1
|
Semitela A, Marques PAAP, Completo A. Strategies to engineer articular cartilage with biomimetic zonal features: a review. Biomater Sci 2024. [PMID: 39463257 DOI: 10.1039/d4bm00579a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Articular cartilage (AC) is a highly specialized tissue with restricted ability for self-regeneration, given its avascular and acellular nature. Although a considerable number of surgical treatments is available for the repair, reconstruction, and regeneration of AC defects, most of them do not prioritize the development of engineered cartilage with zonal stratification derived from biomimetic biochemical, biomechanical and topographic cues. In the absence of these zonal elements, engineered cartilage will exhibit increased susceptibility to failure and will neither be able to withstand the mechanical loading to which AC is subjected nor will it integrate well with the surrounding tissue. In this regard, new breakthroughs in the development of hierarchical stratified engineered cartilage are highly sought after. Initially, this review provides a comprehensive analysis of the composition and zonal organization of AC, aiming to enhance our understanding of the significance of the structure of AC for its function. Next, we direct our attention towards the existing in vitro and in vivo studies that introduce zonal elements in engineered cartilage to elicit appropriate AC regeneration by employing tissue engineering strategies. Finally, the advantages, challenges, and future perspectives of these approaches are presented.
Collapse
Affiliation(s)
- Angela Semitela
- Centre of Mechanical Technology and Automation (TEMA), Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Paula A A P Marques
- Centre of Mechanical Technology and Automation (TEMA), Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - António Completo
- Centre of Mechanical Technology and Automation (TEMA), Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
2
|
Abdal-Hay A, Kocak-Oztug NA, Sheikh FA, Han P, Anwar S, Fournier BPJ, Ivanovski S. Fabrication of 3D bioactive melt electrowriting composite scaffold with high osteogenic potential. Colloids Surf B Biointerfaces 2024; 245:114270. [PMID: 39357390 DOI: 10.1016/j.colsurfb.2024.114270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024]
Abstract
A key challenge in using melt electrowriting (MEW) technology is incorporating large amounts of bioactive inorganic materials, such as hydroxyapatite (HA). In the present study, following optimization of the fabrication parameters, 40 %-HA (HA40) nanoparticles were pre-mixed into medical-grade polycaprolactone (PCL) and processed using the MEW (MEW) technique to mimic the structure and function of the natural extracellular matrix (ECM) for bone regeneration. The HA40 fibrous composite scaffolds showed continuous writing and obtained a well-connected and orderly stacked fibre with a small diameter size (67 ± 8.5 µm). A major result of the present study was the successful enrichment and accumulation of the HA particles, which mostly occurred on the MEW fibre external surfaces. This design allows for direct interfacial interaction with human periodontal ligament cells (hPDLCs). We systematically investigated the behaviour and function of hPDLCs on the HA40 composite scaffold, alongside parameters related to mineralization. The HA40 scaffold demonstrated significantly higher metabolic activity and enhanced expression of osteopontin compared to PCL-only scaffolds, as well as increased levels of ALP and COL1. The study's findings demonstrate that bioactive composite scaffolds, incorporating 40 % HA into m-PCL via MEW, effectively enhance the biological response of the ECM and are promising for potential applications in bone regeneration.
Collapse
Affiliation(s)
- Abdalla Abdal-Hay
- School of Dentistry, University of Queensland, 288 Herston Road, Herston, QLD 4006, Australia.
| | - Necla Asli Kocak-Oztug
- School of Dentistry, University of Queensland, 288 Herston Road, Herston, QLD 4006, Australia; Faculty of Dentistry, Department of Periodontology, Istanbul University, Istanbul 34116, Turkiye.
| | - Faheem A Sheikh
- Nanostructure and Biomimetic Lab, Department of Nanotechnology, University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir 190006, India
| | - Pingping Han
- School of Dentistry, University of Queensland, 288 Herston Road, Herston, QLD 4006, Australia
| | - Saqib Anwar
- Industrial Engineering Department, College of Engineering, King Saud University, Riyadh, 11421, Saudi Arabia.
| | - Benjamin P J Fournier
- Centre de Recherche des Cordeliers, Universite Paris Cite, Sorbonne Universite, Inserm, Paris F-75006, France; Universitee Paris Cite, Dental Faculty, Department of Oral Biology, Paris, France
| | - Sašo Ivanovski
- School of Dentistry, University of Queensland, 288 Herston Road, Herston, QLD 4006, Australia.
| |
Collapse
|
3
|
Messaoudi O, Henrionnet C, Courtial EJ, Grossin L, Mainard D, Galois L, Loeuille D, Marquette C, Gillet P, Pinzano A. Increasing Collagen to Bioink Drives Mesenchymal Stromal Cells-Chondrogenesis from Hyaline to Calcified Layers. Tissue Eng Part A 2024; 30:322-332. [PMID: 37885209 DOI: 10.1089/ten.tea.2023.0178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023] Open
Abstract
The bioextrusion of mesenchymal stromal cells (MSCs) directly seeded in a bioink enables the production of three-dimensional (3D) constructs, promoting their chondrogenic differentiation. Our study aimed to evaluate the effect of different type I collagen concentrations in the bioink on MSCs' chondrogenic differentiation. We printed 3D constructs using an alginate, gelatin, and fibrinogen-based bioink cellularized with MSCs, with four different quantities of type I collagen addition (0.0, 0.5, 1.0, and 5.0 mg per bioink syringe). We assessed the influence of the bioprinting process, the bioink composition, and the growth factor (TGF-ꞵ1) on the MSCs' survival rate. We confirmed the biocompatibility of the process and the bioinks' cytocompatibility. We evaluated the chondrogenic effects of TGF-ꞵ1 and collagen addition on the MSCs' chondrogenic properties through macroscopic observation, shrinking ratio, reverse transcription polymerase chain reaction, glycosaminoglycan synthesis, histology, and type II collagen immunohistochemistry. The bioink containing 0.5 mg of collagen produces the richest hyaline-like extracellular matrix, presenting itself as a promising tool to recreate the superficial layer of hyaline cartilage. The bioink containing 5.0 mg of collagen enhances the synthesis of a calcified matrix, making it a good candidate for mimicking the calcified cartilaginous layer. Type I collagen thus allows the dose-dependent design of specific hyaline cartilage layers.
