1
|
Shimolina LE, Khlynova AE, Elagin VV, Bureev PA, Sherin PS, Kuimova MK, Shirmanova MV. Unraveling Microviscosity Changes Induced in Cancer Cells by Photodynamic Therapy with Targeted Genetically Encoded Photosensitizer. Biomedicines 2024; 12:2550. [PMID: 39595116 PMCID: PMC11591579 DOI: 10.3390/biomedicines12112550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/26/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Despite the fundamental importance of cell membrane microviscosity, changes in this biophysical parameter of membranes during photodynamic therapy (PDT) have not been fully understood. METHODS In this work, changes in the microviscosity of membranes of live HeLa Kyoto tumor cells were studied during PDT with KillerRed, a genetically encoded photosensitizer, in different cellular localizations. Membrane microviscosity was visualized using fluorescence lifetime imaging microscopy (FLIM) with a viscosity-sensitive BODIPY2 rotor. RESULTS Depending on the localization of the phototoxic protein, different effects on membrane microviscosity were observed. With nuclear localization of KillerRed, a gradual decrease in microviscosity was detected throughout the entire observation period, while for membrane localization of KillerRed, a dramatic increase in microviscosity was observed in the first minutes after PDT, and then a significant decrease at later stages of monitoring. The obtained data on cell monolayers are in good agreement with the data obtained for 3D tumor spheroids. CONCLUSIONS These results indicate the involvement of membrane microviscosity in the response of tumor cells to PDT, which strongly depends on the localization of reactive oxygen species attack via targeting of a genetically encoded photosensitizer.
Collapse
Affiliation(s)
- Liubov E. Shimolina
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Minin and Pozharsky Square, 10/1, 603005 Nizhny Novgorod, Russia; (L.E.S.); (A.E.K.); (V.V.E.); (P.A.B.)
| | - Aleksandra E. Khlynova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Minin and Pozharsky Square, 10/1, 603005 Nizhny Novgorod, Russia; (L.E.S.); (A.E.K.); (V.V.E.); (P.A.B.)
| | - Vadim V. Elagin
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Minin and Pozharsky Square, 10/1, 603005 Nizhny Novgorod, Russia; (L.E.S.); (A.E.K.); (V.V.E.); (P.A.B.)
| | - Pavel A. Bureev
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Minin and Pozharsky Square, 10/1, 603005 Nizhny Novgorod, Russia; (L.E.S.); (A.E.K.); (V.V.E.); (P.A.B.)
| | - Petr S. Sherin
- Department of Chemistry, Imperial College London, White City Campus, London W12 0BZ, UK; (P.S.S.); (M.K.K.)
| | - Marina K. Kuimova
- Department of Chemistry, Imperial College London, White City Campus, London W12 0BZ, UK; (P.S.S.); (M.K.K.)
| | - Marina V. Shirmanova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Minin and Pozharsky Square, 10/1, 603005 Nizhny Novgorod, Russia; (L.E.S.); (A.E.K.); (V.V.E.); (P.A.B.)
| |
Collapse
|
2
|
Zhao C, Sun W, Huang X, Liu Y, Wang HY. Alkaline Phosphatase Activated Near-Infrared Frequency Upconversion Photosensitizers for Tumor Photodynamic Therapy. J Med Chem 2024. [PMID: 39057921 DOI: 10.1021/acs.jmedchem.4c01296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Photodynamic therapy (PDT) is a promising anticancer method due to its noninvasive features, high efficiency, and superior accuracy. The activated near-infrared upconversion photosensitizer has a high tissue penetration depth and could be explicitly released with minimal side effects. Therefore, we designed and synthesized a series of Br-substituted compounds (NFh-Br) based on the near-infrared upconversion hemicyanine dye. The heavy atomic effect improves the generation of 1O2 and upconversion luminous efficiency. Especially, NFh-Br11 exhibited an excellent 1O2 generation rate under 808 nm excitation and effectively killed tumor cells in vitro, and the alkaline phosphatase (ALP)-activatable photosensitizer (NFh-ALP) was obtained by modifying the NFh-Br11. NFh-ALP could be activated by ALP and release NFh-Br11, which induces apoptosis of tumor cells and has outstanding anticancer effects in vitro and in vivo. This work could provide a strategy for designing activatable upconversion photosensitizers.
