1
|
Zhao W, Wang L, Zhang M, Liu Z, Wu C, Pan X, Huang Z, Lu C, Quan G. Photodynamic therapy for cancer: mechanisms, photosensitizers, nanocarriers, and clinical studies. MedComm (Beijing) 2024; 5:e603. [PMID: 38911063 PMCID: PMC11193138 DOI: 10.1002/mco2.603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 05/06/2024] [Accepted: 05/10/2024] [Indexed: 06/25/2024] Open
Abstract
Photodynamic therapy (PDT) is a temporally and spatially precisely controllable, noninvasive, and potentially highly efficient method of phototherapy. The three components of PDT primarily include photosensitizers, oxygen, and light. PDT employs specific wavelengths of light to active photosensitizers at the tumor site, generating reactive oxygen species that are fatal to tumor cells. Nevertheless, traditional photosensitizers have disadvantages such as poor water solubility, severe oxygen-dependency, and low targetability, and the light is difficult to penetrate the deep tumor tissue, which remains the toughest task in the application of PDT in the clinic. Here, we systematically summarize the development and the molecular mechanisms of photosensitizers, and the challenges of PDT in tumor management, highlighting the advantages of nanocarriers-based PDT against cancer. The development of third generation photosensitizers has opened up new horizons in PDT, and the cooperation between nanocarriers and PDT has attained satisfactory achievements. Finally, the clinical studies of PDT are discussed. Overall, we present an overview and our perspective of PDT in the field of tumor management, and we believe this work will provide a new insight into tumor-based PDT.
Collapse
Affiliation(s)
- Wanchen Zhao
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJinan UniversityGuangzhouChina
- College of PharmacyJinan UniversityGuangzhouChina
| | - Liqing Wang
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJinan UniversityGuangzhouChina
- College of PharmacyJinan UniversityGuangzhouChina
| | - Meihong Zhang
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJinan UniversityGuangzhouChina
- College of PharmacyJinan UniversityGuangzhouChina
| | - Zhiqi Liu
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJinan UniversityGuangzhouChina
- College of PharmacyJinan UniversityGuangzhouChina
| | - Chuanbin Wu
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJinan UniversityGuangzhouChina
- College of PharmacyJinan UniversityGuangzhouChina
| | - Xin Pan
- School of Pharmaceutical SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Zhengwei Huang
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJinan UniversityGuangzhouChina
- College of PharmacyJinan UniversityGuangzhouChina
| | - Chao Lu
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJinan UniversityGuangzhouChina
- College of PharmacyJinan UniversityGuangzhouChina
| | - Guilan Quan
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJinan UniversityGuangzhouChina
- College of PharmacyJinan UniversityGuangzhouChina
| |
Collapse
|
2
|
Ma J, Li Y, Ying Y, Wu B, Liu Y, Zhou J, Hu L. Progress of Mesoporous Silica Coated Gold Nanorods for Biological Imaging and Cancer Therapy. ChemMedChem 2024; 19:e202300374. [PMID: 37990850 DOI: 10.1002/cmdc.202300374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/19/2023] [Accepted: 11/19/2023] [Indexed: 11/23/2023]
Abstract
For unique surface plasmon absorption and fluorescence characteristics, gold nanorods have been developed and widely employed in the biomedical field. However, limitations still exist due their low specific surface area, instability and tendency agglomerate in cytoplasm. Mesoporous silica materials have been broadly applied in field of catalysts, adsorbents, nanoreactors, and drug carriers due to its unique mesoporous structure, highly comparative surface area, good stability and biocompatibility. Therefore, coating gold nanorods with a dendritic mesopore channels can effectively prevent particle agglomeration, while increasing the specific surface area and drug loading efficiency. This review discusses the advancements of GNR@MSN in synthetic process, bio-imaging technique and tumor therapy. Additionally, the further application of GNR@MSN in imaging-guided treatment modalities is explored, while its promising superior application prospect is highlighted. Finally, the issues related to in vivo studies are critically examined for facilitating the transition of this promising nanoplatform into clinical trials.
