1
|
Pherez-Farah A, Boncompagni G, Chudnovskiy A, Pasqual G. The bidirectional interplay between T cell-based immunotherapies and the tumor microenvironment. Cancer Immunol Res 2025:750976. [PMID: 39786986 PMCID: PMC7617322 DOI: 10.1158/2326-6066.cir-24-0857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/06/2024] [Accepted: 01/07/2025] [Indexed: 01/12/2025]
Abstract
T cell-based therapies, including Tumor Infiltrating Lymphocyte Therapy (TIL), T cell receptor engineered T cells (TCR T), and Chimeric Antigen Receptor T cells (CAR T), are powerful therapeutic approaches for cancer treatment. While these therapies are primarily known for their direct cytotoxic effects on cancer cells, accumulating evidence indicates that they also influence the tumor microenvironment (TME), by altering the cytokine milieu and recruiting additional effector populations to help orchestrate the antitumor immune response. Conversely, the TME itself can modulate the behaviour of these therapies within the host by either supporting or inhibiting their activity. In this review we provide an overview of clinical and preclinical data on the bidirectional influences between T cell therapies and the TME. Unravelling the interactions between T cell-based therapies and the TME is critical for a better understanding of their mechanisms of action, resistance, and toxicity, with the goal of optimizing efficacy and safety.
Collapse
Affiliation(s)
- Alfredo Pherez-Farah
- Laboratory of Synthetic Immunology, Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | - Gioia Boncompagni
- Laboratory of Synthetic Immunology, Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | | | - Giulia Pasqual
- Laboratory of Synthetic Immunology, Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
- Veneto Institute of Oncology IOV IRCCS, Padua, Italy
| |
Collapse
|
2
|
Arnold IC, Munitz A. Spatial adaptation of eosinophils and their emerging roles in homeostasis, infection and disease. Nat Rev Immunol 2024; 24:858-877. [PMID: 38982311 DOI: 10.1038/s41577-024-01048-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2024] [Indexed: 07/11/2024]
Abstract
Eosinophils are bone marrow-derived granulocytes that are traditionally associated with type 2 immune responses, such as those that occur during parasite infections and allergy. Emerging evidence demonstrates the remarkable functional plasticity of this elusive cell type and its pleiotropic functions in diverse settings. Eosinophils broadly contribute to tissue homeostasis, host defence and immune regulation, predominantly at mucosal sites. The scope of their activities primarily reflects the breadth of their portfolio of secreted mediators, which range from cytotoxic cationic proteins and reactive oxygen species to multiple cytokines, chemokines and lipid mediators. Here, we comprehensively review basic eosinophil biology that is directly related to their activities in homeostasis, protective immunity, regeneration and cancer. We examine how dysregulation of these functions contributes to the physiopathology of a broad range of inflammatory diseases. Furthermore, we discuss recent findings regarding the tissue compartmentalization and adaptation of eosinophils, shedding light on the factors that likely drive their functional diversification within tissues.
Collapse
Affiliation(s)
- Isabelle C Arnold
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland.
| | - Ariel Munitz
- Department of Clinical Microbiology and Immunology, Faculty of Medical and Health Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel.
