1
|
Zhao Y, Liu D, Yang W, He W, Yan J, Yao L. Resetting the Hsc70-mediated lysosomal degradation of PD-L1 via a supramolecular meso peptide for the restoration of acquired anti-tumor T cell immunity. J Nanobiotechnology 2025; 23:79. [PMID: 39905428 DOI: 10.1186/s12951-025-03171-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/27/2025] [Indexed: 02/06/2025] Open
Abstract
The reduction of cellular PD-L1 abundance through lysosomal degradation is recognized as essential for effective and sustained targeting of PD-L1-dependent immune evasion in cancer. While Hsc70 can interact with PD-L1 to promote its lysosomal degradation, the overexpression of CMTM6 competitively inhibits this interaction, leading to the blockade of PD-L1 lysosomal degradation. To overcome this issue, a meso chimeric peptide PEPPDL1 was designed to specifically bind the PD-1 binding domain of PD-L1 instead of the Hsc70/CMTM6 binding domain, while also binding to Hsc70 to facilitate the dragging of PD-L1 into Hsc70-mediated chaperone-mediated autophagy (CMA), thereby achieving lysosomal degradation. In order to enable internalization into tumor cells, supramolecular engineering techniques were employed through terminal modification involving sulfydryl and monovalent gold ion (Au(I)), both facilitating self-assembly of modified PEPPDL1 into supramolecular nanospheres termed CTAC-PDL1 driven by aurophilic interaction. Furthermore, based on bioinformatics analysis of mRNA expression data from 30 types of tumors obtained from TCGA database, malignant melanoma was identified as the most suitable indication for CTAC-PDL1 due to its specific characteristics of tumor immune. As expected, CTAC-PDL1 effectively reactivated Hsc70-mediated lysosomal degradation of PD-L1 and consequently restored anti-tumor T cell immunity in a B16F10-derived mouse model of malignant melanoma while maintaining a favorable safety profile. Overall, this work not only presents an alternative approach for targeting PD-L1-dependent cancer immune evasion, but also provides a modularized strategy for discovering specific regulators for target proteins in various diseases.
Collapse
Affiliation(s)
- Yujia Zhao
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| | - Dan Liu
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| | - Wenguang Yang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| | - Wangxiao He
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China.
| | - Jin Yan
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China.
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, 710004, Xi'an, China.
| | - Leiqing Yao
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China.
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, 710004, Xi'an, China.
| |
Collapse
|
2
|
Sokolova V, Gruber R, Pammer LM, Kocher F, Klieser E, Amann A, Pichler R, Günther M, Ormanns S, Neureiter D, Seeber A. Prognostic and functional role of the nuclear export receptor 1 (XPO1) in gastrointestinal cancers: a potential novel target? Mol Biol Rep 2024; 52:87. [PMID: 39729162 PMCID: PMC11680630 DOI: 10.1007/s11033-024-10169-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024]
Abstract
In the last decades the survival of metastatic gastrointestinal (GI) cancer patients could have been significantly extended due to the introduction of targeted- and immunotherapy. However, only the minority of patients will experience long-lasting survival. Hence, novel therapeutics are clearly necessary for GI cancer patients. Molecular high-throughput profiling techniques have revealed potential novel targetable molecular alterations, emphasizing the necessity for tailored therapeutic approaches. Nuclear export proteins, particularly Exportin-1 (XPO1), have emerged as promising targets in cancer therapy due to their crucial role in cellular homeostasis and regulation of key cellular functions. Dysregulation of XPO1-mediated nuclear export leads to the functional loss of tumor suppressors and pro-apoptotic factors, facilitating cancer progression. Selinexor, a XPO1 inhibitor, has shown promising activity in preclinical and clinical studies, particularly in hematological malignancies. However, its efficacy in GI cancers remains underexplored. This review aims to elucidate the functional and pathophysiological role of XPO1 in GI cancers. Despite the potential of XPO1 inhibitors in suppressing cell proliferation and inducing apoptosis, comprehensive molecular landscape data and validation of selective inhibitors in GI cancers are lacking. Targeting XPO1 presents a significant therapeutic potential for the treatment of GI cancer patients. Further research is necessary to fully elucidate the molecular landscape according to XPO1 expression in GI tumors and to validate the efficacy of selective XPO1 inhibitors. These efforts are expected to contribute to the development of more effective and personalized therapeutic strategies for GI cancer patients.
Collapse
Affiliation(s)
- Viktorija Sokolova
- Department of Nuclear Medicine, Provincial Hospital of Bolzano (SABES-ASDAA), Teaching Hospital of the Paracelsus Medical Private University, Bolzano-Bozen, Italy
| | - Rebecca Gruber
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Innsbruck, Austria
| | - Lorenz M Pammer
- Department of Medicine I, Gastroenterology, Hepatology and Endocrinology, Medical University of Innsbruck, Innsbruck, Austria
| | - Florian Kocher
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Innsbruck, Austria
| | - Eckhard Klieser
- Institute of Pathology, University Clinics Salzburg, Paracelsus Medical University, Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| | - Arno Amann
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Innsbruck, Austria
| | - Renate Pichler
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Michael Günther
- Institute of Pathology, INNPATH GmbH, Tirol Kliniken Innsbruck, Innsbruck, Austria
| | - Steffen Ormanns
- Institute of Pathology, INNPATH GmbH, Tirol Kliniken Innsbruck, Innsbruck, Austria
| | - Daniel Neureiter
- Institute of Pathology, University Clinics Salzburg, Paracelsus Medical University, Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| | - Andreas Seeber
- Department of Nuclear Medicine, Provincial Hospital of Bolzano (SABES-ASDAA), Teaching Hospital of the Paracelsus Medical Private University, Bolzano-Bozen, Italy.
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
3
|
Gholami S, Mafakher L, Fotouhi F, Bambai B, Cohan RA, Mehrbod P, Shokouhi H, Farahmand B. Computational peptide engineering approach for selection of the new C05 antibody-driven peptide with potency to blocking influenza a virus attachment; from in silico to in vivo. J Biomol Struct Dyn 2024; 42:7730-7746. [PMID: 37553776 DOI: 10.1080/07391102.2023.2241554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/21/2023] [Indexed: 08/10/2023]
Abstract
Antiviral drugs are currently used to prevent or treat viral infections like influenza A Virus (IAV). Nonetheless, annual genetic mutations of influenza viruses make them resistant to efficient treatment by current medications. Antiviral peptides have recently attracted researchers' attention and can potentially supplant the current medications. This study aimed to design peptides against IAV propagation. For this purpose, P2 and P3 peptides were computationally designed based on the HCDR3 region of the C05 antibody (a monoclonal antibody that neutralizes influenza HA protein and inhibits the virus attachment). The synthesized peptides were tested against the influenza A virus (A/Puerto Rico/8/34 (H1N1)) in vitro, and the most efficient peptide was selected for in vivo experiments. It was shown that the designed peptide shows much more prophylactic and therapeutic effects against the virus. These findings demonstrated that the designed peptide can control the virus infection without any cytotoxicity effect. Antiviral peptide design is acknowledged as a critical tactic to manage viral infections by preventing viral binding to the host cells.Communicated by Ramaswamy H. Sarma.
