1
|
Maujean T, Ramanoudjame SM, Riché S, Le Guen C, Boisson F, Muller S, Bonnet D, Gulea M, Marchand P. Hetero-Diels-Alder and CuAAC Click Reactions for Fluorine-18 Labeling of Peptides: Automation and Comparative Study of the Two Methods. Molecules 2024; 29:3198. [PMID: 38999148 PMCID: PMC11243578 DOI: 10.3390/molecules29133198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/26/2024] [Accepted: 06/29/2024] [Indexed: 07/14/2024] Open
Abstract
Radiolabeled peptides are valuable tools for diagnosis or therapies; they are often radiofluorinated using an indirect approach based on an F-18 prosthetic group. Herein, we are reporting our results on the F-18 radiolabeling of three peptides using two different methods based on click reactions. The first one used the well-known CuAAC reaction, and the second one is based on our recently reported hetero-Diels-Alder (HDA) using a dithioesters (thia-Diels-Alder) reaction. Both methods have been automated, and the 18F-peptides were obtained in similar yields and synthesis time (37-39% decay corrected yields by both methods in 120-140 min). However, to obtain similar yields, the CuAAC needs a large amount of copper along with many additives, while the HDA is a catalyst and metal-free reaction necessitating only an appropriate ratio of water/ethanol. The HDA can therefore be considered as a minimalist method offering easy access to fluorine-18 labeled peptides and making it a valuable additional tool for the indirect and site-specific labeling of peptides or biomolecules.
Collapse
Affiliation(s)
- Timothé Maujean
- Université de Strasbourg, CNRS, Laboratoire d’Innovation Thérapeutique, LIT UMR 7200, F-67000 Strasbourg, France
| | - Sridévi M. Ramanoudjame
- Université de Strasbourg, CNRS, Laboratoire d’Innovation Thérapeutique, LIT UMR 7200, F-67000 Strasbourg, France
| | - Stéphanie Riché
- Université de Strasbourg, CNRS, Laboratoire d’Innovation Thérapeutique, LIT UMR 7200, F-67000 Strasbourg, France
| | - Clothilde Le Guen
- Université de Strasbourg, CNRS, Laboratoire d’Innovation Thérapeutique, LIT UMR 7200, F-67000 Strasbourg, France
- Inovarion, F-75005 Paris, France
| | - Frédéric Boisson
- Université de Strasbourg, CNRS, Institut Pluridisciplinaire Hubert Curien, IPHC UMR 7178, F-67000 Strasbourg, France
| | - Sylviane Muller
- Université de Strasbourg, CNRS, Biotechnologie et Signalisation Cellulaire UMR 7242, F-67000 Strasbourg, France
| | - Dominique Bonnet
- Université de Strasbourg, CNRS, Laboratoire d’Innovation Thérapeutique, LIT UMR 7200, F-67000 Strasbourg, France
| | - Mihaela Gulea
- Université de Strasbourg, CNRS, Laboratoire d’Innovation Thérapeutique, LIT UMR 7200, F-67000 Strasbourg, France
| | - Patrice Marchand
- Université de Strasbourg, CNRS, Institut Pluridisciplinaire Hubert Curien, IPHC UMR 7178, F-67000 Strasbourg, France
| |
Collapse
|
2
|
Mou Z, Zhu Y, Zhang L, Ma M, Li Z, Guo Y, Zheng J, Zhao Z, Zhang K, Chen X, Li Z. "AquaF" Building Blocks for Water-Compatible S N2 18F-Fluorination of Small-Molecule Radiotracers. J Am Chem Soc 2024; 146:17517-17529. [PMID: 38869959 DOI: 10.1021/jacs.4c05854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Despite the widespread use of hydrophilic building blocks to incorporate 18F and improve tracer pharmacokinetics, achieving effective leaving group-mediated nucleophilic 18F-fluorination in water (excluding 18F/19F-exchange) remains a formidable challenge. Here, we present a water-compatible SN2 leaving group-mediated 18F-fluorination method employing preconjugated "AquaF" (phosphonamidic fluorides) building blocks. Among 19 compact tetracoordinated pentavalent P(V)-F candidates, the "AquaF" building blocks exhibit superior water solubility, sufficient capacity for 18F-fluorination in water, and excellent in vivo metabolic properties. Two nitropyridinol leaving groups, identified from a pool of leaving group candidates that further enhance the precursor water solubility, enable 18F-fluorination in water with a 10-2 M-1 s-1 level reaction rate constant (surpassing the 18F/19F-exchange) at room temperature. With the exergonic concerted SN2 18F-fluorination mechanism confirmed, this 18F-fluorination method achieves ∼90% radiochemical conversions and reaches a molar activity of 175 ± 40 GBq/μmol (using 12.2 GBq initial activity) in saline for 12 "AquaF"-modified proof-of-concept functional substrates and small-molecule 18F-tracers. [18F]AquaF-Flurpiridaz demonstrates significantly improved radiochemical yield and molar activity compared to 18F-Flurpiridaz, alongside enhanced cardiac uptake and heart/liver ratio in targeted myocardial perfusion imaging, providing a comprehensive illustration of "AquaF" building blocks-assisted water-compatible SN2 18F-fluorination of small-molecule radiotracers.