| |
Collapse
|
3
|
Zhang X, Sun R, Zhang M, Zhao Y, Cao X, Guo R, Zhang Y, Liu X, Lyu C, Zhao M. A CAR-T response prediction model for r/r B-NHL patients based on a T cell subset nomogram. Cancer Immunol Immunother 2024; 73:33. [PMID: 38280081 PMCID: PMC10821965 DOI: 10.1007/s00262-023-03618-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 12/16/2023] [Indexed: 01/29/2024]
Abstract
BACKGROUND Chimeric antigen receptor (CAR) T cells for refractory or relapsed (r/r) B cell no-Hodgkin lymphoma (NHL) patients have shown promising clinical effectiveness. However, the factors impacting the clinical response of CAR-T therapy have not been fully elucidated. We here investigate the independent influencing factors of the efficacy of CD19 CAR-T cell infusion in the treatment of r/r B-NHL and to establish an early prediction model. METHODS A total of 43 r/r B-NHL patients were enrolled in this retrospective study. The patients' general data were recorded, and the primary endpoint is the patients' treatment response. The independent factors of complete remission (CR) and partial remission (PR) were investigated by univariate and binary logistic regression analysis, and the prediction model of the probability of CR was constructed according to the determined independent factors. Receiver operating characteristic (ROC) and calibration plot were used to assess the discrimination and calibration of the established model. Furthermore, we collected 15 participators to validate the model. RESULTS Univariate analysis and binary logistic regression analysis of 43 patients showed that the ratio of central memory T cell (Tcm) and naïve T cell (Tn) in cytotoxic T cells (Tc) was an independent risk factor for response to CD19 CAR-T cell therapy in r/r B-NHL. On this basis, the area under the curve (AUC) of Tcm in the Tc and Tn in the Tc nomogram model was 0.914 (95%CI 0.832-0.996), the sensitivity was 83%, and the specificity was 74.2%, which had excellent predictive value. We did not found the difference of the progression-free survival (PFS). CONCLUSIONS The ratio of Tcm and Tn in Tc was found to be able to predict the treatment response of CD19 CAR-T cells in r/r B-NHL. We have established a nomogram model for the assessment of the CD19 CAR-T therapy response presented high specificity and sensitivity.
Collapse
Affiliation(s)
- Xiaomei Zhang
- School of Medicine, Nankai University, Tianjin, China
| | - Rui Sun
- School of Medicine, Nankai University, Tianjin, China
| | - Meng Zhang
- First Central Clinical College, Tianjin Medical University, Tianjin, China
| | - Yifan Zhao
- First Central Clinical College, Tianjin Medical University, Tianjin, China
| | - Xinping Cao
- First Central Clinical College, Tianjin Medical University, Tianjin, China
| | - Ruiting Guo
- First Central Clinical College, Tianjin Medical University, Tianjin, China
| | - Yi Zhang
- First Central Clinical College, Tianjin Medical University, Tianjin, China
| | - Xingzhong Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Cuicui Lyu
- Department of Hematology, Tianjin First Central Hospital, School of Medicine, Nankai University, No. 2, West Baoshan Road, Xiqing District, Tianjin, 300392, China.
| | - Mingfeng Zhao
- Department of Hematology, Tianjin First Central Hospital, School of Medicine, Nankai University, No. 2, West Baoshan Road, Xiqing District, Tianjin, 300392, China.
| |
Collapse
|
4
|
Ghaffari S, Rezaei N. Eosinophils in the tumor microenvironment: implications for cancer immunotherapy. J Transl Med 2023; 21:551. [PMID: 37587450 PMCID: PMC10433623 DOI: 10.1186/s12967-023-04418-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 08/05/2023] [Indexed: 08/18/2023] Open
Abstract
Despite being an integral part of the immune response in the tumor microenvironment (TME), few studies have mechanistically elucidated eosinophil functions in cancer outcomes. Eosinophils are a minor population of granulocytes that are mostly explored in asthma and allergic disorders. Their influence on primary and metastatic tumors, however, has recently come to light. Eosinophils' diverse armamentarium of mediators and receptors allows them to participate in innate and adaptive immunity, such as type 1 and type 2 immunity, and shape TME and tumor outcomes. Based on TME cells and cytokines, activated eosinophils drive other immune cells to ultimately promote or suppress tumor growth. Discovering exactly what conditions determine the pro-tumorigenic or anti-tumorigenic role of eosinophils allows us to take advantage of these signals and devise novel strategies to target cancer cells. Here, we first revisit eosinophil biology and differentiation as recognizing eosinophil mediators is crucial to their function in homeostatic and pathological conditions as well as tumor outcome. The bulk of our paper discusses eosinophil interactions with tumor cells, immune cells-including T cells, plasma cells, natural killer (NK) cells-and gut microbiota. Eosinophil mediators, such as IL-5, IL-33, granulocyte-macrophage colony-stimulating factor (GM-CSF), thymic stromal lymphopoietin (TSLP), and CCL11 also determine eosinophil behavior toward tumor cells. We then examine the implications of these findings for cancer immunotherapy approaches, including immune checkpoint blockade (ICB) therapy using immune checkpoint inhibitors (ICIs) and chimeric antigen receptor (CAR) T cell therapy. Eosinophils synergize with CAR T cells and ICB therapy to augment immunotherapies.
