1
|
Kedir WM, Li L, Tan YS, Bajalovic N, Loke DK. Nanomaterials and methods for cancer therapy: 2D materials, biomolecules, and molecular dynamics simulations. J Mater Chem B 2024; 12:12141-12173. [PMID: 39502031 DOI: 10.1039/d4tb01667j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
This review explores the potential of biomolecule-based nanomaterials, i.e., protein, peptide, nucleic acid, and polysaccharide-based nanomaterials, in cancer nanomedicine. It highlights the wide range of design possibilities for creating multifunctional nanomedicines using these biomolecule-based nanomaterials. This review also analyzes the primary obstacles in cancer nanomedicine that can be resolved through the usage of nanomaterials based on biomolecules. It also examines the unique in vivo characteristics, programmability, and biological functionalities of these biomolecule-based nanomaterials. This summary outlines the most recent advancements in the development of two-dimensional semiconductor-based nanomaterials for cancer theranostic purposes. It focuses on the latest developments in molecular simulations and modelling to provide a clear understanding of important uses, techniques, and concepts of nanomaterials in drug delivery and synthesis processes. Finally, the review addresses the challenges in molecular simulations, and generating, analyzing, and developing biomolecule-based and two-dimensional semiconductor-based nanomaterials, and highlights the barriers that must be overcome to facilitate their application in clinical settings.
Collapse
Affiliation(s)
- Welela M Kedir
- Department of Science, Mathematics and Technology, Singapore University of Technology and Design, Singapore 487372, Singapore.
| | - Lunna Li
- Thomas Young Centre and Department of Chemical Engineering, University College London, London WC1E 7JE, UK
| | - Yaw Sing Tan
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore 138671, Singapore
| | - Natasa Bajalovic
- Department of Science, Mathematics and Technology, Singapore University of Technology and Design, Singapore 487372, Singapore.
| | - Desmond K Loke
- Department of Science, Mathematics and Technology, Singapore University of Technology and Design, Singapore 487372, Singapore.
| |
Collapse
|
2
|
Fernandes DA. Comprehensive Review on Bubbles: Synthesis, Modification, Characterization and Biomedical Applications. Bioconjug Chem 2024; 35:1639-1686. [PMID: 39377727 DOI: 10.1021/acs.bioconjchem.4c00137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Accurate detection, treatment, and imaging of diseases are important for effective treatment outcomes in patients. In this regard, bubbles have gained much attention, due to their versatility. Bubbles usually 1 nm to 10 μm in size can be produced and loaded with a variety of lipids, polymers, proteins, and therapeutic and imaging agents. This review details the different production and loading methods for bubbles, for imaging and treatment of diseases/conditions such as cancer, tumor angiogenesis, thrombosis, and inflammation. Bubbles can also be used for perfusion measurements, important for diagnostic and therapeutic decision making in cardiac disease. The different factors important in the stability of bubbles and the different techniques for characterizing their physical and chemical properties are explained, for developing bubbles with advanced therapeutic and imaging features. Hence, the review provides important insights for researchers studying bubbles for biomedical applications.
Collapse
|
3
|
Huang H, Zheng Y, Chang M, Song J, Xia L, Wu C, Jia W, Ren H, Feng W, Chen Y. Ultrasound-Based Micro-/Nanosystems for Biomedical Applications. Chem Rev 2024; 124:8307-8472. [PMID: 38924776 DOI: 10.1021/acs.chemrev.4c00009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Due to the intrinsic non-invasive nature, cost-effectiveness, high safety, and real-time capabilities, besides diagnostic imaging, ultrasound as a typical mechanical wave has been extensively developed as a physical tool for versatile biomedical applications. Especially, the prosperity of nanotechnology and nanomedicine invigorates the landscape of ultrasound-based medicine. The unprecedented surge in research enthusiasm and dedicated efforts have led to a mass of multifunctional micro-/nanosystems being applied in ultrasound biomedicine, facilitating precise diagnosis, effective treatment, and personalized theranostics. The effective deployment of versatile ultrasound-based micro-/nanosystems in biomedical applications is rooted in a profound understanding of the relationship among composition, structure, property, bioactivity, application, and performance. In this comprehensive review, we elaborate on the general principles regarding the design, synthesis, functionalization, and optimization of ultrasound-based micro-/nanosystems for abundant biomedical applications. In particular, recent advancements in ultrasound-based micro-/nanosystems for diagnostic imaging are meticulously summarized. Furthermore, we systematically elucidate state-of-the-art studies concerning recent progress in ultrasound-based micro-/nanosystems for therapeutic applications targeting various pathological abnormalities including cancer, bacterial infection, brain diseases, cardiovascular diseases, and metabolic diseases. Finally, we conclude and provide an outlook on this research field with an in-depth discussion of the challenges faced and future developments for further extensive clinical translation and application.
Collapse
Affiliation(s)
- Hui Huang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Yi Zheng
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P. R. China
| | - Meiqi Chang
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P. R. China
| | - Jun Song
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Lili Xia
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Chenyao Wu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Wencong Jia
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Hongze Ren
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Wei Feng
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Yu Chen
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| |
Collapse
|
4
|
Radha R, Paul V, Anjum S, Bouakaz A, Pitt WG, Husseini GA. Enhancing Curcumin's therapeutic potential in cancer treatment through ultrasound mediated liposomal delivery. Sci Rep 2024; 14:10499. [PMID: 38714740 PMCID: PMC11076529 DOI: 10.1038/s41598-024-61278-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/03/2024] [Indexed: 05/10/2024] Open
Abstract
Improving the efficacy of chemotherapy remains a key challenge in cancer treatment, considering the low bioavailability, high cytotoxicity, and undesirable side effects of some clinical drugs. Targeted delivery and sustained release of therapeutic drugs to cancer cells can reduce the whole-body cytotoxicity of the agent and deliver a safe localized treatment to the patient. There is growing interest in herbal drugs, such as curcumin, which is highly noted as a promising anti-tumor drug, considering its wide range of bioactivities and therapeutic properties against various tumors. Conversely, the clinical efficacy of curcumin is limited because of poor oral bioavailability, low water solubility, instability in gastrointestinal fluids, and unsuitable pH stability. Drug-delivery colloid vehicles like liposomes and nanoparticles combined with microbubbles and ultrasound-mediated sustained release are currently being explored as effective delivery modes in such cases. This study aimed to synthesize and study the properties of curcumin liposomes (CLs) and optimize the high-frequency ultrasound release and uptake by a human breast cancer cell line (HCC 1954) through in vitro studies of culture viability and cytotoxicity. CLs were effectively prepared with particles sized at 81 ± 2 nm, demonstrating stability and controlled release of curcumin under ultrasound exposure. In vitro studies using HCC1954 cells, the combination of CLs, ultrasound, and Definity microbubbles significantly improved curcumin's anti-tumor effects, particularly under specific conditions: 15 s of continuous ultrasound at 0.12 W/cm2 power density with 0.6 × 107 microbubbles/mL. Furthermore, the study delved into curcumin liposomes' cytotoxic effects using an Annexin V/PI-based apoptosis assay. The treatment with CLs, particularly in conjunction with ultrasound and microbubbles, amplified cell apoptosis, mainly in the late apoptosis stage, which was attributed to heightened cellular uptake within cancer cells.
Collapse
Affiliation(s)
- Remya Radha
- Department of Chemical and Biological Engineering, American University of Sharjah, Sharjah, UAE
| | - Vinod Paul
- Department of Chemical and Biological Engineering, American University of Sharjah, Sharjah, UAE
- Material Science and Engineering PhD Program, College of Arts and Sciences, American University of Sharjah, Sharjah, UAE
| | - Shabana Anjum
- Department of Chemical and Biological Engineering, American University of Sharjah, Sharjah, UAE
| | - Ayache Bouakaz
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | - William G Pitt
- Department of Chemical Engineering, Brigham Young University, Provo, UT, 84604, USA
| | - Ghaleb A Husseini
- Department of Chemical and Biological Engineering, American University of Sharjah, Sharjah, UAE.
- Material Science and Engineering PhD Program, College of Arts and Sciences, American University of Sharjah, Sharjah, UAE.
| |
Collapse
|
5
|
Nittayacharn P, Abenojar E, Cooley MB, Berg FM, Counil C, Sojahrood AJ, Khan MS, Yang C, Berndl E, Golczak M, Kolios MC, Exner AA. Efficient ultrasound-mediated drug delivery to orthotopic liver tumors - Direct comparison of doxorubicin-loaded nanobubbles and microbubbles. J Control Release 2024; 367:135-147. [PMID: 38237687 PMCID: PMC11700473 DOI: 10.1016/j.jconrel.2024.01.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 01/28/2024]
Abstract
Liver metastasis is a major obstacle in treating aggressive cancers, and current therapeutic options often prove insufficient. To overcome these challenges, there has been growing interest in ultrasound-mediated drug delivery using lipid-shelled microbubbles (MBs) and nanobubbles (NBs) as promising strategies for enhancing drug delivery to tumors. Our previous work demonstrated the potential of Doxorubicin-loaded C3F8 NBs (hDox-NB, 280 ± 123 nm) in improving cancer treatment in vitro using low-frequency unfocused therapeutic ultrasound (TUS). In this study, we investigated the pharmacokinetics and biodistribution of sonicated hDox-NBs in orthotopic rat liver tumors. We compared their delivery and therapeutic efficiency with size-isolated MBs (hDox-MB, 1104 ± 373 nm) made from identical shell material and core gas. Results showed a similar accumulation of hDox in tumors treated with hDox-MBs and unfocused therapeutic ultrasound (hDox-MB + TUS) and hDox-NB + TUS. However, significantly increased apoptotic cell death in the tumor and fewer off-target apoptotic cells in the normal liver were found upon the treatment with hDox-NB + TUS. The tumor-to-liver apoptotic ratio was elevated 9.4-fold following treatment with hDox-NB + TUS compared to hDox-MB + TUS, suggesting that the therapeutic efficacy and specificity are significantly increased when using hDox-NB + TUS. These findings highlight the potential of this approach as a viable treatment modality for liver tumors. By elucidating the behavior of drug-loaded bubbles in vivo, we aim to contribute to developing more effective liver cancer treatments that could ultimately improve patient outcomes and decrease off-target side effects.