Collapse
Affiliation(s)
- Jiaying Ma
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, University of South China, Hengyang, 421001, PR China
| | - Yongzhen Li
- Department of Pharmacy, School of Pharmacy, University of South China, Hengyang, 421001, PR China
| | - Yunfei Ying
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, University of South China, Hengyang, 421001, PR China
| | - Baibei Wu
- Department of Clinical Medicine, University of South China, Hengyang, 421001, PR China
| | - Yanmei Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, University of South China, Hengyang, 421001, PR China
| | - Juan Zhou
- School of Mechanical Engineering, University of South China, Hengyang, 421001, PR China
| | - Lidan Hu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, University of South China, Hengyang, 421001, PR China
| |
Collapse
|
3
|
Verma S, Malviya R, Srivastava S, Ahmad I, Singh B, Almontasheri R, Uniyal P. Shape Dependent Therapeutic Potential of Nanoparticulate System: Advance Approach for Drug Delivery. Curr Pharm Des 2024; 30:2606-2618. [PMID: 39034725 DOI: 10.2174/0113816128314618240628110218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/09/2024] [Accepted: 06/11/2024] [Indexed: 07/23/2024]
Abstract
Drug delivery systems rely heavily on nanoparticles because they provide a targeted and monitored release of pharmaceuticals that maximize therapeutic efficacy and minimize side effects. To maximize drug internalization, this review focuses on comprehending the interactions between biological systems and nanoparticles. The way that nanoparticles behave during cellular uptake, distribution, and retention in the body is determined by their shape. Different forms, such as mesoporous silica nanoparticles, micelles, and nanorods, each have special properties that influence how well drugs are delivered to cells and internalized. To achieve the desired particle morphology, shape-controlled nanoparticle synthesis strategies take into account variables like pH, temperatures, and reaction time. Top-down techniques entail dissolving bulk materials to produce nanoparticles, whereas bottom-up techniques enable nanostructures to self-assemble. Comprehending the interactions at the bio-nano interface is essential to surmounting biological barriers and enhancing the therapeutic efficacy of nanotechnology in drug delivery systems. In general, drug internalization and distribution are greatly influenced by the shape of nanoparticles, which presents an opportunity for tailored and efficient treatment plans in a range of medical applications.
Collapse
Affiliation(s)
- Shristy Verma
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Saurabh Srivastava
- School of Pharmacy, KPJ Healthcare University College (KPJUC), Nilai 71800, Malaysia
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | | | - Rasha Almontasheri
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Prerna Uniyal
- School of Pharmacy, Graphic Era Hill University, Dehradun, India
| |
Collapse
|
4
|
Prasad R, Selvaraj K. Choice of Nanoparticles for Theranostics Engineering: Surface Coating to Nanovalves Approach. Nanotheranostics 2024; 8:12-32. [PMID: 38164501 PMCID: PMC10750116 DOI: 10.7150/ntno.89768] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 09/08/2023] [Indexed: 01/03/2024] Open
Abstract
Surface engineered nanoparticles (metallic and nonmetallic) have gained tremendous attention for precise imaging and therapeutics of cell/tumors at molecular and anatomic levels. These tiny agents have shown their specific physicochemical properties for early-stage disease diagnosis and cancer theranostics applications (imaging and therapeutics by a single system). For example, gold nanorods (AuNRs) demonstrate better photothermal response and radiodensity for theranostics applications. However, upon near infrared light exposure these AuNRs lose their optical property which is characteristic of phototherapy of cancer. To overcome this issue, silica coating is a safe choice for nanorods which not only stabilizes them but also provides extra space for cargo loading and makes them multifunctional in cancer theranostics applications. On the other hand, various small molecules have been coated on the surface of nanoparticles (organic, inorganic, and biological) which improve their biocompatibility, blood circulation time, specific biodistribution and tumor binding ability. A few of them have been reached in clinical trials, but, struggling with FDA approval due to engineering and biological barriers. Moreover, nanoparticles also face various challenges of reliability, reproducibility, degradation, tumor entry and exit in translational research. On the other hand, cargo carrier nanoparticles have been facing critical issues of premature leakage of loaded cargo either anticancer drug or imaging probes. Hence, various gate keepers (quantum dots to supramolecules) known nanovalves have been engineered on the pore opening of the cargo systems. Here, a review on the evolution of nanoparticles and their choice for diagnostics and therapeutics applications has been discussed. In this context, basic requirements of multifunctional theranostics design for targeted imaging and therapy have been highlighted and with several challenges. Major hurdles experienced in the surface engineering routes (coating to nanovalves approach) and limitations of the designed theranostics such as poor biocompatibility, low photostability, non-specific targeting, low cargo capacity, poor biodegradation and lower theranostics efficiency are discussed in-depth. The current scenario of theranostics systems and their multifunctional applications have been presented in this article.