Collapse
MESH Headings
- Antiviral Agents/pharmacology
- Antiviral Agents/chemistry
- Peptides/chemistry
- Peptides/pharmacology
- Animals
- Humans
- Virus Attachment/drug effects
- Influenza A virus/drug effects
- Influenza A virus/immunology
- Dogs
- Influenza A Virus, H1N1 Subtype/drug effects
- Influenza A Virus, H1N1 Subtype/immunology
- Protein Engineering/methods
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/pharmacology
- Madin Darby Canine Kidney Cells
- Molecular Dynamics Simulation
- Mice
- Computer Simulation
- Amino Acid Sequence
- Molecular Docking Simulation
- Orthomyxoviridae Infections/virology
- Orthomyxoviridae Infections/drug therapy
- Orthomyxoviridae Infections/immunology
- Influenza, Human/virology
- Influenza, Human/drug therapy
- Influenza, Human/immunology
- Protein Binding
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/pharmacology
- Antibodies, Neutralizing/chemistry
Collapse
Affiliation(s)
- Shima Gholami
- Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, Tehran, Iran
| | - Ladan Mafakher
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fatemeh Fotouhi
- Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, Tehran, Iran
| | - Bijan Bambai
- Department of Systems Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Reza Ahangari Cohan
- Department of Nanobiotechnology, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran
| | - Parvaneh Mehrbod
- Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, Tehran, Iran
| | - Hadiseh Shokouhi
- Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, Tehran, Iran
| | - Behrokh Farahmand
- Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
4
|
Liu D, Yan J, Ma F, Wang J, Yan S, He W. Reinvigoration of cytotoxic T lymphocytes in microsatellite instability-high colon adenocarcinoma through lysosomal degradation of PD-L1. Nat Commun 2024; 15:6922. [PMID: 39134545 PMCID: PMC11319731 DOI: 10.1038/s41467-024-51386-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 08/05/2024] [Indexed: 08/15/2024] Open
Abstract
Compensation and intracellular storage of PD-L1 may compromise the efficacy of antibody drugs targeting the conformational blockade of PD1/PD-L1 on the cell surface. Alternative therapies aiming to reduce the overall cellular abundance of PD-L1 thus might overcome resistance to conventional immune checkpoint blockade. Here we show by bioinformatics analysis that colon adenocarcinoma (COAD) with high microsatellite instability (MSI-H) presents the most promising potential for this therapeutic intervention, and that overall PD-L1 abundance could be controlled via HSC70-mediated lysosomal degradation. Proteomic and metabolomic analyses of mice COAD with MSI-H in situ unveil a prominent acidic tumor microenvironment. To harness these properties, an artificial protein, IgP β, is engineered using pH-responsive peptidic foldamers. This features customized peptide patterns and designed molecular function to facilitate interaction between neoplastic PD-L1 and HSC70. IgP β effectively reduces neoplastic PD-L1 levels via HSC70-mediated lysosomal degradation, thereby persistently revitalizing the action of tumor-infiltrating CD8 + T cells. Notably, the anti-tumor effect of lysosomal-degradation-based therapy surpasses that of antibody-based immune checkpoint blockade for MSI-H COAD in multiple mouse models. The presented strategy expands the use of peptidic foldamers in discovering artificial protein drugs for targeted cancer immunotherapy.
Collapse
Affiliation(s)
- Dan Liu
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, PR China
- Department of Talent Highland, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, PR China
| | - Jin Yan
- Department of infectious Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, PR China.
- Department of Tumor and Immunology in precision medical institute, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, PR China.
| | - Fang Ma
- Department of Tumor and Immunology in precision medical institute, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, PR China
| | - Jingmei Wang
- Institute for Stem Cell & Regenerative Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Siqi Yan
- Institute for Stem Cell & Regenerative Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Wangxiao He
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, PR China.
- Department of Talent Highland, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, PR China.
- Institute for Stem Cell & Regenerative Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
5
|
Liu W, Ding F, Yang W, You W, Zhang L, He W. A Transdermal Prion-Bionics Supermolecule as a RAB3A Antagonist for Enhancing Facial Youthfulness. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308764. [PMID: 38888508 PMCID: PMC11321638 DOI: 10.1002/advs.202308764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 04/14/2024] [Indexed: 06/20/2024]
Abstract
The mechanism research of skin wrinkles, conducted on volunteers underwent high-intensity desk work and mice subjected to partial sleep deprivation, revealed a significant reduction in dermal thickness associated with the presence of wrinkles. This can be attributed to the activation of facial nerves in a state of hysteria due to an abnormally elevated interaction between SNAP25 and RAB3A proteins involved in the synaptic vesicle cycle (SVC). Facilitated by AI-assisted structural design, a refined peptide called RSIpep is developed to modulate this interaction and normalize SVC. Drawing inspiration from prions, which possess the ability to protect themselves against proteolysis and invade neighboring nerve cells through macropinocytosis, RSIpep is engineered to demonstrate a GSH-responsive reversible self-assembly into a prion-like supermolecule (RSIprion). RSIprion showcases protease resistance, micropinocytosis-dependent cellular internalization, and low adhesion with constituent molecules in the cuticle, thereby endowing it with the transdermic absorption and subsequent biofunction in redressing the frenzied SVC. As a facial mud mask, it effectively reduces periorbital and perinasal wrinkles in the human face. Collectively, RSIprion not only presents a clinical potential as an anti-wrinkle prion-like supermolecule, but also exemplifies a reproducible instance of bionic strategy-guided drug development that bestows transdermal ability upon the pharmaceutical molecule.
Collapse
Affiliation(s)
- Wenjia Liu
- Department of Otorhinolaryngology Head and Neck SurgeryThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'an710004China
- Institute for Stem Cell & Regenerative MedicineThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'an710004China
- Ministry of EducationKey Laboratory of Surgical Critical Care and Life Support (Xi'an Jiaotong University)Xi'an710004China
| | - Fan Ding
- Institute for Stem Cell & Regenerative MedicineThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'an710004China
| | - Wenguang Yang
- Department of Medical OncologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'an710061P. R. China
- Department of Talent HighlandThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'an710061P. R. China
| | - Weiming You
- National & Local Joint Engineering Research Center of Biodiagnosis and BiotherapyThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'an710004P. R. China
| | - Liqiang Zhang
- Institute for Stem Cell & Regenerative MedicineThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'an710004China
| | - Wangxiao He
- Institute for Stem Cell & Regenerative MedicineThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'an710004China
- Department of Medical OncologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'an710061P. R. China
- Department of Talent HighlandThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'an710061P. R. China
| |
Collapse
|
6
|
He X, Wu W, Hu Y, Wu M, Li H, Ding L, Huang S, Fan Y. Visualizing the global trends of peptides in wound healing through an in-depth bibliometric analysis. Int Wound J 2024; 21:e14575. [PMID: 38116897 PMCID: PMC10961903 DOI: 10.1111/iwj.14575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 12/04/2023] [Indexed: 12/21/2023] Open
Abstract
Wound healing is a complicated and multistage biological process for the repair of damaged/injured tissues, which requires intelligent designs to provide comprehensive and convenient treatment. Peptide-based wound dressings have received extensive attention for further development and application due to their excellent biocompatibility and multifunctionality. However, the current lack of intuitive analysis of the development trend and research hotspots of peptides applied in wound healing, as well as detailed elaboration of possible research hotspots, restricted obtaining a comprehensive understanding and development in this field. The present study analysed publications from the Web of Science (WOS) Core Collection database and visualized the hotspots and current trends of peptide research in wound healing. Data between January 1st, 2003, and December 31st, 2022, were collected and subjected to a bibliometric analysis. The countries, institutions, co-authorship, co-citation reference, and co-occurrence of keywords in this subject were examined using VOSviewer and CiteSpace. We provided an intuitive, timely, and logical overview of the development prospects and challenges of peptide application in wound healing and some solutions to the major obstacles, which will help researchers gain insights into the investigation of this promising field.
Collapse
Affiliation(s)
- Xinyan He
- Department of Pharmaceutics, Chongqing University Jiangjin Hospital, Chongqing University, Chongqing, China
| | - Wen Wu
- Chongqing key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Yuchen Hu
- School of Biological Engineering and Food, Hubei University of Technology, Wuhan, China
| | - Meiling Wu
- Université de Lorraine, CITHEFOR, Nancy, France
| | - Hong Li
- School of Pharmacy, Guangxi Medical University, Nanning, China
| | - Ling Ding
- Department of Pharmaceutics, Chongqing University Jiangjin Hospital, Chongqing University, Chongqing, China
| | - Shiqin Huang
- Department of Pharmaceutics, Chongqing University Jiangjin Hospital, Chongqing University, Chongqing, China
| | - Ying Fan
- Department of Pharmaceutics, Chongqing University Jiangjin Hospital, Chongqing University, Chongqing, China
| |
Collapse
|
7
|
Yan J, Liu D, Wang J, You W, Yang W, Yan S, He W. Rewiring chaperone-mediated autophagy in cancer by a prion-like chemical inducer of proximity to counteract adaptive immune resistance. Drug Resist Updat 2024; 73:101037. [PMID: 38171078 DOI: 10.1016/j.drup.2023.101037] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024]
Abstract
Chaperone-mediated autophagy (CMA), a proteolytic system contributing to the degradation of intracellular proteins in lysosomes, is upregulated in tumors for pro-tumorigenic and pro-survival purposes. In this study, bioinformatics analysis revealed the co-occurrence of upregulated CMA and PD-L1 accumulation in metastatic melanoma with adaptive immune resistance (AIR) to anti-PD1 treatment, suggesting the potential therapeutic effects of rewiring CMA for PD-L1 degradation. Furthermore, this co-occurrence is attributed to IFN-γ-mediated compensatory up-regulation of PD-L1 and CMA, accompanied by enhanced macropinocytosis. Drawing inspiration from the cellular uptake of prions via macropinocytosis, a prion-like chemical inducer of proximity called SAP was engineered using self-assembly of the designed chiral peptide PHA. By exploiting sensitized macropinocytosis, SAP clandestinely infiltrates tumor cells and subsequently disintegrates into PHA, which reprograms CMA by inducing PD-L1 close to HSPA8. SAP degrades PD-L1 in a CMA-dependent manner and effectively restores the anti-tumor immune response in both allografting and Hu-PDX melanoma mouse models with AIR while upholding a high safety profile. Collectively, the reported SAP not only presents an immune reactivation strategy with clinical translational potential for overcoming AIR in cutaneous melanomas but serves as a reproducible example of precision-medicine-guided drug development that fully leverages specific cellular indications in pathological states.