Collapse
Affiliation(s)
- Chao Zhao
- School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Wanlu Sun
- School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaoyan Huang
- School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Yi Liu
- School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Hai-Yan Wang
- School of Mechanical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
3
|
Lu XX, Xue C, Dong JH, Zhang YZ, Gao F. Nanoplatform-based strategies for enhancing the lethality of current antitumor PDT. J Mater Chem B 2024; 12:3209-3225. [PMID: 38497405 DOI: 10.1039/d4tb00008k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Photodynamic therapy (PDT) exhibits great application prospects in future clinical oncology due to its spatiotemporal controllability and good biosafety. However, the antitumor efficacy of PDT is seriously hindered by many factors, including tumor hypoxia, limited light penetration ability, and strong defense mechanisms of tumors. Considering that it is difficult to completely solve the first two problems, enhancing the lethality of antitumor PDT has become a good idea to extend its clinical application. Herein, we summarize the nanoplatform-involved strategies to effectively amplify the tumoricidal capability of current PDT and then discuss the present bottlenecks and prospects of the nanoplatform-based PDT sensitization strategies in tumor therapy. We hope this review will provide some references for others to design high-performance PDT nanoplatforms for tumor therapy.
Collapse
Affiliation(s)
- Xin-Xin Lu
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - Chun Xue
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - Jian-Hui Dong
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - Yi-Zhou Zhang
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - Fan Gao
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| |
Collapse
|
4
|
Jin C, Wu P, Tu M, Zhu HL, Li Z. Development of a hypoxia-activated red-emission fluorescent probe for in vivo tumor microenvironment imaging and anti-tumor therapy. Mikrochim Acta 2024; 191:217. [PMID: 38519619 DOI: 10.1007/s00604-024-06291-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/28/2024] [Indexed: 03/25/2024]
Abstract
Hypoxia, a significant feature of the tumor microenvironment, is closely associated with tumor growth, metastasis, and drug resistance. In the field of tumor microenvironment analysis, accurately imaging and quantifying hypoxia - a critical factor associated with tumor progression, metastasis, and resistance to therapy - remains a significant challenge. Herein, a hypoxia-activated red-emission fluorescent probe, ODP, for in vivo imaging of hypoxia in the tumor microenvironment is presented. Among various imaging methods, optical imaging is particularly convenient due to its rapid response and high sensitivity. The ODP probe specifically targets nitroreductase (AzoR), an enzyme highly expressed in hypoxic cells, playing a vital role by catalyzing the cleavage of azo bonds. The optical properties of ODP exhibited excellent performance in terms of fluorescence enhancement, fluorescence lifetime (0.81 ns), and detection limit (0.86 µM) in response to SDT. Cell imaging experiments showed that ODP could effectively detect and image intracellular hypoxia and the imaging capability of ODP was studied under various conditions including cell migration, antioxidant treatment, and different incubation times. Through comprehensive in vitro and in vivo experiments, including cellular imaging and mouse tumor models, this work demonstrates the efficacy of ODP in accurately detecting and imaging hypoxia. Moreover, ODP's potential in inducing apoptosis in cancer cells offers a promising avenue for integrating diagnostic and therapeutic strategies in cancer treatment. This innovative approach not only contributes to the understanding and assessment of tumor hypoxia but also opens new possibilities for targeted cancer therapy.
