1
|
Liu Y, Tang SC, Li CH, To KF, Li B, Chan SL, Wong CH, Chen Y. The molecular mechanism underlying KRAS regulation on STK31 expression in pancreatic ductal adenocarcinoma. Cancer Sci 2024; 115:3288-3304. [PMID: 39054797 PMCID: PMC11447899 DOI: 10.1111/cas.16286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/27/2024] Open
Abstract
KRAS gene mutations are common in pancreatic ductal adenocarcinoma (PDAC), but targeting mutant KRAS is still challenging. Here, an endoribonuclease-prepared small interfering RNA (esiRNA) library was used to screen new kinases that play critical roles in PDAC driven by KRAS gene mutations, and serine/threonine kinase 31 (STK31) was identified and characterized as a potential therapeutic target for KRAS-mutant PDAC. Our results showed that STK31 was upregulated in KRAS-mutant PDAC patients with poor survival and highly expressed in PDAC cell lines with KRASG12D mutation. Inhibition of STK31 in KRAS-mutant cell lines significantly reduced PDAC cell growth in vitro and hindered tumor growth in vivo. Gain and loss of function experiments revealed that STK31 is a downstream target of KRAS in PDAC. A pharmacological inhibition assay showed MAPK/ERK signaling involved in STK31 regulation. The further mechanistic study validated that c-Jun, regulated by KRAS/MAPK signaling, directly modulates the transcription level of STK31 by binding to its promoter region. Through RNA sequencing, we found that the cell cycle regulators CCNB1 and CDC25C are downstream targets of STK31. Taken together, our results indicate that STK31, which is the downstream target of the KRAS/MAPK/ERK/c-Jun signaling pathway in KRAS-mutant PDAC, promotes PDAC cell growth by modulating the expression of the cell cycle regulators CCNB1 and CDC25C.
Collapse
Affiliation(s)
- Yuting Liu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Guangdong-Hong Kong-Macau University Joint Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Shing Chun Tang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Chi Han Li
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Ka Fai To
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Bo Li
- Guangdong-Hong Kong-Macau University Joint Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Stephen Lam Chan
- Department of Clinical Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Chi Hin Wong
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Yangchao Chen
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| |
Collapse
|
2
|
Meo C, de Nigris F. Clinical Potential of YY1-Hypoxia Axis for Vascular Normalization and to Improve Immunotherapy. Cancers (Basel) 2024; 16:491. [PMID: 38339244 PMCID: PMC10854702 DOI: 10.3390/cancers16030491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/12/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
Abnormal vasculature in solid tumors causes poor blood perfusion, hypoxia, low pH, and immune evasion. It also shapes the tumor microenvironment and affects response to immunotherapy. The combination of antiangiogenic therapy and immunotherapy has emerged as a promising approach to normalize vasculature and unlock the full potential of immunotherapy. However, the unpredictable and redundant mechanisms of vascularization and immune suppression triggered by tumor-specific hypoxic microenvironments indicate that such combination therapies need to be further evaluated to improve patient outcomes. Here, we provide an overview of the interplay between tumor angiogenesis and immune modulation and review the function and mechanism of the YY1-HIF axis that regulates the vascular and immune tumor microenvironment. Furthermore, we discuss the potential of targeting YY1 and other strategies, such as nanocarrier delivery systems and engineered immune cells (CAR-T), to normalize tumor vascularization and re-establish an immune-permissive microenvironment to enhance the efficacy of cancer therapy.
Collapse
Affiliation(s)
| | - Filomena de Nigris
- Department of Precision Medicine, School of Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| |
Collapse
|
3
|
Huang SH, Hsieh HC, Shieh JM, Su WC, Wang YC. Downregulation of microRNA-326 enhances ZNF322A expression, transcriptional activity and tumorigenic effects in lung cancer. Biofactors 2024; 50:214-227. [PMID: 37647209 DOI: 10.1002/biof.2004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 08/11/2023] [Indexed: 09/01/2023]
Abstract
Zinc finger protein ZNF322A is an oncogenic transcription factor. Overexpression of ZNF322A activates pro-metastasis, cancer stemness, and neo-angiogenesis-related genes to enhance lung cancer progression. However, the upstream regulator of ZNF322A is not well defined. Dysregulation of microRNAs (miRNAs) can mediate cancer cell growth, migration, and invasion to promote tumorigenesis. Here, we uncover the mechanism of miRNA-mediated transcriptional regulation in ZNF322A-driven oncogenic events. ZNF322A harbors several putative miRNA-binding sites in the 3'-untranslated region (UTR). We validated that miR-326 downregulated ZNF322A-3'-UTR luciferase activity and mRNA expression. Furthermore, miR-326 suppressed the expression of ZNF322A-driven cancer-associated genes such as cyclin D1 and alpha-adducin. Reconstitution experiments by ectopic overexpression of ZNF322A abolished miR-326-suppressed cancer cell proliferation and cell migration capacity. Moreover, miR-326 attenuated ZNF322A-induced tumor growth and lung tumor metastasis in vivo. Clinically, the expression of miR-326 negatively correlated with ZNF322A mRNA expression in surgically resected tissues from 120 non-small cell lung cancer (NSCLC) patients. Multivariate Cox regression analysis demonstrated that NSCLC patients with low miR-326/high ZNF322A profile showed poor overall survival. Our results reveal that the deregulated expression of miR-326 leads to hyperactivation of ZNF322A-driven oncogenic signaling. Targeting the miR-326/ZNF322A axis would provide new therapeutic strategies for lung cancer patients.
