1
|
Yu Q, Wu T, Xu W, Wei J, Zhao A, Wang M, Li M, Chi G. PTBP1 as a potential regulator of disease. Mol Cell Biochem 2024; 479:2875-2894. [PMID: 38129625 DOI: 10.1007/s11010-023-04905-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/16/2023] [Indexed: 12/23/2023]
Abstract
Polypyrimidine tract-binding protein 1 (PTBP1) is a member of the heterogeneous nuclear ribonucleoprotein (hnRNP) family, which plays a key role in alternative splicing of precursor mRNA and RNA metabolism. PTBP1 is universally expressed in various tissues and binds to multiple downstream transcripts to interfere with physiological and pathological processes such as the tumor growth, body metabolism, cardiovascular homeostasis, and central nervous system damage, showing great prospects in many fields. The function of PTBP1 involves the regulation and interaction of various upstream molecules, including circular RNAs (circRNAs), microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). These regulatory systems are inseparable from the development and treatment of diseases. Here, we review the latest knowledge regarding the structure and molecular functions of PTBP1 and summarize its functions and mechanisms of PTBP1 in various diseases, including controversial studies. Furthermore, we recommend future studies on PTBP1 and discuss the prospects of targeting PTBP1 in new clinical therapeutic approaches.
Collapse
Affiliation(s)
- Qi Yu
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Tongtong Wu
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Wenhong Xu
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Junyuan Wei
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Anqi Zhao
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Miaomiao Wang
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Meiying Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, Jilin, People's Republic of China.
| | - Guangfan Chi
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, Jilin, People's Republic of China.
| |
Collapse
|
2
|
Wang S, Wang X, Qin C, Liang C, Li W, Ran A, Ma Q, Pan X, Yang F, Ren J, Huang B, Liu Y, Zhang Y, Li H, Ning H, Jiang Y, Xiao B. PTBP1 knockdown impairs autophagy flux and inhibits gastric cancer progression through TXNIP-mediated oxidative stress. Cell Mol Biol Lett 2024; 29:110. [PMID: 39153986 PMCID: PMC11330137 DOI: 10.1186/s11658-024-00626-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 08/01/2024] [Indexed: 08/19/2024] Open
Abstract
BACKGROUND Gastric cancer (GC) is a prevalent malignant tumor, and the RNA-binding protein polypyrimidine tract-binding protein 1 (PTBP1) has been identified as a crucial factor in various tumor types. Moreover, abnormal autophagy levels have been shown to significantly impact tumorigenesis and progression. Despite this, the precise regulatory mechanism of PTBP1 in autophagy regulation in GC remains poorly understood. METHODS To assess the expression of PTBP1 in GC, we employed a comprehensive approach utilizing western blot, real-time quantitative polymerase chain reaction (RT-qPCR), and bioinformatics analysis. To further identify the downstream target genes that bind to PTBP1 in GC cells, we utilized RNA immunoprecipitation coupled with sequencing (si-PTBP1 RNA-seq). To evaluate the impact of PTBP1 on gastric carcinogenesis, we conducted CCK-8 assays, colony formation assays, and GC xenograft mouse model assays. Additionally, we utilized a transmission electron microscope, immunofluorescence, flow cytometry, western blot, RT-qPCR, and GC xenograft mouse model experiments to elucidate the specific mechanism underlying PTBP1's regulation of autophagy in GC. RESULTS Our findings indicated that PTBP1 was significantly overexpressed in GC tissues compared with adjacent normal tissues. Silencing PTBP1 resulted in abnormal accumulation of autophagosomes, thereby inhibiting GC cell viability both in vitro and in vivo. Mechanistically, interference with PTBP1 promoted the stability of thioredoxin-interacting protein (TXNIP) mRNA, leading to increased TXNIP-mediated oxidative stress. Consequently, this impaired lysosomal function, ultimately resulting in blockage of autophagic flux. Furthermore, our results suggested that interference with PTBP1 enhanced the antitumor effects of chloroquine, both in vitro and in vivo. CONCLUSION PTBP1 knockdown impairs GC progression by directly binding to TXNIP mRNA and promoting its expression. Based on these results, PTBP1 emerges as a promising therapeutic target for GC.