Collapse
Affiliation(s)
- Chen Jin
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, No.163 Xianlin Road, Nanjing, 210023, China
| | - Pengfei Wu
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Jiangsu province hospital, Nanjing, 210029, China
| | - Min Tu
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Jiangsu province hospital, Nanjing, 210029, China
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, No.163 Xianlin Road, Nanjing, 210023, China.
| | - Zhen Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, No.163 Xianlin Road, Nanjing, 210023, China.
| |
Collapse
|
5
|
Feng T, Tang Z, Karges J, Shen J, Jin C, Chen Y, Pan Y, He Y, Ji L, Chao H. Exosome camouflaged coordination-assembled Iridium(III) photosensitizers for apoptosis-autophagy-ferroptosis induced combination therapy against melanoma. Biomaterials 2023; 301:122212. [PMID: 37385136 DOI: 10.1016/j.biomaterials.2023.122212] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 07/01/2023]
Abstract
Melanoma represents the most fatal form of skin cancer due to its resistance mechanisms and high capacity for the development of metastases. Among other medicinal techniques, photodynamic therapy is receiving increasing attention. Despite promising results, the application of photodynamic therapy is inherently limited due to interference from melanin, poor tissue penetration of photosensitizers, low loading into drug delivery systems, and a lack of tumor selectivity. To overcome these limitations, herein, the coordination-driven assembly of Ir(III) complex photosensitizers with Fe(III) ions into nanopolymers for combined photodynamic therapy and chemodynamic therapy is reported. While remaining stable under physiological conditions, the nanopolymers dissociated in the tumor microenvironment. Upon exposure to light, the Ir(III) complexes produced singlet oxygen and superoxide anion radicals, inducing cell death by apoptosis and autophagy. The Fe(III) ions were reduced to Fe(II) upon depletion of glutathione and reduction of the GPX4 levels, triggering cell death by ferroptosis. To provide tumor selectivity, the nanopolymers were further camouflaged with exosomes. The generated nanoparticles were found to eradicate a melanoma tumor as well as inhibit the formation of metastases inside a mouse model.
Collapse
Affiliation(s)
- Tao Feng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510006, PR China
| | - Zixin Tang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510006, PR China
| | - Johannes Karges
- Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Jinchao Shen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510006, PR China
| | - Chengzhi Jin
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510006, PR China
| | - Yu Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510006, PR China
| | - Yihang Pan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510006, PR China.
| | - Yulong He
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510006, PR China.
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510006, PR China
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510006, PR China; MOE Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 400201, PR China.
| |
Collapse
|
6
|
Chen J, Zhang Y. Hyperbranched Polymers: Recent Advances in Photodynamic Therapy against Cancer. Pharmaceutics 2023; 15:2222. [PMID: 37765191 PMCID: PMC10536223 DOI: 10.3390/pharmaceutics15092222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/23/2023] [Accepted: 08/26/2023] [Indexed: 09/29/2023] Open
Abstract
Hyperbranched polymers are a class of three-dimensional dendritic polymers with highly branched architectures. Their unique structural features endow them with promising physical and chemical properties, such as abundant surface functional groups, intramolecular cavities, and low viscosity. Therefore, hyperbranched-polymer-constructed cargo delivery carriers have drawn increasing interest and are being utilized in many biomedical applications. When applied for photodynamic therapy, photosensitizers are encapsulated in or covalently incorporated into hyperbranched polymers to improve their solubility, stability, and targeting efficiency and promote the therapeutic efficacy. This review will focus on the state-of-the-art studies concerning recent progress in hyperbranched-polymer-fabricated phototherapeutic nanomaterials with emphases on the building-block structures, synthetic strategies, and their combination with the codelivered diagnostics and synergistic therapeutics. We expect to bring our demonstration to the field to increase the understanding of the structure-property relationships and promote the further development of advanced photodynamic-therapy nanosystems.