Collapse
Affiliation(s)
- Shih-Hsuan Huang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hung-Chia Hsieh
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jiunn-Min Shieh
- Division of Chest Medicine, Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan
- The Center of General Education, Chia Nan University of Pharmacy & Science, Tainan, Taiwan
| | - Wou-Chou Su
- Division of Oncology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Ching Wang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
4
|
Mannan A, Dhiamn S, Garg N, Singh TG. Pharmacological modulation of Sonic Hedgehog signaling pathways in Angiogenesis: A mechanistic perspective. Dev Biol 2023; 504:58-74. [PMID: 37739118 DOI: 10.1016/j.ydbio.2023.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023]
Abstract
The Sonic hedgehog (SHh) signaling pathway is an imperative operating network that helps in regulates the critical events during the development processes like multicellular embryo growth and patterning. Disruptions in SHh pathway regulation can have severe consequences, including congenital disabilities, stem cell renewal, tissue regeneration, and cancer/tumor growth. Activation of the SHh signal occurs when SHh binds to the receptor complex of Patch (Ptc)-mediated Smoothened (Smo) (Ptc-smo), initiating downstream signaling. This review explores how pharmacological modulation of the SHh pathway affects angiogenesis through canonical and non-canonical pathways. The canonical pathway for angiogenesis involves the activation of angiogenic cytokines such as fibroblast growth factor (FGF), vascular endothelial growth factor (VEGF), placental growth factor (PGF), hepatocyte growth factor (HGF), platelet-derived growth factor (PDGF), stromal cell-derived factor 1α, transforming growth factor-β1 (TGF-β1), and angiopoietins (Ang-1 and Ang-2), which facilitate the process of angiogenesis. The Non-canonical pathway includes indirect activation of certain pathways like iNOS/Netrin-1/PKC, RhoA/Rock, ERK/MAPK, PI3K/Akt, Wnt/β-catenin, Notch signaling pathway, and so on. This review will provide a better grasp of the mechanistic approach of SHh in mediating angiogenesis, which can aid in the suppression of certain cancer and tumor growths.
Collapse
Affiliation(s)
- Ashi Mannan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.
| | - Sonia Dhiamn
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.
| | - Nikhil Garg
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.
| |
Collapse
|
5
|
Zhao J, Wen D, Zhang S, Jiang H, Di X. The role of zinc finger proteins in malignant tumors. FASEB J 2023; 37:e23157. [PMID: 37615242 DOI: 10.1096/fj.202300801r] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 07/19/2023] [Accepted: 08/10/2023] [Indexed: 08/25/2023]
Abstract
Zinc finger proteins (ZNFs) are the largest family of transcriptional factors in mammalian cells. Recently, their role in the development, progression, and metastasis of malignant tumors via regulating gene transcription and translation processes has become evident. Besides, their possible involvement in drug resistance has also been found, indicating that ZNFs have the potential to become new biological markers and therapeutic targets. In this review, we summarize the oncogenic and suppressive roles of various ZNFs in malignant tumors, including lung, breast, liver, gastric, colorectal, pancreatic, and other cancers, highlighting their role as prognostic markers, and hopefully provide new ideas for the treatment of malignant tumors in the future.
Collapse
Affiliation(s)
- Jia Zhao
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Doudou Wen
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Shubing Zhang
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Hao Jiang
- Department of Biomedical Informatics, School of Life Sciences, Central South University, Changsha, China
| | - Xiaotang Di
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| |
Collapse
|
6
|
Liu WJ, Wang L, Zhou FM, Liu SW, Wang W, Zhao EJ, Yao QJ, Li W, Zhao YQ, Shi Z, Qiu JG, Jiang BH. Elevated NOX4 promotes tumorigenesis and acquired EGFR-TKIs resistance via enhancing IL-8/PD-L1 signaling in NSCLC. Drug Resist Updat 2023; 70:100987. [PMID: 37392558 DOI: 10.1016/j.drup.2023.100987] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 07/03/2023]
Abstract
Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) have been widely used for human non-small-cell lung cancer (NSCLC) treatment. However, acquired resistance to EGFR-TKIs is the major barrier of treatment success, and new resistance mechanism remains to be elucidated. In this study, we found that elevated NADPH oxidase 4 (NOX4) expression was associated with acquired EGFR-TKIs resistance. Gefitinib is the first-generation FDA-approved EGFR-TKI, and osimertinib is the third-generation FDA-approved EGFR-TKI. We demonstrated that NOX4 knockdown in the EGFR-TKI resistant cells enabled the cells to become sensitive to gefitinib and osimertinib treatment, while forced expression of NOX4 in the sensitive parental cells was sufficient to induce resistance to gefitinib and osimertinib in the cells. To elucidate the mechanism of NOX4 upregulation in increasing TKIs resistance, we found that knockdown of NOX4 significantly down-regulated the expression of transcription factor YY1. YY1 bound directly to the promoter region of IL-8 to transcriptionally activate IL-8 expression. Interestingly, knockdown of NOX4 and IL-8 decreased programmed death ligand 1 (PD-L1) expression, which provide new insight on TKIs resistance and immune escape. We found that patients with higher NOX4 and IL-8 expression levels showed a shorter survival time compared to those with lower NOX4 and IL-8 expression levels in response to the anti-PD-L1 therapy. Knockdown of NOX4, YY1 or IL-8 alone inhibited angiogenesis and tumor growth. Furthermore, the combination of NOX4 inhibitor GKT137831 and gefitinib had synergistic effect to inhibit cell proliferation and tumor growth and to increase cellular apoptosis. These findings demonstrated that NOX4 and YY1 were essential for mediating the acquired EGFR-TKIs resistance. IL-8 and PD-L1 are two downstream targets of NOX4 to regulate TKIs resistance and immunotherapy. These molecules may be used as potential new biomarkers and therapeutic targets for overcoming TKIs resistance in the future.
Collapse
Affiliation(s)
- Wen-Jing Liu
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, The Academy of Medical Science, Zhengzhou University, Zhengzhou 450008, China
| | - Lin Wang
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, The Academy of Medical Science, Zhengzhou University, Zhengzhou 450008, China
| | - Feng-Mei Zhou
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, The Academy of Medical Science, Zhengzhou University, Zhengzhou 450008, China
| | - Shu-Wen Liu
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, The Academy of Medical Science, Zhengzhou University, Zhengzhou 450008, China
| | - Wei Wang
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, The Academy of Medical Science, Zhengzhou University, Zhengzhou 450008, China
| | - Er-Jiang Zhao
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, The Academy of Medical Science, Zhengzhou University, Zhengzhou 450008, China
| | - Quan-Jun Yao
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, The Academy of Medical Science, Zhengzhou University, Zhengzhou 450008, China
| | - Wei Li
- Department of Pathology, Affiliated Drum Tower Hospital Nanjing University Medical School, Nanjing 210000, China
| | - Yan-Qiu Zhao
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, The Academy of Medical Science, Zhengzhou University, Zhengzhou 450008, China
| | - Zhi Shi
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Jian-Ge Qiu
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, The Academy of Medical Science, Zhengzhou University, Zhengzhou 450008, China.