Collapse
Affiliation(s)
- Rajendra Prasad
- Interventional Theranostics & Multimode Imaging Lab, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Kaliaperumal Selvaraj
- Nano and Computational Materials Lab, Catalysis and Inorganic Chemistry Division, CSIR National Chemical Laboratory, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| |
Collapse
|
5
|
He J, He Y, Wu X, Zhang X, Hu R, Tang BZ, Xu QH. Mesoporous Silica-Encapsulated Gold Nanorods for Drug Delivery/Release and Two-Photon Excitation Fluorescence Imaging to Guide Synergistic Phototherapy and Chemotherapy. ACS APPLIED BIO MATERIALS 2023; 6:3433-3440. [PMID: 37084245 DOI: 10.1021/acsabm.3c00132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Photothermal therapy is a promising light-based medical treatment that relies on light absorption agents converting light irradiation into localized heat to destroy cancer cells or other diseased tissues. It is critical to enhance the therapeutic effects of cancer cell ablation for their practical applications. This study reports a high-performance combinational therapy for ablating cancer cells, including both photothermal therapy and chemotherapy to improve therapeutic efficiency. The prepared AuNR@mSiO2 loading molecular Doxorubicin (Dox) assemblies were highlighted by merits of facile acquisition, great stability, easy endocytosis, and rapid drug release in addition to improved anticancer capability upon irradiation with a femtosecond pulsed near-infrared (NIR) laser, where AuNR@mSiO2 nanoparticles afforded a high photothermal conversion efficiency of 31.7%. Two-photon excitation fluorescence imaging was introduced into confocal laser scanning microscope multichannel imaging to track the drug location and cell position in real time for monitoring the process of drug delivery in killing human cervical cancer HeLa cells and then to realize imaging-guiding cancer treatment. These nanoparticles exhibit widespread potential in photoresponsive utilizations including photothermal therapy, chemotherapy, one- and two-photon excited fluorescence imaging, and 3D fluorescence imaging and cancer treatment.