Collapse
Affiliation(s)
| | | | - Edwin-Joffrey Courtial
- Plateforme 3D Fab, UMR 5246 CNRS Université de Lyon, INSA, CPE-Lyon, ICBMS, Villeurbanne, France
| | | | - Didier Mainard
- Université de Lorraine, CNRS, IMoPA, Nancy, France
- Department of Orthopedic Surgery, University Hospital of Nancy, Nancy, France
| | - Laurent Galois
- Université de Lorraine, CNRS, IMoPA, Nancy, France
- Department of Orthopedic Surgery, University Hospital of Nancy, Nancy, France
| | - Damien Loeuille
- Université de Lorraine, CNRS, IMoPA, Nancy, France
- Department of Rheumatology and Toxicology & Pharmacovigilance, University Hospital of Nancy, Vandœuvre-Lès-Nancy, France
| | - Christophe Marquette
- Plateforme 3D Fab, UMR 5246 CNRS Université de Lyon, INSA, CPE-Lyon, ICBMS, Villeurbanne, France
| | - Pierre Gillet
- Université de Lorraine, CNRS, IMoPA, Nancy, France
- Department of Pharmacology, Toxicology & Pharmacovigilance, University Hospital of Nancy, Vandœuvre-Lès-Nancy, France
| | | |
Collapse
|
4
|
Liu G, Wei X, Zhai Y, Zhang J, Li J, Zhao Z, Guan T, Zhao D. 3D printed osteochondral scaffolds: design strategies, present applications and future perspectives. Front Bioeng Biotechnol 2024; 12:1339916. [PMID: 38425994 PMCID: PMC10902174 DOI: 10.3389/fbioe.2024.1339916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/02/2024] [Indexed: 03/02/2024] Open
Abstract
Articular osteochondral (OC) defects are a global clinical problem characterized by loss of full-thickness articular cartilage with underlying calcified cartilage through to the subchondral bone. While current surgical treatments can relieve pain, none of them can completely repair all components of the OC unit and restore its original function. With the rapid development of three-dimensional (3D) printing technology, admirable progress has been made in bone and cartilage reconstruction, providing new strategies for restoring joint function. 3D printing has the advantages of fast speed, high precision, and personalized customization to meet the requirements of irregular geometry, differentiated composition, and multi-layered boundary layer structures of joint OC scaffolds. This review captures the original published researches on the application of 3D printing technology to the repair of entire OC units and provides a comprehensive summary of the recent advances in 3D printed OC scaffolds. We first introduce the gradient structure and biological properties of articular OC tissue. The considerations for the development of 3D printed OC scaffolds are emphatically summarized, including material types, fabrication techniques, structural design and seed cells. Especially from the perspective of material composition and structural design, the classification, characteristics and latest research progress of discrete gradient scaffolds (biphasic, triphasic and multiphasic scaffolds) and continuous gradient scaffolds (gradient material and/or structure, and gradient interface) are summarized. Finally, we also describe the important progress and application prospect of 3D printing technology in OC interface regeneration. 3D printing technology for OC reconstruction should simulate the gradient structure of subchondral bone and cartilage. Therefore, we must not only strengthen the basic research on OC structure, but also continue to explore the role of 3D printing technology in OC tissue engineering. This will enable better structural and functional bionics of OC scaffolds, ultimately improving the repair of OC defects.
Collapse
Affiliation(s)
- Ge Liu
- School of Mechanical Engineering, Dalian Jiaotong University, Dalian, China
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Xiaowei Wei
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Yun Zhai
- School of Mechanical Engineering, Dalian Jiaotong University, Dalian, China
| | - Jingrun Zhang
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Junlei Li
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Zhenhua Zhao
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Tianmin Guan
- School of Mechanical Engineering, Dalian Jiaotong University, Dalian, China
| | - Deiwei Zhao
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| |
Collapse
|
5
|
Wang J, Zhang X, Chen H, Ren H, Zhou M, Zhao Y. Engineered stem cells by emerging biomedical stratagems. Sci Bull (Beijing) 2024; 69:248-279. [PMID: 38101962 DOI: 10.1016/j.scib.2023.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/24/2023] [Accepted: 11/09/2023] [Indexed: 12/17/2023]
Abstract
Stem cell therapy holds immense potential as a viable treatment for a widespread range of intractable disorders. As the safety of stem cell transplantation having been demonstrated in numerous clinical trials, various kinds of stem cells are currently utilized in medical applications. Despite the achievements, the therapeutic benefits of stem cells for diseases are limited, and the data of clinical researches are unstable. To optimize tthe effectiveness of stem cells, engineering approaches have been developed to enhance their inherent abilities and impart them with new functionalities, paving the way for the next generation of stem cell therapies. This review offers a detailed analysis of engineered stem cells, including their clinical applications and potential for future development. We begin by briefly introducing the recent advances in the production of stem cells (induced pluripotent stem cells (iPSCs), embryonic stem cells (ESCs), mesenchymal stem cells (MSCs) and hematopoietic stem cells (HSCs)). Furthermore, we present the latest developments of engineered strategies in stem cells, including engineered methods in molecular biology and biomaterial fields, and their application in biomedical research. Finally, we summarize the current obstacles and suggest future prospects for engineered stem cells in clinical translations and biomedical applications.
Collapse
Affiliation(s)
- Jinglin Wang
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; Division of Hepatobiliary Surgery and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xiaoxuan Zhang
- Division of Hepatobiliary Surgery and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Hanxu Chen
- Division of Hepatobiliary Surgery and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Haozhen Ren
- Division of Hepatobiliary Surgery and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Min Zhou
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China.
| | - Yuanjin Zhao
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; Division of Hepatobiliary Surgery and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China; Shenzhen Research Institute, Southeast University, Shenzhen 518038, China.
| |
Collapse
|
6
|
Zhou J, Li Q, Tian Z, Yao Q, Zhang M. Recent advances in 3D bioprinted cartilage-mimicking constructs for applications in tissue engineering. Mater Today Bio 2023; 23:100870. [PMID: 38179226 PMCID: PMC10765242 DOI: 10.1016/j.mtbio.2023.100870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 01/06/2024] Open
Abstract
Human cartilage tissue can be categorized into three types: hyaline cartilage, elastic cartilage and fibrocartilage. Each type of cartilage tissue possesses unique properties and functions, which presents a significant challenge for the regeneration and repair of damaged tissue. Bionics is a discipline in which humans study and imitate nature. A bionic strategy based on comprehensive knowledge of the anatomy and histology of human cartilage is expected to contribute to fundamental study of core elements of tissue repair. Moreover, as a novel tissue-engineered technology, 3D bioprinting has the distinctive advantage of the rapid and precise construction of targeted models. Thus, by selecting suitable materials, cells and cytokines, and by leveraging advanced printing technology and bionic concepts, it becomes possible to simultaneously realize multiple beneficial properties and achieve improved tissue repair. This article provides an overview of key elements involved in the combination of 3D bioprinting and bionic strategies, with a particular focus on recent advances in mimicking different types of cartilage tissue.