Collapse
Affiliation(s)
- Jin Yan
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China; National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, PR China.
| | - Dan Liu
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Jingmei Wang
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, PR China; Institute for Stem Cell & Regenerative Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, PR China
| | - Weiming You
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, PR China
| | - Wenguang Yang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Siqi Yan
- Institute for Stem Cell & Regenerative Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, PR China
| | - Wangxiao He
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China; Institute for Stem Cell & Regenerative Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, PR China.
| |
Collapse
|
8
|
Jiang A, Zheng X, Yan S, Yan J, Yao Y, He W. Advancing the Boundaries of Immunotherapy in Lung Adenocarcinoma with Idiopathic Pulmonary Fibrosis by a Biomimetic Proteinoid Enabling Selective Endocytosis. ACS NANO 2024. [PMID: 38319028 PMCID: PMC10883119 DOI: 10.1021/acsnano.3c09852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
The coexistence of lung adenocarcinoma (LUAD) with idiopathic pulmonary fibrosis (IPF), which has been extensively documented as a prominent risk factor for checkpoint inhibitor-related pneumonitis (CIP) in patients undergoing immunotherapy, has long been considered a restricted domain for the use of immune checkpoint inhibitors (ICIs). To overcome it, an approach was employed herein to specifically target PD-L1 within the cellular interior, surpassing the conventional focus solely on the cytomembrane, thereby facilitating the development of ICIs capable of distinguishing between LUAD cells and noncancerous cells based on their distinctive endocytic propensities. By exploiting the aurophilicity-driven self-assembly of a PD-L1 binding peptide (PDBP) and subsequently encapsulating it within erythrocyte membranes (EM), the resulting biomimetic ICIs protein EMS-PDBP exhibited extraordinary selectivity in internalizing LUAD cells, effectively targeting PD-L1 within cancer cells while hindering its membrane translocation. The EMS-PDBP treatment not only reactivated the antitumor immune response in the LUAD orthotopic allograft mouse model but also demonstrated a favorable safety profile by effectively eliminating any immune-related adverse events (irAEs). Most significantly, EMS-PDBP successfully and safely restored the antitumor immune response in a mouse model of LUAD with coexistent IPF, thus shattering the confines of ICIs immunotherapy. The reported EMS-PDBP collectively offers a potential strategy for immune reactivation to overcome the limitations of immunotherapy in LUAD coexisting with IPF.
Collapse
Affiliation(s)
- Aimin Jiang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Xiaoqiang Zheng
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
- Institute for Stem Cell & Regenerative Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Siqi Yan
- Institute for Stem Cell & Regenerative Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Jin Yan
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Yu Yao
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Wangxiao He
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
- Department of Talent Highland, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an 710061, China
| |
Collapse
|
9
|
Liu H, Huang Y, Li Z, Han S, Liu T, Zhao Q. An innovative gene expression modulating strategy by converting nucleic acids into HNC therapeutics using carrier-free nanoparticles. Front Immunol 2024; 14:1343428. [PMID: 38274829 PMCID: PMC10808498 DOI: 10.3389/fimmu.2023.1343428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 12/22/2023] [Indexed: 01/27/2024] Open
Abstract
Background Cell fate and microenvironmental changes resulting from aberrant expression of specific proteins in tumors are one of the major causes of inadequate anti-tumor immune response and poor prognosis in head and neck cancer (HNC). Eukaryotic initiation factor 3C (eIF3c) has emerged as a promising therapeutic target for HNC due to its ability to regulate protein expression levels in tumor cells, but its drug development is difficult to achieve by targeting traditional protein-protein interactions. siRNA has emerged as a highly promising modality for drug development targeting eIF3c, while its application is hindered by challenges pertaining to inadequate stability and insufficient concentration specifically within tumor sites. Method We employed a method to convert flexible siRNAs into stable and biologically active infinite Auric-sulfhydryl coordination supramolecular siRNAs (IacsRNAs). Through coordinated self-assembly, we successfully transformed eIF3C siRNAs into the carrier-free HNC nanotherapeutic agent Iacs-eif3c-RNA. The efficacy of this agent was evaluated in vivo using HNC xenograft models, demonstrating promising antitumor effects. Results Iacs-eif3c-RNA demonstrated the ability to overcome the pharmacological obstacle associated with targeting eIF3C, resulting in a significant reduction in eIF3C expression within tumor tissues, as well as effective tumor cell proliferating suppression and apoptosis promotion. In comparison to monotherapy utilizing the chemotherapeutic agent cisplatin, Iacs-eif3c-RNA exhibited superior anti-tumor efficacy and favorable biosafety. Conclusion The utilization of Iacs-eif3c-RNA as a carrier-free nanotherapeutic agent presents a promising and innovative approach for addressing HNC treating challenges. Moreover, this strategy demonstrates potential for the translation of therapeutic siRNAs into clinical drugs, extending its applicability to the treatment of other cancers and various diseases.
Collapse
Affiliation(s)
- Heyuan Liu
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yinong Huang
- Shaanxi Institute of Pediatric Diseases, Xi’an Children’s Hospital, Xi’an, China
| | - Zongfang Li
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Suxia Han
- Department of Radiation Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Tianya Liu
- Institute for Stem Cell and Regenerative Medicine, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Qian Zhao
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
10
|
Zeng L, Peng Q, Li Q, Bi Y, Kong F, Wang Z, Tan S. Synthesis, characterization, biological activity, and in vitro digestion of selenium nanoparticles stabilized by Antarctic ice microalgae polypeptide. Bioorg Chem 2023; 141:106884. [PMID: 37774435 DOI: 10.1016/j.bioorg.2023.106884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/08/2023] [Accepted: 09/24/2023] [Indexed: 10/01/2023]
Abstract
A new type of uniformly dispersed selenium nanoparticles (SeNPs) was prepared using Antarctic ice microalgae polypeptides (AIMP) as the stabilizer and dispersant. Different characterization techniques and tests show that the SeNPs are effectively combined with AIMP through physical adsorption and hydrogen bonding to form a more stable structure. Orange-red, zero-valence, amorphous, and spherical AIMP-SeNPs with a diameter of 52.07 ± 1.011 nm and a zeta potential of -41.41 ± 0.882 mV were successfully prepared under the optimal conditions. The AIMP-SeNPs had significantly higher DPPH, ABTS and hydroxyl radicals scavenging abilities compared with AIMP and Na2SeO3, and prevented the growth of both Gram-negative and Gram-positive bacteria by disrupting the integrity of cell walls, cell membranes and mitochondrial membranes. The AIMP-SeNPs had higher gastrointestinal stability compared with SeNPs. Thus, this research highlights the crucial role of AIMP as a biopolymer framework in the dispersion, stabilization, and size management of SeNPs and concludes that AIMP-SeNPs can be exploited as a potent antioxidant supplement and antibacterial substance in foods and medicine.