Collapse
Affiliation(s)
- Shimin Wang
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Xiaolin Wang
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Changhong Qin
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Ce Liang
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Wei Li
- Department of Pharmacy, Chongqing University Cancer Hospital, Chongqing, 400030, People's Republic of China
| | - Ai Ran
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Qiang Ma
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Xiaojuan Pan
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Feifei Yang
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Junwu Ren
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Bo Huang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563006, Guizhou, People's Republic of China
| | - Yuying Liu
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Yuying Zhang
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Haiping Li
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Hao Ning
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Yan Jiang
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Bin Xiao
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
3
|
Mironov A, Franchitti L, Ghosh S, Ritz MF, Hutter G, De Bortoli M, Zavolan M. Leveraging multi-omics data to infer regulators of mRNA 3' end processing in glioblastoma. Front Mol Biosci 2024; 11:1363933. [PMID: 39188787 PMCID: PMC11345230 DOI: 10.3389/fmolb.2024.1363933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 07/24/2024] [Indexed: 08/28/2024] Open
Abstract
Alterations in mRNA 3' end processing and polyadenylation are widely implicated in the biology of many cancer types, including glioblastoma (GBM), one the most aggressive tumor types. Although several RNA-binding proteins (RBPs) responsible for alternative polyadenylation (APA) were identified from functional studies in cell lines, their contribution to the APA landscape in tumors in vivo was not thoroughly addressed. In this study we analyzed a large RNA-seq data set of glioblastoma (GBM) samples from The Cancer Genome Atlas (TCGA) to identify APA patterns differentiating the main molecular subtypes of GBM. We superimposed these to RBP footprinting data and to APA events occurring upon depletion of individual RBPs from a large panel tested by the ENCODE Consortium. Our analysis revealed 22 highly concordant and statistically significant RBP-APA associations, whereby changes in RBP expression were accompanied by APA in both TCGA and ENCODE datasets. Among these, we found a previously unknown PTBP1-regulated APA event in the PRRC2B gene and an HNRNPU-regulated event in the SC5D gene. Both of these were further supported by RNA-sequencing data of paired tumor center-periphery GBM samples obtained at the University Hospital of Basel. In addition, we validated the regulation of APA in PRRC2B by PTBP1 in siRNA-knockdown and overexpression experiments followed by RNA-sequencing in two glioblastoma cell lines. The transcriptome analysis workflow that we present here enables the identification of concordant RBP-APA associations in cancers.
Collapse
Affiliation(s)
| | - Lorenzo Franchitti
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | | | | | - Gregor Hutter
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Michele De Bortoli
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | | |
Collapse
|
4
|
Li L, Jin T, Hu L, Ding J. Alternative splicing regulation and its therapeutic potential in bladder cancer. Front Oncol 2024; 14:1402350. [PMID: 39132499 PMCID: PMC11310127 DOI: 10.3389/fonc.2024.1402350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 07/05/2024] [Indexed: 08/13/2024] Open
Abstract
Bladder cancer is one of the leading causes of mortality globally. The development of bladder cancer is closely associated with alternative splicing, which regulates human gene expression and enhances the diversity of functional proteins. Alternative splicing is a distinctive feature of bladder cancer, and as such, it may hold promise as a therapeutic target. This review aims to comprehensively discuss the current knowledge of alternative splicing in the context of bladder cancer. We review the process of alternative splicing and its regulation in bladder cancer. Moreover, we emphasize the significance of abnormal alternative splicing and splicing factor irregularities during bladder cancer progression. Finally, we explore the impact of alternative splicing on bladder cancer drug resistance and the potential of alternative splicing as a therapeutic target.
Collapse
Affiliation(s)
- Lina Li
- College of Medicine, Jinhua University of Vocational Technology, Jinhua, Zhejiang, China
| | - Ting Jin
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Liang Hu
- Department of Urology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Jin Ding
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| |
Collapse
|
5
|
Wei J, Wang M, Li S, Han R, Xu W, Zhao A, Yu Q, Li H, Li M, Chi G. Reprogramming of astrocytes and glioma cells into neurons for central nervous system repair and glioblastoma therapy. Biomed Pharmacother 2024; 176:116806. [PMID: 38796971 DOI: 10.1016/j.biopha.2024.116806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/18/2024] [Accepted: 05/20/2024] [Indexed: 05/29/2024] Open
Abstract
Central nervous system (CNS) damage is usually irreversible owing to the limited regenerative capability of neurons. Following CNS injury, astrocytes are reactively activated and are the key cells involved in post-injury repair mechanisms. Consequently, research on the reprogramming of reactive astrocytes into neurons could provide new directions for the restoration of neural function after CNS injury and in the promotion of recovery in various neurodegenerative diseases. This review aims to provide an overview of the means through which reactive astrocytes around lesions can be reprogrammed into neurons, to elucidate the intrinsic connection between the two cell types from a neurogenesis perspective, and to summarize what is known about the neurotranscription factors, small-molecule compounds and MicroRNA that play major roles in astrocyte reprogramming. As the malignant proliferation of astrocytes promotes the development of glioblastoma multiforme (GBM), this review also examines the research advances on and the theoretical basis for the reprogramming of GBM cells into neurons and discusses the advantages of such approaches over traditional treatment modalities. This comprehensive review provides new insights into the field of GBM therapy and theoretical insights into the mechanisms of neurological recovery following neurological injury and in GBM treatment.