Collapse
Affiliation(s)
- Jiangling He
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
- National University of Singapore (Suzhou) Research Institute, Suzhou 215123, China
| | - Youling He
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Xiao Wu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Xiangyu Zhang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
- National University of Singapore (Suzhou) Research Institute, Suzhou 215123, China
| | - Rongrong Hu
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Ben Zhong Tang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Qing-Hua Xu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
- National University of Singapore (Suzhou) Research Institute, Suzhou 215123, China
| |
Collapse
|
6
|
Chen Z, Chen Y, Xu Y, Shi X, Han Z, Bai Y, Fang H, He W, Guo Z. BODIPY-Based Multifunctional Nanoparticles for Dual Mode Imaging-Guided Tumor Photothermal and Photodynamic Therapy. ACS APPLIED BIO MATERIALS 2023; 6:3406-3413. [PMID: 36996306 DOI: 10.1021/acsabm.3c00083] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
Multifunctional nanoparticles integrating accurate multi-diagnosis and efficient therapy hold great prospects in tumor theranostics. However, it is still a challenging task to develop multifunctional nanoparticles for imaging-guided effective eradication of tumors. Herein, we developed a near-infrared (NIR) organic agent Aza/I-BDP by coupling 2,6-diiodo-dipyrromethene (2,6-diiodo-BODIPY) with aza-boron-dipyrromethene (Aza-BODIPY). Through encapsulating with an amphiphilic biocompatible copolymer DSPE-mPEG5000, well-distributed Aza/I-BDP nanoparticles (NPs) were developed, which exhibited high 1O2 generation, high photothermal conversion efficiency, and excellent photo-stability. Notably, coassembly of Aza/I-BDP and DSPE-mPEG5000 effectively inhibits H-aggregation of Aza/I-BDP in aqueous solution and enhances the brightness simultaneously up to 31-fold. More importantly, in vivo experiments demonstrated that Aza/I-BDP NPs might be used for NIR fluorescent and photoacoustic imaging-guided photodynamic and photothermal therapy.
Collapse
Affiliation(s)
- Zhongyan Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, P. R. China
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Yuncong Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, P. R. China
- Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Yunjian Xu
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of AdvancedMaterials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Xiangchao Shi
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, P. R. China
| | - Zhong Han
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, P. R. China
| | - Yang Bai
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, P. R. China
| | - Hongbao Fang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, P. R. China
| | - Weijiang He
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, P. R. China
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
7
|
Huang J, Liao D, Han Y, Chen Y, Raza S, Lu C, Liu J, Lan Q. Current status of porous coordination networks (PCNs) derived porphyrin spacers for cancer therapy. Expert Opin Drug Deliv 2023; 20:1209-1229. [PMID: 37776531 DOI: 10.1080/17425247.2023.2260309] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/14/2023] [Indexed: 10/02/2023]
Abstract
INTRODUCTION Porous coordination networks (PCNs) have been widely used in large number of applications such as light harvesting, catalysis, and biomedical applications. Inserting porphyrins into PCNs scaffolds can alleviate the solubility and chemical stability problems associated with porphyrin ligands and add functionality to PCNs. The discovery that some PCNs materials have photosensitizer and acoustic sensitizer properties has attracted significant attention in the field of biomedicine, particularly in cancer therapy. This article describes the latest applications of the porphyrin ligand-based family of PCNs in cancer chemodynamic therapy (CDT), photodynamic therapy (PDT), sonodynamic therapy (SDT), photothermal therapy (PTT), and combination therapies and offers some observations and reflections on them. AREAS COVERED This article discusses the use of the PCN family of MOFs in cancer treatment, specifically focusing on chemodynamic therapy, sonodynamic therapy, photodynamic therapy, photothermal therapy, and combination therapy. EXPERT OPINION Although a large number of PCNs have been developed for use in novel cancer therapeutic approaches, further improvements are needed to advance the use of PCNs in the clinic. For example, the main mechanism of action of PCNs against cancer and the metabolic processes in organisms, and how to construct PCNs that maintain good stability in the complex environment of organisms.
