contain heavy metals such as Ru, Os, Ir, Pt or Au, which are expensive and non-earth-abundant, contrary to first-row transition metals. In this context, the exploration of the photochemical properties of complexes based on first-row transition metals appears to be extremely promising. This did encourage several groups to develop promising PSs based on these metals. This review presents up-to-date state-of-the-art information on first-row-transition metal complexes, from titanium to zinc in regard to their application as PSs for phototherapeutic applications.
Collapse
Affiliation(s)
- Lisa Gourdon
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France.
| | - Kevin Cariou
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France.
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France.
| |
Collapse
|
8
|
Nene LC, Nyokong T. Photo-sonodynamic combination activity of cationic morpholino-phthalocyanines conjugated to nitrogen and nitrogen-sulfur doped graphene quantum dots against MCF-7 breast cancer cell line in vitro. Photodiagnosis Photodyn Ther 2021; 36:102573. [PMID: 34628070 DOI: 10.1016/j.pdpdt.2021.102573] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 09/23/2021] [Accepted: 10/04/2021] [Indexed: 01/19/2023]
Abstract
In this work, we explore the reactive oxygen species (ROS) generation abilities of cationic morpholino-substituted-phthalocyanine (Pc) conjugated to nitrogen (NGQDs) and nitrogen-sulfur (NSGQDs) doped-graphene quantum dots upon irradiation with light for photodynamic therapy (PDT), ultrasound for sonodynamic therapy (SDT) and the combination of both in photo-sonodynamic therapy (PSDT). The in vitro cytotoxicity studies were conducted using the Michigan Cancer Foundation-7 breast cancer cell lines (MCF-7 cells). For PDT treatments, only the 1O2 was detected for all the sensitizers, whereas both the 1O2 and •OH radicals were evident after SDT and PSDT treatments. An increase in the 1O2 generation was observed for the conjugates compared to the GQDs and the Pc alone. However, the •OH radicals were reduced in the conjugates compared to the GQDs and the Pc alone. The NGQDs generally showed better ROS generation efficacy compared to the NSGQDs, alone and in the conjugates. The combination therapy also shows improved efficacy compared to the monotherapies for the Pcs and Pc-GQDs conjugates.
Collapse
Affiliation(s)
- Lindokuhle Cindy Nene
- Institute of Nanotechnology Innovation, Rhodes University, P.O. 94, Makhanda, South Africa
| | - Tebello Nyokong
- Institute of Nanotechnology Innovation, Rhodes University, P.O. 94, Makhanda, South Africa.
| |
Collapse
|
9
|
Recent Progress in Phthalocyanine-Polymeric Nanoparticle Delivery Systems for Cancer Photodynamic Therapy. NANOMATERIALS 2021; 11:nano11092426. [PMID: 34578740 PMCID: PMC8469866 DOI: 10.3390/nano11092426] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/11/2022]
Abstract
This perspective article summarizes the last decade’s developments in the field of phthalocyanine (Pc)-polymeric nanoparticle (NP) delivery systems for cancer photodynamic therapy (PDT), including studies with at least in vitro data. Moreover, special attention will be paid to the various strategies for enhancing the behavior of Pc-polymeric NPs in PDT, underlining the great potential of this class of nanomaterials as advanced Pcs’ nanocarriers for cancer PDT. This review shows that there is still a lot of research to be done, opening the door to new and interesting nanodelivery systems.