Collapse
Affiliation(s)
- Zhaobiao Mou
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen 361102, China
| | - Yiwei Zhu
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen 361102, China
| | - Lei Zhang
- Tianjin Engineering Technology Center of Chemical Wastewater Source Reduction and Recycling, School of Science, Tianjin Chengjian University, Tianjin 300384, China
| | - Mengting Ma
- School of Medicine, Xiamen University, Xiamen 361102, China
| | - Zhongjing Li
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen 361102, China
| | - Yiming Guo
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen 361102, China
| | - Jiamei Zheng
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen 361102, China
| | - Zixiao Zhao
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen 361102, China
| | - Kaiqiang Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen 361102, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Zijing Li
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen 361102, China
| |
Collapse
|
3
|
Deleuziere M, Benoist É, Quelven I, Gras E, Amiens C. [ 18F]-Radiolabelled Nanoplatforms: A Critical Review of Their Intrinsic Characteristics, Radiolabelling Methods, and Purification Techniques. Molecules 2024; 29:1537. [PMID: 38611815 PMCID: PMC11013168 DOI: 10.3390/molecules29071537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/20/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
A wide range of nano-objects is found in many applications of our everyday life. Recognition of their peculiar properties and ease of functionalization has prompted their engineering into multifunctional platforms that are supposed to afford efficient tools for the development of biomedical applications. However, bridging the gap between bench to bedside cannot be expected without a good knowledge of their behaviour in vivo, which can be obtained through non-invasive imaging techniques, such as positron emission tomography (PET). Their radiolabelling with [18F]-fluorine, a technique already well established and widely used routinely for PET imaging, with [18F]-FDG for example, and in preclinical investigation using [18F]-radiolabelled biological macromolecules, has, therefore, been developed. In this context, this review highlights the various nano-objects studied so far, the reasons behind their radiolabelling, and main in vitro and/or in vivo results obtained thereof. Then, the methods developed to introduce the radioelement are presented. Detailed indications on the chemical steps involved are provided, and the stability of the radiolabelling is discussed. Emphasis is then made on the techniques used to purify and analyse the radiolabelled nano-objects, a point that is rarely discussed despite its technical relevance and importance for accurate imaging. The pros and cons of the different methods developed are finally discussed from which future work can develop.
Collapse
Affiliation(s)
- Maëlle Deleuziere
- SPCMIB, CNRS UMR 5068, Université de Toulouse III Paul Sabatier, 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France; (M.D.); (É.B.)
- Toulouse NeuroImaging Center (ToNIC), INSERM/UPS UMR 1214, University Hospital of Toulouse-Purpan, CEDEX 3, 31024 Toulouse, France;
- LCC-CNRS, Université de Toulouse, CNRS, UPS, 31077 Toulouse, France
| | - Éric Benoist
- SPCMIB, CNRS UMR 5068, Université de Toulouse III Paul Sabatier, 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France; (M.D.); (É.B.)
| | - Isabelle Quelven
- Toulouse NeuroImaging Center (ToNIC), INSERM/UPS UMR 1214, University Hospital of Toulouse-Purpan, CEDEX 3, 31024 Toulouse, France;
| | - Emmanuel Gras
- Laboratoire Hétérochimie Fondamentale et Appliquée, UMR 5069, CNRS—Université de Toulouse, 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France;
| | - Catherine Amiens
- LCC-CNRS, Université de Toulouse, CNRS, UPS, 31077 Toulouse, France
| |
Collapse
|
4
|
Steffann M, Bluet G, Roy S, Aubert C, Fouquet E, Hermange P. 18 F-Fluorination of a supported 2-(aryl-di-tert-butylsilyl)-N-methyl-imidazole for indirect 18 F-labeling of a V H H single-variable domain. J Labelled Comp Radiopharm 2024; 67:104-110. [PMID: 38224624 DOI: 10.1002/jlcr.4082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/15/2023] [Accepted: 12/18/2023] [Indexed: 01/17/2024]
Abstract
Anchoring an imidazole-di-tert-butyl-arylsilane possessing an azido group to a polystyrene resin provided a heterogeneous precursor that was radiolabeled easily using aqueous [18 F]fluoride. After optimizing the conditions (i.e., using DMSO as solvent and heating at 160°C for 15 min), the desired [18 F]fluorosilane was obtained in 24% radiochemical yield (RCY) and 78% radiochemical purity (RCP) using solid-phase extraction as sole purification. Then, this compound was conjugated by strain-promoted alkyne-azide cycloaddition to a model single-variable domain possessing a cyclooctyne tag, yielding to the desired 18 F-labeled bioconjugate in 2% RCY and >95% RCP after purification by a size exclusion chromatography.
Collapse
Affiliation(s)
- Marine Steffann
- Institut des Sciences Moléculaires (ISM), UMR 5255, Univ. Bordeaux, CNRS, Bordeaux INP, Talence Cedex, France
- Sanofi, Integrated Drug Discovery (IDD) Isotope Chemistry (IC), Vitry-sur-Seine, France
| | - Guillaume Bluet
- Sanofi, Integrated Drug Discovery (IDD) Isotope Chemistry (IC), Vitry-sur-Seine, France
| | - Sébastien Roy
- Sanofi, Integrated Drug Discovery (IDD) Isotope Chemistry (IC), Vitry-sur-Seine, France
| | - Catherine Aubert
- Sanofi, Integrated Drug Discovery (IDD) Isotope Chemistry (IC), Vitry-sur-Seine, France
| | - Eric Fouquet
- Institut des Sciences Moléculaires (ISM), UMR 5255, Univ. Bordeaux, CNRS, Bordeaux INP, Talence Cedex, France
| | - Philippe Hermange
- Institut des Sciences Moléculaires (ISM), UMR 5255, Univ. Bordeaux, CNRS, Bordeaux INP, Talence Cedex, France
| |
Collapse
|