Collapse
Affiliation(s)
- Junyuan Wei
- The Key Laboratory of Pathobiology, Ministry of Education, and College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| | - Miaomiao Wang
- The Key Laboratory of Pathobiology, Ministry of Education, and College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| | - Shilin Li
- School of Public Health, Jilin University, Changchun 130021, China.
| | - Rui Han
- Department of Neurovascular Surgery, First Hospital of Jilin University, 1xinmin Avenue, Changchun, Jilin Province 130021, China.
| | - Wenhong Xu
- The Key Laboratory of Pathobiology, Ministry of Education, and College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| | - Anqi Zhao
- The Key Laboratory of Pathobiology, Ministry of Education, and College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| | - Qi Yu
- The Key Laboratory of Pathobiology, Ministry of Education, and College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| | - Haokun Li
- The Key Laboratory of Pathobiology, Ministry of Education, and College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| | - Meiying Li
- The Key Laboratory of Pathobiology, Ministry of Education, and College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| | - Guangfan Chi
- The Key Laboratory of Pathobiology, Ministry of Education, and College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| |
Collapse
|
6
|
Bak M, van Nimwegen E, Kouzel IU, Gur T, Schmidt R, Zavolan M, Gruber AJ. MAPP unravels frequent co-regulation of splicing and polyadenylation by RNA-binding proteins and their dysregulation in cancer. Nat Commun 2024; 15:4110. [PMID: 38750024 PMCID: PMC11096328 DOI: 10.1038/s41467-024-48046-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 04/15/2024] [Indexed: 05/18/2024] Open
Abstract
Maturation of eukaryotic pre-mRNAs via splicing and polyadenylation is modulated across cell types and conditions by a variety of RNA-binding proteins (RBPs). Although there exist over 1,500 RBPs in human cells, their binding motifs and functions still remain to be elucidated, especially in the complex environment of tissues and in the context of diseases. To overcome the lack of methods for the systematic and automated detection of sequence motif-guided pre-mRNA processing regulation from RNA sequencing (RNA-Seq) data we have developed MAPP (Motif Activity on Pre-mRNA Processing). Applying MAPP to RBP knock-down experiments reveals that many RBPs regulate both splicing and polyadenylation of nascent transcripts by acting on similar sequence motifs. MAPP not only infers these sequence motifs, but also unravels the position-dependent impact of the RBPs on pre-mRNA processing. Interestingly, all investigated RBPs that act on both splicing and 3' end processing exhibit a consistently repressive or activating effect on both processes, providing a first glimpse on the underlying mechanism. Applying MAPP to normal and malignant brain tissue samples unveils that the motifs bound by the PTBP1 and RBFOX RBPs coordinately drive the oncogenic splicing program active in glioblastomas demonstrating that MAPP paves the way for characterizing pre-mRNA processing regulators under physiological and pathological conditions.
Collapse
Affiliation(s)
- Maciej Bak
- Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
- Biozentrum, University of Basel, 4056, Basel, Switzerland
| | - Erik van Nimwegen
- Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
- Biozentrum, University of Basel, 4056, Basel, Switzerland
| | - Ian U Kouzel
- Department of Biology, University of Konstanz, D-78464, Konstanz, Germany
| | - Tamer Gur
- Department of Biology, University of Konstanz, D-78464, Konstanz, Germany
| | - Ralf Schmidt
- Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
- Biozentrum, University of Basel, 4056, Basel, Switzerland
| | - Mihaela Zavolan
- Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
- Biozentrum, University of Basel, 4056, Basel, Switzerland
| | - Andreas J Gruber
- Department of Biology, University of Konstanz, D-78464, Konstanz, Germany.
| |
Collapse
|
7
|
Song X, Tiek D, Miki S, Huang T, Lu M, Goenka A, Iglesia R, Yu X, Wu R, Walker M, Zeng C, Shah H, Weng SHS, Huff A, Zhang W, Koga T, Hubert C, Horbinski CM, Furnari FB, Hu B, Cheng SY. RNA splicing analysis deciphers developmental hierarchies and reveals therapeutic targets in adult glioma. J Clin Invest 2024; 134:e173789. [PMID: 38662454 PMCID: PMC11142752 DOI: 10.1172/jci173789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 04/16/2024] [Indexed: 06/02/2024] Open
Abstract
Widespread alterations in RNA alternative splicing (AS) have been identified in adult gliomas. However, their regulatory mechanism, biological significance, and therapeutic potential remain largely elusive. Here, using a computational approach with both bulk and single-cell RNA-Seq, we uncover a prognostic AS signature linked with neural developmental hierarchies. Using advanced iPSC glioma models driven by glioma driver mutations, we show that this AS signature could be enhanced by EGFRvIII and inhibited by in situ IDH1 mutation. Functional validations of 2 isoform switching events in CERS5 and MPZL1 show regulations of sphingolipid metabolism and SHP2 signaling, respectively. Analysis of upstream RNA binding proteins reveals PTBP1 as a key regulator of the AS signature where targeting of PTBP1 suppresses tumor growth and promotes the expression of a neuron marker TUJ1 in glioma stem-like cells. Overall, our data highlights the role of AS in affecting glioma malignancy and heterogeneity and its potential as a therapeutic vulnerability for treating adult gliomas.