Collapse
Affiliation(s)
| | - Yichuan Zhang
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China
| |
Collapse
|
7
|
Li C, Pang Y, Xu Y, Lu M, Tu L, Li Q, Sharma A, Guo Z, Li X, Sun Y. Near-infrared metal agents assisting precision medicine: from strategic design to bioimaging and therapeutic applications. Chem Soc Rev 2023. [PMID: 37334831 DOI: 10.1039/d3cs00227f] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Metal agents have made incredible strides in preclinical research and clinical applications in recent years, but their short emission/absorption wavelengths continue to be a barrier to their distribution, therapeutic action, visual tracking, and efficacy evaluation. Nowadays, the near-infrared window (NIR, 650-1700 nm) provides a more accurate imaging and treatment option. Thus, there has been ongoing research focusing on developing multifunctional NIR metal agents for imaging and therapy that have deeper tissue penetration. The design, characteristics, bioimaging, and therapy of NIR metal agents are covered in this overview of papers and reports published to date. To start with, we focus on describing the structure, design strategies, and photophysical properties of metal agents from the NIR-I (650-1000 nm) to NIR-II (1000-1700 nm) region, in order of molecular metal complexes (MMCs), metal-organic complexes (MOCs), and metal-organic frameworks (MOFs). Next, the biomedical applications brought by these superior photophysical and chemical properties for more accurate imaging and therapy are discussed. Finally, we explore the challenges and prospects of each type of NIR metal agent for future biomedical research and clinical translation.
Collapse
Affiliation(s)
- Chonglu Li
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China.
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Yida Pang
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Yuling Xu
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Mengjiao Lu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China.
| | - Le Tu
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Qian Li
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Amit Sharma
- CSIR-Central Scientific Instruments Organisation, Sector-30C, Chandigarh 160030, India
| | - Zhenzhong Guo
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Xiangyang Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China.
| | - Yao Sun
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| |
Collapse
|
8
|
Chen L, Lyu Y, Zhang X, Zheng L, Li Q, Ding D, Chen F, Liu Y, Li W, Zhang Y, Huang Q, Wang Z, Xie T, Zhang Q, Sima Y, Li K, Xu S, Ren T, Xiong M, Wu Y, Song J, Yuan L, Yang H, Zhang XB, Tan W. Molecular imaging: design mechanism and bioapplications. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1461-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
9
|
Fan XP, Huang J, Ren TB, Yuan L, Zhang XB. De Novo Design of Activatable Photoacoustic/Fluorescent Probes for Imaging Acute Lung Injury In Vivo. Anal Chem 2023; 95:1566-1573. [PMID: 36584357 DOI: 10.1021/acs.analchem.2c04642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Effective monitoring of the physiological progression of acute lung injury (ALI) in real time is crucial for early theranostics to reduce its high mortality. In particular, activatable fluorescence and photoacoustic molecule probes have attracted attention to assess ALI by detecting related indicators. However, the existing fluorophores often encounter issues of low retention in the lungs and slow clearance from the body, which compromise the probe's actual capability for in situ imaging by intravenous injection in vivo. Herein, a novel near-infrared hemicyanines fluorophore (FJH) bearing a quaternary ammonium group was first developed by combining with the rational design and screening strategy. The properties of good hydrophilicity and blood circulation effectively enable FJH accumulation for lung imaging. Inspired by the high retention efficiency, the probe FJH-C that turns on fluorescence and photoacoustic signals in response to the ALI indicator (esterase) was subsequently synthesized. Notably, the probe FJH-C successfully achieved the selectivity and sensitivity toward esterase in vitro and in living cells. More importantly, FJH-C can be further used to assess lipopolysaccharides and silica-induced ALI through the desired fluo-photoacoustic signal. Therefore, this study not only shows the first activatable probe for real-time imaging of lung function but also highlights the fluorophore structure with high lung retention. It is believed that FJH and FJH-C can serve as an efficient platform to reveal the pathological progression of other lung diseases for early diagnosis and medical intervention.