Collapse
Affiliation(s)
- Pinunta Nittayacharn
- Department of Radiology, Case Western Reserve University, Cleveland, OH, USA; Department of Biomedical Engineering, Faculty of Engineering, Mahidol University, Puttamonthon, Nakorn Pathom, Thailand
| | - Eric Abenojar
- Department of Radiology, Case Western Reserve University, Cleveland, OH, USA
| | - Michaela B Cooley
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Felipe M Berg
- Department of Radiology, Case Western Reserve University, Cleveland, OH, USA; Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | - Claire Counil
- Department of Radiology, Case Western Reserve University, Cleveland, OH, USA
| | - Amin Jafari Sojahrood
- Department of Physics, Toronto Metropolitan University, Toronto, Canada; Institute for Biomedical Engineering, Science and Technology (iBEST), a partnership between St. Michael's Hospital, a site of Unity Health Toronto and Toronto Metropolitan University, Toronto, Canada
| | - Muhammad Saad Khan
- Department of Physics, Toronto Metropolitan University, Toronto, Canada; Institute for Biomedical Engineering, Science and Technology (iBEST), a partnership between St. Michael's Hospital, a site of Unity Health Toronto and Toronto Metropolitan University, Toronto, Canada
| | - Celina Yang
- Department of Physics, Toronto Metropolitan University, Toronto, Canada; Institute for Biomedical Engineering, Science and Technology (iBEST), a partnership between St. Michael's Hospital, a site of Unity Health Toronto and Toronto Metropolitan University, Toronto, Canada
| | - Elizabeth Berndl
- Department of Physics, Toronto Metropolitan University, Toronto, Canada; Institute for Biomedical Engineering, Science and Technology (iBEST), a partnership between St. Michael's Hospital, a site of Unity Health Toronto and Toronto Metropolitan University, Toronto, Canada
| | - Marcin Golczak
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA
| | - Michael C Kolios
- Department of Physics, Toronto Metropolitan University, Toronto, Canada; Institute for Biomedical Engineering, Science and Technology (iBEST), a partnership between St. Michael's Hospital, a site of Unity Health Toronto and Toronto Metropolitan University, Toronto, Canada
| | - Agata A Exner
- Department of Radiology, Case Western Reserve University, Cleveland, OH, USA; Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
6
|
Roy M, Alix C, Burlaud-Gaillard J, Fouan D, Raoul W, Bouakaz A, Blanchard E, Lecomte T, Viaud-Massuard MC, Sasaki N, Serrière S, Escoffre JM. Delivery of Anticancer Drugs Using Microbubble-Assisted Ultrasound in a 3D Spheroid Model. Mol Pharm 2024; 21:831-844. [PMID: 38174896 DOI: 10.1021/acs.molpharmaceut.3c00921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Tumor spheroids are promising three-dimensional (3D) in vitro tumor models for the evaluation of drug delivery methods. The design of noninvasive and targeted drug methods is required to improve the intratumoral bioavailability of chemotherapeutic drugs and reduce their adverse off-target effects. Among such methods, microbubble-assisted ultrasound (MB-assisted US) is an innovative modality for noninvasive targeted drug delivery. The aim of the present study is to evaluate the efficacy of this US modality for the delivery of bleomycin, doxorubicin, and irinotecan in colorectal cancer (CRC) spheroids. MB-assisted US permeabilized the CRC spheroids to propidium iodide, which was used as a drug model without affecting their growth and viability. Histological analysis and electron microscopy revealed that MB-assisted US affected only the peripheral layer of the CRC spheroids. The acoustically mediated bleomycin delivery induced a significant decrease in CRC spheroid growth in comparison to spheroids treated with bleomycin alone. However, this US modality did not improve the therapeutic efficacy of doxorubicin and irinotecan on CRC spheroids. In conclusion, this study demonstrates that tumor spheroids are a relevant approach to evaluate the efficacy of MB-assisted US for the delivery of chemotherapeutics.
Collapse
Affiliation(s)
- Marie Roy
- UMR 1253, iBrain, Université de Tours, Inserm, 37032 Tours, France
| | - Corentin Alix
- UMR 1253, iBrain, Université de Tours, Inserm, 37032 Tours, France
| | - Julien Burlaud-Gaillard
- Inserm U1259, Université de Tours et CHRU de Tours & Plateforme IBiSA des Microscopies, PPF ASB, CHRU de Tours, 37032 Tours, France
| | - Damien Fouan
- UMR 1253, iBrain, Université de Tours, Inserm, 37032 Tours, France
| | - William Raoul
- Inserm UMR 1069, Nutrition Croissance et Cancer (N2C), Université de Tours, 37032 Tours, France
| | - Ayache Bouakaz
- UMR 1253, iBrain, Université de Tours, Inserm, 37032 Tours, France
| | - Emmanuelle Blanchard
- Inserm U1259, Université de Tours et CHRU de Tours & Plateforme IBiSA des Microscopies, PPF ASB, CHRU de Tours, 37032 Tours, France
| | - Thierry Lecomte
- Inserm UMR 1069, Nutrition Croissance et Cancer (N2C), Université de Tours, 37032 Tours, France
- Department of Hepato-Gastroenterology & Digestive Oncology, CHRU de Tours, 37000 Tours, France
| | | | - Noboru Sasaki
- Laboratory of Veterinary Internal Medicine, Department of Clinical Sciences, Faculty of Veterinary Medicine, Hokkaido University, 060-0818 Sapporo, Japan
| | - Sophie Serrière
- UMR 1253, iBrain, Université de Tours, Inserm, 37032 Tours, France
- Département d'Imagerie Préclinique, Plateforme Scientifique et Technique Analyse des Systèmes Biologiques, Université de Tours, 37032 Tours, France
| | | |
Collapse
|
7
|
Rajora MA, Dhaliwal A, Zheng M, Choi V, Overchuk M, Lou JWH, Pellow C, Goertz D, Chen J, Zheng G. Quantitative Pharmacokinetics Reveal Impact of Lipid Composition on Microbubble and Nanoprogeny Shell Fate. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304453. [PMID: 38032129 PMCID: PMC10811482 DOI: 10.1002/advs.202304453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/19/2023] [Indexed: 12/01/2023]
Abstract
Microbubble-enabled focused ultrasound (MB-FUS) has revolutionized nano and molecular drug delivery capabilities. Yet, the absence of longitudinal, systematic, quantitative studies of microbubble shell pharmacokinetics hinders progress within the MB-FUS field. Microbubble radiolabeling challenges contribute to this void. This barrier is overcome by developing a one-pot, purification-free copper chelation protocol able to stably radiolabel diverse porphyrin-lipid-containing Definity® analogues (pDefs) with >95% efficiency while maintaining microbubble physicochemical properties. Five tri-modal (ultrasound-, positron emission tomography (PET)-, and fluorescent-active) [64 Cu]Cu-pDefs are created with varying lipid acyl chain length and charge, representing the most prevalently studied microbubble compositions. In vitro, C16 chain length microbubbles yield 2-3x smaller nanoprogeny than C18 microbubbles post FUS. In vivo, [64 Cu]Cu-pDefs are tracked in healthy and 4T1 tumor-bearing mice ± FUS over 48 h qualitatively through fluorescence imaging (to characterize particle disruption) and quantitatively through PET and γ-counting. These studies reveal the impact of microbubble composition and FUS on microbubble dissolution rates, shell circulation, off-target tissue retention (predominantly the liver and spleen), and FUS enhancement of tumor delivery. These findings yield pharmacokinetic microbubble structure-activity relationships that disrupt conventional knowledge, the implications of which on MB-FUS platform design, safety, and nanomedicine delivery are discussed.
Collapse
Affiliation(s)
- Maneesha A. Rajora
- Princess Margaret Cancer CentreUniversity Health NetworkTorontoOntarioM5G 1L7Canada
- Institute of Biomedical EngineeringUniversity of TorontoTorontoOntarioM5G 1L7Canada
| | - Alexander Dhaliwal
- Princess Margaret Cancer CentreUniversity Health NetworkTorontoOntarioM5G 1L7Canada
- Department of Medical BiophysicsUniversity of TorontoTorontoOntarioM5G 1L7Canada
| | - Mark Zheng
- Princess Margaret Cancer CentreUniversity Health NetworkTorontoOntarioM5G 1L7Canada
| | - Victor Choi
- Princess Margaret Cancer CentreUniversity Health NetworkTorontoOntarioM5G 1L7Canada
| | - Marta Overchuk
- Princess Margaret Cancer CentreUniversity Health NetworkTorontoOntarioM5G 1L7Canada
- Institute of Biomedical EngineeringUniversity of TorontoTorontoOntarioM5G 1L7Canada
- Joint Department of Biomedical EngineeringUniversity of North Carolina at Chapel Hill and North Carolina State UniversityChapel HillNC27599USA
| | - Jenny W. H. Lou
- Princess Margaret Cancer CentreUniversity Health NetworkTorontoOntarioM5G 1L7Canada
- Department of Medical BiophysicsUniversity of TorontoTorontoOntarioM5G 1L7Canada
| | - Carly Pellow
- Princess Margaret Cancer CentreUniversity Health NetworkTorontoOntarioM5G 1L7Canada
- Department of Medical BiophysicsUniversity of TorontoTorontoOntarioM5G 1L7Canada
- Sunnybrook Research InstituteTorontoOntarioM4N 3M5Canada
| | - David Goertz
- Department of Medical BiophysicsUniversity of TorontoTorontoOntarioM5G 1L7Canada
- Sunnybrook Research InstituteTorontoOntarioM4N 3M5Canada
| | - Juan Chen
- Princess Margaret Cancer CentreUniversity Health NetworkTorontoOntarioM5G 1L7Canada
| | - Gang Zheng
- Princess Margaret Cancer CentreUniversity Health NetworkTorontoOntarioM5G 1L7Canada
- Institute of Biomedical EngineeringUniversity of TorontoTorontoOntarioM5G 1L7Canada
- Department of Medical BiophysicsUniversity of TorontoTorontoOntarioM5G 1L7Canada
| |
Collapse
|
8
|
Yuan J, Ding L, Han L, Pang L, Zhang P, Yang X, Liu H, Zheng M, Zhang Y, Luo W. Thermal/ultrasound-triggered release of liposomes loaded with Ganoderma applanatum polysaccharide from microbubbles for enhanced tumour ablation. J Control Release 2023; 363:84-100. [PMID: 37730090 DOI: 10.1016/j.jconrel.2023.09.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 09/16/2023] [Accepted: 09/17/2023] [Indexed: 09/22/2023]
Abstract
The effectiveness of thermal ablation for the treatment of liver tumours is limited by the risk of incomplete ablation, which can result in residual tumours. Herein, an enhancement strategy is proposed based on the controlled release of Ganoderma applanatum polysaccharide (GAP) liposome-microbubble complexes (GLMCs) via ultrasound (US)-targeted microbubble destruction (UTMD) and sublethal hyperthermic (SH) field. GLMCs were prepared by conjugating GAP liposomes onto the surface of microbubbles via biotin-avidin linkage. In vitro, UTMD promotes the cellular uptake of liposomes and leads to apoptosis of M2-like macrophages. Secretion of arginase-1 (Arg-1) and transforming growth factor-beta (TGF-β) by M2-like macrophages decreased. In vivo, restriction of tumour volume was observed in rabbit VX2 liver tumours after treatment with GLMCs via UTMD in GLMCs + SH + US group. The expression levels of CD68 and CD163, as markers of tumour-associated macrophages (TAMs) in the GLMCs + SH + US group were reduced in liver tumour tissue. Decreased Arg-1, TGF-β, Ki67, and CD31 factors related to tumour cell proliferation and angiogenesis was evident on histological analysis. In conclusion, thermal/US-triggered drug release from GLMCs suppressed rabbit VX2 liver tumour growth in the SH field by inhibiting TAMs, which represents a potential approach to improve the effectiveness of thermal ablation.
Collapse
Affiliation(s)
- Jiani Yuan
- Department of Ultrasound, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Lei Ding
- Department of Ultrasound, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Lu Han
- Department of Ultrasound, Xi'an Central Hospital, Xi'an, China
| | - Lina Pang
- Department of Ultrasound, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Peidi Zhang
- Department of Ultrasound, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiao Yang
- Department of Ultrasound, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Haijing Liu
- Department of Ultrasound, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Minjuan Zheng
- Department of Ultrasound, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| | - Yunfei Zhang
- Department of Orthopaedics, Second Affiliated Hospital, Fourth Military Medical University, Xi'an, China.
| | - Wen Luo
- Department of Ultrasound, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
9
|
Park JH, Lee BC, Seo YC, Kim JH, Kim DJ, Lee HJ, Moon H, Lee S. Drug delivery by sonosensitive liposome and microbubble with acoustic-lens attached ultrasound: an in vivo feasibility study in a murine melanoma model. Sci Rep 2023; 13:15798. [PMID: 37737248 PMCID: PMC10517155 DOI: 10.1038/s41598-023-42786-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 09/14/2023] [Indexed: 09/23/2023] Open
Abstract
Conventional chemotherapy methods have adverse off-target effects and low therapeutic efficiencies of drug release in target tumors. In this study, we proposed a combination therapy of doxorubicin (DOX)-loaded ultrasound (US)-sensitive liposomal nanocarriers (IMP301), microbubbles (MBs) under focused US exposure using convex acoustic lens-attached US (LENS) to tumor treatment. The therapeutic effects of each treatment in a murine melanoma model were evaluated using contrast-enhanced US (CEUS) and micro-computed tomography (micro-CT) imaging, bioluminescence and confocal microscopy imaging, and liquid chromatography-mass spectroscopy (LC/MS) analysis. Tumor-bearing mice were randomly assigned to one of the following groups: (1) G1: IMP301 only (n = 9); (2) G2: IMP301 + LENS (n = 9); (3) G3: IMP301 + MB + LENS (n = 9); (4) G4: DOXIL only (n = 9); and (5) G5: IMP301 without DOXIL group as a control group (n = 4). Ten days after tumor injection, tumor-bearing mice were treated according to each treatment strategy on 10th, 12th, and 14th days from the day of tumor injection. The CEUS images of the tumors in the murine melanoma model clearly showed increased echo signal intensity from MBs as resonant US scattering. The relative tumor volume of the G2 and G3 groups on the micro-CT imaging showed inhibited tumor growth than the reference baseline of the G5 group. DOX signals on bioluminescence and confocal microscopy imaging were mainly located at the tumor sites. LC/MS showed prominently higher intratumoral DOX concentration in the G3 group than in other treated groups. Therefore, this study effectively demonstrates the feasibility of the synergistic combination of IMP301, MBs, and LENS-application for tumor-targeted treatment. Thus, this study can enable efficient tumor-targeted treatment by combining therapy such as IMP301 + MBs + LENS-application.