Collapse
Affiliation(s)
- Xiao Song
- The Ken & Ruth Davee Department of Neurology, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Deanna Tiek
- The Ken & Ruth Davee Department of Neurology, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Shunichiro Miki
- Department of Medicine, Division of Regenerative Medicine, Sanford Stem Cell Institute, UCSD, La Jolla, California, USA
| | - Tianzhi Huang
- The Ken & Ruth Davee Department of Neurology, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Minghui Lu
- The Ken & Ruth Davee Department of Neurology, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Anshika Goenka
- The Ken & Ruth Davee Department of Neurology, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Rebeca Iglesia
- The Ken & Ruth Davee Department of Neurology, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Xiaozhou Yu
- The Ken & Ruth Davee Department of Neurology, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Runxin Wu
- The Ken & Ruth Davee Department of Neurology, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Maya Walker
- The Ken & Ruth Davee Department of Neurology, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Chang Zeng
- Department of Preventive Medicine, The Robert H. Lurie Comprehensive Cancer Center, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Hardik Shah
- Metabolomics Platform, Comprehensive Cancer Center, and
| | - Shao Huan Samuel Weng
- Proteomics Platform, Office of Shared Research Facilities, Biological Sciences Division, The University of Chicago, Chicago, Illinois, USA
| | - Allen Huff
- Proteomics Platform, Office of Shared Research Facilities, Biological Sciences Division, The University of Chicago, Chicago, Illinois, USA
| | - Wei Zhang
- Department of Preventive Medicine, The Robert H. Lurie Comprehensive Cancer Center, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Tomoyuki Koga
- Department of Neurosurgery, The University of Minnesota, Minneapolis, Minnesota, USA
| | - Christopher Hubert
- Department of Biochemistry, School of Medicine, Case Western Reserved University, Cleveland, Ohio, USA
| | - Craig M. Horbinski
- Departments of Pathology and Neurological Surgery, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Frank B. Furnari
- Department of Medicine, Division of Regenerative Medicine, Sanford Stem Cell Institute, UCSD, La Jolla, California, USA
| | - Bo Hu
- The Ken & Ruth Davee Department of Neurology, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Shi-Yuan Cheng
- The Ken & Ruth Davee Department of Neurology, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
8
|
Tao Y, Zhang Q, Wang H, Yang X, Mu H. Alternative splicing and related RNA binding proteins in human health and disease. Signal Transduct Target Ther 2024; 9:26. [PMID: 38302461 PMCID: PMC10835012 DOI: 10.1038/s41392-024-01734-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 12/18/2023] [Accepted: 12/27/2023] [Indexed: 02/03/2024] Open
Abstract
Alternative splicing (AS) serves as a pivotal mechanism in transcriptional regulation, engendering transcript diversity, and modifications in protein structure and functionality. Across varying tissues, developmental stages, or under specific conditions, AS gives rise to distinct splice isoforms. This implies that these isoforms possess unique temporal and spatial roles, thereby associating AS with standard biological activities and diseases. Among these, AS-related RNA-binding proteins (RBPs) play an instrumental role in regulating alternative splicing events. Under physiological conditions, the diversity of proteins mediated by AS influences the structure, function, interaction, and localization of proteins, thereby participating in the differentiation and development of an array of tissues and organs. Under pathological conditions, alterations in AS are linked with various diseases, particularly cancer. These changes can lead to modifications in gene splicing patterns, culminating in changes or loss of protein functionality. For instance, in cancer, abnormalities in AS and RBPs may result in aberrant expression of cancer-associated genes, thereby promoting the onset and progression of tumors. AS and RBPs are also associated with numerous neurodegenerative diseases and autoimmune diseases. Consequently, the study of AS across different tissues holds significant value. This review provides a detailed account of the recent advancements in the study of alternative splicing and AS-related RNA-binding proteins in tissue development and diseases, which aids in deepening the understanding of gene expression complexity and offers new insights and methodologies for precision medicine.
Collapse
Affiliation(s)
- Yining Tao
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China
- Shanghai Bone Tumor Institution, 200000, Shanghai, China
| | - Qi Zhang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China
| | - Haoyu Wang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China
- Shanghai Bone Tumor Institution, 200000, Shanghai, China
| | - Xiyu Yang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China
- Shanghai Bone Tumor Institution, 200000, Shanghai, China
| | - Haoran Mu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China.