Collapse
Affiliation(s)
- Jeifeng Huang
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Donghui Liao
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Yuting Han
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Ying Chen
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Saleem Raza
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, P.R. China
| | - Chengyu Lu
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Jianqiang Liu
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Dongguan, China
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Qian Lan
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| |
Collapse
|
8
|
Soleimany A, Khoee S, Dias S, Sarmento B. Exploring Low-Power Single-Pulsed Laser-Triggered Two-Photon Photodynamic/Photothermal Combination Therapy Using a Gold Nanostar/Graphene Quantum Dot Nanohybrid. ACS APPLIED MATERIALS & INTERFACES 2023; 15:20811-20821. [PMID: 37083346 PMCID: PMC10165604 DOI: 10.1021/acsami.3c03578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Combined photodynamic/photothermal therapy (PDT/PTT) has emerged as a promising cancer treatment modality due to its potential synergistic effects and identical treatment procedures. However, its clinical application is hindered by long treatment times and complicated treatment operations when separate illumination sources are required. Here, we present the development of a new nanohybrid comprising thiolated chitosan-coated gold nanostars (AuNS-TCS) as the photothermal agent and riboflavin-conjugated N,S-doped graphene quantum dot (Rf-N,S-GQD) as the two-photon photosensitizer (TP-PS). The nanohybrid demonstrated combined TP-PDT/PTT when a low-power, single-pulsed laser irradiation was applied, and the localized surface plasmon resonance of AuNS was in resonance with the TP-absorption wavelength of Rf-N,S-GQD. The TCS coating significantly enhanced the colloidal stability of AuNSs while providing a suitable substrate to electrostatically anchor negatively charged Rf-N,S-GQDs. The plasmon-enhanced singlet oxygen (1O2) generation effect led to boosted 1O2 production both extracellularly and intracellularly. Notably, the combined TP-PDT/PTT exhibited significantly improved phototherapeutic outcomes compared to individual strategies against 2D monolayer cells and 3D multicellular tumor spheroids. Overall, this study reveals a successful single-laser-triggered, synergistic combined TP-PDT/PTT based on a plasmonic metal/QD hybrid, with potential for future investigation in clinical settings.
Collapse
Affiliation(s)
- Amir Soleimany
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- INEB, Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Polymer Laboratory, School of Chemistry, College of Science, University of Tehran, Tehran 14155-6455, Iran
| | - Sepideh Khoee
- Polymer Laboratory, School of Chemistry, College of Science, University of Tehran, Tehran 14155-6455, Iran
| | - Sofia Dias
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- INEB, Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Bruno Sarmento
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- INEB, Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- IUCS-CESPU, Rua Central de Gandra 1317, 4585-116 Gandra, Portugal
| |
Collapse
|
9
|
Liu C, Wu K, Li J, Mu X, Gao H, Xu X. Nanoparticle-mediated therapeutic management in cholangiocarcinoma drug targeting: Current progress and future prospects. Biomed Pharmacother 2023; 158:114135. [PMID: 36535198 DOI: 10.1016/j.biopha.2022.114135] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Patients with cholangiocarcinoma (CCA) often have an unfavorable prognosis because of its insidious nature, low resectability rate, and poor response to anticancer drugs and radiotherapy, which makes early detection and treatment difficult. At present, CCA has a five-year overall survival rate (OS) of only 5%, despite advances in therapies. New an increasing number of evidence suggests that nanoplatforms may play a crucial role in enhancing the pharmacological effects and in reducing both short- and long-term side effects of cancer treatment. This document reviews the advantages and shortcomings of nanoparticles such as liposomes, polymeric nanoparticle,inorganic nanoparticle, nano-metals and nano-alloys, carbon dots, nano-micelles, dendrimer, nano-capsule, bio-Nanomaterials in the diagnosis and treatment of CCA and discuss the current challenges in of nanoplatforms for CCA.