Collapse
Affiliation(s)
- Jun Hong Park
- Bionics Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
| | - Byung Chul Lee
- Bionics Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, University of Science & Technology (UST), Seoul, 02792, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Young Chan Seo
- Department of Medical Device Development, Seould National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Jung Hoon Kim
- Department of Radiology, Seoul National University Hospital, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, Republic of Korea
- Department of Radiology, Seoul National University College of Medicine, 103 Daehak-Ro, Jongno-Gu, Seoul, 03080, Republic of Korea
- Institute of Radiation Medicine, Seoul National University Medical Research Center, 103 Daehak-Ro, Jongno-Gu, Seoul, 03080, Republic of Korea
| | - Da Jung Kim
- Metabolomics Core Facility, Department of Transdisciplinary Research and Collaboration, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, Republic of Korea
| | - Hak Jong Lee
- Department of Radiology, Seoul National University College of Medicine, 103 Daehak-Ro, Jongno-Gu, Seoul, 03080, Republic of Korea
- Department of Radiology, Seoul National University Bundang Hospital, 82 Gumi-Ro 173, Bundang-Gu, Seongnam, 13620, Republic of Korea
- R&D Center, IMGT Co. Ltd., 172, Dolma-Ro, Bundang-Gu, Seongnam, 13605, Republic of Korea
| | - Hyungwon Moon
- R&D Center, IMGT Co. Ltd., 172, Dolma-Ro, Bundang-Gu, Seongnam, 13605, Republic of Korea
| | - Seunghyun Lee
- Department of Radiology, Seoul National University Hospital, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, Republic of Korea.
- Department of Radiology, Seoul National University College of Medicine, 103 Daehak-Ro, Jongno-Gu, Seoul, 03080, Republic of Korea.
- Innovative Medical Technology Research Institute, Seoul National University Hospital, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, Republic of Korea.
| |
Collapse
|
10
|
Nittayacharn P, Abenojar E, Cooley M, Berg F, Counil C, Sojahrood AJ, Khan MS, Yang C, Berndl E, Golczak M, Kolios MC, Exner AA. Efficient ultrasound-mediated drug delivery to orthotopic liver tumors - Direct comparison of doxorubicin-loaded nanobubbles and microbubbles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.01.555196. [PMID: 37732235 PMCID: PMC10508722 DOI: 10.1101/2023.09.01.555196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Liver metastasis is a major obstacle in treating aggressive cancers, and current therapeutic options often prove insufficient. To overcome these challenges, there has been growing interest in ultrasound-mediated drug delivery using lipid-shelled microbubbles (MBs) and nanobubbles (NBs) as promising strategies for enhancing drug delivery to tumors. Our previous work demonstrated the potential of Doxorubicin-loaded C3F8 NBs (hDox-NB, 280 ± 123 nm) in improving cancer treatment in vitro using low-frequency ultrasound. In this study, we investigated the pharmacokinetics and biodistribution of sonicated hDox-NBs in orthotopic rat liver tumors. We compared their delivery and therapeutic efficiency with size-isolated MBs (hDox-MB, 1104 ± 373 nm). Results showed a similar accumulation of hDox in tumors treated with hDox-MBs and unfocused therapeutic ultrasound (hDox-MB+TUS) and hDox-NB+TUS. However, significantly increased apoptotic cell death in the tumor and fewer off-target apoptotic cells in the normal liver were found upon the treatment with hDox-NB+TUS. The tumor-to-liver apoptotic ratio was elevated 9.4-fold following treatment with hDox-NB+TUS compared to hDox-MB+TUS, suggesting that the therapeutic efficacy and specificity are significantly increased when using hDox-NB+TUS. These findings highlight the potential of this approach as a viable treatment modality for liver tumors. By elucidating the behavior of drug-loaded bubbles in vivo, we aim to contribute to developing more effective liver cancer treatments that could ultimately improve patient outcomes and decrease off-target side effects.
Collapse
Affiliation(s)
| | - Eric Abenojar
- Department of Radiology, Case Western Reserve University, Cleveland, OH, USA
| | - Michaela Cooley
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Felipe Berg
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | - Claire Counil
- Department of Radiology, Case Western Reserve University, Cleveland, OH, USA
| | | | | | - Celina Yang
- Department of Physics, Toronto Metropolitan University, Toronto, Canada
| | - Elizabeth Berndl
- Department of Physics, Toronto Metropolitan University, Toronto, Canada
| | - Marcin Golczak
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA
| | - Michael C. Kolios
- Department of Physics, Toronto Metropolitan University, Toronto, Canada
| | - Agata A. Exner
- Department of Radiology, Case Western Reserve University, Cleveland, OH, USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
11
|
Haram M, Hansen R, Bouget D, Myhre OF, Davies CDL, Hofsli E. Treatment of Liver Metastases With Focused Ultrasound and Microbubbles in Patients With Colorectal Cancer Receiving Chemotherapy. ULTRASOUND IN MEDICINE & BIOLOGY 2023:S0301-5629(23)00171-0. [PMID: 37336691 DOI: 10.1016/j.ultrasmedbio.2023.05.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/11/2023] [Accepted: 05/22/2023] [Indexed: 06/21/2023]
Abstract
OBJECTIVE Pre-clinical trials have obtained promising results that focused ultrasound (FUS) combined with microbubbles (MBs) increases tumor uptake and the therapeutic effect of drugs. The aims of the study described here were to investigate whether FUS and MBs could improve the effect of chemotherapy in patients with liver metastases from colorectal cancer and to investigate the safety and feasibility of using FUS + MBs. METHODS We included 17 patients with liver metastases from colorectal cancer, selected two lesions in each patient's liver and randomized the lesions for, respectively, treatment with FUS + MBs or control. After chemotherapy (FOLFIRI or FOLFOXIRI), the lesions were treated with FUS (frequency = 1.67 MHz, mechanical index = 0.5, pulse repetition frequency = 0.33 Hz, 33 oscillations, duty cycle = 0.2%-0.4% and MBs (SonoVue) for 35 min). Nine boluses of MBs were injected intravenously at 3.5 min intervals. Patients were scheduled for four cycles of treatment. Changes in the size of metastases were determined from computed tomography images. RESULTS Treatment with FUS + MBs is safe at the settings used. There was considerable variation in treatment response between lesions and mixed response between lesions receiving only chemotherapy. There is a tendency toward larger-volume reduction in lesions treated with FUS + MBs compared with control lesions, but a mixed response to chemotherapy and lesion heterogeneity make it difficult to interpret the results. CONCLUSION The combination of FUS and MBs is a safe, feasible and available strategy for improving the effect of chemotherapy in cancer patients. Therapeutic effect was not demonstrated in this trial. Multicenter trials with standardized protocols should be performed.
Collapse
Affiliation(s)
- Margrete Haram
- Department of Radiology and Nuclear Medicine, St. Olav's Hospital-Trondheim University Hospital, Trondheim, Norway; Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway; Cancer Clinic, St. Olav's Hospital-Trondheim University Hospital, Trondheim, Norway.
| | - Rune Hansen
- Department of Health Research, SINTEF Digital, Trondheim, Norway; Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - David Bouget
- Department of Health Research, SINTEF Digital, Trondheim, Norway; Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ola Finneng Myhre
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Eva Hofsli
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway; Cancer Clinic, St. Olav's Hospital-Trondheim University Hospital, Trondheim, Norway
| |
Collapse
|
12
|
Navarro-Becerra JA, Borden MA. Targeted Microbubbles for Drug, Gene, and Cell Delivery in Therapy and Immunotherapy. Pharmaceutics 2023; 15:1625. [PMID: 37376072 DOI: 10.3390/pharmaceutics15061625] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/18/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Microbubbles are 1-10 μm diameter gas-filled acoustically-active particles, typically stabilized by a phospholipid monolayer shell. Microbubbles can be engineered through bioconjugation of a ligand, drug and/or cell. Since their inception a few decades ago, several targeted microbubble (tMB) formulations have been developed as ultrasound imaging probes and ultrasound-responsive carriers to promote the local delivery and uptake of a wide variety of drugs, genes, and cells in different therapeutic applications. The aim of this review is to summarize the state-of-the-art of current tMB formulations and their ultrasound-targeted delivery applications. We provide an overview of different carriers used to increase drug loading capacity and different targeting strategies that can be used to enhance local delivery, potentiate therapeutic efficacy, and minimize side effects. Additionally, future directions are proposed to improve the tMB performance in diagnostic and therapeutic applications.
Collapse
Affiliation(s)
| | - Mark A Borden
- Mechanical Engineering Department, University of Colorado Boulder, Boulder, CO 80309, USA
- Biomedical Engineering Program, University of Colorado Boulder, Boulder, CO 80309, USA
| |
Collapse
|
13
|
Brown CP, Hughes MDG, Mahmoudi N, Brockwell DJ, Coletta PL, Peyman S, Evans SD, Dougan L. Structural and mechanical properties of folded protein hydrogels with embedded microbubbles. Biomater Sci 2023; 11:2726-2737. [PMID: 36815670 PMCID: PMC10088474 DOI: 10.1039/d2bm01918c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/02/2023] [Indexed: 02/11/2023]
Abstract
Globular folded proteins are powerful building blocks to create biomaterials with mechanical robustness and inherent biological functionality. Here we explore their potential as advanced drug delivery scaffolds, by embedding microbubbles (MBs) within a photo-activated, chemically cross-linked bovine serum albumin (BSA) protein network. Using a combination of circular dichroism (CD), rheology, small angle neutron scattering (SANS) and microscopy we determine the nanoscale and mesoscale structure and mechanics of this novel multi-composite system. Optical and confocal microscopy confirms the presence of MBs within the protein hydrogel, their reduced diffusion and their effective rupture using ultrasound, a requirement for burst drug release. CD confirms that the inclusion of MBs does not impact the proportion of folded proteins within the cross-linked protein network. Rheological characterisation demonstrates that the mechanics of the BSA hydrogels is reduced in the presence of MBs. Furthermore, SANS reveals that embedding MBs in the protein hydrogel network results in a smaller number of clusters that are larger in size (∼16.6% reduction in number of clusters, 17.4% increase in cluster size). Taken together, we show that MBs can be successfully embedded within a folded protein network and ruptured upon application of ultrasound. The fundamental insight into the impact of embedded MBs in protein scaffolds at the nanoscale and mesoscale is important in the development of future platforms for targeted and controlled drug delivery applications.
Collapse
Affiliation(s)
- Christa P Brown
- School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Leeds, Leeds, UK.
| | - Matt D G Hughes
- School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Leeds, Leeds, UK.
| | - Najet Mahmoudi
- ISIS Neutron and Muon Spallation Source, STFC Rutherford Appleton Laboratory, Oxfordshire, UK
| | - David J Brockwell
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, UK
| | - P Louise Coletta
- Leeds Institute of Medical Research, Wellcome Trust Brenner Building, St James's University Hospital, Leeds, UK
| | - Sally Peyman
- School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Leeds, Leeds, UK.
| | - Stephen D Evans
- School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Leeds, Leeds, UK.
| | - Lorna Dougan
- School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Leeds, Leeds, UK.