- Shanghai Bone Tumor Institution, 200000, Shanghai, China.
| |
Collapse
|
9
|
Li Q, Zhang W, Qiao XY, Liu C, Dao JJ, Qiao CM, Cui C, Shen YQ, Zhao WJ. Reducing polypyrimidine tract‑binding protein 1 fails to promote neuronal transdifferentiation on HT22 and mouse astrocyte cells under physiological conditions. Exp Ther Med 2024; 27:72. [PMID: 38234625 PMCID: PMC10792410 DOI: 10.3892/etm.2023.12360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/27/2023] [Indexed: 01/19/2024] Open
Abstract
In contrast to prior findings that have illustrated the conversion of non-neuronal cells into functional neurons through the specific targeting of polypyrimidine tract-binding protein 1 (PTBP1), accumulated evidence suggests the impracticality of inducing neuronal transdifferentiation through suppressing PTBP1 expression in pathological circumstances. Therefore, the present study explored the effect of knocking down PTBP1 under physiological conditions on the transdifferentiation of mouse hippocampal neuron HT22 cells and mouse astrocyte (MA) cells. A total of 20 µM negative control small interfering (si)RNA and siRNA targeting PTBP1 were transfected into HT22 and MA cells using Lipo8000™ for 3 and 5 days, respectively. The expression of early neuronal marker βIII-Tubulin and mature neuronal markers NeuN and microtubule-associated protein 2 (MAP2) were detected using western blotting. In addition, βIII-tubulin, NeuN and MAP2 were labeled with immunofluorescence staining to evaluate neuronal cell differentiation in response to PTBP1 downregulation. Under physiological conditions, no significant changes in the expression of βIII-Tubulin, NeuN and MAP2 were found after 3 and 5 days of knockdown of PTBP1 protein in both HT22 and MA cells. In addition, the immunofluorescence staining results showed no apparent transdifferentiation in maker levels and morphology. The results suggested that the knockdown of PTBP1 failed to induce neuronal differentiation under physiological conditions.
Collapse
Affiliation(s)
- Qian Li
- Department of Cell Biology, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| | - Wei Zhang
- Department of Cell Biology, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
- Department of Pathogen Biology, Guizhou Nursing Vocational College, Guiyang, Guizhou 550081, P.R. China
| | - Xin-Yu Qiao
- Department of Cell Biology, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| | - Chong Liu
- Department of Cell Biology, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| | - Ji-Ji Dao
- Department of Cell Biology, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| | - Chen-Meng Qiao
- Department of Neurodegeneration and Neuroinjury, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| | - Chun Cui
- Department of Neurodegeneration and Neuroinjury, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| | - Yan-Qin Shen
- Department of Neurodegeneration and Neuroinjury, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| | - Wei-Jiang Zhao
- Department of Cell Biology, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| |
Collapse
|
10
|
Chen F, Zhao D, Huang Y, Wen X, Feng S. Synergetic impact of combined navoximod with cisplatin mitigates chemo-immune resistance via blockading IDO1 + CAFs-secreted Kyn/AhR/IL-6 and pol ζ-prevented CIN in human oral squamous cell carcinoma. Life Sci 2023; 335:122239. [PMID: 37944638 DOI: 10.1016/j.lfs.2023.122239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023]
Abstract
Oral squamous cell carcinoma (OSCC) is the most prevalent aggressive form of HNSC and treated with platinum-based chemotherapy as initial therapy. However, the development of acquired resistance and neurotoxicity to platinum agents poses a significant challenge to treat locally advanced OSCC. Notably, IDO1+ CAFs could promote immunosuppressive TME for OSCC progression. Therefore, we developed a potent IDO1 inhibitor navoximod to overcome chemo-immune resistance via an antitumor immune effect synergized with cisplatin in SCC-9 co-cultured IDO1+/IDO1- CAFs and SCC-7/IDO1+ CAFs-inoculated mice. The in vitro biological assays on IDO1+ CAFs co-cultured OSCC cancer cells supported that combined navoximod with cisplatin could mitigate chemo-immune resistance through blockading IDO1+ CAFs-secreted kynurenine (Kyn)-aryl hydrocarbon receptor (AhR)-IL-6 via suppressing p-STAT3/NF-κB signals and ceasing AhR-induced loss of pol ζ-caused chromosomal instability (CIN). Moreover, the combination elicited antitumor immunity via reducing IDO1+ CAFs-secreted Kyn/AhR and conferring pol ζ in SCC-7/IDO1+ CAFs-inoculated BALB/c mice. Meanwhile, the combination could block cisplatin-induced neurotoxicity and not interfere with chemotherapy. Taken together, the study investigated the promising therapeutic potential of combined navoximod with cisplatin to mitigate tumoral immune resistance via alleviating IDO1+ CAFs-secreted immune-suppression and CIN-caused cisplatin resistance, providing a paradigm for combined chemo-immunotherapy to prolong survival in patients with OSCC.