Collapse
Affiliation(s)
- Chunkang Liu
- Department of Gastrointestinal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Kunzhe Wu
- Department of Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jianyang Li
- Department of Nephrology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xupeng Mu
- Department of Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Huan Gao
- Department of Nephrology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xiaohua Xu
- Department of Nephrology, China-Japan Union Hospital of Jilin University, Changchun, China.
| |
Collapse
|
10
|
Enhanced Photodynamic Therapy: A Review of Combined Energy Sources. Cells 2022; 11:cells11243995. [PMID: 36552759 PMCID: PMC9776440 DOI: 10.3390/cells11243995] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Photodynamic therapy (PDT) has been used in recent years as a non-invasive treatment for cancer, due to the side effects of traditional treatments such as surgery, radiotherapy, and chemotherapy. This therapeutic technique requires a photosensitizer, light energy, and oxygen to produce reactive oxygen species (ROS) which mediate cellular toxicity. PDT is a useful non-invasive therapy for cancer treatment, but it has some limitations that need to be overcome, such as low-light-penetration depths, non-targeting photosensitizers, and tumor hypoxia. This review focuses on the latest innovative strategies based on the synergistic use of other energy sources, such as non-visible radiation of the electromagnetic spectrum (microwaves, infrared, and X-rays), ultrasound, and electric/magnetic fields, to overcome PDT limitations and enhance the therapeutic effect of PDT. The main principles, mechanisms, and crucial elements of PDT are also addressed.
Collapse
|
11
|
|
12
|
Pop R, Tăbăran AF, Ungur AP, Negoescu A, Cătoi C. Helicobacter Pylori-Induced Gastric Infections: From Pathogenesis to Novel Therapeutic Approaches Using Silver Nanoparticles. Pharmaceutics 2022; 14:pharmaceutics14071463. [PMID: 35890358 PMCID: PMC9318142 DOI: 10.3390/pharmaceutics14071463] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/29/2022] [Accepted: 07/11/2022] [Indexed: 02/01/2023] Open
Abstract
Helicobacter pylori is the first formally recognized bacterial carcinogen and the most important single digestive pathogen responsible for the induction of gastroduodenal diseases such as gastritis, peptic ulcer, and, finally, gastric neoplasia. The recently reported high rates of antimicrobial drug resistance hamper the current therapies of H. pylori, with therapeutic failure reaching up to 40% of patients. In this context, new treatment options and strategies are urgently needed, but the successful development of these new therapeutic tools is conditioned by the understanding of the high adaptability of H. pylori to the gastric acidic environment and the complex pathogenic mechanism. Due to several advantages, including good antibacterial efficiency, possible targeted delivery, and long tissular persistence, silver nanoparticles (AgNPs) offer the opportunity of exploring new strategies to improve the H. pylori therapy. A new paradigm in the therapy of H. pylori gastric infections using AgNPs has the potential to overcome the current medical limitations imposed by the H. pylori drug resistance, which is reported for most of the current organic antibiotics employed in the classical therapies. This manuscript provides an extensive overview of the pathology of H. pylori-induced gastritis, gastric cancer, and extradigestive diseases and highlights the possible benefits and limitations of employing AgNPs in the therapeutic strategies against H. pylori infections.
Collapse
|
13
|
Tavakkoli Yaraki M, Liu B, Tan YN. Emerging Strategies in Enhancing Singlet Oxygen Generation of Nano-Photosensitizers Toward Advanced Phototherapy. NANO-MICRO LETTERS 2022; 14:123. [PMID: 35513555 PMCID: PMC9072609 DOI: 10.1007/s40820-022-00856-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/21/2022] [Indexed: 05/06/2023]
Abstract
The great promise of photodynamic therapy (PDT) has thrusted the rapid progress of developing highly effective photosensitizers (PS) in killing cancerous cells and bacteria. To mitigate the intrinsic limitations of the classical molecular photosensitizers, researchers have been looking into designing new generation of nanomaterial-based photosensitizers (nano-photosensitizers) with better photostability and higher singlet oxygen generation (SOG) efficiency, and ways of enhancing the performance of existing photosensitizers. In this paper, we review the recent development of nano-photosensitizers and nanoplasmonic strategies to enhance the SOG efficiency for better PDT performance. Firstly, we explain the mechanism of reactive oxygen species generation by classical photosensitizers, followed by a brief discussion on the commercially available photosensitizers and their limitations in PDT. We then introduce three types of new generation nano-photosensitizers that can effectively produce singlet oxygen molecules under visible light illumination, i.e., aggregation-induced emission nanodots, metal nanoclusters (< 2 nm), and carbon dots. Different design approaches to synthesize these nano-photosensitizers were also discussed. To further enhance the SOG rate of nano-photosensitizers, plasmonic strategies on using different types of metal nanoparticles in both colloidal and planar metal-PS systems are reviewed. The key parameters that determine the metal-enhanced SOG (ME-SOG) efficiency and their underlined enhancement mechanism are discussed. Lastly, we highlight the future prospects of these nanoengineering strategies, and discuss how the future development in nanobiotechnology and theoretical simulation could accelerate the design of new photosensitizers and ME-SOG systems for highly effective image-guided photodynamic therapy.