Collapse
Affiliation(s)
- Jian Zhou
- Department of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, PR China
| | - Qi Li
- Department of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, PR China
| | - Zhuang Tian
- Department of Joint Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, PR China
| | - Qi Yao
- Department of Joint Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, PR China
| | - Mingzhu Zhang
- Department of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, PR China
| |
Collapse
|
7
|
Zhao T, Li X, Li H, Deng H, Li J, Yang Z, He S, Jiang S, Sui X, Guo Q, Liu S. Advancing drug delivery to articular cartilage: From single to multiple strategies. Acta Pharm Sin B 2023; 13:4127-4148. [PMID: 37799383 PMCID: PMC10547919 DOI: 10.1016/j.apsb.2022.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/09/2022] [Accepted: 10/28/2022] [Indexed: 11/27/2022] Open
Abstract
Articular cartilage (AC) injuries often lead to cartilage degeneration and may ultimately result in osteoarthritis (OA) due to the limited self-repair ability. To date, numerous intra-articular delivery systems carrying various therapeutic agents have been developed to improve therapeutic localization and retention, optimize controlled drug release profiles and target different pathological processes. Due to the complex and multifactorial characteristics of cartilage injury pathology and heterogeneity of the cartilage structure deposited within a dense matrix, delivery systems loaded with a single therapeutic agent are hindered from reaching multiple targets in a spatiotemporal matched manner and thus fail to mimic the natural processes of biosynthesis, compromising the goal of full cartilage regeneration. Emerging evidence highlights the importance of sequential delivery strategies targeting multiple pathological processes. In this review, we first summarize the current status and progress achieved in single-drug delivery strategies for the treatment of AC diseases. Subsequently, we focus mainly on advances in multiple drug delivery applications, including sequential release formulations targeting various pathological processes, synergistic targeting of the same pathological process, the spatial distribution in multiple tissues, and heterogeneous regeneration. We hope that this review will inspire the rational design of intra-articular drug delivery systems (DDSs) in the future.
Collapse
Affiliation(s)
- Tianyuan Zhao
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing 100853, China
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Xu Li
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, 999077, Hong Kong, China
| | - Hao Li
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing 100853, China
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Haoyuan Deng
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing 100853, China
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Jianwei Li
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing 100853, China
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Zhen Yang
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing 100853, China
- School of Medicine, Nankai University, Tianjin 300071, China
- Arthritis Clinic & Research Center, Peking University People's Hospital, Peking University, Beijing 100044, China
| | - Songlin He
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing 100853, China
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Shuangpeng Jiang
- Department of Joint Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Xiang Sui
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing 100853, China
| | - Quanyi Guo
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing 100853, China
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Shuyun Liu
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing 100853, China
- School of Medicine, Nankai University, Tianjin 300071, China
| |
Collapse
|
8
|
Fani N, Peshkova M, Bikmulina P, Golroo R, Timashev P, Vosough M. Fabricating the cartilage: recent achievements. Cytotechnology 2023; 75:269-292. [PMID: 37389132 PMCID: PMC10299965 DOI: 10.1007/s10616-023-00582-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 05/09/2023] [Indexed: 07/01/2023] Open
Abstract
This review aims to describe the most recent achievements and provide an insight into cartilage engineering and strategies to restore the cartilage defects. Here, we discuss cell types, biomaterials, and biochemical factors applied to form cartilage tissue equivalents and update the status of fabrication techniques, which are used at all stages of engineering the cartilage. The actualized concept to improve the cartilage tissue restoration is based on applying personalized products fabricated using a full cycle platform: a bioprinter, a bioink consisted of ECM-embedded autologous cell aggregates, and a bioreactor. Moreover, in situ platforms can help to skip some steps and enable adjusting the newly formed tissue in the place during the operation. Only some achievements described have passed first stages of clinical translation; nevertheless, the number of their preclinical and clinical trials is expected to grow in the nearest future.
Collapse
Affiliation(s)
- Nesa Fani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Maria Peshkova
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
| | - Polina Bikmulina
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov University, Moscow, Russia
| | - Reihaneh Golroo
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Peter Timashev
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov University, Moscow, Russia
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
9
|
Yu L, Cavelier S, Hannon B, Wei M. Recent development in multizonal scaffolds for osteochondral regeneration. Bioact Mater 2023; 25:122-159. [PMID: 36817819 PMCID: PMC9931622 DOI: 10.1016/j.bioactmat.2023.01.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/30/2022] [Accepted: 01/14/2023] [Indexed: 02/05/2023] Open
Abstract
Osteochondral (OC) repair is an extremely challenging topic due to the complex biphasic structure and poor intrinsic regenerative capability of natural osteochondral tissue. In contrast to the current surgical approaches which yield only short-term relief of symptoms, tissue engineering strategy has been shown more promising outcomes in treating OC defects since its emergence in the 1990s. In particular, the use of multizonal scaffolds (MZSs) that mimic the gradient transitions, from cartilage surface to the subchondral bone with either continuous or discontinuous compositions, structures, and properties of natural OC tissue, has been gaining momentum in recent years. Scrutinizing the latest developments in the field, this review offers a comprehensive summary of recent advances, current hurdles, and future perspectives of OC repair, particularly the use of MZSs including bilayered, trilayered, multilayered, and gradient scaffolds, by bringing together onerous demands of architecture designs, material selections, manufacturing techniques as well as the choices of growth factors and cells, each of which possesses its unique challenges and opportunities.