Collapse
Affiliation(s)
- Lixia Zeng
- School of Pharmacy, Guangdong Pharmaceutical University, China
| | - Qiang Peng
- School of Pharmacy, Guangdong Pharmaceutical University, China
| | - Qiao Li
- School of Pharmacy, Guangdong Pharmaceutical University, China
| | - Yongguang Bi
- School of Pharmacy, Guangdong Pharmaceutical University, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, China; Guangdong Dongshenglin Pharmaceutical Co., Ltd, China; Yunfu Traditional Chinese Medicine Hospital, China.
| | - Fansheng Kong
- School of Pharmacy, Guangdong Pharmaceutical University, China
| | - Zhong Wang
- Yunfu Traditional Chinese Medicine Hospital, China
| | - Shaofan Tan
- Guangdong Dongshenglin Pharmaceutical Co., Ltd, China
| |
Collapse
|
11
|
Liu D, Wang J, You W, Ma F, Sun Q, She J, He W, Yang G. A d-peptide-based oral nanotherapeutic modulates the PD-1/PD-L1 interaction for tumor immunotherapy. Front Immunol 2023; 14:1228581. [PMID: 37529049 PMCID: PMC10388715 DOI: 10.3389/fimmu.2023.1228581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 06/23/2023] [Indexed: 08/03/2023] Open
Abstract
Background PD-1/PD-L1 immune checkpoint inhibitors are currently the most commonly utilized agents in clinical practice, which elicit an immunostimulatory response to combat malignancies. However, all these inhibitors are currently administered via injection using antibody-based therapies, while there is a growing need for oral alternatives. Methods This study has developed and synthesized exosome-wrapped gold-peptide nanocomplexes with low immunogenicity, which can target PD-L1 and activate antitumor immunity in vivo through oral absorption. The SuperPDL1exo was characterized by transmission electron microscopy (TEM), dynamic light scattering (DLS), Fourier transform infrared (FTIR), X-ray photoelectron spectroscopy (XPS), and gel silver staining. The transmembrane ability of SuperPDL1exo was evaluated by flow cytometry and immunofluorescence. Cell viability was determined using the Cell Counting Kit-8 (CCK-8) assay. ELISA experiments were conducted to detect serum and tissue inflammatory factors, as well as serum biochemical indicators. Tissue sections were stained with H&E for the evaluation of the safety of SuperPDL1exo. An MC38 colon cancer model was established in immunocompetent C56BL/6 mice to evaluate the effects of SuperPDL1exo on tumor growth in vivo. Immunohistochemistry (IHC) staining was performed to detect cytotoxicity factors such as perforin and granzymes. Results First, SuperPDL1 was successfully synthesized, and milk exosome membranes were encapsulated through ultrasound, repeated freeze-thaw cycles, and extrusion, resulting in the synthesis of SuperPDL1exo. Multiple characterization results confirmed the successful synthesis of SuperPDL1exo nanoparticles. Furthermore, our data demonstrated that SuperPDL1exo exhibited excellent colloidal stability and superior cell transmembrane ability. In vitro and in vivo experiments revealed that SuperPDL1exo did not cause damage to multiple systemic organs, demonstrating its good biocompatibility. Finally, in the MC38 colon cancer mouse model, it was discovered that SuperPDL1exo could inhibit the progression of colon cancer, and this tumor-suppressive effect was mediated through the activation of tumor-specific cytotoxic T lymphocyte (CTL)-related immune responses. Conclusion This study has successfully designed and synthesized an oral nanotherapeutic, SuperPDL1exo, which demonstrates small particle size, excellent colloidal stability, transmembrane ability in tumor cells, and biocompatibility. In vivo experiments have shown that it effectively activates T-cell immunity and exerts antitumor effects.
Collapse
Affiliation(s)
- Dan Liu
- Department of General Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xian, China
- Department of Medical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Talent Highland, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jingmei Wang
- Institute for Stem Cell & Regenerative Medicine, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Weiming You
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Fang Ma
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Qi Sun
- Department of General Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xian, China
| | - Junjun She
- Department of General Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xian, China
| | - Wangxiao He
- Department of Medical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Talent Highland, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Institute for Stem Cell & Regenerative Medicine, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Guang Yang
- Department of Oncology, Kunshan Hospital of Chinese Medicine, Affiliated Hospital of Yangzhou University, Yangzhou, China
| |
Collapse
|
12
|
Zhou Z, Li X, Yang G, Wang J, Li B, Huang Y, Yan J, Tao K. Targeting β-catenin and PD-L1 simultaneously by a racemic supramolecular peptide for the potent immunotherapy of hepatocellular carcinoma. Theranostics 2023; 13:3371-3386. [PMID: 37351175 PMCID: PMC10283047 DOI: 10.7150/thno.83377] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/24/2023] [Indexed: 06/24/2023] Open
Abstract
Objective: The low clinical utility of immune checkpoint inhibitors (ICIs) against PD-1 or PD-L1 has recently been associated with the activation of the Wnt/β-catenin signaling pathway in hepatocellular carcinoma (HCC), which promotes tumor immune escape and resistance to anti-PD-1/PD-L1 therapy. Hence, we aimed to fabricate a supramolecular peptide which could target the Wnt/β-catenin signaling pathway coupled with ICIs blockage therapy for optimizing HCC immunotherapy. Methods: A racemic spherical supramolecular peptide termed sBBI&PDP nanoparticle was constructed by hierarchical self-assembly, comprising an L-enantiomeric peptide as an inhibitor of BCL9 and β-catenin (sBBI) and a D-enantiomeric peptide as an inhibitor of PD-1/PD-L1 (PDP). Results: sBBI&PDP nanoparticle potently suppressed the hyperactivated Wnt/β-catenin signaling pathway in vitro and in vivo, while blocking endogenous PD-L1 effectively. Furthermore, sBBI&PDP increased the infiltration and action of CD8+ T cells at tumor sites. Notably, compared with the original sBBI and commercial Anti-PD-L1 inhibitors, the designed sBBI&PDP showed stronger antitumor efficacy in an orthotopic homograft mice model of HCC and a PDX HCC model in Hu-PBMC-NSG mice. Moreover, sBBI&PDP possessed a favorable biosafety profile. Conclusion: The successful implementation of this strategy could revitalize ICIs blockage therapy and promote the discovery of artificial peptides for HCC immunotherapy.
Collapse
Affiliation(s)
- Zhengjun Zhou
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Xijing Hospital, Air Force Medical University (The Fourth Military Medical University), Xi'an 710032, China
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Xiao Li
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Xijing Hospital, Air Force Medical University (The Fourth Military Medical University), Xi'an 710032, China
| | - Guang Yang
- Department of Oncology, Suzhou BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Suzhou, Jiangsu Province, China
| | - Jingmei Wang
- Institute for Stem Cell & Regenerative Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Baohua Li
- Core Research Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Yinong Huang
- Shaanxi Institute of Pediatric Diseases, Xi'an Children's Hospital, Xi'an, 710003, China
| | - Jin Yan
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Kaishan Tao
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Xijing Hospital, Air Force Medical University (The Fourth Military Medical University), Xi'an 710032, China
| |
Collapse
|
13
|
Gong L, Lu Y, Wang J, Li X, Zhao J, Chen Y, Ma R, Ma J, Liu T, Han S. Cocktail hepatocarcinoma therapy by a super-assembled nano-pill targeting XPO1 and ATR synergistically. J Pharm Anal 2023; 13:603-615. [PMID: 37440910 PMCID: PMC10334348 DOI: 10.1016/j.jpha.2023.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 07/15/2023] Open
Abstract
Intensive cancer treatment with drug combination is widely exploited in the clinic but suffers from inconsistent pharmacokinetics among different therapeutic agents. To overcome it, the emerging nanomedicine offers an unparalleled opportunity for encapsulating multiple drugs in a nano-carrier. Herein, a two-step super-assembled strategy was performed to unify the pharmacokinetics of a peptide and a small molecular compound. In this proof-of-concept study, the bioinformatics analysis firstly revealed the potential synergies towards hepatoma therapy for the associative inhibition of exportin 1 (XPO1) and ataxia telangiectasia mutated-Rad3-related (ATR), and then a super-assembled nano-pill (gold nano drug carrier loaded AZD6738 and 97-110 amino acids of apoptin (AP) (AA@G)) was constructed through camouflaging AZD6738 (ATR small-molecule inhibitor)-binding human serum albumin onto the AP-Au supramolecular nanoparticle. As expected, both in vitro and in vivo experiment results verified that the AA@G possessed extraordinary biocompatibility and enhanced therapeutic effect through inducing cell cycle arrest, promoting DNA damage and inhibiting DNA repair of hepatoma cell. This work not only provides a co-delivery strategy for intensive liver cancer treatment with the clinical translational potential, but develops a common approach to unify the pharmacokinetics of peptide and small-molecular compounds, thereby extending the scope of drugs for developing the advanced combination therapy.