Collapse
Affiliation(s)
- Mohammad Tavakkoli Yaraki
- Institute of Materials Research and Engineering, The Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03, Innovis, 138634, Singapore
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore.
| | - Yen Nee Tan
- Institute of Materials Research and Engineering, The Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03, Innovis, 138634, Singapore.
- Faculty of Science, Agriculture and Engineering, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK.
- Newcastle Research and Innovation Institute, Newcastle University in Singapore, 80 Jurong East Street 21, #05-04, Singapore, 609607, Singapore.
| |
Collapse
|
14
|
Dual gate-keeping and reversible on-off switching drug release for anti-cancer therapy with pH- and NIR light-responsive mesoporous silica-coated gold nanorods. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2021.10.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
15
|
Harish V, Tewari D, Gaur M, Yadav AB, Swaroop S, Bechelany M, Barhoum A. Review on Nanoparticles and Nanostructured Materials: Bioimaging, Biosensing, Drug Delivery, Tissue Engineering, Antimicrobial, and Agro-Food Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:457. [PMID: 35159802 PMCID: PMC8839643 DOI: 10.3390/nano12030457] [Citation(s) in RCA: 149] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/19/2022] [Accepted: 01/23/2022] [Indexed: 01/27/2023]
Abstract
In the last few decades, the vast potential of nanomaterials for biomedical and healthcare applications has been extensively investigated. Several case studies demonstrated that nanomaterials can offer solutions to the current challenges of raw materials in the biomedical and healthcare fields. This review describes the different nanoparticles and nanostructured material synthesis approaches and presents some emerging biomedical, healthcare, and agro-food applications. This review focuses on various nanomaterial types (e.g., spherical, nanorods, nanotubes, nanosheets, nanofibers, core-shell, and mesoporous) that can be synthesized from different raw materials and their emerging applications in bioimaging, biosensing, drug delivery, tissue engineering, antimicrobial, and agro-foods. Depending on their morphology (e.g., size, aspect ratio, geometry, porosity), nanomaterials can be used as formulation modifiers, moisturizers, nanofillers, additives, membranes, and films. As toxicological assessment depends on sizes and morphologies, stringent regulation is needed from the testing of efficient nanomaterials dosages. The challenges and perspectives for an industrial breakthrough of nanomaterials are related to the optimization of production and processing conditions.
Collapse
Affiliation(s)
- Vancha Harish
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144401, India; (V.H.); (D.T.)
| | - Devesh Tewari
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144401, India; (V.H.); (D.T.)