| | - Bing-Hua Jiang
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, The Academy of Medical Science, Zhengzhou University, Zhengzhou 450008, China.
| |
Collapse
|
7
|
Jung M, Bui I, Bonavida B. Role of YY1 in the Regulation of Anti-Apoptotic Gene Products in Drug-Resistant Cancer Cells. Cancers (Basel) 2023; 15:4267. [PMID: 37686541 PMCID: PMC10486809 DOI: 10.3390/cancers15174267] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Cancer is a leading cause of death among the various diseases encountered in humans. Cancer is not a single entity and consists of numerous different types and subtypes that require various treatment regimens. In the last decade, several milestones in cancer treatments were accomplished, such as specific targeting agents or revitalizing the dormant anti-tumor immune response. These milestones have resulted in significant positive clinical responses as well as tumor regression and the prolongation of survival in subsets of cancer patients. Hence, in non-responding patients and non-responding relapsed patients, cancers develop intrinsic mechanisms of resistance to cell death via the overexpression of anti-apoptotic gene products. In parallel, the majority of resistant cancers have been reported to overexpress a transcription factor, Yin Yang 1 (YY1), which regulates the chemo-immuno-resistance of cancer cells to therapeutic anticancer cytotoxic agents. The relationship between the overexpression of YY1 and several anti-apoptotic gene products, such as B-cell lymphoma 2 protein (Bcl-2), B-cell lymphoma extra-large (Bcl-xL), myeloid cell leukemia 1 (Mcl-1) and survivin, is investigated in this paper. The findings demonstrate that these anti-apoptotic gene products are regulated, in part, by YY1 at the transcriptional, epigenetic, post-transcriptional and translational levels. While targeting each of the anti-apoptotic gene products individually has been examined and clinically tested for some, this targeting strategy is not effective due to compensation by other overexpressed anti-apoptotic gene products. In contrast, targeting YY1 directly, through small interfering RNAs (siRNAs), gene editing or small molecule inhibitors, can be therapeutically more effective and generalized in YY1-overexpressed resistant cancers.
Collapse
Affiliation(s)
| | | | - Benjamin Bonavida
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
8
|
Yu D, Yang P, Lu X, Huang S, Liu L, Fan X. Single-cell RNA sequencing reveals enhanced antitumor immunity after combined application of PD-1 inhibitor and Shenmai injection in non-small cell lung cancer. Cell Commun Signal 2023; 21:169. [PMID: 37430270 DOI: 10.1186/s12964-023-01184-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/04/2023] [Indexed: 07/12/2023] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) have altered the clinical management of non-small cell lung cancer (NSCLC). However, the low response rate, severe immune-related adverse events (irAEs), and hyperprogressive disease following ICIs monotherapy require attention. Combination therapy may overcome these limitations and traditional Chinese medicine with immunomodulatory effects provides a promising approach. Shenmai injection (SMI) is a clinically effective adjuvant treatment for cancer with chemotherapy and radiotherapy. Therefore, the combined effects and mechanisms of SMI and programmed death-1 (PD-1) inhibitor against NSCLC was focused on this study. METHODS A Lewis lung carcinoma mouse model and a lung squamous cell carcinoma humanized mouse model were used to investigate the combined efficacy and safety of SMI and PD-1 inhibitor. The synergistic mechanisms of the combination therapy against NSCLC were explored using single-cell RNA sequencing. Validation experiments were performed using immunofluorescence analysis, in vitro experiment, and bulk transcriptomic datasets. RESULTS In both models, combination therapy alleviated tumor growth and prolonged survival without increasing irAEs. The GZMAhigh and XCL1high natural killer (NK) cell subclusters with cytotoxic and chemokine signatures increased in the combination therapy, while malignant cells from combination therapy were mainly in the apoptotic state, suggesting that mediating tumor cell apoptosis through NK cells is the main synergistic mechanisms of combination therapy. In vitro experiment confirmed that combination therapy increased secretion of Granzyme A by NK cells. Moreover, we discovered that PD-1 inhibitor and SMI combination blocked inhibitory receptors on NK and T cells and restores their antitumoral activity in NSCLC better than PD-1 inhibitor monotherapy, and immune and stromal cells exhibited a decrease of angiogenic features and attenuated cancer metabolism reprogramming in microenvironment of combination therapy. CONCLUSIONS This study demonstrated that SMI reprograms tumor immune microenvironment mainly by inducing NK cells infiltration and synergizes with PD-1 inhibitor against NSCLC, suggested that targeting NK cells may be an important strategy for combining with ICIs. Video Abstract.
Collapse
Affiliation(s)
- Dingyi Yu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Penghui Yang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xiaoyan Lu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
- National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, China.
- Innovation Center in Zhejiang University, State Key Laboratory of Component-Based Chinese Medicine, Hangzhou, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
- Department of Infectious Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Shaoze Huang
- Zhejiang Engineering Research Center for Advanced Manufacturing of Traditional Chinese Medicine, Huzhou, China
| | - Li Liu
- Zhejiang Engineering Research Center for Advanced Manufacturing of Traditional Chinese Medicine, Huzhou, China.
| | - Xiaohui Fan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
- National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, China.
- Innovation Center in Zhejiang University, State Key Laboratory of Component-Based Chinese Medicine, Hangzhou, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
| |
Collapse
|
9
|
Wang X, Fan W, Li N, Ma Y, Yao M, Wang G, He S, Li W, Tan J, Lu Q, Hou S. YY1 lactylation in microglia promotes angiogenesis through transcription activation-mediated upregulation of FGF2. Genome Biol 2023; 24:87. [PMID: 37085894 PMCID: PMC10120156 DOI: 10.1186/s13059-023-02931-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 04/07/2023] [Indexed: 04/23/2023] Open
Abstract
BACKGROUND Ocular neovascularization is a leading cause of blindness. Retinal microglia have been implicated in hypoxia-induced angiogenesis and vasculopathy, but the underlying mechanisms are not entirely clear. Lactylation is a novel lactate-derived posttranslational modification that plays key roles in multiple cellular processes. Since hypoxia in ischemic retinopathy is a precipitating factor for retinal neovascularization, lactylation is very likely to be involved in this process. The present study aimed to explore the role of lactylation in retinal neovascularization and identify new therapeutic targets for retinal neovascular diseases. RESULTS Microglial depletion by the colony-stimulating factor 1 receptor (CSF1R) inhibitor PLX3397 suppresses retinal neovascularization in oxygen-induced retinopathy. Hypoxia increased lactylation in microglia and accelerates FGF2 expression, promoting retinal neovascularization. We identify 77 sites of 67 proteins with increased lactylation in the context of increased lactate under hypoxia. Our results show that the nonhistone protein Yin Yang-1 (YY1), a transcription factor, is lactylated at lysine 183 (K183), which is regulated by p300. Hyperlactylated YY1 directly enhances FGF2 transcription and promotes angiogenesis. YY1 mutation at K183 eliminates these effects. Overexpression of p300 increases YY1 lactylation and enhances angiogenesis in vitro and administration of the p300 inhibitor A485 greatly suppresses vascularization in vivo and in vitro. CONCLUSIONS Our results suggest that YY1 lactylation in microglia plays an important role in retinal neovascularization by upregulating FGF2 expression. Targeting the lactate/p300/YY1 lactylation/FGF2 axis may provide new therapeutic targets for proliferative retinopathies.