Collapse
|
10
|
Volov AN, Volov NA, Burtsev ID. New amphiphilic platinum(II) phthalocyanine with peracetylated β-galactose moiety – Synthesis and photophysical properties. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
11
|
A non-aggregated zinc(II) phthalocyanine with hexadeca cations for antitumor and antibacterial photodynamic therapies. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 213:112086. [PMID: 33232881 DOI: 10.1016/j.jphotobiol.2020.112086] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 09/27/2020] [Accepted: 11/12/2020] [Indexed: 12/16/2022]
Abstract
With a view to developing highly efficient photosensitizers for both antitumor and antimicrobial photodynamic therapies, herein, we reported a super cationic zinc(II) phthalocyanine (Pc4), which was prepared through the quaternization of the N, N-dimethyl-3-aminophenoxyl-hexadeca-substituted precursor Pc3. Meanwhile, two disubstituted analogues (Pc1 and Pc2) were also prepared as controls. The cationic Pc2 and Pc4 had higher photoactivities including fluorescence and singlet oxygen than the neutral counterparts Pc1 and Pc3, probably because of the inhibition of intramolecular charge transfer (ICT) effect of the amino groups. With the bulky steric effect and high hydrophilicity, Pc4 presented non-aggregated behavior in aqueous solutions. Therefore, it exhibited the highest in vitro photodynamic activity toward HepG2 cancer cells with an IC50 value as low as 0.04 μM. Furthermore, Pc4 showed a highly efficient in vivo PDT effect on H22 tumor-bearing mice with 98.7% tumor growth inhibition. In addition, Pc4 also exhibited an excellent in vitro and in vivo photodynamic inactivation against S. aureus. The results indicate that the non-aggregated hexadeca-cationic Pc4 could serve as a promising photosensitizer for both antitumor and antimicrobial photodynamic therapies.
Collapse
|
12
|
Volov AN, Burtsev ID. New glycosylated platinum(II) phthalocyanine containing ribose moiety – synthesis and photophysical properties. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2020.121372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Brozek-Pluska B, Jarota A, Kania R, Abramczyk H. Zinc Phthalocyanine Photochemistry by Raman Imaging, Fluorescence Spectroscopy and Femtosecond Spectroscopy in Normal and Cancerous Human Colon Tissues and Single Cells. Molecules 2020; 25:E2688. [PMID: 32531903 PMCID: PMC7321347 DOI: 10.3390/molecules25112688] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 01/01/2023] Open
Abstract
Photodynamic therapy is a clinically approved alternative method for cancer treatment in which a combination of nontoxic drugs known as photosensitizers and oxygen is used. Despite intensive investigations and encouraging results, zinc phthalocyanines (ZnPcs) have not yet been approved as photosensitizers for clinical use. Label-free Raman imaging of nonfixed and unstained normal and cancerous colon human tissues and normal human CCD18-Co and cancerous CaCo-2 cell lines, without and after adding ZnPcS4 photosensitizer, was analyzed. The biochemical composition of normal and cancerous colon tissues and colon cells without and after adding ZnPcS4 at the subcellular level was determined. Analyzing the fluorescence/Raman signals of ZnPcS4, we found that in normal human colon tissue samples, in contrast to cancerous ones, there is a lower affinity to ZnPcS4 phthalocyanine. Moreover, a higher concentration in cancerous tissue was concomitant with a blue shift of the maximum peak position specific for the photosensitizer from 691-695 nm to 689 nm. Simultaneously for both types of samples, the signal was observed in the monomer region, confirming the excellent properties of ZnPcS4 for photo therapy (PDT). For colon cell experiments with a lower concentration of ZnPcS4 photosensitizer, c = 1 × 10-6 M, the phthalocyanine was localized in mitochondria/lipid structures; for a higher concentration, c = 9 × 10-6 M, localization inside the nucleus was predominant. Based on time-resolved experiments, we found that ZnPcS4 in the presence of biological interfaces features longer excited-state lifetime photosensitizers compared to the aqueous solution and bare ZnPcS4 film on CaF2 substrate, which is beneficial for application in PDT.
Collapse
Affiliation(s)
- Beata Brozek-Pluska
- Laboratory of Laser Molecular Spectroscopy, Institute of Applied Radiation Chemistry, Lodz University of Technology, Wroblewskiego 15, 93-590 Lodz, Poland; (A.J.); (R.K.); (H.A.)
| | | | | | | |
Collapse
|
14
|
Lo PC, Rodríguez-Morgade MS, Pandey RK, Ng DKP, Torres T, Dumoulin F. The unique features and promises of phthalocyanines as advanced photosensitisers for photodynamic therapy of cancer. Chem Soc Rev 2019; 49:1041-1056. [PMID: 31845688 DOI: 10.1039/c9cs00129h] [Citation(s) in RCA: 402] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Phthalocyanines exhibit superior photoproperties that make them a surely attractive class of photosensitisers for photodynamic therapy of cancer. Several derivatives are at various phases of clinical trials, and efforts have been put continuously to improve their photodynamic efficacy. To this end, various strategies have been applied to develop advanced phthalocyanines with optimised photoproperties, dual therapeutic actions, tumour-targeting properties and/or specific activation at tumour sites. The advantageous properties and potential of phthalocyanines as advanced photosensitisers for photodynamic therapy of cancer are highlighted in this tutorial review.