Collapse
Affiliation(s)
- Feihong Chen
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China.
| | - Deming Zhao
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Ying Huang
- Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Xin Wen
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Shicheng Feng
- School of Medicine, Southeast University, Nanjing 211189, PR China; Department of Oncology, Zhongda Hospital, Southeast University, Nanjing 211189, PR China
| |
Collapse
|
11
|
Li F, Song W, Wu L, Liu B, Du X. EIF4A3 induced circGRIK2 promotes the malignancy of glioma by regulating the miR-1303/HOXA10 axis. Am J Cancer Res 2023; 13:5868-5886. [PMID: 38187044 PMCID: PMC10767333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/13/2023] [Indexed: 01/09/2024] Open
Abstract
In recent years, the role of circular RNAs (circRNAs) in glioma has become increasingly important. However, there are still many newly discovered circRNAs with unknown functions that require further study. In this study, circRNA sequencing, qPCR, MTS, EdU, Transwell, and other assays were conducted to detect the expression and malignant effects of a novel circRNA molecule, circGRIK2, in glioma. qPCR, western blotting, RIP, and luciferase reporter gene experiments were used to investigate the downstream molecular mechanisms of circGRIK2. Our study found that circGRIK2 was highly expressed in glioma and promoted glioma cell viability, proliferation, invasion, and migration. Mechanistically, circGRIK2 acted as a competitive sponge for miR-1303, upregulating the expression of HOXA10 to exert its oncogenic effects. Additionally, the RNA-binding protein EIF4A3 could bind to and stabilize circGRIK2, leading to its high expression in glioblastoma. The discovery of circGRIK2 in this study not only contributes to a better understanding of the biological mechanisms of circGRIK2 in glioma but also provides a new target for molecular targeted therapy.
Collapse
Affiliation(s)
- Fubin Li
- Department of Neurosurgery, Zibo Central HospitalZibo 255036, Shandong, China
| | - Wei Song
- Department of Breast and Thyroid Surgery, Zibo Central HospitalZibo 255036, Shandong, China
| | - Lin Wu
- Department of Pediatrics, Zhangdian Maternal and Child Health Care HospitalZibo 255036, Shandong, China
| | - Bin Liu
- Department of Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinan 250021, Shandong, China
| | - Xinrui Du
- Department of Neurosurgery, Zibo Central HospitalZibo 255036, Shandong, China
| |
Collapse
|
12
|
Hao Z, Yin X, Ding R, Chen L, Hao C, Duan H. A novel oncolytic virus-based biomarker participates in prognosis and tumor immune infiltration of glioma. Front Microbiol 2023; 14:1249289. [PMID: 37808305 PMCID: PMC10556503 DOI: 10.3389/fmicb.2023.1249289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/07/2023] [Indexed: 10/10/2023] Open
Abstract
Background Glioma is the most common central nervous malignancy. Due to its poor survival outcomes, it is essential to identify novel individualized therapy. Oncolytic virus (OV) treatment is a key therapy regulating tumor microenvironment in malignant glioma. Herein, we aim to identify the key genes after OV infection and its role in glioma. Methods Performing an RNA-seq analysis, the differentially expressed genes (DEGs) between EV-A71-infection and mock group were screened with GFold values. DAVID online analysis was performed to identify the functional classification. Overall survival (OS) or disease-free survival (DFS) was evaluated to analyze the relation between PTBP1 expression levels and prognosis of glioma patients. Additionally, the ssGSEA and TIMER algorithms were applied for evaluating immune cell infiltration in glioma. Results Following EV-A71 infection in glioma cells, PTBP1, one of the downregulated DEGs, was found to be associated with multiple categories of GO and KEGG enrichment analysis. We observed elevated expression levels of PTBP1 across various tumor grades of glioma in comparison to normal brain samples. High PTBP1 expression had a notable impact on the OS of patients with low-grade glioma (LGG). Furthermore, we observed an obvious association between PTBP1 levels and immune cell infiltration in LGG. Notably, PTBP1 was regarded as an essential prognostic biomarker in immune cells of LGG. Conclusion Our research uncovered a critical role of PTBP1 in outcomes and immune cell infiltration of glioma patients, particularly in those with LGG.