Collapse
Affiliation(s)
- Liuyun Gong
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yinliang Lu
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jing Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xinyue Li
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jing Zhao
- Department of Radiotherapy, The First Affiliated Hospital Soochow University, Suzhou, Jiangsu, 215000, China
| | - Yuetong Chen
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Rongze Ma
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jinlu Ma
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Tianya Liu
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Suxia Han
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| |
Collapse
|
14
|
Wang J, Zhao J, Ma F, Gong L, Lu Y, Xiao W, Tang H, Gao C, Chen Y, Ma J, Gao Z, Yan J, Han S. One Stone, Two Birds: A Peptide-Au(I) Infinite Coordination Supermolecule for the Confederate Physical and Biological Radiosensitization in Cancer Radiation Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2204238. [PMID: 36494177 DOI: 10.1002/smll.202204238] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/27/2022] [Indexed: 06/17/2023]
Abstract
Over half of cancer patients are subjected to radiotherapy, but owing to the deficient amount of reactive oxygen radicals (ROS) and DNA double-strand breaks (DSBs), a fair number of them suffer from radiotherapy resistance and the subsequent short-term survival opportunity. To overcome it, many successes have been achieved in radiosensitizer discovery using physical strategy and/or biological strategy, but significant challenges remain regarding developing clinically translational radiosensitizers. Herein, a peptide-Au(I) infinite coordination supermolecule termed PAICS is developed that combined both physical and biological radiosensitization and possessed pharmaceutical characteristics including adequate circulatory stability, controllable drug release, tumor-prioritized accumulation, and the favorable body eliminability. As expected, monovalent gold ion endowed this supermolecule with high X-ray absorption and the subsequent radiosensitization. Furthermore, a peptide targeting CRM1, is assembled into the supermolecule, which successfully activates p53 and apoptosis pathway, thereby further sensitizing radiotherapy. As a result, PAICS showed superior ability for radiotherapy sensitization in vivo and maintained a favorable safety profile. Thus, the PAICS reported here will offer a feasible solution to simultaneously overcome both the pharmaceutical obstacles of physical and biological radiosensitizers and will enable the development of a class of nanomedicines for tumor radiotherapy sensitization.
Collapse
Affiliation(s)
- Jing Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Jing Zhao
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, P. R. China
| | - Fang Ma
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, P. R. China
| | - Liuyun Gong
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Yinliang Lu
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Weiping Xiao
- Department of Neonatology, The First Affiliated Hospital of Xi 'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Hanmin Tang
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Chengyi Gao
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Yuetong Chen
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Jun Ma
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Zhan Gao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, P. R. China
| | - Jin Yan
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, P. R. China
| | - Suxia Han
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| |
Collapse
|
15
|
Yang W, Liu W, Li X, Yan J, He W. Turning chiral peptides into a racemic supraparticle to induce the self-degradation of MDM2. J Adv Res 2023; 45:59-71. [PMID: 35667548 PMCID: PMC10006529 DOI: 10.1016/j.jare.2022.05.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/04/2022] [Accepted: 05/24/2022] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION Chirality is immanent in nature, and chiral molecules can achieve their pharmacological action through chiral matching with biomolecules and molecular conformation recognition. OBJECTIVES Clinical translation of chiral therapeutics, particularly chiral peptide molecules, has been hampered by their unsatisfactory pharmaceutical properties. METHODS A mild and simple self-assembly strategy was developed here for the construction of peptide-derived chiral supramolecular nanomedicine with suitable pharmaceutical properties. In this proof-of-concept study, we design a D-peptide as MDM2 Self-Degradation catalysts (MSDc) to induce the self-degradation of a carcinogenic E3 Ubiquitin ligase termed MDM2. Exploiting a metal coordination between mercaptan in peptides and trivalent gold ion, chiral MSDc was self-assembled into a racemic supraparticle (MSDNc) that eliminated the consume from the T-lymphocyte/macrophage phagocytose in circulation. RESULTS Expectedly, MSDNc down-regulated MDM2 in more action than its L-enantiomer termed CtrlMSDNc. More importantly, MSDNc preponderantly suppressed the tumor progression and synergized the tumor immunotherapy in allograft model of melanoma through p53 restoration in comparison to CtrlMSDNc. CONCLUSION Collectively, this work not only developed a secure and efficient therapeutic agent targeting MDM2 with the potential of clinical translation, but also provided a feasible and biocompatible strategy for the construction of peptide supraparticle and expanded the application of chiral therapeutic and homo-PROTAC to peptide-derived chiral supramolecular nanomedicine.
Collapse
Affiliation(s)
- Wenguang Yang
- Department of Medical Oncology and Department of Talent Highland, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an 710061, China
| | - Wenjia Liu
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China.
| | - Xiang Li
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Jin Yan
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China.
| | - Wangxiao He
- Department of Medical Oncology and Department of Talent Highland, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an 710061, China; Institute for Stem Cell & Regenerative Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China.
| |
Collapse
|
16
|
Liu D, Huang Y, Mao J, Jiang C, Zheng L, Wu Q, Cai H, Liu X, Dai J. A nanohybrid synthesized by polymeric assembling Au(I)-peptide precursor for anti-wrinkle function. Front Bioeng Biotechnol 2022; 10:1087363. [PMID: 36578506 PMCID: PMC9790933 DOI: 10.3389/fbioe.2022.1087363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022] Open
Abstract
A major sign of aging is wrinkles (dynamic lines and static lines) on the surface of the skin. In spite of Botulinum toxin's favorable therapeutic effect today, there have been several reports of its toxicity and side effects. Therefore, the development of an effective and safe wrinkle-fighting compound is imperative. An antioxidant-wrinkle effect was demonstrated by the peptide that we developed and synthesized, termed Skin Peptide. Aiming at the intrinsic defects of the peptide such as hydrolysis and poor membrane penetration, we developed a general approach to transform the Skin Peptide targeting intracellular protein-protein interaction into a bioavailable peptide-gold spherical nano-hybrid, Skin Pcluster. As expected, the results revealed that Skin Pcluster reduced the content of acetylcholine released by neurons in vitro, and then inhibit neuromuscular signal transmission. Additionally, human experiments demonstrated a significant de-wrinkle effect. Moreover, Skin Pcluster is characterized by a reliable safety profile. Consequently, anti-wrinkle peptides and Skin Pcluster nanohybrids demonstrated innovative anti-wrinkle treatments and have significant potential applications.
Collapse
Affiliation(s)
- Dan Liu
- Department of Talent Highland, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yinong Huang
- Shaanxi Institute of Pediatric Diseases, Xi’an Children’s Hospital, Xi’an, China,*Correspondence: Yinong Huang, ; Hong Cai, ; Xiaojing Liu, ; Jingyao Dai,
| | - Jian Mao
- Graduate School of China Medical University, Shenyang, China,Air Force Medical Center, Beijing, China
| | - Cheng Jiang
- Graduate School of China Medical University, Shenyang, China,Air Force Medical Center, Beijing, China
| | - Lei Zheng
- Graduate School of China Medical University, Shenyang, China,Air Force Medical Center, Beijing, China
| | - Qimei Wu
- Graduate School of China Medical University, Shenyang, China,Air Force Medical Center, Beijing, China
| | - Hong Cai
- Air Force Medical Center, Beijing, China,*Correspondence: Yinong Huang, ; Hong Cai, ; Xiaojing Liu, ; Jingyao Dai,
| | - Xiaojing Liu
- Department of Talent Highland, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China,*Correspondence: Yinong Huang, ; Hong Cai, ; Xiaojing Liu, ; Jingyao Dai,
| | - Jingyao Dai
- Air Force Medical Center, Beijing, China,Air Force Medical Center, Fourth Military Medical University, Xi’an, China,*Correspondence: Yinong Huang, ; Hong Cai, ; Xiaojing Liu, ; Jingyao Dai,
| |
Collapse
|
17
|
Jiang A, Liu N, Wang J, Zheng X, Ren M, Zhang W, Yao Y. The role of PD-1/PD-L1 axis in idiopathic pulmonary fibrosis: Friend or foe? Front Immunol 2022; 13:1022228. [PMID: 36544757 PMCID: PMC9760949 DOI: 10.3389/fimmu.2022.1022228] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/16/2022] [Indexed: 12/08/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a devastating interstitial lung disease with a bleak prognosis. Mounting evidence suggests that IPF shares bio-molecular similarities with lung cancer. Given the deep understanding of the programmed cell death-1 (PD-1)/programmed death-ligand 1 (PD-L1) pathway in cancer immunity and the successful application of immune checkpoint inhibitors (ICIs) in lung cancer, recent studies have noticed the role of the PD-1/PD-L1 axis in IPF. However, the conclusions are ambiguous, and the latent mechanisms remain unclear. In this review, we will summarize the role of the PD-1/PD-L1 axis in IPF based on current murine models and clinical studies. We found that the PD-1/PD-L1 pathway plays a more predominant profibrotic role than its immunomodulatory role in IPF by interacting with multiple cell types and pathways. Most preclinical studies also indicated that blockade of the PD-1/PD-L1 pathway could attenuate the severity of pulmonary fibrosis in mice models. This review will bring significant insights into understanding the role of the PD-1/PD-L1 pathway in IPF and identifying new therapeutic targets.