Collapse
Affiliation(s)
- Pui-Chi Lo
- Department of Biomedical Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | | | | | | | | | | |
Collapse
|
15
|
Zinc(II) phthalocyanines as photosensitizers for antitumor photodynamic therapy. Int J Biochem Cell Biol 2019; 114:105575. [PMID: 31362060 DOI: 10.1016/j.biocel.2019.105575] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/18/2019] [Accepted: 07/22/2019] [Indexed: 12/31/2022]
Abstract
Photodynamic therapy (PDT) is a highly specific and clinically approved method for cancer treatment in which a nontoxic drug known as photosensitizer (PS) is administered to a patient. After selective tumor irradiation, an almost complete eradication of the tumor can be reached as a consequence of reactive oxygen species (ROS) generation, which not only damage tumor cells, but also lead to tumor-associated vasculature occlusion and the induction of an immune response. Despite exhaustive investigation and encouraging results, zinc(II) phthalocyanines (ZnPcs) have not been approved as PSs for clinical use yet. This review presents an overview on the physicochemical properties of ZnPcs and biological results obtained both in vitro and in more complex models, such as 3D cell cultures, chicken chorioallantoic membranes and tumor-bearing mice. Cell death pathways induced after PDT treatment with ZnPcs are discussed in each case. Finally, combined therapeutic strategies including ZnPcs and the currently available clinical trials are mentioned.
Collapse
|
16
|
Şahin S, Ağar E. Synthesis, spectroscopic properties, thermal properties and aggregation behaviors of macrogol-substituted phthalocyanines. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.03.071] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
17
|
Nene LC, Managa ME, Oluwole DO, Mafukidze DM, Sindelo A, Nyokong T. The photo-physicochemical properties and in vitro photodynamic therapy activity of differently substituted-zinc (II)-phthalocyanines and graphene quantum dots conjugates on MCF7 breast cancer cell line. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.01.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
18
|
Okoth EA, Zhou Z, Ongarora B, Stutes A, Mathis JM, Vicente MGH. Synthesis and investigation of phthalocyanine-biotin conjugates. J PORPHYR PHTHALOCYA 2019; 23:125-135. [PMID: 33132689 PMCID: PMC7598017 DOI: 10.1142/s1088424619500056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
An isothiocyanato-functionalized phthalocyanine (Pc) was synthesized in good yield from the corresponding amine-substituted Pc. This Pc reacted with ethanolamine, biotin hydrazine, and biotin diethylamine under mild conditions (room temperature in DMF or DMSO in the presence of TEA) to produce the corresponding thiourea products in 60-75% yields. All Pcs showed intense Q absorptions in DMF around 677 nm, emissions centered at 683 nm, and fluorescence quantum yields in the range 0.18-0.27. The Pcs were phototoxic to human carcinoma HEp2 cells (IC50 ~ 7 at 1.5 J/cm2) and localized in multiple organelles, including the lysosomes, Golgi and ER. One biotin-Pc conjugate was injected via tail vein into nude mice bearing HT-29 tumors and demonstrated selective localization in the tumor tissue.