Collapse
Affiliation(s)
- Sasan Ghaffari
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
5
|
Dang X, Ye S, Zhou L, Lu Y, Li P, Liang A, Qian W. Prognostic impact of peripheral eosinophil counts in patients with diffuse large B-cell lymphoma receiving chimeric antigen receptor T-cell therapy. Cytotherapy 2022; 25:573-577. [PMID: 36456447 DOI: 10.1016/j.jcyt.2022.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/27/2022] [Accepted: 10/27/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND AIMS Chimeric antigen receptor (CAR) T-cell therapy is a breakthrough treatment for patients with relapsed or refractory diffuse large B-cell lymphoma. However, many patients do not achieve remission or relapse after remission. Previous studies have demonstrated that eosinophils have synergistic anti-tumor effects with CD8+T cells and pre-CAR T-eosinophil counts are associated with the efficacy of CAR T cells. METHODS We retrospectively analyzed the eosinophil counts of patients with diffuse large B-cell lymphoma and found it changed remarkably pre- and post-CAR T-cell therapy. RESULTS Patients who achieved complete remission after CAR T-cell infusion had greater post-CAR T-eosinophil counts than those who did not. Kaplan-Meier curves showed that patients with greater eosinophil counts during the second month after CAR T-cell infusion had superior progression-free survival and overall survival compared with those with lower eosinophil counts. CONCLUSIONS For patients who responded to CAR T-cell therapy, eosinophil counts also can be used to predict 6-month duration of response. In conclusion, the post-CAR T-eosinophil count is associated with the prognosis of patients treated with CAR T-cell therapy and can be used to clinically identify patients who can achieve longer remission after CAR T-cell infusion.
Collapse
MESH Headings
- Humans
- Immunotherapy, Adoptive/adverse effects
- Receptors, Chimeric Antigen/genetics
- Eosinophils/pathology
- Prognosis
- Retrospective Studies
- Neoplasm Recurrence, Local/pathology
- Lymphoma, Large B-Cell, Diffuse/therapy
- Lymphoma, Large B-Cell, Diffuse/etiology
- Cell- and Tissue-Based Therapy
- Antigens, CD19
- Receptors, Antigen, T-Cell
Collapse
Affiliation(s)
- Xiuyong Dang
- Department of Hematology, Shanghai Tongji Hospital, Shanghai, China
| | - Shiguang Ye
- Department of Hematology, Shanghai Tongji Hospital, Shanghai, China
| | - Lili Zhou
- Department of Hematology, Shanghai Tongji Hospital, Shanghai, China
| | - Yan Lu
- Department of Hematology, Shanghai Tongji Hospital, Shanghai, China
| | - Ping Li
- Department of Hematology, Shanghai Tongji Hospital, Shanghai, China.
| | - Aibin Liang
- Department of Hematology, Shanghai Tongji Hospital, Shanghai, China.
| | - Wenbin Qian
- Department of Hematology, the Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
6
|
Grisaru-Tal S, Rothenberg ME, Munitz A. Eosinophil-lymphocyte interactions in the tumor microenvironment and cancer immunotherapy. Nat Immunol 2022; 23:1309-1316. [PMID: 36002647 PMCID: PMC9554620 DOI: 10.1038/s41590-022-01291-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/18/2022] [Indexed: 12/15/2022]
Abstract
Eosinophils are important effector cells and therapeutic targets in allergic diseases. Emerging data indicate that eosinophils infiltrate a variety of solid tumor types and have pleiotropic activities by at least two non-mutually exclusive mechanisms: direct interactions with tumor cells, and intricate cross-talk with lymphocytes. In light of the immune checkpoint inhibition revolution in cancer therapy, we review eosinophil-lymphocyte interactions in the tumor microenvironment. We also analyze potential interactions between eosinophils and lymphocyte subsets, including T cells, natural killer cells and innate lymphoid cells. We provide perspectives on the consequences of these interactions and how eosinophils are accessory cells that can affect the response to various forms of T cell-mediated immunotherapies and might be therapeutically targeted to improve cancer immunotherapy.