Collapse
Affiliation(s)
- Aimin Jiang
- Department of Medical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Na Liu
- Department of Medical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jingjing Wang
- Department of Medical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xiaoqiang Zheng
- Department of Medical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China,Institute for Stem Cell & Regenerative Medicine, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Mengdi Ren
- Department of Medical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Wei Zhang
- Military Physical Education Teaching and Research Section of Air Force Medical Service Training Base, Air Force Medical University, Xi’an, China,*Correspondence: Yu Yao, ; Wei Zhang,
| | - Yu Yao
- Department of Medical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China,*Correspondence: Yu Yao, ; Wei Zhang,
| |
Collapse
|
18
|
Ren M, Zheng X, Gao H, Jiang A, Yao Y, He W. Nanomedicines Targeting Metabolism in the Tumor Microenvironment. Front Bioeng Biotechnol 2022; 10:943906. [PMID: 35992338 PMCID: PMC9388847 DOI: 10.3389/fbioe.2022.943906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/01/2022] [Indexed: 12/02/2022] Open
Abstract
Cancer cells reprogram their metabolism to meet their growing demand for bioenergy and biosynthesis. The metabolic profile of cancer cells usually includes dysregulation of main nutritional metabolic pathways and the production of metabolites, which leads to a tumor microenvironment (TME) having the characteristics of acidity, hypoxic, and/or nutrient depletion. Therapies targeting metabolism have become an active and revolutionary research topic for anti-cancer drug development. The differential metabolic vulnerabilities between tumor cells and other cells within TME provide nanotechnology a therapeutic window of anti-cancer. In this review, we present the metabolic characteristics of intrinsic cancer cells and TME and summarize representative strategies of nanoparticles in metabolism-regulating anti-cancer therapy. Then, we put forward the challenges and opportunities of using nanoparticles in this emerging field.
Collapse
Affiliation(s)
- Mengdi Ren
- Department of Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xiaoqiang Zheng
- Institute for Stem Cell and Regenerative Medicine, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Huan Gao
- Department of Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Aimin Jiang
- Department of Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yu Yao
- Department of Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Yu Yao, ; Wangxiao He,
| | - Wangxiao He
- Department of Talent Highland, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Yu Yao, ; Wangxiao He,
| |
Collapse
|
19
|
Kumar A, Sharipov M, Turaev A, Azizov S, Azizov I, Makhado E, Rahdar A, Kumar D, Pandey S. Polymer-Based Hybrid Nanoarchitectures for Cancer Therapy Applications. Polymers (Basel) 2022; 14:polym14153027. [PMID: 35893988 PMCID: PMC9370428 DOI: 10.3390/polym14153027] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/17/2022] [Accepted: 07/19/2022] [Indexed: 12/16/2022] Open
Abstract
Globally, cancer is affecting societies and is becoming an important cause of death. Chemotherapy can be highly effective, but it is associated with certain problems, such as undesired targeting and multidrug resistance. The other advanced therapies, such as gene therapy and peptide therapy, do not prove to be effective without a proper delivery medium. Polymer-based hybrid nanoarchitectures have enormous potential in drug delivery. The polymers used in these nanohybrids (NHs) provide them with their distinct properties and also enable the controlled release of the drugs. This review features the recent use of polymers in the preparation of different nanohybrids for cancer therapy published since 2015 in some reputed journals. The polymeric nanohybrids provide an advantage in drug delivery with the controlled and targeted delivery of a payload and the irradiation of cancer by chemotherapeutical and photodynamic therapy.
Collapse
Affiliation(s)
- Arun Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan 173229, India;
| | - Mirkomil Sharipov
- Department of Chemistry, Changwon National University, Changwon 51140, Korea;
| | - Abbaskhan Turaev
- Laboratory of Biological Active Macromolecular Systems, Institute of Bioorganic Chemistry, Uzbekistan Academy of Sciences, Tashkent 100125, Uzbekistan;
| | - Shavkatjon Azizov
- Laboratory of Biological Active Macromolecular Systems, Institute of Bioorganic Chemistry, Uzbekistan Academy of Sciences, Tashkent 100125, Uzbekistan;
- Department of Pharmaceutical Chemistry, Tashkent Pharmaceutical Institute, Tashkent 100015, Uzbekistan
- Correspondence: (S.A.); (D.K.); or (S.P.)
| | - Ismatdjan Azizov
- State Center for Expertise and Standardization of Medicines, Medical Devices, and Medical Equipment, State Unitary Enterprise, Tashkent 100002, Uzbekistan;
| | - Edwin Makhado
- Department of Chemistry, School of Physical and Mineral Sciences, University of Limpopo, Polokwane 0727, South Africa;
| | - Abbas Rahdar
- Department of Physics, Faculty of Science, University of Zabol, Zabol 538-98615, Iran;
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan 173229, India;
- Correspondence: (S.A.); (D.K.); or (S.P.)
| | - Sadanand Pandey
- Department of Chemistry, College of Natural Sciences, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Korea
- Correspondence: (S.A.); (D.K.); or (S.P.)
| |
Collapse
|
20
|
Wang J, Yang W, He X, Zhang Z, Zheng X. Assembling p53 Activating Peptide With CeO2 Nanoparticle to Construct a Metallo-Organic Supermolecule Toward the Synergistic Ferroptosis of Tumor. Front Bioeng Biotechnol 2022; 10:929536. [PMID: 35837547 PMCID: PMC9273839 DOI: 10.3389/fbioe.2022.929536] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/17/2022] [Indexed: 11/22/2022] Open
Abstract
Inducing lipid peroxidation and subsequent ferroptosis in cancer cells provides a potential approach for anticancer therapy. However, the clinical translation of such therapeutic agents is often hampered by ferroptosis resistance and acquired drug tolerance in host cells. Emerging nanoplatform-based cascade engineering and ferroptosis sensitization by p53 provides a viable rescue strategy. Herein, a metallo-organic supramolecular (Nano-PMI@CeO2) toward p53 restoration and subsequent synergistic ferroptosis is constructed, in which the radical generating module-CeO2 nanoparticles act as the core, and p53-activator peptide (PMI)-gold precursor polymer is in situ reduced and assembled on the CeO2 surface as the shell. As expected, Nano-PMI@CeO2 effectively reactivated the p53 signaling pathway in vitro and in vivo, thereby downregulating its downstream gene GPX4. As a result, Nano-PMI@CeO2 significantly inhibited tumor progression in the lung cancer allograft model through p53 restoration and sensitized ferroptosis, while maintaining favorable biosafety. Collectively, this work develops a tumor therapeutic with dual functions of inducing ferroptosis and activating p53, demonstrating a potentially viable therapeutic paradigm for sensitizing ferroptosis via p53 activation. It also suggests that metallo-organic supramolecule holds great promise in transforming nanomedicine and treating human diseases.