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| |
Collapse
|
14
|
Armistead FJ, Batchelor DVB, Johnson BRG, Evans SD. QCM-D Investigations on Cholesterol-DNA Tethering of Liposomes to Microbubbles for Therapy. J Phys Chem B 2023; 127:2466-2474. [PMID: 36917458 PMCID: PMC10041634 DOI: 10.1021/acs.jpcb.2c07256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Lipid-shelled microbubbles (MBs) offer potential as theranostic agents, capable of providing both contrast enhancement in ultrasound imaging as well as a route for triggered drug release and improved localized drug delivery. A common motif in the design of such therapeutic vehicles is the attachment of the drug carrier, often in the form of liposomes, to the microbubble. Traditionally, such attachments have been based around biotin-streptavidin and maleimide-PDP chemistries. Comparatively, the use of DNA-lipid tethers offers potential advantage. First, their specificity permits the construction of more complex architectures that might include bespoke combinations of different drug-loaded liposomes and/or targeting groups, such as affimers or antibodies. Second, the use of dual-lipid tether strategies should increase the strength of the individual tethers tethering the liposomes to the bubbles. The ability of cholesterol-DNA (cDNA) tethers for conjugation of liposomes to supported lipid bilayers has previously been demonstrated. For in vivo applications, bubbles and liposomes often contain a proportion of polyethylene glycol (PEG) to promote stealth-like properties and increase lifetimes. However, the associated steric effects may hinder tethering of the drug payload. We show that while the presence of PEG reduced the tethering affinity, cDNA can still be used for the attachment of liposomes to a supported lipid bilayer (SLB) as measured via QCM-D. Importantly, we show, for the first time, that QCM-D can be used to study the tethering of microbubbles to SLBs using cDNA, signified by a decrease in the magnitude of the frequency shift compared to liposomes alone due to the reduced density of the MBs. We then replicate this tethering interaction in the bulk and observe attachment of liposomes to the shell of a central MB and hence formation of a model therapeutic microbubble.
Collapse
Affiliation(s)
- Fern J Armistead
- Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Damien V B Batchelor
- Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Benjamin R G Johnson
- Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Stephen D Evans
- Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
15
|
Bourn MD, Mohajerani SZ, Mavria G, Ingram N, Coletta PL, Evans SD, Peyman SA. Tumour associated vasculature-on-a-chip for the evaluation of microbubble-mediated delivery of targeted liposomes. LAB ON A CHIP 2023; 23:1674-1693. [PMID: 36779251 PMCID: PMC10013341 DOI: 10.1039/d2lc00963c] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
The vascular system is the primary route for the delivery of therapeutic drugs throughout the body and is an important barrier at the region of disease interest, such as a solid tumour. The development of complex 3D tumour cultures has progressed significantly in recent years however, the generation of perfusable vascularised tumour models still presents many challenges. This study presents a microfluidic-based vasculature system that can be induced to display properties of tumour-associated blood vessels without direct incorporation of tumour cells. Conditioning healthy endothelial-fibroblast cell vasculature co-cultures with media taken from tumour cell cultures was found to result in the formation of disorganised, tortuous networks which display characteristics consistent with those of tumour-associated vasculature. Integrin αvβ3, a cell adhesion receptor associated with angiogenesis, was found to be upregulated in vasculature co-cultures conditioned with tumour cell media (TCM) - consistent with the reported αvβ3 expression pattern in angiogenic tumour vasculature in vivo. Increased accumulation of liposomes (LSs) conjugated to antibodies against αvβ3 was observed in TCM networks compared to non-conditioned networks, indicating αvβ3 may be a potential target for the delivery of drugs specifically to tumour vasculature. Furthermore, the use of microbubbles (MBs) and ultrasound (US) to further enhance the delivery of LSs to TCM-conditioned vasculature was investigated. Quantification of fluorescent LS accumulation post-perfusion of the vascular network showed 3-fold increased accumulation with the use of MBs and US, suggesting that targeted LS delivery could be further improved with the use of locally administered MBs and US.
Collapse
Affiliation(s)
- Matthew D Bourn
- School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK.
- Leeds Institute for Medical Research, Wellcome Trust Brenner Building, St James' University Hospital, Leeds, LS9 7TF, UK
| | - Safoura Zahed Mohajerani
- Leeds Institute for Medical Research, Wellcome Trust Brenner Building, St James' University Hospital, Leeds, LS9 7TF, UK
| | - Georgia Mavria
- Leeds Institute for Medical Research, Wellcome Trust Brenner Building, St James' University Hospital, Leeds, LS9 7TF, UK
| | - Nicola Ingram
- Leeds Institute for Medical Research, Wellcome Trust Brenner Building, St James' University Hospital, Leeds, LS9 7TF, UK
| | - P Louise Coletta
- Leeds Institute for Medical Research, Wellcome Trust Brenner Building, St James' University Hospital, Leeds, LS9 7TF, UK
| | - Stephen D Evans
- School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK.
| | - Sally A Peyman
- School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK.
- Leeds Institute for Medical Research, Wellcome Trust Brenner Building, St James' University Hospital, Leeds, LS9 7TF, UK
| |
Collapse
|
16
|
Tumor Spheroids as Model to Design Acoustically Mediated Drug Therapies: A Review. Pharmaceutics 2023; 15:pharmaceutics15030806. [PMID: 36986667 PMCID: PMC10056013 DOI: 10.3390/pharmaceutics15030806] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/22/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Tumor spheroids as well as multicellular tumor spheroids (MCTSs) are promising 3D in vitro tumor models for drug screening, drug design, drug targeting, drug toxicity, and validation of drug delivery methods. These models partly reflect the tridimensional architecture of tumors, their heterogeneity and their microenvironment, which can alter the intratumoral biodistribution, pharmacokinetics, and pharmacodynamics of drugs. The present review first focuses on current spheroid formation methods and then on in vitro investigations exploiting spheroids and MCTS for designing and validating acoustically mediated drug therapies. We discuss the limitations of the current studies and future perspectives. Various spheroid formation methods enable the easy and reproducible generation of spheroids and MCTSs. The development and assessment of acoustically mediated drug therapies have been mainly demonstrated in spheroids made up of tumor cells only. Despite the promising results obtained with these spheroids, the successful evaluation of these therapies will need to be addressed in more relevant 3D vascular MCTS models using MCTS-on-chip platforms. These MTCSs will be generated from patient-derived cancer cells and nontumor cells, such as fibroblasts, adipocytes, and immune cells.
Collapse
|
17
|
Zhu J, Ji L, Chen Y, Li H, Huang M, Dai Z, Wang J, Xiang D, Fu G, Lei Z, Chu X. Organoids and organs-on-chips: insights into predicting the efficacy of systemic treatment in colorectal cancer. Cell Death Discov 2023; 9:72. [PMID: 36813783 PMCID: PMC9947255 DOI: 10.1038/s41420-023-01354-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/18/2023] [Accepted: 01/30/2023] [Indexed: 02/24/2023] Open
Abstract
Cancer heterogeneity has posed a great challenge to traditional cancer treatment, with the reappearance of cancer heterogeneity of inter and intra patients being especially critical. Based on this, personalized therapy has emerged as significant research focus in recent and even future years. Cancer-related therapeutic models are developing, including cell lines, patient-derived xenografts, organoids, etc. Organoids are three-dimensional in vitro models emerged in the past dozen years and are able to reproduce the cellular and molecular composition of the original tumor. These advantages demonstrate the great potential for patient-derived organoids to develop personalized anticancer therapies, including preclinical drug screening and the prediction of patient treatment response. The impact of microenvironment on cancer treatment cannot be underestimated, and the remodeling of microenvironment also allows organoids to interact with other technologies, among which organs-on-chips is a representative one. This review highlights the use of organoids and organs-on-chips as complementary reference tools in treating colorectal cancer from the perspective of clinical efficacy predictability. We also discuss the limitations of both techniques and how they complement each other well.
Collapse
Affiliation(s)
- Jialong Zhu
- grid.284723.80000 0000 8877 7471Department of Medical Oncology, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, 210000 China
| | - Linlin Ji
- grid.41156.370000 0001 2314 964XDepartment of Medical Oncology, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210000 China
| | - Yitian Chen
- grid.284723.80000 0000 8877 7471Department of Medical Oncology, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, 210000 China ,grid.41156.370000 0001 2314 964XDepartment of Medical Oncology, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210000 China ,grid.89957.3a0000 0000 9255 8984Department of Medical Oncology, Jinling Hospital, Nanjing Medical University, Nanjing, 210000 China ,grid.410745.30000 0004 1765 1045Department of Medical Oncology, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing, 210000 China
| | - Huiyu Li
- grid.41156.370000 0001 2314 964XDepartment of Medical Oncology, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210000 China
| | - Mengxi Huang
- grid.41156.370000 0001 2314 964XDepartment of Medical Oncology, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210000 China
| | - Zhe Dai
- grid.41156.370000 0001 2314 964XDepartment of Medical Oncology, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210000 China
| | - Jing Wang
- grid.41156.370000 0001 2314 964XDepartment of Medical Oncology, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210000 China
| | - Dan Xiang
- grid.41156.370000 0001 2314 964XDepartment of Medical Oncology, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210000 China
| | - Gongbo Fu
- Department of Medical Oncology, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, 210000, China. .,Department of Medical Oncology, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210000, China. .,Department of Medical Oncology, Jinling Hospital, Nanjing Medical University, Nanjing, 210000, China. .,Department of Medical Oncology, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing, 210000, China.
| | - Zengjie Lei
- Department of Medical Oncology, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, 210000, China. .,Department of Medical Oncology, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210000, China. .,Department of Medical Oncology, Jinling Hospital, Nanjing Medical University, Nanjing, 210000, China. .,Department of Medical Oncology, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing, 210000, China.
| | - Xiaoyuan Chu
- Department of Medical Oncology, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, 210000, China. .,Department of Medical Oncology, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210000, China. .,Department of Medical Oncology, Jinling Hospital, Nanjing Medical University, Nanjing, 210000, China. .,Department of Medical Oncology, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing, 210000, China.
| |
Collapse
|
18
|
Zafar MN, Abuwatfa WH, Husseini GA. Acoustically-Activated Liposomal Nanocarriers to Mitigate the Side Effects of Conventional Chemotherapy with a Focus on Emulsion-Liposomes. Pharmaceutics 2023; 15:421. [PMID: 36839744 PMCID: PMC9963571 DOI: 10.3390/pharmaceutics15020421] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/31/2023] Open
Abstract
To improve currently available cancer treatments, nanomaterials are employed as smart drug delivery vehicles that can be engineered to locally target cancer cells and respond to stimuli. Nanocarriers can entrap chemotherapeutic drugs and deliver them to the diseased site, reducing the side effects associated with the systemic administration of conventional anticancer drugs. Upon accumulation in the tumor cells, the nanocarriers need to be potentiated to release their therapeutic cargo. Stimulation can be through endogenous or exogenous modalities, such as temperature, electromagnetic irradiation, ultrasound (US), pH, or enzymes. This review discusses the acoustic stimulation of different sonosensitive liposomal formulations. Emulsion liposomes, or eLiposomes, are liposomes encapsulating phase-changing nanoemulsion droplets, which promote acoustic droplet vaporization (ADV) upon sonication. This gives eLiposomes the advantage of delivering the encapsulated drug at low intensities and short exposure times relative to liposomes. Other formulations integrating microbubbles and nanobubbles are also discussed.