Collapse
Affiliation(s)
- Sharon Grisaru-Tal
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Marc E Rothenberg
- Division of Allergy/Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ariel Munitz
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
7
|
Jiang ZY, Liu JB, Wang XF, Ma YS, Fu D. Current Status and Prospects of Clinical Treatment of Osteosarcoma. Technol Cancer Res Treat 2022; 21:15330338221124696. [PMID: 36128851 PMCID: PMC9500272 DOI: 10.1177/15330338221124696] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Osteosarcoma, one of the common malignant tumors in the skeletal system, originates in mesenchymal tissue, and the most susceptible area of occurrence is the metaphysis with its abundant blood supply. Tumors are characterized by highly malignant spindle stromal cells that can produce bone-like tissue. Most of the osteosarcoma are primary, and a few are secondary. Osteosarcoma occurs primarily in children and adolescents undergoing vigorous bone growth and development. Most cases involve rapid tumor development and early blood metastasis. In recent years, research has grown in the areas of molecular biology, imaging medicine, biological materials, applied anatomy, surgical techniques, biomechanics, and comprehensive treatment of tumors. With developments in molecular biology and tissue bioengineering, treatment methods have also made great progress, especially in comprehensive limb salvage treatment, which significantly enhances the quality of life after surgery and improves the 5-year survival rate of patients with malignant tumors. This article provides a review of limb salvage, immunotherapy, gene therapy, and targeted therapy from traditional amputation to neoadjuvant chemotherapy, providing a reference for current clinical treatments for osteosarcoma.
Collapse
Affiliation(s)
- Zong-Yuan Jiang
- Department of Hand Surgery, 380381Shenzhen Longhua District People's Hospital, Shenzhen, China
| | - Ji-Bin Liu
- Institute of Oncology, Nantong UniversityAffiliated Tumor Hospital of Nantong University, Nantong, China
| | - Xiao-Feng Wang
- Department of Orthopedics, Zhongshan Hospital, 12478Fudan University, Shanghai, China
| | - Yu-Shui Ma
- Cancer Institute, 74754Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Da Fu
- Department of General Surgery, Ruijin Hospital, 12474Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Liu Y, Zhou X, Wang X. Targeting the tumor microenvironment in B-cell lymphoma: challenges and opportunities. J Hematol Oncol 2021; 14:125. [PMID: 34404434 PMCID: PMC8369706 DOI: 10.1186/s13045-021-01134-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 08/03/2021] [Indexed: 02/08/2023] Open
Abstract
B-cell lymphoma is a group of hematological malignancies with high clinical and biological heterogeneity. The pathogenesis of B-cell lymphoma involves a complex interaction between tumor cells and the tumor microenvironment (TME), which is composed of stromal cells and extracellular matrix. Although the roles of the TME have not been fully elucidated, accumulating evidence implies that TME is closely relevant to the origination, invasion and metastasis of B-cell lymphoma. Explorations of the TME provide distinctive insights for cancer therapy. Here, we epitomize the recent advances of TME in B-cell lymphoma and discuss its function in tumor progression and immune escape. In addition, the potential clinical value of targeting TME in B-cell lymphoma is highlighted, which is expected to pave the way for novel therapeutic strategies.
Collapse
Affiliation(s)
- Yingyue Liu
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, No. 324, Jingwu Road, Jinan, 250021, Shandong, China
| | - Xiangxiang Zhou
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, No. 324, Jingwu Road, Jinan, 250021, Shandong, China.
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
- School of Medicine, Shandong University, Jinan, 250012, Shandong, China.
- Shandong Provincial Engineering Research Center of Lymphoma, Jinan, 250021, Shandong, China.
- Branch of National Clinical Research Center for Hematologic Diseases, Jinan, 250021, Shandong, China.
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, No. 324, Jingwu Road, Jinan, 250021, Shandong, China.
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
- School of Medicine, Shandong University, Jinan, 250012, Shandong, China.
- Shandong Provincial Engineering Research Center of Lymphoma, Jinan, 250021, Shandong, China.
- Branch of National Clinical Research Center for Hematologic Diseases, Jinan, 250021, Shandong, China.
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
| |
Collapse
|