Collapse
Affiliation(s)
- Le Yu
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, OH, 45701, USA
| | - Sacha Cavelier
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, OH, 45701, USA
| | - Brett Hannon
- Biomedical Engineering Program, Ohio University, Athens, OH, 45701, USA
| | - Mei Wei
- Biomedical Engineering Program, Ohio University, Athens, OH, 45701, USA
- Department of Mechanical Engineering, Ohio University, Athens, OH, 45701, USA
| |
Collapse
|
10
|
3D printing of bio-instructive materials: Toward directing the cell. Bioact Mater 2023; 19:292-327. [PMID: 35574057 PMCID: PMC9058956 DOI: 10.1016/j.bioactmat.2022.04.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/25/2022] [Accepted: 04/10/2022] [Indexed: 01/10/2023] Open
|
11
|
Shahverdi M, Seifi S, Akbari A, Mohammadi K, Shamloo A, Movahhedy MR. Melt electrowriting of PLA, PCL, and composite PLA/PCL scaffolds for tissue engineering application. Sci Rep 2022; 12:19935. [PMID: 36402790 PMCID: PMC9675866 DOI: 10.1038/s41598-022-24275-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/14/2022] [Indexed: 11/21/2022] Open
Abstract
Fabrication of well-ordered and bio-mimetic scaffolds is one of the most important research lines in tissue engineering. Different techniques have been utilized to achieve this goal, however, each method has its own disadvantages. Recently, melt electrowriting (MEW) as a technique for fabrication of well-organized scaffolds has attracted the researchers' attention due to simultaneous use of principles of additive manufacturing and electrohydrodynamic phenomena. In previous research studies, polycaprolactone (PCL) has been mostly used in MEW process. PCL is a biocompatible polymer with characteristics that make it easy to fabricate well-arranged structures using MEW device. However, the mechanical properties of PCL are not favorable for applications like bone tissue engineering. Furthermore, it is of vital importance to demonstrate the capability of MEW technique for processing a broad range of polymers. To address aforementioned problems, in this study, three ten-layered box-structured well-ordered scaffolds, including neat PLA, neat PCL, and PLA/PCL composite are fabricated using an MEW device. Printing of the composite PLA/PCL scaffold using the MEW device is conducted in this study for the first time. The MEW device used in this study is a commercial fused deposition modeling (FDM) 3D printer which with some changes in its setup and configuration becomes prepared for being used as an MEW device. Since in most of previous studies, a setup has been designed and built for MEW process, the use of the FDM device can be considered as one of the novelties of this research. The printing parameters are adjusted in a way that scaffolds with nearly equal pore sizes in the range of 140 µm to 150 µm are fabricated. However, PCL fibers are mostly narrower (diameters in the range of 5 µm to 15 µm) than PLA fibers with diameters between 15 and 25 µm. Unlike the MEW process of PCL, accurate positioning of PLA fibers is difficult which can be due to higher viscosity of PLA melt compared to PCL melt. The printed composite PLA/PCL scaffold possesses a well-ordered box structure with improved mechanical properties and cell-scaffold interactions compared to both neat PLA and PCL scaffolds. Besides, the composite scaffold exhibits a higher swelling ratio than the neat PCL scaffold which can be related to the presence of less hydrophobic PLA fibers. This scaffold demonstrates an anisotropic behavior during uniaxial tensile test in which its Young's modulus, ultimate tensile stress, and strain to failure all depend on the direction of the applied tensile force. This anisotropy makes the composite PLA/PCL scaffold an exciting candidate for applications in heart tissue engineering. The results of in-vitro cell viability test using L929 mouse murine fibroblast and human umbilical vein endothelial (HUVEC) cells demonstrate that all of the printed scaffolds are biocompatible. In particular, the composite scaffold presents the highest cell viability value among the fabricated scaffolds. All in all, the composite PLA/PCL scaffold shows that it can be a promising substitution for neat PCL scaffold used in previous MEW studies.
Collapse
Affiliation(s)
- Mohammad Shahverdi
- Advanced Manufacturing Laboratory, School of Mechanical Engineering, Sharif University of Technology, Azadi Ave., Tehran, Iran
| | - Saeed Seifi
- Nano BioTechnology Laboratory, School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - Ali Akbari
- Advanced Manufacturing Laboratory, School of Mechanical Engineering, Sharif University of Technology, Azadi Ave., Tehran, Iran
| | - Kaivan Mohammadi
- Advanced Manufacturing Laboratory, School of Mechanical Engineering, Sharif University of Technology, Azadi Ave., Tehran, Iran.
| | - Amir Shamloo
- Nano BioTechnology Laboratory, School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran.
| | - Mohammad Reza Movahhedy
- Advanced Manufacturing Laboratory, School of Mechanical Engineering, Sharif University of Technology, Azadi Ave., Tehran, Iran
| |
Collapse
|
12
|
Włodarczyk-Biegun MK, Villiou M, Koch M, Muth C, Wang P, Ott J, del Campo A. Melt Electrowriting of Graded Porous Scaffolds to Mimic the Matrix Structure of the Human Trabecular Meshwork. ACS Biomater Sci Eng 2022; 8:3899-3911. [PMID: 35984428 PMCID: PMC9472227 DOI: 10.1021/acsbiomaterials.2c00623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/05/2022] [Indexed: 11/30/2022]
Abstract
The permeability of the human trabecular meshwork (HTM) regulates eye pressure via a porosity gradient across its thickness modulated by stacked layers of matrix fibrils and cells. Changes in HTM porosity are associated with increases in intraocular pressure and the progress of diseases such as glaucoma. Engineered HTMs could help to understand the structure-function relation in natural tissues and lead to new regenerative solutions. Here, melt electrowriting (MEW) is explored as a biofabrication technique to produce fibrillar, porous scaffolds that mimic the multilayer, gradient structure of native HTM. Poly(caprolactone) constructs with a height of 125-500 μm and fiber diameters of 10-12 μm are printed. Scaffolds with a tensile modulus between 5.6 and 13 MPa and a static compression modulus in the range of 6-360 kPa are obtained by varying the scaffold design, that is, the density and orientation of the fibers and number of stacked layers. Primary HTM cells attach to the scaffolds, proliferate, and form a confluent layer within 8-14 days, depending on the scaffold design. High cell viability and cell morphology close to that in the native tissue are observed. The present work demonstrates the utility of MEW for reconstructing complex morphological features of natural tissues.