Collapse
Affiliation(s)
- Zheng Hao
- Department of Neurosurgery, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiaofeng Yin
- Department of Neurosurgery, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Rui Ding
- Department of Neurosurgery, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Laizhao Chen
- Department of Neurosurgery, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Chunyan Hao
- Department of Geriatrics, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Hubin Duan
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
13
|
Wang H, Zhao P, Zhang Y, Chen Z, Bao H, Qian W, Wu J, Xing Z, Hu X, Jin K, Zhuge Q, Yang J. NeuroD4 converts glioblastoma cells into neuron-like cells through the SLC7A11-GSH-GPX4 antioxidant axis. Cell Death Discov 2023; 9:297. [PMID: 37582760 PMCID: PMC10427652 DOI: 10.1038/s41420-023-01595-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 07/20/2023] [Accepted: 08/04/2023] [Indexed: 08/17/2023] Open
Abstract
Cell fate and proliferation ability can be transformed through reprogramming technology. Reprogramming glioblastoma cells into neuron-like cells holds great promise for glioblastoma treatment, as it induces their terminal differentiation. NeuroD4 (Neuronal Differentiation 4) is a crucial transcription factor in neuronal development and has the potential to convert astrocytes into functional neurons. In this study, we exclusively employed NeuroD4 to reprogram glioblastoma cells into neuron-like cells. In vivo, the reprogrammed glioblastoma cells demonstrated terminal differentiation, inhibited proliferation, and exited the cell cycle. Additionally, NeuroD4 virus-infected xenografts exhibited smaller sizes compared to the GFP group, and tumor-bearing mice in the GFP+NeuroD4 group experienced prolonged survival. Mechanistically, NeuroD4 overexpression significantly reduced the expression of SLC7A11 and Glutathione peroxidase 4 (GPX4). The ferroptosis inhibitor ferrostatin-1 effectively blocked the NeuroD4-mediated process of neuron reprogramming in glioblastoma. To summarize, our study demonstrates that NeuroD4 overexpression can reprogram glioblastoma cells into neuron-like cells through the SLC7A11-GSH-GPX4 signaling pathway, thus offering a potential novel therapeutic approach for glioblastoma.
Collapse
Affiliation(s)
- Hao Wang
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Peiqi Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Ying Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Zhen Chen
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Han Bao
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Wenqi Qian
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Jian Wu
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Zhenqiu Xing
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Xiaowei Hu
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Kunlin Jin
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Qichuan Zhuge
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| | - Jianjing Yang
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
14
|
Fu XD, Mobley WC. Therapeutic Potential of PTB Inhibition Through Converting Glial Cells to Neurons in the Brain. Annu Rev Neurosci 2023; 46:145-165. [PMID: 37428606 DOI: 10.1146/annurev-neuro-083022-113120] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Cell replacement therapy represents a promising approach for treating neurodegenerative diseases. Contrary to the common addition strategy to generate new neurons from glia by overexpressing a lineage-specific transcription factor(s), a recent study introduced a subtraction strategy by depleting a single RNA-binding protein, Ptbp1, to convert astroglia to neurons not only in vitro but also in the brain. Given its simplicity, multiple groups have attempted to validate and extend this attractive approach but have met with difficulty in lineage tracing newly induced neurons from mature astrocytes, raising the possibility of neuronal leakage as an alternative explanation for apparent astrocyte-to-neuron conversion. This review focuses on the debate over this critical issue. Importantly, multiple lines of evidence suggest that Ptbp1 depletion can convert a selective subpopulation of glial cells into neurons and, via this and other mechanisms, reverse deficits in a Parkinson's disease model, emphasizing the importance of future efforts in exploring this therapeutic strategy.
Collapse
Affiliation(s)
- Xiang-Dong Fu
- Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China;
| | - William C Mobley
- Department of Neuroscience, University of California, San Diego, La Jolla, California, USA;
| |
Collapse
|
15
|
Chen F, Wang Z, Wang Y, Gou S. Circumventing drug resistance through a CK2-targeted combination via attenuating endogenous ahr-TLS-promoted genomic instability in human colorectal cancer cells. Food Chem Toxicol 2023; 176:113774. [PMID: 37037410 DOI: 10.1016/j.fct.2023.113774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/21/2023] [Accepted: 04/07/2023] [Indexed: 04/12/2023]
Abstract
As anchoring Casein Kinase 2 (CK2) in several human tumors, DN701 as a novel CK2 inhibitor was applied to reverse chemo-resistance via its antitumor effect synergized with oxaliplatin. Recently, translesion DNA synthesis (TLS) has attracted our attention for its association with chemo-resistance, as demonstrated by previous clinical data. The in vitro cell-based properties supported that oxaliplatin combined with DN701 could reverse drug resistance via blockading CK2-mediated aryl hydrocarbon receptor (AhR) and translesion DNA synthesis (TLS)-induced DNA damage repair. Moreover, pharmacologic or genetic inhibition on REV3L (Protein reversion less 3-like) greatly impaired TLS-induced genomic instability. Mechanistically, combination of oxaliplatin with DN701 was found to inhibit CK2 expression and AhR-TLS-REV3L axis signaling, implying the potential decrease of genomic instability. In addition, the combination of oxaliplatin with DN701 could reduce CK2-AhR-TLS-related genomic instability, leading to potent antitumor effects in vivo. Our study presents an underlying mechanism that DN701 could attenuate tumoral chemo-resistance via decaying CK2-mediated AhR and TLS genomic instability, suggesting a potential cancer chemotherapeutic modality to prolong survival in chemo-resistant patients.