Collapse
Affiliation(s)
- Xiaotang Wang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, China
- Chongqing Eye Institute, Chongqing, China
- Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Wei Fan
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, China
- Chongqing Eye Institute, Chongqing, China
- Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Na Li
- School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Yan Ma
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
| | - Mudi Yao
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
| | - Guoqing Wang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, China
- Chongqing Eye Institute, Chongqing, China
- Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Siyuan He
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, China
- Chongqing Eye Institute, Chongqing, China
- Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Wanqian Li
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, China
- Chongqing Eye Institute, Chongqing, China
- Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Jun Tan
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, China
- Chongqing Eye Institute, Chongqing, China
- Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Qi Lu
- The Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Shengping Hou
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
- Chongqing Key Laboratory of Ophthalmology, Chongqing, China.
- Chongqing Eye Institute, Chongqing, China.
- Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China.
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, 100730, China.
| |
Collapse
|
10
|
Deng X, Luo Y, Guan T, Guo X. Identification of the Genetic Influence of SARS-CoV-2 Infections on IgA Nephropathy Based on Bioinformatics Method. Kidney Blood Press Res 2023; 48:367-384. [PMID: 37040729 PMCID: PMC10308545 DOI: 10.1159/000529687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 02/09/2023] [Indexed: 04/13/2023] Open
Abstract
INTRODUCTION Coronavirus disease-2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. It was initially detected in Wuhan, China, in December 2019. In March 2020, the World Health Organization (WHO) declared COVID-19 a global pandemic. Compared to healthy individuals, patients with IgA nephropathy (IgAN) are at a higher risk of SARS-CoV-2 infection. However, the potential mechanisms remain unclear. This study explores the underlying molecular mechanisms and therapeutic agents for the management of IgAN and COVID-19 using the bioinformatics and system biology way. METHODS We first downloaded GSE73953 and GSE164805 from the Gene Expression Omnibus (GEO) database to obtain common differentially expressed genes (DEGs). Then, we performed the functional enrichment analysis, pathway analysis, protein-protein interaction (PPI) analysis, gene regulatory networks analysis, and potential drug analysis on these common DEGs. RESULTS We acquired 312 common DEGs from the IgAN and COVID-19 datasets and used various bioinformatics tools and statistical analyses to construct the PPI network to extract hub genes. Besides, we performed gene ontology (GO) and pathway analyses to reveal the common correlation between IgAN and COVID-19. Finally, on the basis of common DEGs, we determined the interactions between DEGs-miRNAs, the transcription factor-genes (TFs-genes), protein-drug, and gene-disease networks. CONCLUSION We successfully identified hub genes that may act as biomarkers of COVID-19 and IgAN and also screened out some potential drugs to provide new ideas for COVID-19 and IgAN treatment.
Collapse
Affiliation(s)
- Xiaoqi Deng
- Department of Nephrology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yu Luo
- School of Medicine, Xiamen University, Xiamen, China
| | - Tianjun Guan
- Department of Nephrology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Xiaodan Guo
- Department of Nephrology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
11
|
Li M, Wei J, Xue C, Zhou X, Chen S, Zheng L, Duan Y, Deng H, Xiong W, Tang F, Li G, Zhou M. Dissecting the roles and clinical potential of YY1 in the tumor microenvironment. Front Oncol 2023; 13:1122110. [PMID: 37081988 PMCID: PMC10110844 DOI: 10.3389/fonc.2023.1122110] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/13/2023] [Indexed: 04/07/2023] Open
Abstract
Yin-Yang 1 (YY1) is a member of the GLI-Kruppel family of zinc finger proteins and plays a vital dual biological role in cancer as an oncogene or a tumor suppressor during tumorigenesis and tumor progression. The tumor microenvironment (TME) is identified as the “soil” of tumor that has a critical role in both tumor growth and metastasis. Many studies have found that YY1 is closely related to the remodeling and regulation of the TME. Herein, we reviewed the expression pattern of YY1 in tumors and summarized the function and mechanism of YY1 in regulating tumor angiogenesis, immune and metabolism. In addition, we discussed the potential value of YY1 in tumor diagnosis and treatment and provided a novel molecular strategy for the clinical diagnosis and treatment of tumors.