Collapse
Affiliation(s)
- Jingmei Wang
- Institute for Stem Cell & Regenerative Medicine, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Wenguang Yang
- Department of Medical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Talent Highland, The First Affiliated Hospital of Xi’an Jiao Tong University, Xi’an, China
| | - Xinyuan He
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Zhang Zhang
- General Surgery Department, Tang Du Hospital, The Fourth Military Medical University, Xi’an, China
- *Correspondence: Zhang Zhang, ; Xiaoqiang Zheng,
| | - Xiaoqiang Zheng
- Institute for Stem Cell & Regenerative Medicine, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Medical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Zhang Zhang, ; Xiaoqiang Zheng,
| |
Collapse
|
21
|
Li L, He W, You W, Yan J, Liu W. Turing miRNA into infinite coordination supermolecule: a general and enabling nanoengineering strategy for resurrecting nuclear acid therapeutics. J Nanobiotechnology 2022; 20:10. [PMID: 34983557 PMCID: PMC8725389 DOI: 10.1186/s12951-021-01212-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 12/16/2021] [Indexed: 12/14/2022] Open
Abstract
Background Clinical translation of therapeutic nuclear acid, particularly those targeting tumor progression, has been hampered by the intrinsic weaknesses of nuclear acid therapeutic including poor systemic stability, rapid clearance, low membrane permeability and lack of targeting ability. Small nuclear acid engineered into carrier-free nanodrugs with structural stability and disease targeting may be viable to overcome pharmaceutical obstacles of nuclear acid. Methods A general method through a mild and simple chemistry was established to convert therapeutic miRNA into an infinite Auric-sulfhydryl coordination supramolecular miRNA termed IacsRNA with near-spherical nanostructure, high colloid as well as anti-hydrolysis stability and low macrophage uptakes. Results IacsRNA presented the increased half-life period in circulation and accumulation at tumor sites in comparison to normal miRNA. Moreover, Iacs-miR-30c showed no toxicity of viscera and sanguis system in the 5-time injection dosage of the treatment. More importantly, Iacs-miR-30c potently suppressed the Wnt signaling pathway in vitro and in vivo, and effectively sensitized both potency of 5-Fu in PDX model of colon cancer and Anti-PD1 in B16F10 homograft model of melanoma. Conclusion Collectively, this work amply confirmed the design of IacsRNA as a general and viable strategy of nano-pharmaceutic to concert flimsy therapeutic miRNA into potential drugs. Considering from a broader perspective, the miRNA-initiated infinite coordination self-assembly strategy has distinct advantages in resurrecting nuclear acid therapeutics, probably bringing new inspiration to RNA-derived therapeutics of a great variety of human diseases including cancer. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-01212-9.
Collapse
Affiliation(s)
- Liya Li
- Institute for Stem Cell & Regenerative Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Wangxiao He
- Institute for Stem Cell & Regenerative Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China. .,Department of Medical Oncology and Department of Talent Highland, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China.
| | - Weiming You
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, People's Republic of China
| | - Jin Yan
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, People's Republic of China.
| | - Wenjia Liu
- Institute for Stem Cell & Regenerative Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China.
| |
Collapse
|
22
|
Zhang X, Gao R, Yan H, Zhao Z, Zhang J, You W. Assembling BH3-mimic peptide into a nanocluster to target intracellular Bcl2 towards the apoptosis induction of cancer cell. NANOTECHNOLOGY 2021; 33:085103. [PMID: 34261054 DOI: 10.1088/1361-6528/ac146d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
Bcl-2, an anti-apoptotic protein, is always overexpressed in tumor cells to suppress the pro-apoptotic function of Bax, thereby prolonging the life of the tumor. However, BH3 proteins could directly activate Bax via antagonizing Bcl-2 to induce apoptosis in response to the stimulation. Thus, mimicking BH3 proteins with a peptide is a potential strategy for anti-cancer therapy. Unfortunately, clinical translation of BH3-mimic peptide is hindered by its inefficacious cellular internalization and proteolysis resistance. Herein, we translated a BH3-mimic peptide into a peptide-auric spheroidal nanocluster (BH3-AuNp), in which polymeric BH3-Auric precursors [Au1+-S-BH3]narein situself-assembled on the surface of gold nanoparticles by a one-pot synthesis. Expectedly, this strategy could improve the anti-proteolytic ability and cytomembrane penetrability of the BH3 peptide. As a result, BH3-AuNp successfully induced the apoptosis of two cancer cell lines by an order of magnitude compared to BH3. This therapeutic and feasible peptide nano-engineering strategy will help peptides overcome the pharmaceutical obstacles, awaken its biological functions, and possibly revive the research about peptide-derived nanomedicine.
Collapse
Affiliation(s)
- Xiuli Zhang
- Institute of Sports & Medicine, School of Physical Education, Zhengzhou University, Zhengzhou, Henan 453000, People's Republic of China
| | - Ruqing Gao
- School of Medicine, Nanchang University, Nanchang 330006, People's Republic of China
| | - Huiyu Yan
- Center for Physical Education, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Zijian Zhao
- Institute of Sports & Medicine, School of Physical Education, Zhengzhou University, Zhengzhou, Henan 453000, People's Republic of China
| | - Jun Zhang
- Center for Physical Education, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Weiming You
- Precision Medicine Institute, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, People's Republic of China
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, People's Republic of China
| |
Collapse
|
23
|
Ren L, Gao Y, Cheng Y. A manganese (II)-based coordinative dendrimer with robust efficiency in intracellular peptide delivery. Bioact Mater 2021; 9:44-53. [PMID: 34820554 PMCID: PMC8586439 DOI: 10.1016/j.bioactmat.2021.08.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 12/12/2022] Open
Abstract
Peptides have gained increasing interests as drug candidates in modern pharmaceutical industry, however, the development of peptide drugs acting on intracellular targets is limited due to their membrane impermeability. Here, we reported the use of metal-terpyridine based coordinative dendrimer for cytosolic peptide delivery. Among the investigated transition metal ions, Mn2+-coordinated polymer showed the highest delivery efficiency due to balanced peptide binding and release. It showed robust efficiency in the delivery of peptides with different charge property and hydrophobicity into various primary cells. The efficiency of Mn2+-terpyridine based polymer is superior to cell penetrating peptides such as oligoarginines. The material also delivered an autophagy-inducing peptide derived from Beclin-1 into cells and efficiently induced autophagy in the cells. This study provides a promising alternative to cell penetrating peptides for cytosolic peptide delivery. A Mn2+/terpyridine based polymer is rationally designed for cytosolic peptide delivery. The polymer shows robust efficiency in the delivery of 22 peptides with different properties into various primary cells. The polymer delivers an autophagy-inducing peptide derived from Beclin-1 into cells and efficiently induces autophagy. This study provides a promising alternative to cell penetrating peptides for cytosolic peptide delivery.
Collapse
Affiliation(s)
- Lanfang Ren
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yang Gao
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yiyun Cheng
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
24
|
Yan J, Wang Y, Li X, Guo D, Zhou Z, Bai G, Li J, Huang N, Diao J, Li Y, He W, Liu W, Tao K. A Bionic Nano-Band-Aid Constructed by the Three-Stage Self-Assembly of Peptides for Rapid Liver Hemostasis. NANO LETTERS 2021; 21:7166-7174. [PMID: 34448590 DOI: 10.1021/acs.nanolett.1c01800] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Critical challenges remain in trauma emergency and surgical procedures involving liver bleeding, particularly in perforating wounds that cannot be pressed and large wounds that cannot be sewn. Self-assembling peptide hydrogels are particularly attractive due to their intrinsic biocompatibility and programmability. Herein, we develop a nano-band-aid (NBA) through a three-stage self-assembly strategy of two functionalized peptides, which were first coassembled into nanofibers and then woven to a meshlike network driven by Ca2+. Then, catalyzed by blood coagulation factor XIIIa (FXIIIa), NBA underwent a third stage, self-assembly into a densely compacted physical barrier to stop and control the bleeding. As expected, NBA rapidly and efficiently stopped the bleeding in rat liver scratches while effectively reducing the inflammation around the wound and promoting the wound healing. This bionic self-assembly strategy will provide a clinically potential peptide-based treatment for fatal liver bleeding and reinvigorate efforts to develop self-assembling peptide hydrogels as hemostatic agents.