Collapse
Affiliation(s)
| | - Maria Villiou
- INM-Leibniz
Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
- Chemistry
Department, Saarland University, 66123 Saarbrücken, Germany
| | - Marcus Koch
- INM-Leibniz
Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
| | - Christina Muth
- INM-Leibniz
Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
| | - Peixi Wang
- INM-Leibniz
Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
- Chemistry
Department, Saarland University, 66123 Saarbrücken, Germany
| | - Jenna Ott
- INM-Leibniz
Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
| | - Aranzazu del Campo
- INM-Leibniz
Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
- Chemistry
Department, Saarland University, 66123 Saarbrücken, Germany
| |
Collapse
|
13
|
Guo J, Yang X, Chen J, Wang C, Kang Y, Jiang T, Chen M, Li W, Zhou C, Chen Z. Accelerated Bone Regeneration by an Astaxanthin-Modified Antioxidant Aerogel through Relieving Oxidative Stress via the NRF2 Signaling Pathway. ACS Biomater Sci Eng 2022; 8:4524-4534. [PMID: 36073984 DOI: 10.1021/acsbiomaterials.2c00596] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bone regeneration of critical-sized bone defects (CSBDs) with biomimetic collagen-based aerogels remains a significant challenge due to the oxidative stress on the microenvironment. The excessive oxidative stress could induce apoptosis and dysfunction of host-derived cells. Astaxanthin (ATX) exhibits excellent antioxidant ability to block free radical chain reactions. In the present study, hybrid antioxidant collagen-derived aerogels (ATX-Col aerogels) were fabricated by a simple one-step method through the covalent cross-linking of Col and ATX. The resulting ATX-Col aerogels show porous and interconnected structures due to freeze-drying strategies. The ATX-Col aerogels exhibited excellent biocompatibility and biosafety. Furthermore, ATX-Col aerogels demonstrated favorable antioxidant capacity by eliminating intracellular ROS by activating the NRF2 signaling pathway. Finally, excellent reparative effects in repairing rat cranial defects were observed in ATX-Col aerogels. Taken together, ATX-Col aerogels can accelerate bone regeneration by relieving oxidative stress via the NRF2 signaling pathway and act as a potential bone graft for CSBD. This study provides a simple method of developing antioxidant aerogels for bone regeneration.
Collapse
Affiliation(s)
- Jiahe Guo
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaofan Yang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jing Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Cheng Wang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yu Kang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Tao Jiang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Min Chen
- Department of Hand and Foot Surgery, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518000, Guangdong, China
| | - Wenqing Li
- Department of Hand and Foot Surgery, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518000, Guangdong, China
| | - Chuchao Zhou
- Department of Plastic Surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan 430060, China
| | - Zhenbing Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
14
|
Loewner S, Heene S, Baroth T, Heymann H, Cholewa F, Blume H, Blume C. Recent advances in melt electro writing for tissue engineering for 3D printing of microporous scaffolds for tissue engineering. Front Bioeng Biotechnol 2022; 10:896719. [PMID: 36061443 PMCID: PMC9428513 DOI: 10.3389/fbioe.2022.896719] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Melt electro writing (MEW) is a high-resolution 3D printing technique that combines elements of electro-hydrodynamic fiber attraction and melts extrusion. The ability to precisely deposit micro- to nanometer strands of biocompatible polymers in a layer-by-layer fashion makes MEW a promising scaffold fabrication method for all kinds of tissue engineering applications. This review describes possibilities to optimize multi-parametric MEW processes for precise fiber deposition over multiple layers and prevent printing defects. Printing protocols for nonlinear scaffolds structures, concrete MEW scaffold pore geometries and printable biocompatible materials for MEW are introduced. The review discusses approaches to combining MEW with other fabrication techniques with the purpose to generate advanced scaffolds structures. The outlined MEW printer modifications enable customizable collector shapes or sacrificial materials for non-planar fiber deposition and nozzle adjustments allow redesigned fiber properties for specific applications. Altogether, MEW opens a new chapter of scaffold design by 3D printing.
Collapse
Affiliation(s)
- Sebastian Loewner
- Institute of Technical Chemistry, Leibniz University Hannover, Hannover, Germany
- *Correspondence: Sebastian Loewner,
| | - Sebastian Heene
- Institute of Technical Chemistry, Leibniz University Hannover, Hannover, Germany
| | - Timo Baroth
- Institute of Microelectronic Systems, Leibniz University Hannover, Hannover, Germany
| | - Henrik Heymann
- Institute of Microelectronic Systems, Leibniz University Hannover, Hannover, Germany
| | - Fabian Cholewa
- Institute of Microelectronic Systems, Leibniz University Hannover, Hannover, Germany
| | - Holger Blume
- Institute of Microelectronic Systems, Leibniz University Hannover, Hannover, Germany
| | - Cornelia Blume
- Institute of Technical Chemistry, Leibniz University Hannover, Hannover, Germany
| |
Collapse
|
15
|
Eichholz K, Freeman F, Pitacco P, Nulty J, Ahern D, Burdis R, Browe D, Garcia O, Hoey D, Kelly DJ. Scaffold microarchitecture regulates angiogenesis and the regeneration of large bone defects. Biofabrication 2022; 14. [PMID: 35947963 DOI: 10.1088/1758-5090/ac88a1] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 08/10/2022] [Indexed: 11/11/2022]
Abstract
Emerging 3D printing technologies can provide exquisite control over the external shape and internal architecture of scaffolds and tissue engineered constructs, enabling systematic studies to explore how geometric design features influence the regenerative process. Here we used fused deposition modelling (FDM) and melt electrowriting (MEW) to investigate how scaffold microarchitecture influences the healing of large bone defects. FDM was used to fabricate scaffolds with relatively large fibre diameters and low porosities, while MEW was used to fabricate scaffolds with smaller fibre diameters and higher porosities, with both scaffolds being designed to have comparable surface areas. Scaffold microarchitecture significantly influenced the healing response following implantation into critically sized femoral defects in rats, with the FDM scaffolds supporting the formation of larger bone spicules through its pores, while the MEW scaffolds supported the formation of a more round bone front during healing. After 12 weeks in vivo, both MEW and FDM scaffolds supported significantly higher levels of defect vascularisation compared to empty controls, while the MEW scaffolds supported higher levels of new bone formation. Somewhat surprisingly, this superior healing in the MEW group did not correlate with higher levels of angiogenesis, with the FDM scaffold supporting greater total vessel formation and the formation of larger vessels, while the MEW scaffold promoted the formation of a dense microvasculature with minimal evidence of larger vessels infiltrating the defect region. To conclude, the small fibre diameter, high porosity and high specific surface area of the MEW scaffold proved beneficial for osteogenesis and bone regeneration, demonstrating that changes in scaffold architecture enabled by this additive manufacturing technique can dramatically modulate angiogenesis and tissue regeneration without the need for complex exogenous growth factors. These results provide a valuable insight into the importance of 3D printed scaffold architecture when developing new bone tissue engineering strategies.