Collapse
Affiliation(s)
- Mah Noor Zafar
- Biomedical Engineering Program, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - Waad H. Abuwatfa
- Department of Chemical and Biological Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - Ghaleb A. Husseini
- Department of Chemical and Biological Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| |
Collapse
|
19
|
Recent progress in theranostic microbubbles. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
20
|
Kim J, Menichella B, Lee H, Dayton PA, Pinton GF. A Rapid Prototyping Method for Sub-MHz Single-Element Piezoelectric Transducers by Using 3D-Printed Components. SENSORS (BASEL, SWITZERLAND) 2022; 23:s23010313. [PMID: 36616910 PMCID: PMC9823623 DOI: 10.3390/s23010313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/22/2022] [Accepted: 12/24/2022] [Indexed: 06/05/2023]
Abstract
We present a rapid prototyping method for sub-megahertz single-element piezoelectric transducers by using 3D-printed components. In most of the early research phases of applying new sonication ideas, the prototyping quickness is prioritized over the final packaging quality, since the quickness of preliminary demonstration is crucial for promptly determining specific aims and feasible research approaches. We aim to develop a rapid prototyping method for functional ultrasonic transducers to overcome the current long lead time (>a few weeks). Here, we used 3D-printed external housing parts considering a single matching layer and either air backing or epoxy-composite backing (acoustic impedance > 5 MRayl). By molding a single matching layer on the top surface of a piezoceramic in a 3D-printed housing, an entire packaging time was significantly reduced (<26 h) compared to the conventional methods with grinding, stacking, and bonding. We demonstrated this prototyping method for 590-kHz single-element, rectangular-aperture transducers for moderate pressure amplitudes (mechanical index > 1) at focus with temporal pulse controllability (maximum amplitude by <5-cycle burst). We adopted an air-backing design (Type A) for efficient pressure outputs, and bandwidth improvement was tested by a tungsten-composite-backing (Type B) design. The acoustic characterization results showed that the type A prototype provided 3.3 kPa/Vpp far-field transmitting sensitivity with 25.3% fractional bandwidth whereas the type B transducer showed 2.1 kPa/Vpp transmitting sensitivity with 43.3% fractional bandwidth. As this method provided discernable quickness and cost efficiency, this detailed rapid prototyping guideline can be useful for early-phase sonication projects, such as multi-element therapeutic ultrasound array and micro/nanomedicine testing benchtop device prototyping.
Collapse
|
21
|
Luo T, Bai L, Zhang Y, Huang L, Li H, Gao S, Dong X, Li N, Liu Z. Optimal treatment occasion for ultrasound stimulated microbubbles in promoting gemcitabine delivery to VX2 tumors. Drug Deliv 2022; 29:2796-2804. [PMID: 36047064 PMCID: PMC9448370 DOI: 10.1080/10717544.2022.2115163] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Ultrasound stimulated microbubbles (USMB) is a widely used technology that can promote chemotherapeutic delivery to tumors yet the best treatment occasion for USMB is unknown or ignored. We aimed to determine the optimal treatment occasion for USMB treatment to enhance tumor chemotherapy to achieve the highest drug concentration in tumors. Experiments were conducted on VX2 tumors implanted in 60 rabbits. Gemcitabine (GEM) was intravenously infused as a chemotherapeutic agent and USMB was administered before, during or after chemotherapy. USMB was conducted with a modified diagnostic ultrasound at 3 MHz employing short bursts (5 cycles and 0.125% duty cycle) at 0.26 MPa in combination with a lipid microbubble. Subsequently, tumor blood perfusion quantitation, drug concentration detection, and fluorescence microscopy were performed. The results showed that the group that received USMB treatment immediately after GEM infusion had the highest drug concentration in tumors, which was 2.83 times that of the control group. Fifteen tumors were then treated repeatedly with the optimal USMB-plus-GEM combination, and along with the GEM and the control groups, were studied for tumor growth, tumor cell proliferation, apoptosis, and related cytokine contents. The combined treatment significantly inhibited tumor growth and promoted apoptosis. The levels of related cytokines, including HIF-1α, decreased after six combination therapies. These results suggest that the optimal treatment occasion for USMB occurs immediately after chemotherapy and tumor hypoxia improves after multiple combination therapies.
Collapse
Affiliation(s)
- Tingting Luo
- Department of Ultrasound, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Luhua Bai
- Department of Ultrasound, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yi Zhang
- Department of Ultrasound, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Leidan Huang
- Department of Ultrasound, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Hui Li
- Department of Ultrasound, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Shunji Gao
- Department of Ultrasound, General Hospital of Central Theatre Command, Wuhan, China
| | - Xiaoxiao Dong
- Department of Ultrasound, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Ningshan Li
- Department of Ultrasound, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Zheng Liu
- Department of Ultrasound, Xinqiao Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
22
|
Batchelor DB, Armistead FJ, Ingram N, Peyman SA, McLaughlan JR, Coletta PL, Evans SD. The Influence of Nanobubble Size and Stability on Ultrasound Enhanced Drug Delivery. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:13943-13954. [PMID: 36322191 PMCID: PMC9671049 DOI: 10.1021/acs.langmuir.2c02303] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Lipid-shelled nanobubbles (NBs) are emerging as potential dual diagnostic and therapeutic agents. Similar to their micron-scale counterparts, microbubbles (1-10 μm), they can act as ultrasound contrast agents as well as locally enhance therapeutic uptake. Recently, it has been shown that the reduced size of NBs (<1 μm) promotes increased uptake and accumulation in tumor interstitial space, which can enhance their diagnostic and therapeutic performance. However, accurate characterization of NB size and concentration is challenging and may limit their translation into clinical use. Their submicron nature limits accuracy of conventional microscopy techniques, while common light scattering techniques fail to distinguish between subpopulations present in NB samples (i.e., bubbles and liposomes). Due to the difficulty in the characterization of NBs, relatively little is known about the influence of size on their therapeutic performance. In this study, we describe a novel method of using a commercially available nanoparticle tracking analysis system, to distinguish between NBs and liposomes based on their differing optical properties. We used this technique to characterize three NB populations of varying size, isolated via centrifugation, and subsequently used this to assess their potential for enhancing localized delivery. Confocal fluorescence microscopy and image analysis were used to quantify the ultrasound enhanced uptake of fluorescent dextran into live colorectal cancer cells. Our results showed that the amount of localized uptake did not follow the expected trends, in which larger NB populations out-perform smaller NBs, at matched concentration. To understand this observed behavior, the stability of each NB population was assessed. It was found that dilution of the NB samples from their stock concentration influences their stability, and it is hypothesized that both the total free lipid and interbubble distance play a role in NB lifetime, in agreement with previously proposed theories and models.
Collapse
Affiliation(s)
- Damien
V. B. Batchelor
- Molecular
and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, LeedsLS2 9JT, United Kingdom
| | - Fern J. Armistead
- Molecular
and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, LeedsLS2 9JT, United Kingdom
| | - Nicola Ingram
- Leeds
Institute of Medical Research, Wellcome Trust Brenner Building, St James’s University Hospital, LeedsLS9 7TF, United Kingdom
- Faculty
of Electronic and Electrical Engineering, University of Leeds, LeedsLS2 9JT, United Kingdom
| | - Sally A. Peyman
- Molecular
and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, LeedsLS2 9JT, United Kingdom
| | - James R. McLaughlan
- Leeds
Institute of Medical Research, Wellcome Trust Brenner Building, St James’s University Hospital, LeedsLS9 7TF, United Kingdom
- Faculty
of Electronic and Electrical Engineering, University of Leeds, LeedsLS2 9JT, United Kingdom
| | - P. Louise Coletta
- Leeds
Institute of Medical Research, Wellcome Trust Brenner Building, St James’s University Hospital, LeedsLS9 7TF, United Kingdom
| | - Stephen D. Evans
- Molecular
and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, LeedsLS2 9JT, United Kingdom
| |
Collapse
|
23
|
Ultrastable shelled PFC nanobubbles: A platform for ultrasound-assisted diagnostics, and therapy. NANOMEDICINE: NANOTECHNOLOGY, BIOLOGY AND MEDICINE 2022; 46:102611. [DOI: 10.1016/j.nano.2022.102611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/06/2022] [Accepted: 09/23/2022] [Indexed: 11/13/2022]
|
24
|
Chen Y, Luo X, Liu Y, Zou Y, Yang S, Liu C, Zhao Y. Targeted Nanobubbles of PD-L1 mAb Combined with Doxorubicin as a Synergistic Tumor Repressor in Hepatocarcinoma. Int J Nanomedicine 2022; 17:3989-4008. [PMID: 36105615 PMCID: PMC9464779 DOI: 10.2147/ijn.s376172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/21/2022] [Indexed: 12/14/2022] Open
Abstract
Purpose Ultrasound nanobubbles (NBs) can kill tumor cells, mediated by their effects of cavitation and acoustic perforation through ultrasound, while as novel drug carriers, biomaterial-modified NBs release drugs at a target region. In this work, the ultrasound NBs bridged by biotin-streptavidin were prepared simultaneously to be loaded with both programmed death ligand 1 monoclonal antibody (PD-L1 mAb) and doxorubicin (DOX), which are immune checkpoint inhibitors (ICIs) and chemotherapeutic agents, to synergize immunotherapy and chemotherapy combined with sonodynamic therapy (SDT). Methods The PD-L1 mAb/DOX NBs, using bridging affinity biotin (BRAB) technology as a bridge, were prepared by thin-film hydration and mechanical oscillation for the targeted delivery of biotinylated PD-L1 mAb and DOX. Characterization and pharmacokinetic studies of PD-L1 mAb/DOX NBs were performed in vitro and in vivo. The antitumor effect of ultrasound-mediated PD-L1 mAb/DOX-NBs was studied in the subcutaneously transplanted tumor of the H22 hepatoma model, and the mechanism of synergistic tumor repression was investigated. Results The data of in vitro targeting experiments, contrast-enhanced ultrasound imaging (CEUS), in vivo imaging of the small animals imaging system (IVIS), and frozen sections showed that PD-L1 mAb/DOX-NBs have well-targeted aggregation in the tumor. By observing tumor inhibition rate, tissue cell apoptosis, and apoptosis-related gene and protein expression, the PD-L1 mAb/DOX-NBs group showed the best immunotherapy effects, and its tumor volume and mass inhibition rates were about 69.64% and 75.97%, respectively (P < 0.01). Therefore, blocking the PD-1/PD-L1 pathway could improve immune cells’ tumor-killing ability. Antitumor immune cytokines were further enhanced when combined with DOX-induced tumor cell apoptosis and immunogenic cell death (ICD). Conclusion In summary, ultrasound-mediated PD-L1 mAb/DOX-NBs showed significant synergistic antitumor effects, providing a potential combined immunotherapy strategy for HCC.
Collapse
Affiliation(s)
- Yezi Chen
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, People's Republic of China.,Medical College of China Three Gorges University, Yichang, People's Republic of China
| | - Xiaoqin Luo
- Medical College of China Three Gorges University, Yichang, People's Republic of China.,Department of Medical Imaging Center, Renmin Hospital Affiliated to Hubei University of Medicine, Shiyan, People's Republic of China
| | - Yun Liu
- Department of Ultrasonography, Yichang Central People's Hospital, Yichang, People's Republic of China
| | - Yunlei Zou
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, People's Republic of China.,Medical College of China Three Gorges University, Yichang, People's Republic of China
| | - Shiqi Yang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, People's Republic of China.,Medical College of China Three Gorges University, Yichang, People's Republic of China
| | - Chaoqi Liu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, People's Republic of China.,Medical College of China Three Gorges University, Yichang, People's Republic of China
| | - Yun Zhao
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, People's Republic of China.,Medical College of China Three Gorges University, Yichang, People's Republic of China
| |
Collapse
|
25
|
van Wamel A, Mühlenpfordt M, Hansen R, Healey A, Villanueva FS, Kotopoulis S, Davies CDL, Chen X. Ultrafast Microscopy Imaging of Acoustic Cluster Therapy Bubbles: Activation and Oscillation. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:1840-1857. [PMID: 35773079 DOI: 10.1016/j.ultrasmedbio.2022.05.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 02/15/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Acoustic Cluster Therapy (ACT®) is a platform for improving drug delivery and has had promising pre-clinical results. A clinical trial is ongoing. ACT® is based on microclusters of microbubbles-microdroplets that, when sonicated, form a large ACT® bubble. The aim of this study was to obtain new knowledge on the dynamic formation and oscillations of ACT® bubbles by ultrafast optical imaging in a microchannel. The high-speed recordings revealed the microbubble-microdroplet fusion, and the gas in the microbubble acted as a vaporization seed for the microdroplet. Subsequently, the bubble grew by gas diffusion from the surrounding medium and became a large ACT® bubble with a diameter of 5-50 μm. A second ultrasound exposure at lower frequency caused the ACT® bubble to oscillate. The recorded oscillations were compared with simulations using the modified Rayleigh-Plesset equation. A term accounting for the physical boundary imposed by the microchannel wall was included. The recorded oscillation amplitudes were approximately 1-2 µm, hence similar to oscillations of smaller contrast agent microbubbles. These findings, together with our previously reported promising pre-clinical therapeutic results, suggest that these oscillations covering a large part of the vessel wall because of the large bubble volume can substantially improve therapeutic outcome.