Collapse
Affiliation(s)
- Jin Yan
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, PR China
- Institute for Stem Cell & Regenerative Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Yang Wang
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Xiao Li
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Dongnan Guo
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Zhengjun Zhou
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Ge Bai
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Jianhui Li
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Na Huang
- Core Research Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Jiajie Diao
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, United States
| | - Yong Li
- Xijing 986 Hospital Department, Fourth Military Medical University, Xi'an 710032, China
| | - Wangxiao He
- Institute for Stem Cell & Regenerative Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
- Department of Talent Highland, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Wenjia Liu
- Institute for Stem Cell & Regenerative Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Kaishan Tao
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| |
Collapse
|
25
|
Bhattarai N, Wang J, Nguyen D, Yang X, Helmers L, Paruch J, Li L, Zhang Y, Meng K, Wang A, Jayawickramarajah J, Wang B, Zeng S, Lu H. Nanoparticle encapsulation of non-genotoxic p53 activator Inauhzin-C for improved therapeutic efficacy. Theranostics 2021; 11:7005-7017. [PMID: 34093867 PMCID: PMC8171090 DOI: 10.7150/thno.57404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/26/2021] [Indexed: 11/15/2022] Open
Abstract
The tumor suppressor protein p53 remains in a wild type but inactive form in ~50% of all human cancers. Thus, activating it becomes an attractive approach for targeted cancer therapies. In this regard, our lab has previously discovered a small molecule, Inauhzin (INZ), as a potent p53 activator with no genotoxicity. Method: To improve its efficacy and bioavailability, here we employed nanoparticle encapsulation, making INZ-C, an analog of INZ, to nanoparticle-encapsulated INZ-C (n-INZ-C). Results: This approach significantly improved p53 activation and inhibition of lung and colorectal cancer cell growth by n-INZ-C in vitro and in vivo while it displayed a minimal effect on normal human Wi38 and mouse MEF cells. The improved activity was further corroborated with the enhanced cellular uptake observed in cancer cells and minimal cellular uptake observed in normal cells. In vivo pharmacokinetic evaluation of these nanoparticles showed that the nanoparticle encapsulation prolongates the half-life of INZ-C from 2.5 h to 5 h in mice. Conclusions: These results demonstrate that we have established a nanoparticle system that could enhance the bioavailability and efficacy of INZ-C as a potential anti-cancer therapeutic.
Collapse
Affiliation(s)
- Nimisha Bhattarai
- Department of Biochemistry & Molecular Biology and Cancer Center, Tulane University School of Medicine, New Orleans, LA, USA
| | - Jieqiong Wang
- Department of Biochemistry & Molecular Biology and Cancer Center, Tulane University School of Medicine, New Orleans, LA, USA
| | - Daniel Nguyen
- Department of Biochemistry & Molecular Biology and Cancer Center, Tulane University School of Medicine, New Orleans, LA, USA
| | - Xiaoxiao Yang
- Department of Chemistry, Georgia State University, Atlanta, GA, USA
| | - Linh Helmers
- Laboratory of Cellular Immunology, Ochsner Clinic Foundation, New Orleans, LA 70121, USA
| | - Jennifer Paruch
- Laboratory of Cellular Immunology, Ochsner Clinic Foundation, New Orleans, LA 70121, USA
| | - Li Li
- Laboratory of Cellular Immunology, Ochsner Clinic Foundation, New Orleans, LA 70121, USA
| | - Yiwei Zhang
- Department of Biochemistry & Molecular Biology and Cancer Center, Tulane University School of Medicine, New Orleans, LA, USA
| | - Kun Meng
- Department of Chemistry, Tulane University School of Science and Engineering, New Orleans, LA, USA
| | - Alun Wang
- Department of Pathology, Tulane University School of Medicine, New Orleans, LA, USA
| | | | - Binghe Wang
- Department of Chemistry, Georgia State University, Atlanta, GA, USA
| | - Shelya Zeng
- Department of Biochemistry & Molecular Biology and Cancer Center, Tulane University School of Medicine, New Orleans, LA, USA
| | - Hua Lu
- Department of Biochemistry & Molecular Biology and Cancer Center, Tulane University School of Medicine, New Orleans, LA, USA
| |
Collapse
|
26
|
Yan S, Yan J, Liu D, Li X, Kang Q, You W, Zhang J, Wang L, Tian Z, Lu W, Liu W, He W. A nano-predator of pathological MDMX construct by clearable supramolecular gold(I)-thiol-peptide complexes achieves safe and potent anti-tumor activity. Theranostics 2021; 11:6833-6846. [PMID: 34093856 PMCID: PMC8171083 DOI: 10.7150/thno.59020] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/22/2021] [Indexed: 12/11/2022] Open
Abstract
As alternatives to small-molecular proteolysis-targeting chimeras (PROTAC), peptide-based molecular glues (MG) are a broad range of dual-functional ligands that simultaneously bind with targetable proteins and E3 ligases by mimicking proteinprotein interaction (PPI) partners. Methods: Herein, we design a peptide-derived MG to target a tumor-driving protein, MDMX, for degradation, and nanoengineered it into a supramolecular gold(I)-thiol-peptide complex (Nano-MP) to implement the proteolysis recalcitrance, cellular internalization, and glutathione-triggered release. To optimize the tumor targeting, a pH-responsive macromolecule termed polyacryl sulfydryl imidazole (PSI) was synthesized to coat Nano-MP. Results: As expected, Nano-MP@PSI induced the MDMX degradation by ubiquitination and subsequently restored the anti-cancer function of p53 and p73. Nano-MP@PSI revealed potent anti-cancer activities in an orthotopic xenograft mouse model of retinoblastoma by intraocular injection and a patient-derived xenograft model of malignant pancreatic cancer by systemic injection, while maintaining a favorable safety profile and showing a highly favorable clearable profile of excretion from the living body. Conclusion: Collectively, this work not only provided a clinically viable paradigm for the treatment of a wide variety of tumors by multiple administration types, but, more importantly, it bridged the chasm between peptides and PROTACs, and likely reinvigorated the development of peptide-derived proteolysis-targeting chimeras for a great variety of diseases.
Collapse
Affiliation(s)
- Siqi Yan
- Department of Talent Highland, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
- Ophthalmology Department, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Jin Yan
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Dan Liu
- Department of Talent Highland, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Xiang Li
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Qianyan Kang
- Ophthalmology Department, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Weiming You
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Jinghua Zhang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Lei Wang
- Institute for Stem Cell & Regenerative Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Zhiqi Tian
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, 45267 OH, USA
| | - Wuyuan Lu
- School of Basic Medicine, Fudan University, Shanghai 20433, China
| | - Wenjia Liu
- Institute for Stem Cell & Regenerative Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Wangxiao He
- Department of Talent Highland, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
- Institute for Stem Cell & Regenerative Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| |
Collapse
|
27
|
Zheng X, Yan J, You W, Li F, Diao J, He W, Yao Y. De Novo Nano-Erythrocyte Structurally Braced by Biomimetic Au(I)-peptide Skeleton for MDM2/MDMX Predation toward Augmented Pulmonary Adenocarcinoma Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100394. [PMID: 33870652 DOI: 10.1002/smll.202100394] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/30/2021] [Indexed: 06/12/2023]
Abstract
In nature, cells rely on a structural framework called the "cytoskeleton" to maintain their shape and polarity. Based on this, herein a new class of cell-mimicking nanomedicine using bionic skeletons constituted by the oligomeric Au(I)-peptide complex is developed. The peptide function of degrading pathological MDM2 and MDMX is used to synthesize an oligomeric Au(I)-PMIV precursor capable of self-assembling into a clustered spherical bionic skeleton. Through coating by erythrocyte membrane, an erythrocyte-mimicking nano-cell (Nery-PMIV) is developed with depressed macrophage uptakes, increased colloidal stability, and prolonged blood circulation. Nery-PMIV potently restores p53 and p73 in vitro and in vivo by degrading MDM2/MDMX. More importantly, Nery-PMIV effectively augments antitumor immunity elicited by anti-PD1 therapy in a murine orthotopic allograft model for LUAD and a humanized patient-derived xenograft (PDX) mouse model for LUAD, while maintaining a favorable safety profile. Taken together, this work not only presents evidence showing that MDM2/MDMX degradation is a potentially viable therapeutic paradigm to synergize anti-PD1 immunotherapy toward LUAD carrying wild-type p53; it also suggests that cell-mimicking nanoparticles with applicable bionic skeletons hold tremendous promise in offering new therapies to revolutionize nanomedicine in the treatment of a myriad of human diseases.
Collapse
Affiliation(s)
- Xiaoqiang Zheng
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jin Yan
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Weiming You
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Fanni Li
- Department of Talent Highland, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, 710061, China
| | - Jiajie Diao
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Wangxiao He
- Department of Talent Highland, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, 710061, China
- Institute for Stem Cell & Regenerative Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Yu Yao
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| |
Collapse
|