Collapse
Affiliation(s)
- Kian Eichholz
- Department of Mechanical and Manufacturing Engineering, University of Dublin Trinity College, Parsons Building, Dublin, IRELAND
| | - Fiona Freeman
- Department of Mechanical and Manufacturing Engineering, Trinity College Dublin, Parsons building, Dublin, 2, IRELAND
| | - Pierluca Pitacco
- Department of Mechanical and Manufacturing Engineering, Trinity College Dublin, Parsons Building, Dublin 2, Dublin, 2, IRELAND
| | - Jessica Nulty
- Department of Mechanical and Manufacturing Engineering, Trinity College Dublin, Parsons Building, Dublin 2, Dublin, 2, IRELAND
| | - Daniel Ahern
- Department of Mechanical and Manufacturing Engineering, Trinity College Dublin, Parsons Building, Dublin 2, Dublin, 2, IRELAND
| | - Ross Burdis
- Trinity Biomedical Institute, Trinity Centre for Bioengineering, Trinity College Dublin, Dublin 2, Dublin, D02 PN40, IRELAND
| | - David Browe
- Department of Mechanical and Manufacturing Engineering, Trinity College Dublin, Parsons building, Dublin, 2, IRELAND
| | - Orquidea Garcia
- Johnson & Johnson 3D Printing Innovation & Customer Solutions, Johnson & Johnson Services Inc, Irvine, California, 0000, UNITED STATES
| | - David Hoey
- Department of Mechanical and Manufacturing Engineering, University of Dublin Trinity College, Parsons building, Dublin, 2, IRELAND
| | - Daniel John Kelly
- Department of Mechanical and Manufacturing Engineering, Trinity College Dublin, Parsons Building, Dublin 2, Dublin, 2, IRELAND
| |
Collapse
|
16
|
Gonzalez-Vilchis RA, Piedra-Ramirez A, Patiño-Morales CC, Sanchez-Gomez C, Beltran-Vargas NE. Sources, Characteristics, and Therapeutic Applications of Mesenchymal Cells in Tissue Engineering. Tissue Eng Regen Med 2022; 19:325-361. [PMID: 35092596 PMCID: PMC8971271 DOI: 10.1007/s13770-021-00417-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/24/2021] [Accepted: 12/05/2021] [Indexed: 01/31/2023] Open
Abstract
Tissue engineering (TE) is a therapeutic option within regenerative medicine that allows to mimic the original cell environment and functional organization of the cell types necessary for the recovery or regeneration of damaged tissue using cell sources, scaffolds, and bioreactors. Among the cell sources, the utilization of mesenchymal cells (MSCs) has gained great interest because these multipotent cells are capable of differentiating into diverse tissues, in addition to their self-renewal capacity to maintain their cell population, thus representing a therapeutic alternative for those diseases that can only be controlled with palliative treatments. This review aimed to summarize the state of the art of the main sources of MSCs as well as particular characteristics of each subtype and applications of MSCs in TE in seven different areas (neural, osseous, epithelial, cartilage, osteochondral, muscle, and cardiac) with a systemic revision of advances made in the last 10 years. It was observed that bone marrow-derived MSCs are the principal type of MSCs used in TE, and the most commonly employed techniques for MSCs characterization are immunodetection techniques. Moreover, the utilization of natural biomaterials is higher (41.96%) than that of synthetic biomaterials (18.75%) for the construction of the scaffolds in which cells are seeded. Further, this review shows alternatives of MSCs derived from other tissues and diverse strategies that can improve this area of regenerative medicine.
Collapse
Affiliation(s)
- Rosa Angelica Gonzalez-Vilchis
- Molecular Biology Undergraduate Program, Natural Science and Engineering Division, Cuajimalpa Unit, Autonomous Metropolitan University, 05340, CDMX, Mexico
| | - Angelica Piedra-Ramirez
- Molecular Biology Undergraduate Program, Natural Science and Engineering Division, Cuajimalpa Unit, Autonomous Metropolitan University, 05340, CDMX, Mexico
| | - Carlos Cesar Patiño-Morales
- Research Laboratory of Developmental Biology and Experimental Teratogenesis, Children's Hospital of Mexico Federico Gomez, 06720, CDMX, Mexico
| | - Concepcion Sanchez-Gomez
- Research Laboratory of Developmental Biology and Experimental Teratogenesis, Children's Hospital of Mexico Federico Gomez, 06720, CDMX, Mexico
| | - Nohra E Beltran-Vargas
- Department of Processes and Technology, Natural Science and Engineering Division, Cuajimalpa Unit, Autonomous Metropolitan University, Cuajimalpa. Vasco de Quiroga 4871. Cuajimalpa de Morelos, 05348, CDMX, Mexico.
| |
Collapse
|
17
|
Shestovskaya MV, Bozhkova SA, Sopova JV, Khotin MG, Bozhokin MS. Methods of Modification of Mesenchymal Stem Cells and Conditions of Their Culturing for Hyaline Cartilage Tissue Engineering. Biomedicines 2021; 9:biomedicines9111666. [PMID: 34829895 PMCID: PMC8615732 DOI: 10.3390/biomedicines9111666] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 12/24/2022] Open
Abstract
The use of mesenchymal stromal cells (MSCs) for tissue engineering of hyaline cartilage is a topical area of regenerative medicine that has already entered clinical practice. The key stage of this procedure is to create conditions for chondrogenic differentiation of MSCs, increase the synthesis of hyaline cartilage extracellular matrix proteins by these cells and activate their proliferation. The first such works consisted in the indirect modification of cells, namely, in changing the conditions in which they are located, including microfracturing of the subchondral bone and the use of 3D biodegradable scaffolds. The most effective methods for modifying the cell culture of MSCs are protein and physical, which have already been partially introduced into clinical practice. Genetic methods for modifying MSCs, despite their effectiveness, have significant limitations. Techniques have not yet been developed that allow studying the effectiveness of their application even in limited groups of patients. The use of MSC modification methods allows precise regulation of cell culture proliferation, and in combination with the use of a 3D biodegradable scaffold, it allows obtaining a hyaline-like regenerate in the damaged area. This review is devoted to the consideration and comparison of various methods used to modify the cell culture of MSCs for their use in regenerative medicine of cartilage tissue.