Collapse
Affiliation(s)
- Annemieke van Wamel
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Melina Mühlenpfordt
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Rune Hansen
- Department of Health Research, SINTEF Digital, Trondheim, Norway; Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Flordeliza S Villanueva
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Spiros Kotopoulis
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | | | - Xucai Chen
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
26
|
Fan CH, Ho YJ, Lin CW, Wu N, Chiang PH, Yeh CK. State-of-the-art of ultrasound-triggered drug delivery from ultrasound-responsive drug carriers. Expert Opin Drug Deliv 2022; 19:997-1009. [PMID: 35930441 DOI: 10.1080/17425247.2022.2110585] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The development of new tools to locally and non-invasively transferring therapeutic substances at the desired site in deep living tissue has been a long sought-after goal within the drug delivery field. Among the established methods, ultrasound (US) with US-responsive carriers holds great promise and demonstrates on-demand delivery of a variety of functional substances with spatial precision of several millimeters in deep-seated tissues in animal models and humans. These properties have motivated several explorations of US with US responsive carriers as a modality for neuromodulation and the treatment of various diseases, such as stroke and cancer. AREAS COVERED This article briefly discussed three specific mechanisms that enhance in vivo drug delivery via US with US-responsive carriers: 1) permeabilizing cellular membrane, 2) increasing the permeability of vessels, and 3) promoting cellular endocytotic uptake. Besides, a series of US-responsive drug carriers are discussed, with an emphasis on the relation between structural feature and therapeutic outcome. EXPERT OPINION This article summarized current development for each of US-responsive drug carrier, focusing on the routes of enhancing delivery and applications. The mechanisms of interaction between US-responsive carriers and US energy, such as cavitation, hyperthermia, and reactive oxygen species, as well as how these interactions can improve drug delivery into target cell/tissue. It can be expected that there are serval efforts to further identification of US-responsive particles, design of novel US waveform sequence, and survey of optimal combination between US parameters and US-responsive carriers for better controlling the spatiotemporal drug release profile, stability, and safety in vivo. The authors believe these will provide novel tools for precisely designing treatment strategies and significantly benefit the clinical management of several diseases.
Collapse
Affiliation(s)
- Ching-Hsiang Fan
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan.,Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Ju Ho
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Chia-Wei Lin
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Nan Wu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Pei-Hua Chiang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Chih-Kuang Yeh
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
27
|
Omata D, Munakata L, Maruyama K, Suzuki R. Ultrasound and microbubble-mediated drug delivery and immunotherapy. J Med Ultrason (2001) 2022:10.1007/s10396-022-01201-x. [PMID: 35403931 DOI: 10.1007/s10396-022-01201-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 01/19/2022] [Indexed: 12/17/2022]
Abstract
Ultrasound induces the oscillation and collapse of microbubbles such as those of an ultrasound contrast agent, where these behaviors generate mechanical and thermal effects on cells and tissues. These, in turn, induce biological responses in cells and tissues, such as cellular signaling, endocytosis, or cell death. These physiological effects have been used for therapeutic purposes. Most pharmaceutical agents need to pass through the blood vessel walls and reach the parenchyma cells to produce therapeutic effects in drug delivery. Therefore, the blood vessel walls act as an obstacle to drug delivery. The combination of ultrasound and microbubbles is a promising strategy to enhance vascular permeability, improving drug transport from blood to tissues. This combination has also been applied to gene and protein delivery, such as cytokines and antigens for immunotherapy. Immunotherapy, in particular, is an attractive technique for cancer treatment as it induces a cancer cell-specific response. However, sufficient anti-tumor effects have not been achieved with the conventional cancer immunotherapy. Recently, new therapies based on immunomodulation with immune checkpoint inhibitors have been reported. Immunomodulation can be regarded as a new strategy for cancer immunotherapy. It was also reported that mechanical and thermal effects induced by the combination of ultrasound and microbubbles could suppress tumor growth by promoting the cancer-immunity cycle via immunomodulation in the tumor microenvironment. In this review, we provide an overview of the application of ultrasound and microbubble combination for drug delivery and activation of the immune system in the microenvironment of tumor tissue.
Collapse
Affiliation(s)
- Daiki Omata
- Laboratory of Drug and Gene Delivery Research, Faculty of Pharma-Science, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Lisa Munakata
- Laboratory of Drug and Gene Delivery Research, Faculty of Pharma-Science, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Kazuo Maruyama
- Department of Theranostics, Faculty of Pharma-Science, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
- Advanced Comprehensive Research Organization (ACRO), Teikyo University, 2-21-1, Kaga, Itabashi-ku, Tokyo, 173-0003, Japan
| | - Ryo Suzuki
- Laboratory of Drug and Gene Delivery Research, Faculty of Pharma-Science, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan.
- Advanced Comprehensive Research Organization (ACRO), Teikyo University, 2-21-1, Kaga, Itabashi-ku, Tokyo, 173-0003, Japan.
| |
Collapse
|
28
|
Escoffre JM, Sekkat N, Oujagir E, Bodard S, Mousset C, Presset A, Chautard R, Ayoub J, Lecomte T, Bouakaz A. Delivery of anti-cancer drugs using microbubble-assisted ultrasound in digestive oncology: From preclinical to clinical studies. Expert Opin Drug Deliv 2022; 19:421-433. [PMID: 35363586 DOI: 10.1080/17425247.2022.2061459] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The combination of microbubbles (MBs) and ultrasound (US) is an emerging method for the noninvasive and targeted enhancement of intratumor chemotherapeutic uptake. This method showed an increased local drug extravasation in tumor tissue while reducing the systemic adverse effects in various tumor models. AREA COVERED We focused on preclinical and clinical studies investigating the therapeutic efficacy and safety of this technology for the treatment of colorectal, pancreatic and liver cancers. We discussed the limitations of the current investigations and future perspectives. EXPERT OPINION The therapeutic efficacy and the safety of delivery of standard chemotherapy regimen using MB-assisted US have been mainly demonstrated in subcutaneous models of digestive cancers. Although some clinical trials on pancreatic ductal carcinoma and hepatic metastases from various digestive cancers have shown promising results, successful evaluation of this method in terms of US settings, chemotherapeutic schemes and MBs-related parameters will need to be addressed in more relevant preclinical models of digestive cancers, in small and large animals before fully and successfully translating this technology for clinic use. Ultimately, a clear evidence of the correlation between the enhanced intratumoral concentrations of therapeutics and the increased therapeutic response of tumors have to be provided in clinical trials.
Collapse
Affiliation(s)
| | - Najib Sekkat
- Université de Tours, UMR 1253, iBrain, Inserm, Tours, France
| | - Edward Oujagir
- Université de Tours, UMR 1253, iBrain, Inserm, Tours, France
| | - Sylvie Bodard
- Université de Tours, UMR 1253, iBrain, Inserm, Tours, France
| | - Coralie Mousset
- Université de Tours, UMR 1253, iBrain, Inserm, Tours, France
| | - Antoine Presset
- Université de Tours, UMR 1253, iBrain, Inserm, Tours, France
| | - Romain Chautard
- Inserm UMR 1069, Nutrition, Croissance et Cancer (N2C), Université de Tours, Tours, France.,Department of Hepato-Gastroenterology & Digestive Oncology, CHRU de Tours, Tours, France
| | - Jean Ayoub
- Université de Tours, UMR 1253, iBrain, Inserm, Tours, France.,Departement of Echography & Doppler, CHRU de Tours, Tours, France
| | - Thierry Lecomte
- Inserm UMR 1069, Nutrition, Croissance et Cancer (N2C), Université de Tours, Tours, France.,Department of Hepato-Gastroenterology & Digestive Oncology, CHRU de Tours, Tours, France
| | - Ayache Bouakaz
- Université de Tours, UMR 1253, iBrain, Inserm, Tours, France
| |
Collapse
|
29
|
Vermeulen I, Isin EM, Barton P, Cillero-Pastor B, Heeren RM. Multimodal molecular imaging in drug discovery and development. Drug Discov Today 2022; 27:2086-2099. [DOI: 10.1016/j.drudis.2022.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/03/2022] [Accepted: 04/08/2022] [Indexed: 02/06/2023]
|
30
|
Lin C, Chen YZ, Wu B, Yang MT, Liu CQ, Zhao Y. Advances and prospects of ultrasound targeted drug delivery systems using biomaterial-modified micro/nanobubbles for tumor therapy. Curr Med Chem 2022; 29:5062-5075. [PMID: 35362371 DOI: 10.2174/0929867329666220331110315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/18/2022] [Accepted: 02/01/2022] [Indexed: 11/22/2022]
Abstract
The incidence of malignant tumors is rising rapidly and tends to be in the younger, which has been one of the most important factors endangering the safety of human life. Ultrasound micro/nanobubbles, as a noninvasive and highly specific antitumor strategy, can reach and destroy tumor tissue through their effects of cavitation and acoustic perforation under the guidance of ultrasound. Meanwhile, micro/nanobubbles are now used as a novel drug carrier, releasing drugs at a target region, especially on the prospects of biomaterial-modified micro/nanobubbles as a dual modality for drug delivery and therapeutic monitoring. and successful evaluation of the sonoporation mechanism(s), ultrasound parameters, drug type and dose will need to be addressed before translating this technology for clinical use. Therefore, this paper collects the literature on the experimental and clinical studies of ultrasound biomaterial-modified micro/nanobubbles therapy in vitro and in vivo in recent years.
Collapse
Affiliation(s)
- Chen Lin
- Medical College of China three Gorges University;Yichang; China
| | - Ye-Zi Chen
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy,China Three Gorges University; Yichang; China
| | - Bo Wu
- Medical College of China three Gorges University;Yichang; China
| | - Meng-Ting Yang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy,China Three Gorges University; Yichang; China
| | - Chao-Qi Liu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy,China Three Gorges University; Yichang; China
| | - Yun Zhao
- Medical College of China three Gorges University;Yichang; China
| |
Collapse
|
31
|
Ingram N, McVeigh LE, Abou-Saleh RH, Batchelor DVB, Loadman PM, McLaughlan JR, Markham AF, Evans SD, Coletta PL. A Single Short 'Tone Burst' Results in Optimal Drug Delivery to Tumours Using Ultrasound-Triggered Therapeutic Microbubbles. Pharmaceutics 2022; 14:pharmaceutics14030622. [PMID: 35335995 PMCID: PMC8953493 DOI: 10.3390/pharmaceutics14030622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/04/2022] [Accepted: 03/09/2022] [Indexed: 12/10/2022] Open
Abstract
Advanced drug delivery systems, such as ultrasound-mediated drug delivery, show great promise for increasing the therapeutic index. Improvements in delivery by altering the ultrasound parameters have been studied heavily in vitro but relatively little in vivo. Here, the same therapeutic microbubble and tumour type are used to determine whether altering ultrasound parameters can improve drug delivery. Liposomes were loaded with SN38 and attached via avidin: biotin linkages to microbubbles. The whole structure was targeted to the tumour vasculature by the addition of anti-vascular endothelial growth factor receptor 2 antibodies. Tumour drug delivery and metabolism were quantified in SW480 xenografts after application of an ultrasound trigger to the tumour region. Increasing the trigger duration from 5 s to 2 min or increasing the number of 5 s triggers did not improve drug delivery, nor did changing to a chirp trigger designed to stimulate a greater proportion of the microbubble population, although this did show that the short tone trigger resulted in greater release of free SN38. Examination of ultrasound triggers in vivo to improve drug delivery is justified as there are multiple mechanisms at play that may not allow direct translation from in vitro findings. In this setting, a short tone burst gives the best ultrasound parameters for tumoural drug delivery.