Collapse
Affiliation(s)
- MengNa Li
- Key Laboratory of Carcinogenesis, National Health Commission, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Cancer Research Institute, Central South University, Changsha, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, China
- Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - JianXia Wei
- Key Laboratory of Carcinogenesis, National Health Commission, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Cancer Research Institute, Central South University, Changsha, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, China
| | - ChangNing Xue
- Key Laboratory of Carcinogenesis, National Health Commission, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Cancer Research Institute, Central South University, Changsha, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, China
| | - XiangTing Zhou
- The First Clinical College of Changsha Medical University, Changsha, China
| | - ShiPeng Chen
- Key Laboratory of Carcinogenesis, National Health Commission, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Cancer Research Institute, Central South University, Changsha, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, China
| | - LeMei Zheng
- Key Laboratory of Carcinogenesis, National Health Commission, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Cancer Research Institute, Central South University, Changsha, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, China
| | - YuMei Duan
- Key Laboratory of Carcinogenesis, National Health Commission, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Cancer Research Institute, Central South University, Changsha, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, China
| | - HongYu Deng
- Key Laboratory of Carcinogenesis, National Health Commission, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Cancer Research Institute, Central South University, Changsha, China
- Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Wei Xiong
- Key Laboratory of Carcinogenesis, National Health Commission, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Cancer Research Institute, Central South University, Changsha, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, China
| | - FaQing Tang
- Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - GuiYuan Li
- Key Laboratory of Carcinogenesis, National Health Commission, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Cancer Research Institute, Central South University, Changsha, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, China
| | - Ming Zhou
- Key Laboratory of Carcinogenesis, National Health Commission, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Cancer Research Institute, Central South University, Changsha, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, China
- Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- *Correspondence: Ming Zhou,
| |
Collapse
|
12
|
Liu W, Luo Z, Zhang L, Wang Y, Yang J, You D, Cao X, Yang W. hsa-mir-(4328, 4422, 548z and -628-5p) in diabetic retinopathy: diagnosis, prediction and linking a new therapeutic target. Acta Diabetol 2023; 60:929-942. [PMID: 37002321 DOI: 10.1007/s00592-023-02077-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/11/2023] [Indexed: 04/03/2023]
Abstract
AIMS Growing evidence suggests that microRNAs (miRNAs) are crucial in controlling how diabetic retinopathy (DR) develops. We intend to mine miRNAs with diagnostic and predictive value for DR and to investigate new drug therapeutic targets. METHODS After performing a differential analysis on the miRNA and mRNA datasets for DR and neovascularization (NEO), miRNA-mRNA networks were created. Combine the results of enrichment analysis, Protein-Protein Interaction Networks (PPI), and Cytoscape to identify key miRNAs. DrugBank was used to find drugs that interacted with transcription factors (TF) predicted by TransmiR. Finally, whole blood and clinical data were collected from 58 patients with type 2 diabetes mellitus (T2DM), and RT-qPCR, logistic analysis, and ROC were used to verify the value of key miRNAs. RESULTS Differential analysis indicated the presence of genes and miRNAs that co-regulate DR and NEO. Enrichment analysis showed that key genes are inextricably linked to neovascularization. Combining the results of PPI and Cytoscape identified four key miRNAs, namely hsa-mir-(4328, 4422, 548z and -628-5p). RT-qPCR, logistic, and ROC results showed that decreased expression levels of hsa-mir-(4328, 4422, 548z and -628-5p) signal the risk of evolution to DR in T2DM patients. Finally, we constructed a TF-miRNA network to find the 15 TFs and the 35 drugs that interact with these TFs. CONCLUSION hsa-mir-(4328, 4422, 548z and -628-5p) in whole blood are protective factors for DR as novel biomarkers for diagnosis and prediction. In addition, our research provides new drug directions for the treatment of DR, such as Diosmin, Atorvastatin, and so on.
Collapse
Affiliation(s)
- Weijun Liu
- Department of Laboratory Animal Science, Kunming Medical University, No. 1168, Chunrong West Road, Yuhua Street, Chenggong District, Kunming, 650500, Yunnan, China
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, No. 1168, Chunrong West Road, Yuhua Street, Chenggong District, Kunming, 650500, Yunnan, China
- The First Affiliated Hospital of Kunming Medical University, No.295 Xichang Road, Wuhua Districte, Kunming, 650500, Yunnan, China
| | - Zhanqing Luo
- Department of Laboratory Animal Science, Kunming Medical University, No. 1168, Chunrong West Road, Yuhua Street, Chenggong District, Kunming, 650500, Yunnan, China
| | - Lihuan Zhang
- Department of Laboratory Animal Science, Kunming Medical University, No. 1168, Chunrong West Road, Yuhua Street, Chenggong District, Kunming, 650500, Yunnan, China
| | - Yutao Wang
- Department of Laboratory Animal Science, Kunming Medical University, No. 1168, Chunrong West Road, Yuhua Street, Chenggong District, Kunming, 650500, Yunnan, China
| | - Jiamei Yang
- School of Rehabilitation, Kunming Medical University, No. 1168, Chunrong West Road, Yuhua Street, Chenggong District, Kunming, 650500, Yunnan, China
| | - Dingyun You
- Department of Epidemiology, School of Public Health, Kunming Medical University, No. 1168, Chunrong West Road, Yuhua Street, Chenggong District, Kunming, 650500, Yunnan, China.
| | - Xue Cao
- Department of Laboratory Animal Science, Kunming Medical University, No. 1168, Chunrong West Road, Yuhua Street, Chenggong District, Kunming, 650500, Yunnan, China.
| | - Weimin Yang
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, No. 1168, Chunrong West Road, Yuhua Street, Chenggong District, Kunming, 650500, Yunnan, China.
| |
Collapse
|
13
|
Tran F, Lee E, Cuddapah S, Choi BH, Dai W. MicroRNA-Gene Interactions Impacted by Toxic Metal(oid)s during EMT and Carcinogenesis. Cancers (Basel) 2022; 14:5818. [PMID: 36497298 PMCID: PMC9741118 DOI: 10.3390/cancers14235818] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Chronic environmental exposure to toxic metal(loid)s significantly contributes to human cancer development and progression. It is estimated that approximately 90% of cancer deaths are a result of metastasis of malignant cells, which is initiated by epithelial-mesenchymal transition (EMT) during early carcinogenesis. EMT is regulated by many families of genes and microRNAs (miRNAs) that control signaling pathways for cell survival, death, and/or differentiation. Recent mechanistic studies have shown that toxic metal(loid)s alter the expression of miRNAs responsible for regulating the expression of genes involved in EMT. Altered miRNA expressions have the potential to be biomarkers for predicting survival and responses to treatment in cancers. Significantly, miRNAs can be developed as therapeutic targets for cancer patients in the clinic. In this mini review, we summarize key findings from recent studies that highlight chemical-miRNA-gene interactions leading to the perturbation of EMT after exposure to toxic metal(loid)s including arsenic, cadmium, nickel, and chromium.