Collapse
Affiliation(s)
- Elizabeth A. Okoth
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Zehua Zhou
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Benson Ongarora
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Alyssa Stutes
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | - J. Michael Mathis
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge Louisiana 70803, USA
| | - M. Graça H. Vicente
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
19
|
Yu W, Zhu J, Wang Y, Wang J, Fang W, Xia K, Shao J, Wu M, Liu B, Liang C, Ye C, Tao H. A review and outlook in the treatment of osteosarcoma and other deep tumors with photodynamic therapy: from basic to deep. Oncotarget 2018; 8:39833-39848. [PMID: 28418855 PMCID: PMC5503657 DOI: 10.18632/oncotarget.16243] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 02/07/2017] [Indexed: 12/20/2022] Open
Abstract
Photodynamic therapy, one of the most promising minimally invasive treatments, has received increasing focus in tumor therapy research, which has been widely applied in treating superficial tumors. Three basic factors - photosensitizer, the light source, and oxidative stress - are responsible for tumor cell cytotoxicity. However, due to insufficient luminous flux and peripheral tissue damage, the utilization of photodynamic therapy is facing a huge limitation in deep tumor therapy. Osteosarcoma is the typical deep tumor, which is the most commonly occurring malignancy in children and adolescents. Despite developments in surgery, high risks of the amputation still threatens the health of osteosarcoma patients. In this review, we summarize recent developments in the field of photodynamic therapy and specifically PDT research in OS treatment modalities. In addition, we also provide some novel suggestions, which could potentially be a breakthrough in PDT-induced OS therapies. PDT has the potential to become an effective therapy while the its limitations still present when applied on the treatment of OS or other types of deep tumors. Thus, more researches and studies in the field are required.
Collapse
Affiliation(s)
- Wei Yu
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, PR China
| | - Jian Zhu
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, PR China
| | - Yitian Wang
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, PR China
| | - Junjie Wang
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, PR China
| | - Weijing Fang
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, PR China
| | - Kaishun Xia
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, PR China
| | - Jianlin Shao
- La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Minzu Wu
- Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Bing Liu
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, PR China
| | - Chengzhen Liang
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, PR China
| | - Chengyi Ye
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, PR China
| | - Huimin Tao
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, PR China
| |
Collapse
|
20
|
Jeong J, Kumar RS, Mergu N, Son YA. Photophysical, electrochemical, thermal and aggregation properties of new metal phthalocyanines. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2017.06.125] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
21
|
Jenkins R, Burdette MK, Foulger SH. Mini-review: fluorescence imaging in cancer cells using dye-doped nanoparticles. RSC Adv 2016. [DOI: 10.1039/c6ra10473h] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Fluorescence imaging has gained increased attention over the past two decades as a viable means to detect a variety of cancers.
Collapse
Affiliation(s)
- Ragini Jenkins
- Center for Optical Materials Science and Engineering Technologies
- Department of Materials Science & Engineering
- Clemson University
- Clemson
- USA
| | - Mary K. Burdette
- Center for Optical Materials Science and Engineering Technologies
- Department of Materials Science & Engineering
- Clemson University
- Clemson
- USA
| | - Stephen H. Foulger
- Center for Optical Materials Science and Engineering Technologies
- Department of Materials Science & Engineering
- Clemson University
- Clemson
- USA
| |
Collapse
|
22
|
Chen J, Luo Z, Zhao Z, Xie L, Zheng W, Chen T. Cellular localization of iron(II) polypyridyl complexes determines their anticancer action mechanisms. Biomaterials 2015; 71:168-177. [DOI: 10.1016/j.biomaterials.2015.08.031] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 08/13/2015] [Accepted: 08/16/2015] [Indexed: 01/13/2023]
|
23
|
Crucius G, Hanack M, Ziegler T. Synthesis of Glycoconjugated Phthalonitriles for New Phthalocyanine-Based Photosensitizers. J Carbohydr Chem 2015. [DOI: 10.1080/07328303.2015.1050106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
24
|
Ongarora BG, Zhou Z, Okoth EA, Kolesnichenko I, Smith KM, Vicente MGH. Synthesis, spectroscopic, and cellular properties of α-pegylated cis-A 2B 2- and A 3B-types ZnPcs. J PORPHYR PHTHALOCYA 2014; 18:1021-1033. [PMID: 26064037 DOI: 10.1142/s1088424614500849] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A series of pegylated cis-A2B2- or A3B-type ZnPcs, substituted on the α-positions with tri(ethylene glycol) and hydroxyl groups, were synthesized from a new bis-phthalonitrile. A clamshell-type bis-phthalocyanine was also obtained as a byproduct. The hydroxyl group of one ZnPc was alkylated with 3-dimethylaminopropyl chloride to afford a pegylated ZnPc functionalized with an amine group. All mononuclear ZnPcs were soluble in polar organic solvents, showed intense Q absorptions in DMF, and had fluorescence quantum yields in the range 0.10-0.23. The clamshell-type bis-phthalocyanine adopts mainly open shell conformations in DMF, and closed clamshell conformations in chloroform. All ZnPcs were highly phototoxic to human carcinoma HEp2 cells, particularly the amino-ZnPc mainly protonated under physiological conditions, which showed the highest phototoxicity (IC50 = 0.5 μM at 1.5 J/cm2) and dark cytotoxicity (IC50 = 22 μM), in part due to its high cellular uptake. The ZnPcs localized in multiple organelles, including mitochondria, lysosomes, Golgi and ER.