Collapse
Affiliation(s)
- Nicola Ingram
- Leeds Institute of Medical Research, Faculty of Medicine and Health, St James’s University Hospital, Beckett Street, Leeds LS9 7TF, UK; (L.E.M.); (J.R.M.); (A.F.M.)
- Correspondence: (N.I.); (P.L.C.)
| | - Laura E. McVeigh
- Leeds Institute of Medical Research, Faculty of Medicine and Health, St James’s University Hospital, Beckett Street, Leeds LS9 7TF, UK; (L.E.M.); (J.R.M.); (A.F.M.)
| | - Radwa H. Abou-Saleh
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK; (R.H.A.-S.); (D.V.B.B.); (S.D.E.)
- Nanoscience and Technology Group, Faculty of Science, Galala University, Galala 43711, Egypt
- Department of Physics, Mansoura University, Mansoura 35516, Egypt
| | - Damien V. B. Batchelor
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK; (R.H.A.-S.); (D.V.B.B.); (S.D.E.)
| | - Paul M. Loadman
- Institute of Cancer Therapeutics, University of Bradford, Bradford BD7 1DP, UK;
| | - James R. McLaughlan
- Leeds Institute of Medical Research, Faculty of Medicine and Health, St James’s University Hospital, Beckett Street, Leeds LS9 7TF, UK; (L.E.M.); (J.R.M.); (A.F.M.)
- School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT, UK
| | - Alexander F. Markham
- Leeds Institute of Medical Research, Faculty of Medicine and Health, St James’s University Hospital, Beckett Street, Leeds LS9 7TF, UK; (L.E.M.); (J.R.M.); (A.F.M.)
| | - Stephen D. Evans
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK; (R.H.A.-S.); (D.V.B.B.); (S.D.E.)
| | - P. Louise Coletta
- Leeds Institute of Medical Research, Faculty of Medicine and Health, St James’s University Hospital, Beckett Street, Leeds LS9 7TF, UK; (L.E.M.); (J.R.M.); (A.F.M.)
- Correspondence: (N.I.); (P.L.C.)
| |
Collapse
|
32
|
Yang X, Zhao M, Wu Z, Chen C, Zhang Y, Wang L, Guo Q, Wang Q, Liang S, Hu S, Duan Y, Sun Y. Nano-ultrasonic Contrast Agent for Chemoimmunotherapy of Breast Cancer by Immune Metabolism Reprogramming and Tumor Autophagy. ACS NANO 2022; 16:3417-3431. [PMID: 35156370 DOI: 10.1021/acsnano.2c00462] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The functional status of innate immune cells is a considerable determinant of effective antitumor immune response. However, the triple-negative breast cancer tumor microenvironment with high lactic acid metabolism and high antioxidant levels limits immune cell survival, differentiation, and function. Here, we determine that the tumor microenvironment-responsive nano-ultrasonic contrast agent Pt(IV)/CQ/PFH NPs-DPPA-1 boosts the ratio of mature dendritic cells (mDCs) and proinflammatory macrophages by reprogramming the metabolism of immature DCs (iDCs) and tumor-associated macrophages (TAMs). Specifically, platinum(IV) in cancer cells or iDCs was reduced to cisplatin, which can increase the intracellular content of ROS and therefore enhance the ratio of mDCs and apoptotic tumor cells. Meanwhile, chloroquine (CQ) released from nanoparticles (NPs) minimizes protective autophagy caused by cisplatin in tumor cells and reprograms the metabolism of TAMs to enhance the proportion of proinflammatory macrophages, achieving a superior synergistic effect of chemoimmunotherapy combined with Pt(IV) and anti-PD-L1 peptide (DPPA-1). Furthermore, perfluorohexane (PFH) in NPs realizes monitoring treatment corresponding to ultrasound. Collectively, the nano-ultrasonic contrast agent supports a candidate for monitoring treatment and augmenting antitumor chemoimmunotherapy by suppressing tumor cell autophagy and reprogramming immunocyte metabolism.
Collapse
Affiliation(s)
- Xupeng Yang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - Meng Zhao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - Zhihua Wu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - Chuanrong Chen
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - Yanhua Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - Liting Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - Qianqian Guo
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - Quan Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - Shunshun Liang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - Suxian Hu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - Yourong Duan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - Ying Sun
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| |
Collapse
|
33
|
An Open Access Chamber Designed for the Acoustic Characterisation of Microbubbles. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12041818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Microbubbles are used as contrast agents in clinical ultrasound for Left Ventricular Opacification (LVO) and perfusion imaging. They are also the subject of promising research in therapeutics as a drug delivery mechanism or for sonoporation and co-administration. For maximum efficacy in these applications, it is important to understand the acoustic characteristics of the administered microbubbles. Despite this, there is significant variation in the experimental procedures and equipment used to measure the acoustic properties of microbubble populations. A chamber was designed to facilitate acoustic characterisation experiments and was manufactured using additive manufacturing techniques. The design has been released to allow wider uptake in the research community. The efficacy of the chamber for acoustic characterisation has been explored with an experiment to measure the scattering of SonoVue® microbubbles at the fundamental frequency and second harmonic under interrogation from emissions in the frequency range of 1.6 to 6.4 MHz. The highest overall scattering values were measured at 1.6 MHz and decreased as the frequency increased, a result which is in agreement with previously published measurements. Statistical analysis of the acoustic scattering measurements have been performed and a significant difference, at the 5% significance level, was found between the samples containing contrast agent and the control sample containing only deionised water. These findings validate the proposed design for measuring the acoustic scattering characteristics of ultrasound contrast agents.
Collapse
|
34
|
Bukhari SZ, Zeth K, Iftikhar M, Rehman M, Usman Munir M, Khan WS, Ihsan A. Supramolecular lipid nanoparticles as delivery carriers for non-invasive cancer theranostics. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100067. [PMID: 34909685 PMCID: PMC8663983 DOI: 10.1016/j.crphar.2021.100067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 12/12/2022] Open
Abstract
Nanotheranostics is an emerging frontier of personalized medicine research particularly for cancer, which is the second leading cause of death. Supramolecular aspects in theranostics are quite allured to achieve more regulation and controlled features. Supramolecular nanotheranostics architecture is focused on engineering of modular supramolecular assemblies benefitting from their mutable and stimuli-responsive properties which confer an ultimate potential for the fabrication of unified innovative nanomedicines with controlled features. Amalgamation of supramolecular approaches to nano-based features further equip the potential of designing novel approaches to overcome limitations seen by the conventional theranostic strategies, for curing even the lethal diseases and endowing personalized therapeutics with optimistic prognosis, endorsing their clinical translation. Among many potential nanocarriers for theranostics, lipid nanoparticles (LNPs) have shown various promising advances in theranostics and their formulation can be tailored for several applications. Despite the great advancement in cancer nanotheranostics, there are still many challenges that need to be highlighted to fill the literature gap. For this purpose, herein, we have presented a systematic overview on the subject and proposed LNPs as the potential material to manage cancer via non-invasive approaches by highlighting the use of supramolecular approaches to make them robust for cancer theranostics. We have concluded the review by entailing the future perspectives of lipid nanotheranostics towards clinical translation.
Collapse
Affiliation(s)
- Syeda Zunaira Bukhari
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Pakistan
| | - Kornelius Zeth
- Department of Science and Environment, Roskilde University Center, DK-4000 Roskilde, Denmark
| | - Maryam Iftikhar
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Pakistan
| | - Mubashar Rehman
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Usman Munir
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Aljouf, 72388, Saudi Arabia
| | - Waheed S. Khan
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Pakistan
| | - Ayesha Ihsan
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Pakistan
| |
Collapse
|
35
|
Lea-Banks H, Hynynen K. Sub-millimetre precision of drug delivery in the brain from ultrasound-triggered nanodroplets. J Control Release 2021; 338:731-741. [PMID: 34530050 DOI: 10.1016/j.jconrel.2021.09.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/17/2021] [Accepted: 09/12/2021] [Indexed: 12/18/2022]
Abstract
Drug-loaded nanoscale cavitation agents, called nanodroplets, are an attractive solution to enhance and localize drug delivery, offering increased stability and prolonged half-life in circulation compared to microbubbles. However, the spatial precision with which drug can be released and delivered into brain tissue from such agents has not been directly mapped. Decafluorobutane lipid-shell droplets (206 +/- 6 nm) were loaded with a fluorescent blood-brain barrier (BBB)-penetrating dye (Nile Blue) and vaporized with ultrasound (1.66 MHz, 10 ms pulse length, 1 Hz pulse repetition frequency), generating transient echogenic microbubbles and delivering the encapsulated dye. The distribution and intensity of released fluorophore was mapped in a tissue-mimicking phantom, and in the brain of rats (Sprague Dawley, N = 4, n = 16). The release and distribution of dye was found to be pressure-dependent (0.2-3.5 MPa) and to occur only above the vaporization threshold of the nanodroplets (1.5 +/- 0.25 MPa in vitro, 2.4 +/- 0.05 MPa in vivo). Dye delivery was achieved with sub-millimetre spatial precision, covering an area of 0.4 to 1.5 mm in diameter, determined by the sonication pressure. The distribution and intensity of dye released at depth in the brain followed the axial pressure profile of the ultrasound beam. Nile Blue (354 Da, LogP 2.7) was compared to Nile Red (318 Da, LogP 3.8) and Quantum Dots (CdSe/ZnS, 5 nm diameter) to visualize the role of molecule size and lipophilicity in crossing the intact BBB following triggered release. Acoustic emissions were shown to predict the successful delivery of the BBB-penetrating dye and the extent of the distribution, demonstrating the theranostic capabilities of nanoscale droplets to precisely localize drug delivery in the brain.
Collapse
Affiliation(s)
- Harriet Lea-Banks
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada.
| | - Kullervo Hynynen
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| |
Collapse
|
36
|
Wang F, Dong L, Wei X, Wang Y, Chang L, Wu H, Liu S, Chang Y, Yin Y, Luo X, Jia X, Yan F, Li N. Effect of Gambogic Acid-Loaded Porous-Lipid/PLGA Microbubbles in Combination With Ultrasound-Triggered Microbubble Destruction on Human Glioma. Front Bioeng Biotechnol 2021; 9:711787. [PMID: 34604184 PMCID: PMC8479098 DOI: 10.3389/fbioe.2021.711787] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/29/2021] [Indexed: 11/13/2022] Open
Abstract
Gambogic acid (GA) is a highly effective antitumor agent, and it is used for the treatment of a wide range of cancers. It is challenging to deliver drugs to the central nervous system due to the inability of GA to cross the blood-brain barrier (BBB). Studies have shown that ultrasound-targeted microbubble destruction can be used for transient and reversible BBB disruption, significantly facilitating intracerebral drug delivery. We first prepared GA-loaded porous-lipid microbubbles (GA porous-lipid/PLGA MBs), and an in vitro BBB model was established. The cell viability was detected by CCK-8 assay and flow cytometry. The results indicate that U251 human glioma cells were killed by focused ultrasound (FUS) combined with GA/PLGA microbubbles. FUS combined with GA/PLGA microbubbles was capable of locally and transiently enhancing the permeability of BBB under certain conditions. This conformational change allows the release of GA to extracellular space. This study provides novel targets for the treatment of glioma.