Collapse
Affiliation(s)
| | | | | | - Byeong Hyeok Choi
- Division of Environmental Medicine, Department of Medicine, Grossman School of Medicine, New York University, New York, NY 10010, USA
| | - Wei Dai
- Division of Environmental Medicine, Department of Medicine, Grossman School of Medicine, New York University, New York, NY 10010, USA
| |
Collapse
|
14
|
Li Y, Lin M, Wang S, Cao B, Li C, Li G. Novel Angiogenic Regulators and Anti-Angiogenesis Drugs Targeting Angiogenesis Signaling Pathways: Perspectives for Targeting Angiogenesis in Lung Cancer. Front Oncol 2022; 12:842960. [PMID: 35372042 PMCID: PMC8965887 DOI: 10.3389/fonc.2022.842960] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/16/2022] [Indexed: 12/20/2022] Open
Abstract
Lung cancer growth is dependent on angiogenesis. In recent years, angiogenesis inhibitors have attracted more and more attention as potential lung cancer treatments. Current anti-angiogenic drugs targeting VEGF or receptor tyrosine kinases mainly inhibit tumor growth by reducing angiogenesis and blocking the energy supply of lung cancer cells. However, these drugs have limited efficiency, raising concerns about limited scope of action and mechanisms of patient resistance to existing drugs. Therefore, current basic research on angiogenic regulators has focused more on screening carcinogenic/anticancer genes, miRNAs, lncRNAs, proteins and other biomolecules capable of regulating the expression of specific targets in angiogenesis signaling pathways. In addition, new uses for existing drugs and new drug delivery systems have received increasing attention. In our article, we analyze the application status and research hotspots of angiogenesis inhibitors in lung cancer treatment as a reference for subsequent mechanistic research and drug development.
Collapse
Affiliation(s)
- Yingying Li
- Pharmacy Department, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mengmeng Lin
- Pharmacy Department, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shiyuan Wang
- Pharmacy Department, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bo Cao
- Pharmacy Department, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chunyu Li
- Pharmacy Department, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guohui Li
- Pharmacy Department, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
15
|
Ma C, Hu K, Ullah I, Zheng QK, Zhang N, Sun ZG. Molecular Mechanisms Involving the Sonic Hedgehog Pathway in Lung Cancer Therapy: Recent Advances. Front Oncol 2022; 12:729088. [PMID: 35433472 PMCID: PMC9010822 DOI: 10.3389/fonc.2022.729088] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 03/03/2022] [Indexed: 12/09/2022] Open
Abstract
According to the latest statistics from the International Agency for Research on Cancer (IARC), lung cancer is one of the most lethal malignancies in the world, accounting for approximately 18% of all cancer-associated deaths. Yet, even with aggressive interventions for advanced lung cancer, the five-year survival rate remains low, at around 15%. The hedgehog signaling pathway is highly conserved during embryonic development and is involved in tissue homeostasis as well as organ development. However, studies have documented an increasing prevalence of aberrant activation of HH signaling in lung cancer patients, promoting malignant lung cancer progression with poor prognostic outcomes. Inhibitors targeting the HH pathway have been widely used in tumor therapy, however, they still cannot avoid the occurrence of drug resistance. Interestingly, natural products, either alone or in combination with chemotherapy, have greatly improved overall survival outcomes for lung cancer patients by acting on the HH signaling pathway because of its unique and excellent pharmacological properties. In this review, we elucidate on the underlying molecular mechanisms through which the HH pathway promotes malignant biological behaviors in lung cancer, as well as the potential of inhibitors or natural compounds in targeting HH signaling for clinical applications in lung cancer therapy.
Collapse
Affiliation(s)
- Chao Ma
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Kang Hu
- School of Clinical Medicine, Weifang Medical University, Weifang, China
- Department of Thoracic Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Irfan Ullah
- Department of Surgery, Khyber Medical University Peshawar, Peshawar, Pakistan
| | - Qing-Kang Zheng
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Nan Zhang
- Breast Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- *Correspondence: Zhi-Gang Sun, ; Nan Zhang,
| | - Zhi-Gang Sun
- Department of Thoracic Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- *Correspondence: Zhi-Gang Sun, ; Nan Zhang,
| |
Collapse
|
16
|
Computational Analyses of YY1 and Its Target RKIP Reveal Their Diagnostic and Prognostic Roles in Lung Cancer. Cancers (Basel) 2022; 14:cancers14040922. [PMID: 35205667 PMCID: PMC8869872 DOI: 10.3390/cancers14040922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/18/2022] [Accepted: 02/08/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Lung cancer (LC) is the tumor with the highest global mortality rate. Novel personalized therapies are currently being tested (e.g., targeted inhibitors, the immune-checkpoint inhibitors), but they cannot yet prevent the very frequent relapse and generalized metastases observed in a large population of LC patients. Currently, there is an urgent need for novel reliable biomarkers for the prognosis and diagnosis of LC. Through the systematic analysis of multiple deposited expression datasets, this report aims to explore the role of the Yin-Yang 1 (YY1) transcription factor and its target the Raf Kinase Inhibitory Protein (RKIP) in LC. The computational analysis suggested the predictive diagnostic and prognostic roles for both YY1 and RKIP stimulating further studies for proving their implication as novel biomarkers, as well as therapeutically druggable targets in LC. Abstract Lung cancer (LC) represents a global threat, being the tumor with the highest mortality rate. Despite the introduction of novel therapies (e.g., targeted inhibitors, immune-checkpoint inhibitors), relapses are still very frequent. Accordingly, there is an urgent need for reliable predictive biomarkers and therapeutically druggable targets. Yin-Yang 1 (YY1) is a transcription factor that may work either as an oncogene or a tumor suppressor, depending on the genotype and the phenotype of the tumor. The Raf Kinase Inhibitory Protein (RKIP), is a tumor suppressor and immune enhancer often found downregulated in the majority of the examined cancers. In the present report, the role of both YY1 and RKIP in LC is thoroughly explored through the analysis of several deposited RNA and protein expression datasets. The computational analyses revealed that YY1 negatively regulates RKIP expression in LC, as corroborated by the deposited YY1-ChIP-Seq experiments and validated by their robust negative correlation. Additionally, YY1 expression is significantly higher in LC samples compared to normal matching ones, whereas RKIP expression is lower in LC and high in normal matching tissues. These observed differences, unlike many current biomarkers, bear a diagnostic significance, as proven by the ROC analyses. Finally, the survival data support the notion that both YY1 and RKIP might represent strong prognostic biomarkers. Overall, the reported findings indicate that YY1 and RKIP expression levels may play a role in LC as potential biomarkers and therapeutic targets. However, further studies will be necessary to validate the in silico results.