Collapse
Affiliation(s)
- Feihong Chen
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China; Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, China
| | - Zhiwei Wang
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China; Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, China
| | - Yuanjiang Wang
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China; Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, China
| | - Shaohua Gou
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China; Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
16
|
GBE1 Promotes Glioma Progression by Enhancing Aerobic Glycolysis through Inhibition of FBP1. Cancers (Basel) 2023; 15:cancers15051594. [PMID: 36900384 PMCID: PMC10000543 DOI: 10.3390/cancers15051594] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/18/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Tumor metabolism characterized by aerobic glycolysis makes the Warburg effect a unique target for tumor therapy. Recent studies have found that glycogen branching enzyme 1 (GBE1) is involved in cancer progression. However, the study of GBE1 in gliomas is limited. We determined by bioinformatics analysis that GBE1 expression is elevated in gliomas and correlates with poor prognoses. In vitro experiments showed that GBE1 knockdown slows glioma cell proliferation, inhibits multiple biological behaviors, and alters glioma cell glycolytic capacity. Furthermore, GBE1 knockdown resulted in the inhibition of the NF-κB pathway as well as elevated expression of fructose-bisphosphatase 1 (FBP1). Further knockdown of elevated FBP1 reversed the inhibitory effect of GBE1 knockdown, restoring glycolytic reserve capacity. Furthermore, GBE1 knockdown suppressed xenograft tumor formation in vivo and conferred a significant survival benefit. Collectively, GBE1 reduces FBP1 expression through the NF-κB pathway, shifting the glucose metabolism pattern of glioma cells to glycolysis and enhancing the Warburg effect to drive glioma progression. These results suggest that GBE1 can be a novel target for glioma in metabolic therapy.
Collapse
|
17
|
Shen B, Gao H, Zhang D, Yu H, Chen J, Huang S, Gu P, Zhong Y. miR-124-3p regulates the proliferation and differentiation of retinal progenitor cells through SEPT10. Cell Tissue Res 2023:10.1007/s00441-023-03750-0. [PMID: 36802303 DOI: 10.1007/s00441-023-03750-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 01/26/2023] [Indexed: 02/23/2023]
Abstract
Retinal degenerative diseases such as glaucoma, retinitis pigmentosa, and age-related macular degeneration pose serious threats to human visual health due to lack of effective therapeutic approaches. In recent years, the transplantation of retinal progenitor cells (RPCs) has shown increasing promise in the treatment of these diseases; however, the application of RPC transplantation is limited by both their poor proliferation and their differentiation capabilities. Previous studies have shown that microRNAs (miRNA) act as essential mediators in the fate determination of stem/progenitor cells. In this study, we hypothesized that miR-124-3p plays a regulatory role in the fate of RPC determination by targeting Septin10 (SEPT10) in vitro. We observed that the overexpression of miR124-3p downregulates SEPT10 expression in RPCs, leading to reduced RPC proliferation and increased differentiation, specifically towards both neurons and ganglion cells. Conversely, antisense knockdown of miR-124-3p was shown to boost SEPT10 expression, enhance RPC proliferation, and attenuate differentiation. Moreover, overexpression of SEPT10 rescued miR-124-3p-caused proliferation deficiency while weakening the enhancement of miR-124-3p-induced-RPC differentiation. Results from this study show that miR-124-3p regulates RPC proliferation and differentiation by targeting SEPT10. Furthermore, our findings enable a more comprehensive understanding into the mechanisms of proliferation and differentiation of RPC fate determination. Ultimately, this study may be useful for helping researchers and clinicians to develop more promising and effective approaches to optimize the use of RPCs in treating retinal degeneration diseases.
Collapse
Affiliation(s)
- Bingqiao Shen
- Department of Ophthalmology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Huiqin Gao
- Department of Ophthalmology, Ninth People's Hospital Affiliated Medical School, Shanghai Jiaotong University, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Dandan Zhang
- Department of Ophthalmology, Ninth People's Hospital Affiliated Medical School, Shanghai Jiaotong University, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Huan Yu
- Department of Ophthalmology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Junjue Chen
- Department of Ophthalmology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Shouyue Huang
- Department of Ophthalmology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Ping Gu
- Department of Ophthalmology, Ninth People's Hospital Affiliated Medical School, Shanghai Jiaotong University, 639 Zhizaoju Road, Shanghai, 200011, China.
| | - Yisheng Zhong
- Department of Ophthalmology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China.
| |
Collapse
|