Collapse
Affiliation(s)
- Maria V. Shestovskaya
- Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia; (M.V.S.); (J.V.S.); (M.G.K.)
| | - Svetlana A. Bozhkova
- Vreden National Medical Research Center of Traumatology and Orthopedics, Academica Baykova Str., 8, 195427 St. Petersburg, Russia;
| | - Julia V. Sopova
- Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia; (M.V.S.); (J.V.S.); (M.G.K.)
- Center of Transgenesis and Genome Editing, St. Petersburg State University, Universitetskaja Emb., 7/9, 199034 St. Petersburg, Russia
| | - Mikhail G. Khotin
- Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia; (M.V.S.); (J.V.S.); (M.G.K.)
| | - Mikhail S. Bozhokin
- Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia; (M.V.S.); (J.V.S.); (M.G.K.)
- Vreden National Medical Research Center of Traumatology and Orthopedics, Academica Baykova Str., 8, 195427 St. Petersburg, Russia;
- Correspondence:
| |
Collapse
|
18
|
Zhou H, Yu K, Jiang H, Deng R, Chu L, Cao Y, Zheng Y, Lu W, Deng Z, Liang B. A Three-in-One Strategy: Injectable Biomimetic Porous Hydrogels for Accelerating Bone Regeneration via Shape-Adaptable Scaffolds, Controllable Magnesium Ion Release, and Enhanced Osteogenic Differentiation. Biomacromolecules 2021; 22:4552-4568. [PMID: 34590825 DOI: 10.1021/acs.biomac.1c00842] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The repair of bone defects with irregular shapes, particularly in a minimally invasive manner, remains a major challenge. For synthetic bone grafts, injectable hydrogels are superior to conventional scaffolds because they can adapt satisfactorily to the defect margins and can be injected into deeper areas of injury via a minimally invasive procedure. Based on the poly(lactide-co-glycolide)(PLGA)/1-methyl-2-pyrrolidinone solution reported in our previous study, we successfully synthesized injectable MgO/MgCO3@PLGA (PMM) hydrogels, namely, injectable biomimetic porous hydrogels (IBPHs), to accelerate bone regeneration. In addition to exhibiting excellent injectability, PMM hydrogels could transform into porous scaffolds in situ through a liquid-to-solid phase transition and completely fill irregular bone defects via their superb shape adaptability. Moreover, sustainable and steady release of Mg2+ was achieved by regulating the weight ratio of the incorporated MgO and MgCO3 particles. Via controlled release of Mg2+, PMM hydrogels significantly promoted proliferation, osteogenic differentiation, migration, and biomineral deposition of immortalized mouse embryonic fibroblasts. More importantly, micro-CT imaging and histological analysis indicated that concomitant with their gradual degradation, PMM hydrogels effectively stimulated in situ bone regeneration in rat calvarial defects with an increase in the bone volume fraction of almost 2-fold compared with that in the control group. These findings suggest that injectable PMM hydrogels can satisfactorily match bone defects and form porous scaffolds in situ and can significantly promote bone regeneration via controllable Mg2+ release. The remarkable features of IPBHs may open a new avenue for the exploration of in situ repair systems for irregular bone defects to accelerate bone regeneration and have great potential for clinical translation.
Collapse
Affiliation(s)
- Hang Zhou
- Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong Distinct, Chongqing 400010, P. R. China.,Institute of Ultrasound Imaging of Chongqing Medical University; The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong Distinct, Chongqing 400010, P. R. China
| | - Kexiao Yu
- Department of Orthopedics, Chongqing Traditional Chinese Medicine Hospital, No. 6, Panxi Seventh Branch Road, Jiangbei District, Chongqing 400021, P. R. China
| | - Haitao Jiang
- Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong Distinct, Chongqing 400010, P. R. China
| | - Rui Deng
- Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong Distinct, Chongqing 400010, P. R. China
| | - Lei Chu
- Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong Distinct, Chongqing 400010, P. R. China
| | - Youde Cao
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing 400016, P. R. China
| | - Yuanyi Zheng
- Shanghai Institute of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Xuhui Distinct, Shanghai 200233, P. R. China
| | - Weizhong Lu
- Department of Orthopedics, Chongqing Traditional Chinese Medicine Hospital, No. 6, Panxi Seventh Branch Road, Jiangbei District, Chongqing 400021, P. R. China
| | - Zhongliang Deng
- Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, 76 Linjiang Road, Yuzhong Distinct, Chongqing 400010, P. R. China
| | - Bing Liang
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing 400016, P. R. China
| |
Collapse
|
19
|
Wang Z, Wang H, Xiong J, Li J, Miao X, Lan X, Liu X, Wang W, Cai N, Tang Y. Fabrication and in vitro evaluation of PCL/gelatin hierarchical scaffolds based on melt electrospinning writing and solution electrospinning for bone regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112287. [PMID: 34474838 DOI: 10.1016/j.msec.2021.112287] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/23/2021] [Accepted: 06/28/2021] [Indexed: 10/21/2022]
Abstract
As an emerging 3D printing technique, melt electrospinning writing (MEW) has been used to fabricate scaffolds with controllable structure and good mechanical strength for bone regeneration. However, how to further improve MEW scaffolds with nanoscale extracellular matrix (ECM) mimic structure and bioactivity is still challenging. In this study, we proposed a simple composite process by combining MEW and solution electrospinning (SE) to fabricate a micro/nano hierarchical scaffold for bone tissue engineering. The morphological results confirmed the hierarchical structure with both well-defined MEW microfibrous grid structure and SE random nanofiber morphology. The addition of gelatin nanofibers turned the scaffolds to be hydrophilic, and led to a slight enhancement of mechanical strength. Compared with PCL MEW scaffolds, higher cell adhesion efficiency, improved cell proliferation and higher osteoinductive ability were achieved for the MEW/SE composite scaffolds. Finally, multilayer composite scaffolds were fabricated by alternately stacking of MEW layer and SE layer and used to assess the effect on cell ingrowth in the scaffolds. The results showed that gelatin nanofibers did not inhibit cell penetration, but promoted the three-dimensional growth of bone cells. Thus, the strategy of the combined use of MEW and SE is a potential method to fabricate micro/nano hierarchical scaffolds to improve bone regeneration.