Collapse
|
17
|
Yang PS, Yu MH, Hou YC, Chang CP, Lin SC, Kuo IY, Su PC, Cheng HC, Su WC, Shan YS, Wang YC. Targeting protumor factor chitinase-3-like-1 secreted by Rab37 vesicles for cancer immunotherapy. Am J Cancer Res 2022; 12:340-361. [PMID: 34987649 PMCID: PMC8690922 DOI: 10.7150/thno.65522] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/26/2021] [Indexed: 02/07/2023] Open
Abstract
Background: Chitinase 3-like-1 (CHI3L1) is a secretion glycoprotein associated with the immunosuppressive tumor microenvironment (TME). The secretory mode of CHI3L1 makes it a promising target for cancer treatment. We have previously reported that Rab37 small GTPase mediates secretion of IL-6 in macrophages to promote cancer progression, whereas the roles of Rab37 in the intracellular trafficking and exocytosis of CHI3L1 are unclear. Methods: We examined the concentration of CHI3L1 in the culture medium of splenocytes and bone marrow derived macrophages (BMDMs) from wild-type or Rab37 knockout mice, and macrophage or T cell lines expressing wild type, active GTP-bound or inactive GDP-bound Rab37. Vesicle isolation, total internal reflection fluorescence microscopy, and real-time confocal microscopy were conducted. We developed polyclonal neutralizing-CHI3L1 antibodies (nCHI3L1 Abs) to validate the therapeutic efficacy in orthotopic lung, pancreas and colon cancer allograft models. Multiplex fluorescence immunohistochemistry was performed to detect the protein level of Rab37 and CHI3L1, and localization of the tumor-infiltrating immune cells in allografts from mice or tumor specimens from cancer patients. Results: We demonstrate a novel secretion mode of CHI3L1 mediated by the small GTPase Rab37 in T cells and macrophages. Rab37 mediated CHI3L1 intracellular vesicle trafficking and exocytosis in a GTP-dependent manner, which is abolished in the splenocytes and BMDMs from Rab37 knockout mice and attenuated in macrophage or T cell lines expressing the inactive Rab37. The secreted CHI3L1 activated AKT, ß-catenin and NF-κB signal pathways in cancer cells and macrophages to foster a protumor TME characterized by activating M2 macrophages and increasing the population of regulatory T cells. Our developed nCHI3L1 Abs showed the dual properties of reducing tumor growth/metastases and eliciting an immunostimulatory TME in syngeneic orthotopic lung, pancreas and colon tumor models. Clinically, high plasma level or intratumoral expression of CHI3L1 correlated with poor survival in 161 lung cancer, 155 pancreatic cancer and 180 colon cancer patients. Conclusions: These results provide the first evidence that Rab37 mediates CHI3L1 secretion in immune cells and highlight nCHI3L1 Abs that can simultaneously target both cancer cells and tumor microenvironment.
Collapse
|
18
|
Shen Z, Liu S, Liu J, Liu J, Yao C. Weighted Gene Co-Expression Network Analysis and Treatment Strategies of Tumor Recurrence-Associated Hub Genes in Lung Adenocarcinoma. Front Genet 2021; 12:756235. [PMID: 34868230 PMCID: PMC8636777 DOI: 10.3389/fgene.2021.756235] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/06/2021] [Indexed: 12/16/2022] Open
Abstract
Despite the recent progress of lung adenocarcinoma (LUAD) therapy, tumor recurrence remained to be a challenging factor that impedes the effectiveness of treatment. The objective of the present study was to predict the hub genes affecting LUAD recurrence via weighted gene co-expression network analysis (WGCNA). Microarray samples from LUAD dataset of GSE32863 were analyzed, and the modules with the highest correlation to tumor recurrence were selected. Functional enrichment analysis was conducted, followed by establishment of a protein-protein interaction (PPI) network. Subsequently, hub genes were identified by overall survival analyses and further validated by evaluation of expression in both myeloid populations and tissue samples of LUAD. Gene set enrichment analysis (GSEA) was then carried out, and construction of transcription factors (TF)-hub gene and drug-hub gene interaction network was also achieved. A total of eight hub genes (ACTR3, ARPC5, RAB13, HNRNPK, PA2G4, WDR12, SRSF1, and NOP58) were finally identified to be closely correlated with LUAD recurrence. In addition, TFs that regulate hub genes have been predicted, including MYC, PML, and YY1. Finally, drugs including arsenic trioxide, cisplatin, Jinfukang, and sunitinib were mined for the treatment of the eight hub genes. In conclusion, our study may facilitate the invention of targeted therapeutic drugs and shed light on the understanding of the mechanism for LUAD recurrence.
Collapse
Affiliation(s)
- Zhengze Shen
- Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Shengwei Liu
- Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Jie Liu
- JiangJin Central Hosptial of Chongqing, Chongqing, China
| | - Jingdong Liu
- Department of Pharmacy, First People's Hospital of Chongqing Liangjiang New District, Chongqing, China
| | - Caoyuan Yao
- Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
19
|
Ma YS, Yang XL, Xin R, Wu TM, Shi Y, Dan Zhang D, Wang HM, Wang PY, Liu JB, Fu D. The power and the promise of organoid models for cancer precision medicine with next-generation functional diagnostics and pharmaceutical exploitation. Transl Oncol 2021; 14:101126. [PMID: 34020369 PMCID: PMC8144479 DOI: 10.1016/j.tranon.2021.101126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 12/25/2022] Open
Abstract
As organ-specific three-dimensional cell clusters derived from cancer tissue or cancer-specific stem cells, cancer-derived organoids are organized in the same manner of the cell sorting and spatial lineage restriction in vivo, making them ideal for simulating the characteristics of cancer and the heterogeneity of cancer cells in vivo. Besides the applications as a new in vitro model to study the physiological characteristics of normal tissues and organs, organoids are also used for in vivo cancer cell characterization, anti-cancer drug screening, and precision medicine. However, organoid cultures are not without limitations, i.e., the lack of nerves, blood vessels, and immune cells. As a result, organoids could not fully replicate the characteristics of organs but partially simulate the disease process. This review attempts to provide insights into the organoid models for cancer precision medicine.