Collapse
Affiliation(s)
- Benson G Ongarora
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Zehua Zhou
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Elizabeth A Okoth
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Igor Kolesnichenko
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Kevin M Smith
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | - M Graça H Vicente
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
25
|
Nakai M, Maeda T, Mashima T, Yano S, Sakuma S, Otake E, Morita A, Nakabayashi Y. Syntheses and photodynamic properties of glucopyranoside-conjugated indium(III) porphyrins as a bifunctional agent. J PORPHYR PHTHALOCYA 2013. [DOI: 10.1142/s1088424613500934] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The glucopyranoside-conjugated porphyrins, H 2 TPP {p- O -( CH 2)2- O - OAcGlc } (1), [ InTPP {p- O -( CH 2)2- O - OAcGlc }] NO 3 (2), H 2 TPP {p- O -( CH 2)2- O - Glc } (3), [ InTPP {p- O -( CH 2)2- O - Glc ]- NO 3 (4) and ZnTPP {p- O -( CH 2)2- O - OAcGlc } (5) were synthesized, and characterized by 1 H NMR, 13 C NMR, ESI-MS, UV-vis spectroscopies and elemental analyses. In the 1 H NMR spectrum of 2, two sets of signals were observed for H -atoms of the phenyl group of porphyrin, indicating that 2 has the axial chirality due to a NO 3 ion coordinating to the indium atom. Abilities of the singlet oxygen production of these porphyrins, investigated by using 1,3-diphenylisobenzofuran (DPBF) as a quencher, were higher than those of the free-based and zinc porphyrins, reflecting the heavy atom effect. The photodynamic properties of these porphyrin derivatives were investigated against COLO 679. All of the glucopyranoside-conjugated porphyrins exhibited the high photocytotoxicity compared with Laserphyrin®. Above all, 4 exhibited the highest photocytotoxicity, coinciding with the high abilities of this complex for the singlet oxygen production and the cell permeability.
Collapse
Affiliation(s)
- Misaki Nakai
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamatecho, Suita-shi, Osaka 564-8680, Japan
| | - Tomohiro Maeda
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamatecho, Suita-shi, Osaka 564-8680, Japan
| | - Tsuyoshi Mashima
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamatecho, Suita-shi, Osaka 564-8680, Japan
| | - Shigenobu Yano
- Graduate School of Material Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
- Office of Society-Academia Collaboration for Innovation, Kyoto University, Kyoto University Katsura, Nishikyo-ku, Kyoto-daigaku Katsura, Kyoto 615-8520, Japan
| | - Shiho Sakuma
- Department of Geriatric and Environmental Dermatology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Eriko Otake
- Department of Geriatric and Environmental Dermatology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Akimichi Morita
- Department of Geriatric and Environmental Dermatology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Yasuo Nakabayashi
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamatecho, Suita-shi, Osaka 564-8680, Japan
| |
Collapse
|
26
|
Li D, Li P, Lin H, Jiang Z, Guo L, Li B. A novel chlorin–PEG–folate conjugate with higher water solubility, lower cytotoxicity, better tumor targeting and photodynamic activity. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2013; 127:28-37. [DOI: 10.1016/j.jphotobiol.2013.06.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 06/11/2013] [Accepted: 06/13/2013] [Indexed: 12/16/2022]
|
27
|
|