Collapse
Affiliation(s)
- Zixu Wang
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Micro-nano Manufacturing Technology and Equipment, Guangzhou 510006, China; Ultra-precision Manufacturing Equipment Guangdong-Hong Kong Joint Laboratory, Guangzhou 510006, China; Key Laboratory of Precision Electronic Manufacturing Equipment and Technology, Ministry of Education, Guangzhou 510006, China; School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Han Wang
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Micro-nano Manufacturing Technology and Equipment, Guangzhou 510006, China; Ultra-precision Manufacturing Equipment Guangdong-Hong Kong Joint Laboratory, Guangzhou 510006, China; Key Laboratory of Precision Electronic Manufacturing Equipment and Technology, Ministry of Education, Guangzhou 510006, China; School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Junjie Xiong
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Micro-nano Manufacturing Technology and Equipment, Guangzhou 510006, China; Ultra-precision Manufacturing Equipment Guangdong-Hong Kong Joint Laboratory, Guangzhou 510006, China; Key Laboratory of Precision Electronic Manufacturing Equipment and Technology, Ministry of Education, Guangzhou 510006, China; School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Jiahao Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiaomin Miao
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Xingzi Lan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Xujie Liu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Wenlong Wang
- School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Nian Cai
- School of Information Science, Guangdong University of Technology, Guangzhou 510006, China
| | - Yadong Tang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
20
|
Gonçalves AM, Moreira A, Weber A, Williams GR, Costa PF. Osteochondral Tissue Engineering: The Potential of Electrospinning and Additive Manufacturing. Pharmaceutics 2021; 13:983. [PMID: 34209671 PMCID: PMC8309012 DOI: 10.3390/pharmaceutics13070983] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/22/2021] [Accepted: 06/25/2021] [Indexed: 12/14/2022] Open
Abstract
The socioeconomic impact of osteochondral (OC) damage has been increasing steadily over time in the global population, and the promise of tissue engineering in generating biomimetic tissues replicating the physiological OC environment and architecture has been falling short of its projected potential. The most recent advances in OC tissue engineering are summarised in this work, with a focus on electrospun and 3D printed biomaterials combined with stem cells and biochemical stimuli, to identify what is causing this pitfall between the bench and the patients' bedside. Even though significant progress has been achieved in electrospinning, 3D-(bio)printing, and induced pluripotent stem cell (iPSC) technologies, it is still challenging to artificially emulate the OC interface and achieve complete regeneration of bone and cartilage tissues. Their intricate architecture and the need for tight spatiotemporal control of cellular and biochemical cues hinder the attainment of long-term functional integration of tissue-engineered constructs. Moreover, this complexity and the high variability in experimental conditions used in different studies undermine the scalability and reproducibility of prospective regenerative medicine solutions. It is clear that further development of standardised, integrative, and economically viable methods regarding scaffold production, cell selection, and additional biochemical and biomechanical stimulation is likely to be the key to accelerate the clinical translation and fill the gap in OC treatment.
Collapse
Affiliation(s)
| | - Anabela Moreira
- BIOFABICS, Rua Alfredo Allen 455, 4200-135 Porto, Portugal; (A.M.G.); (A.M.)
| | - Achim Weber
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Nobelstrasse 12, 70569 Stuttgart, Germany;
| | - Gareth R. Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK;
| | - Pedro F. Costa
- BIOFABICS, Rua Alfredo Allen 455, 4200-135 Porto, Portugal; (A.M.G.); (A.M.)
| |
Collapse
|
21
|
Salerno A, Netti PA. Review on Computer-Aided Design and Manufacturing of Drug Delivery Scaffolds for Cell Guidance and Tissue Regeneration. Front Bioeng Biotechnol 2021; 9:682133. [PMID: 34249885 PMCID: PMC8264554 DOI: 10.3389/fbioe.2021.682133] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/26/2021] [Indexed: 12/11/2022] Open
Abstract
In the last decade, additive manufacturing (AM) processes have updated the fields of biomaterials science and drug delivery as they promise to realize bioengineered multifunctional devices and implantable tissue engineering (TE) scaffolds virtually designed by using computer-aided design (CAD) models. However, the current technological gap between virtual scaffold design and practical AM processes makes it still challenging to realize scaffolds capable of encoding all structural and cell regulatory functions of the native extracellular matrix (ECM) of health and diseased tissues. Indeed, engineering porous scaffolds capable of sequestering and presenting even a complex array of biochemical and biophysical signals in a time- and space-regulated manner, require advanced automated platforms suitable of processing simultaneously biomaterials, cells, and biomolecules at nanometric-size scale. The aim of this work was to review the recent scientific literature about AM fabrication of drug delivery scaffolds for TE. This review focused on bioactive molecule loading into three-dimensional (3D) porous scaffolds, and their release effects on cell fate and tissue growth. We reviewed CAD-based strategies, such as bioprinting, to achieve passive and stimuli-responsive drug delivery scaffolds for TE and cancer precision medicine. Finally, we describe the authors' perspective regarding the next generation of CAD techniques and the advantages of AM, microfluidic, and soft lithography integration for enhancing 3D porous scaffold bioactivation toward functional bioengineered tissues and organs.
Collapse
Affiliation(s)
| | - Paolo A. Netti
- Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia, Naples, Italy
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Naples, Italy
- Interdisciplinary Research Center on Biomaterials, University of Naples Federico II, Naples, Italy
| |
Collapse
|