Collapse
Affiliation(s)
- Feng Wang
- Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Lei Dong
- Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Xixi Wei
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Yongling Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Liansheng Chang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Hongwei Wu
- Department of Chemistry, Xinxiang Medical University, Xinxiang, China
| | - Shuyuan Liu
- Department of Infectious Diseases, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang Medical University, Xinxiang, China
| | - Yuqiao Chang
- Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Yaling Yin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Xiaoqiu Luo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Xiaojian Jia
- Shenzhen Kangning Hospital and Shenzhen Mental Health Center, Shenzhen, China
| | - Fei Yan
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Nana Li
- Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
37
|
Batchelor DV, Armistead FJ, Ingram N, Peyman SA, Mclaughlan JR, Coletta PL, Evans SD. Nanobubbles for therapeutic delivery: Production, stability and current prospects. Curr Opin Colloid Interface Sci 2021. [DOI: 10.1016/j.cocis.2021.101456] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
38
|
Smye SW, Frangi AF. Interdisciplinary research: shaping the healthcare of the future. Future Healthc J 2021; 8:e218-e223. [PMID: 34286188 DOI: 10.7861/fhj.2021-0025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The hospitals of the future will be shaped by scientific and technical advances made across a wide range of disciplines because complex problems in healthcare cannot be addressed successfully by a single discipline. This paper considers how interdisciplinary research is being promoted and the prospects for developing stronger and deeper collaborations between medicine, health and other disciplines, drawing on case studies from mathematics, physics and engineering. The anticipated impact of greater interdisciplinarity on clinical training and the provision of care is also reviewed. While the role and training of clinicians in the provision of care will continue to evolve, they will remain leading members of a much broader and more diverse interdisciplinary team, alert to the value of deep and sustained interdisciplinary research.
Collapse
|
39
|
Abou-Saleh RH, Armistead FJ, Batchelor DVB, Johnson BRG, Peyman SA, Evans SD. Horizon: Microfluidic platform for the production of therapeutic microbubbles and nanobubbles. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:074105. [PMID: 34340422 DOI: 10.1063/5.0040213] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
Microbubbles (MBs) have a multitude of applications including as contrast agents in ultrasound imaging and as therapeutic drug delivery vehicles, with further scope for combining their diagnostic and therapeutic properties (known as theranostics). MBs used clinically are commonly made by mechanical agitation or sonication methods, which offer little control over population size and dispersity. Furthermore, clinically used MBs are yet to be used therapeutically and further research is needed to develop these theranostic agents. In this paper, we present our MB production instrument "Horizon," which is a robust, portable, and user-friendly instrument, integrating the key components for producing MBs using microfluidic flow-focusing devices. In addition, we present the system design and specifications of Horizon and the optimized protocols that have so far been used to produce MBs with specific properties. These include MBs with tailored size and low dispersity (monodisperse); MBs with a diameter of ∼2 μm, which are more disperse but also produced in higher concentration; nanobubbles with diameters of 100-600 nm; and therapeutic MBs with drug payloads for targeted delivery. Multiplexed chips were able to improve production rates up to 16-fold while maintaining production stability. This work shows that Horizon is a versatile instrument with potential for mass production and use across many research facilities, which could begin to bridge the gap between therapeutic MB research and clinical use.
Collapse
Affiliation(s)
- Radwa H Abou-Saleh
- Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Fern J Armistead
- Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Damien V B Batchelor
- Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Benjamin R G Johnson
- Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Sally A Peyman
- Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Stephen D Evans
- Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
40
|
Charalambous A, Mico V, McVeigh LE, Marston G, Ingram N, Volpato M, Peyman SA, McLaughlan JR, Wierzbicki A, Loadman PM, Bushby RJ, Markham AF, Evans SD, Coletta PL. Targeted microbubbles carrying lipid-oil-nanodroplets for ultrasound-triggered delivery of the hydrophobic drug, combretastatin A4. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 36:102401. [PMID: 33894396 DOI: 10.1016/j.nano.2021.102401] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 03/03/2021] [Accepted: 04/11/2021] [Indexed: 12/11/2022]
Abstract
The hydrophobicity of a drug can be a major challenge in its development and prevents the clinical translation of highly potent anti-cancer agents. We have used a lipid-based nanoemulsion termed Lipid-Oil-Nanodroplets (LONDs) for the encapsulation and in vivo delivery of the poorly bioavailable combretastatin A4 (CA4). Drug delivery with CA4 LONDs was assessed in a xenograft model of colorectal cancer. LC-MS/MS analysis revealed that CA4 LONDs, administered at a drug dose four times lower than drug control, achieved equivalent concentrations of CA4 intratumorally. We then attached CA4 LONDs to microbubbles (MBs) and targeted this construct to VEGFR2. A reduction in tumor perfusion was observed in CA4 LONDs-MBs treated tumors. A combination study with irinotecan demonstrated a greater reduction in tumor growth and perfusion (P = 0.01) compared to irinotecan alone. This study suggests that LONDs, either alone or attached to targeted MBs, have the potential to significantly enhance tumor-specific hydrophobic drug delivery.
Collapse
Affiliation(s)
- Antonia Charalambous
- Leeds Institute of Medical Research, Wellcome Trust Brenner Building, St James's University. Hospital, Leeds, United Kingdom
| | - Victoria Mico
- Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds, United Kingdom
| | - Laura E McVeigh
- Leeds Institute of Medical Research, Wellcome Trust Brenner Building, St James's University. Hospital, Leeds, United Kingdom
| | - Gemma Marston
- Leeds Institute of Medical Research, Wellcome Trust Brenner Building, St James's University. Hospital, Leeds, United Kingdom
| | - Nicola Ingram
- Leeds Institute of Medical Research, Wellcome Trust Brenner Building, St James's University. Hospital, Leeds, United Kingdom
| | - Milène Volpato
- Leeds Institute of Medical Research, Wellcome Trust Brenner Building, St James's University. Hospital, Leeds, United Kingdom
| | - Sally A Peyman
- Leeds Institute of Medical Research, Wellcome Trust Brenner Building, St James's University. Hospital, Leeds, United Kingdom; Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds, United Kingdom
| | - James R McLaughlan
- School of Electronic and Electrical Engineering, University of Leeds, United Kingdom
| | - Antonia Wierzbicki
- Institute of Cancer Therapeutics, University of Bradford, Bradford, United Kingdom
| | - Paul M Loadman
- Institute of Cancer Therapeutics, University of Bradford, Bradford, United Kingdom
| | - Richard J Bushby
- Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds, United Kingdom; School of Chemistry, University of Leeds, Leeds, United Kingdom
| | - Alexander F Markham
- Leeds Institute of Medical Research, Wellcome Trust Brenner Building, St James's University. Hospital, Leeds, United Kingdom
| | - Stephen D Evans
- Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds, United Kingdom
| | - P Louise Coletta
- Leeds Institute of Medical Research, Wellcome Trust Brenner Building, St James's University. Hospital, Leeds, United Kingdom.
| |
Collapse
|
41
|
Zielińska A, Szalata M, Gorczyński A, Karczewski J, Eder P, Severino P, Cabeda JM, Souto EB, Słomski R. Cancer Nanopharmaceuticals: Physicochemical Characterization and In Vitro/In Vivo Applications. Cancers (Basel) 2021; 13:1896. [PMID: 33920840 PMCID: PMC8071188 DOI: 10.3390/cancers13081896] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/07/2021] [Accepted: 04/13/2021] [Indexed: 12/14/2022] Open
Abstract
Physicochemical, pharmacokinetic, and biopharmaceutical characterization tools play a key role in the assessment of nanopharmaceuticals' potential imaging analysis and for site-specific delivery of anti-cancers to neoplastic cells/tissues. If diagnostic tools and therapeutic approaches are combined in one single nanoparticle, a new platform called nanotheragnostics is generated. Several analytical technologies allow us to characterize nanopharmaceuticals and nanoparticles and their properties so that they can be properly used in cancer therapy. This paper describes the role of multifunctional nanoparticles in cancer diagnosis and treatment, describing how nanotheragnostics can be useful in modern chemotherapy, and finally, the challenges associated with the commercialization of nanoparticles for cancer therapy.
Collapse
Affiliation(s)
- Aleksandra Zielińska
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland; (M.S.); (R.S.)
- Department of Pharmaceutical Echnology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Marlena Szalata
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland; (M.S.); (R.S.)
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland
| | - Adam Gorczyński
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland;
| | - Jacek Karczewski
- Department of Environmental Medicine, Poznan University of Medical Sciences, 61-701 Poznan, Poland;
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Przybyszewskiego 49, 60-355 Poznań, Poland;
| | - Piotr Eder
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Przybyszewskiego 49, 60-355 Poznań, Poland;
| | - Patrícia Severino
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women & Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA 02139, USA;
- Biotechnological Postgraduate Program, Institute of Technology and Research (ITP), Nanomedicine and Nanotechnology Laboratory (LNMed), University of Tiradentes (Unit), Av. Murilo Dantas 300, Aracaju 49010-390, Brazil
- Tiradentes Institute, 150 Mt Vernon St, Dorchester, MA 02125, USA
| | - José M. Cabeda
- ESS-FP, Escola Superior de Saúde Fernando Pessoa, Rua Delfim Maia 334, 4200-253 Porto, Portugal;
- FP-ENAS-Fernando Pessoa Energy, Environment and Health Research Unit, Universidade Fernando Pessoa, Praça 9 de Abril, 349, 4249-004 Porto, Portugal
| | - Eliana B. Souto
- Department of Pharmaceutical Echnology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- CEB–Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
| | - Ryszard Słomski
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland; (M.S.); (R.S.)
| |
Collapse
|
42
|
Wan J, Huang L, Cheng J, Qi H, Jin J, Wang H. Balancing the stability and drug activation in adaptive nanoparticles potentiates chemotherapy in multidrug-resistant cancer. Am J Cancer Res 2021; 11:4137-4154. [PMID: 33754053 PMCID: PMC7977460 DOI: 10.7150/thno.54066] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 01/23/2021] [Indexed: 12/11/2022] Open
Abstract
Rationale: Prodrug strategies that render the drug temporarily inactive through a cleavable linkage are able to modulate the physicochemical properties of drugs for adaptive nanoparticle (NP) formulation. Here we used cabazitaxel as a model compound to test the validity of our "balancing NP stability and specific drug activation" strategy. Methods: Cabazitaxel is conjugated to hydrophobic polylactide fragments with varying chain lengths via a self-immolation linkage, yielding polymeric prodrugs that can be reactivated by reductive agents in cells. Following a nanoprecipitation protocol, cabazitaxel prodrugs can be stably entrapped in amphiphilic polyethylene-block-polylactide matrices to form core-shell nanotherapies with augmented colloidal stability. Results: Upon cellular uptake followed by intracellular reduction, the NPs spontaneously release chemically unmodified cabazitaxel and exert high cytotoxicity. Studies with near-infrared dye-labeled NPs demonstrate that the nanodelivery of the prodrugs extends their systemic circulation, accompanied with increased drug concentrations at target tumor sites. In preclinical mouse xenograft models, including two paclitaxel-resistant xenograft models, the nanotherapy shows a remarkably higher efficacy in tumor suppression and an improved safety profile than free cabazitaxel. Conclusion: Collectively, our approach enables more effective and less toxic delivery of the cabazitaxel drug, which could be a new generalizable strategy for re-engineering other toxic and water-insoluble therapeutics.
Collapse
|
43
|
Baca JT. Therapeutic microbubbles make tumor cells pop. Sci Transl Med 2020. [DOI: 10.1126/scitranslmed.abe6019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Combining ultrasound release and molecular targeting selectively delivered extremely toxic and hydrophobic drugs to tumor cells.
Collapse
Affiliation(s)
- Justin T. Baca
- Department of Emergency Medicine, University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|