Collapse
Affiliation(s)
- Yu-Shui Ma
- National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China; Cancer Institute, Nantong Tumor Hospital, Affiliated Tumor Hospital of Nantong University, Nantong 226631, China; International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital/Institute, National Center for Liver Cancer, the Second Military Medical University, Shanghai 200433, China
| | - Xiao-Li Yang
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Rui Xin
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Ting-Miao Wu
- Department of Radiology, The Forth Affiliated Hospital of Anhui Medical University, Hefei 230012, China
| | - Yi Shi
- National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Dan Dan Zhang
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Hui-Min Wang
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Pei-Yao Wang
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Ji-Bin Liu
- Cancer Institute, Nantong Tumor Hospital, Affiliated Tumor Hospital of Nantong University, Nantong 226631, China
| | - Da Fu
- National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China; Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China; Department of Radiology, The Forth Affiliated Hospital of Anhui Medical University, Hefei 230012, China.
| |
Collapse
|
20
|
Mei C, Jiang X, Gu Y, Wu X, Ma W, Chen X, Wang G, Yao Y, Liu Y, Zhang Z, Yuan Y. YY1-mediated reticulocalbin-2 upregulation promotes the hepatocellular carcinoma progression via activating MYC signaling. Am J Cancer Res 2021; 11:2238-2251. [PMID: 34094681 PMCID: PMC8167676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 03/01/2021] [Indexed: 06/12/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a common digestive tumor with high fatality worldwide. Previous studies have shown that Reticulocalbin-2 (RCN2) was a crucial factor for HCC proliferation, but invasion and migration mechanism of RCN2 contributing to HCC is poorly investigated. In this study, we estimated the RCN2 expression in both patient tissues and cell lines by polymerase chain reaction (PCR) and western blotting (WB), as well as the clinical information of HCC patients from public databases. Biological function induced by RCN2 in vitro and vivo was also researched through multiple functional experiments. Upstream and downstream signal of RCN2 was identified by bioinformatics. We found that up-regulated RCN2 was related to poorer prognosis in HCC patients and attached significance to HCC proliferation, invasion and migration. Luciferase reporter assay and chromatin immunoprecipitation validated that YY1 as the upstream transcription factor of RCN2, facilitating the expression of RCN2. Gene set enrichment analysis indicated that HCC progression induced by RCN2 might be related to MYC signaling. Furthermore, we demonstrated RCN2 reduced proteasomal degradation of MYC and lead to HCC progression. The effects of overexpressed RCN2 in HCC were attenuated by MYC silencing. In conclusion, our study highlighted the vital role of RCN2 in tumor progression and the potential benefit for the treatment of HCC.
Collapse
Affiliation(s)
- Chengjie Mei
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University Wuhan 430071, Hubei, People's Republic of China
| | - Xiang Jiang
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University Wuhan 430071, Hubei, People's Republic of China
| | - Yang Gu
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University Wuhan 430071, Hubei, People's Republic of China
| | - Xiaoling Wu
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University Wuhan 430071, Hubei, People's Republic of China
| | - Weijie Ma
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University Wuhan 430071, Hubei, People's Republic of China
| | - Xi Chen
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University Wuhan 430071, Hubei, People's Republic of China
| | - Ganggang Wang
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University Wuhan 430071, Hubei, People's Republic of China
| | - Ye Yao
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University Wuhan 430071, Hubei, People's Republic of China
| | - Yingyi Liu
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University Wuhan 430071, Hubei, People's Republic of China
| | - Zhonglin Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University Wuhan 430071, Hubei, People's Republic of China
| | - Yufeng Yuan
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University Wuhan 430071, Hubei, People's Republic of China
| |
Collapse
|
21
|
Jia CY, Xiang W, Liu JB, Jiang GX, Sun F, Wu JJ, Yang XL, Xin R, Shi Y, Zhang DD, Li W, Zuberi Z, Zhang J, Lu GX, Wang HM, Wang PY, Yu F, Lv ZW, Ma YS, Fu D. MiR-9-1 Suppresses Cell Proliferation and Promotes Apoptosis by Targeting UHRF1 in Lung Cancer. Technol Cancer Res Treat 2021; 20:15330338211041191. [PMID: 34520284 PMCID: PMC8445543 DOI: 10.1177/15330338211041191] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 07/30/2021] [Indexed: 12/29/2022] Open
Abstract
Lung cancer is listed as the most common reason for cancer-related death all over the world despite diagnostic improvements and the development of chemotherapy and targeted therapies. MicroRNAs control both physiological and pathological processes including development and cancer. A microRNA-9 to 1 (miR-9 to 1) overexpression model in lung cancer cell lines was established and miR-9 to 1 was found to significantly suppress the proliferation rate in lung cancer cell lines, colony formation in vitro, and tumorigenicity in nude mice of A549 cells. Ubiquitin-like containing PHD and RING finger domains 1 (UHRF1) was then identified to direct target of miR-9 to 1. The inhibition of UHRF1 by miR-9 to 1 causes G1 arrest and p15, p16, and p21 were re-expressed in miR-9 to 1 group in mRNA level and protein level. Silence of UHRF1 expression in A549 cells resulted in the similar re-expression of p15, p16, p21 which is similar with miR-9 to 1 infection. Therefore, we concluded that UHRF1 is a new target for miR-9 to 1 to suppress cell proliferation by re-expression of tumor suppressors p15, p16, and p21 mediated by UHRF1.
Collapse
Affiliation(s)
- Cheng-You Jia
- Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wei Xiang
- Shanghai Punan Hospital, Shanghai, China
| | - Ji-Bin Liu
- Cancer Institute, Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Geng-Xi Jiang
- Navy Military Medical University Affiliated Changhai Hospital, Shanghai, China
| | - Feng Sun
- Cancer Institute, Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Jian-Jun Wu
- Nantong Haimen Yuelai Health Centre, Haimen, China
| | - Xiao-Li Yang
- Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Rui Xin
- Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yi Shi
- Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Dan-Dan Zhang
- Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wen Li
- Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Zavuga Zuberi
- Dares Salaam Institute of Technology, Salaam, Tanzania
| | - Jie Zhang
- School of Medicine, Nantong University, Nantong, China
| | - Gai-Xia Lu
- Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hui-Min Wang
- Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Pei-Yao Wang
- Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fei Yu
- Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhong-Wei Lv
- Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yu-Shui Ma
- Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- Eastern Hepatobiliary Surgery Hospital/Institute, National Center for Liver Cancer, the Second Military Medical University, Shanghai, China
| | - Da Fu
- Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|