Collapse
Affiliation(s)
- Xiao-Peng Fan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.,Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry & Environmental Science, Hebei University, Baoding 071002, P.R. China
| | - Jing Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Tian-Bing Ren
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
10
|
Yuan J, Zhou Q, Xu S, Zuo Q, Li W, Zhang X, Ren T, Yuan L, Zhang X. Enhancing the Release Efficiency of a Molecular Chemotherapeutic Prodrug by Photodynamic Therapy. Angew Chem Int Ed Engl 2022; 61:e202206169. [DOI: 10.1002/anie.202206169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Jie Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 China
- Henan Key Laboratory of Green Chemical Media and Reactions Ministry of Education Key Laboratory of Green Chemical Media and Reactions School of Chemistry and Chemical Engineering Henan Normal University Xinxiang 453007 China
| | - Qian‐Hui Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 China
| | - Shuai Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 China
| | - Qing‐Ping Zuo
- Department of Pharmacy The First Hospital of Changsha Changsha 410005 China
| | - Wei Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 China
| | - Xing‐Xing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 China
| | - Tian‐Bing Ren
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 China
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 China
| | - Xiao‐Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 China
| |
Collapse
|
11
|
Yuan J, Zhou QH, Xu S, Zuo QP, Li W, Zhang XX, Ren TB, Yuan L, Zhang XB. Enhancing the Release Efficiency of Molecular Chemotherapeutic Prodrug by Photodynamic Therapy. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jie Yuan
- Hunan University chemistry CHINA
| | | | - Shuai Xu
- Hunan University chemistry CHINA
| | | | - Wei Li
- Hunan University chemistry CHINA
| | | | | | - Lin Yuan
- Hunan University College of Chemistry and Chemical Engineering NO372, Lushan Rd. Yuelu District. 410082 Changsha CHINA
| | | |
Collapse
|
12
|
Lipid Specific Membrane Interaction of Aptamers and Cytotoxicity. MEMBRANES 2021; 12:membranes12010037. [PMID: 35054563 PMCID: PMC8780203 DOI: 10.3390/membranes12010037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/21/2021] [Accepted: 12/25/2021] [Indexed: 11/17/2022]
Abstract
We aim to discover diagnostic tools to detect phosphatidylserine (PS) externalization on apoptotic cell surface using PS binding aptamers, AAAGAC and TAAAGA, and hence to understand chemotherapy drug efficacy when inducing apoptosis into cancer cells. The entropic fragment-based approach designed aptamers have been investigated to inspect three aspects: lipid specificity in aptamers' membrane binding and bilayer physical properties-induced regulation of binding mechanisms, the apoptosis-induced cancer cell surface binding of aptamers, and the aptamer-induced cytotoxicity. The liposome binding assays show preferred membrane binding of aptamers due to presence of PS in predominantly phosphatidylcholine-contained liposomes. Two membrane stiffness reducing amphiphiles triton X-100 and capsaicin were found to enhance membrane's aptamer adsorption suggesting that bilayer physical properties influence membrane's adsorption of drugs. Microscopic images of fluorescence-tagged aptamer treated LoVo cells show strong fluorescence intensity only if apoptosis is induced. Aptamers find enhanced PS molecules to bind with on the surface of apoptotic over nonapoptotic cells. In cytotoxicity experiments, TAAAGA (over poor PS binding aptamer CAGAAAAAAAC) was found cytotoxic towards RBL cells due to perhaps binding with nonapoptotic externalized PS randomly and thus slowly breaching plasma membrane integrity. In these three experimental investigations, we found aptamers to act on membranes at comparable concentrations and specifically with PS binding manner. Earlier, we reported the origins of actions through molecular mechanism studies-aptamers interact with lipids using mainly charge-based interactions. Lipids and aptamers hold distinguishable charge properties, and hence, lipid-aptamer association follows distinguishable energetics due to electrostatic and van der Waals interactions. We discover that our PS binding aptamers, due to lipid-specific interactions, appear as diagnostic tools capable of detecting drug-induced apoptosis in cancer cells.
Collapse
|
13
|
Liu X, Gong X, Yuan J, Fan X, Zhang X, Ren T, Yang S, Yang R, Yuan L, Zhang XB. Dual-Stimulus Responsive Near-Infrared Reversible Ratiometric Fluorescent and Photoacoustic Probe for In Vivo Tumor Imaging. Anal Chem 2021; 93:5420-5429. [DOI: 10.1021/acs.analchem.0c04804] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xiao Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Xiangyang Gong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Jie Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Xiaopeng Fan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Xingxing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Tianbing Ren
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Sheng Yang
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, PR China
| | - Ronghua Yang
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, PR China
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| |
Collapse
|