| | - Manish Gaur
- Centre of Biotechnology, University of Allahabad, Prayagraj, Uttar Pradesh 211002, India;
| | - Awadh Bihari Yadav
- Centre of Biotechnology, University of Allahabad, Prayagraj, Uttar Pradesh 211002, India;
| | - Shiv Swaroop
- Department of Biochemistry, Central University of Rajasthan, Ajmer 305817, India;
| | - Mikhael Bechelany
- Institut Européen des Membranes, IEM UMR 5635, University Montpellier, ENSCM, CNRS, 34730 Montpellier, France
| | - Ahmed Barhoum
- NanoStruc Research Group, Chemistry Department, Faculty of Science, Ain Helwan, Cairo 11795, Egypt
- National Centre for Sensor Research, School of Chemical Sciences, Dublin City University, D09 Y074 Dublin, Ireland
| |
Collapse
|
16
|
Zheng J, Cheng X, Zhang H, Bai X, Ai R, Shao L, Wang J. Gold Nanorods: The Most Versatile Plasmonic Nanoparticles. Chem Rev 2021; 121:13342-13453. [PMID: 34569789 DOI: 10.1021/acs.chemrev.1c00422] [Citation(s) in RCA: 217] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gold nanorods (NRs), pseudo-one-dimensional rod-shaped nanoparticles (NPs), have become one of the burgeoning materials in the recent years due to their anisotropic shape and adjustable plasmonic properties. With the continuous improvement in synthetic methods, a variety of materials have been attached around Au NRs to achieve unexpected or improved plasmonic properties and explore state-of-the-art technologies. In this review, we comprehensively summarize the latest progress on Au NRs, the most versatile anisotropic plasmonic NPs. We present a representative overview of the advances in the synthetic strategies and outline an extensive catalogue of Au-NR-based heterostructures with tailored architectures and special functionalities. The bottom-up assembly of Au NRs into preprogrammed metastructures is then discussed, as well as the design principles. We also provide a systematic elucidation of the different plasmonic properties associated with the Au-NR-based structures, followed by a discussion of the promising applications of Au NRs in various fields. We finally discuss the future research directions and challenges of Au NRs.
Collapse
Affiliation(s)
- Jiapeng Zheng
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Xizhe Cheng
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Han Zhang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Xiaopeng Bai
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Ruoqi Ai
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Lei Shao
- Beijing Computational Science Research Center, Beijing 100193, China
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| |
Collapse
|
17
|
Lin L, Song X, Dong X, Li B. Nano-photosensitizers for enhanced photodynamic therapy. Photodiagnosis Photodyn Ther 2021; 36:102597. [PMID: 34699982 DOI: 10.1016/j.pdpdt.2021.102597] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/19/2021] [Accepted: 10/19/2021] [Indexed: 12/22/2022]
Abstract
Photodynamic therapy (PDT) utilizes photosensitizers (PSs) together with irradiation light of specific wavelength interacting with oxygen to generate cytotoxic reactive oxygen species (ROS), which could trigger apoptosis and/or necrosis-induced cell death in target tissues. During the past two decades, multifunctional nano-PSs employing nanotechnology and nanomedicine developed, which present not only photosensitizing properties but additionally accurate drug release abilities, efficient response to optical stimuli and hypoxia resistance. Further, nano-PSs have been developed to enhance PDT efficacy by improving the ROS yield. In addition, nano-PSs with additive or synergistic therapies are significant for both currently preclinical study and future clinical practice, given their capability of considerable higher therapeutic efficacy under safer systemic drug dosage. In this review, nano-PSs that allow precise drug delivery for efficient absorption by target cells are introduced. Nano-PSs boosting sensitivity and conversion efficiency to PDT-activating stimuli are highlighted. Nano-PSs developed to address the challenging hypoxia conditions during PDT of deep-sited tumors are summarized. Specifically, PSs capable of synergistic therapy and the emerging novel types with higher ROS yield that further enhance PDT efficacy are presented. Finally, future demands for ideal nano-PSs, emphasizing clinical translation and application are discussed.
Collapse
Affiliation(s)
- Li Lin
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, 350117, China
| | - Xuejiao Song
- Key Laboratory of Flexible Electronics and Institute of Advanced Materials, Nanjing Technology University, Nanjing 211800, China
| | - Xiaocheng Dong
- Key Laboratory of Flexible Electronics and Institute of Advanced Materials, Nanjing Technology University, Nanjing 211800, China
| | - Buhong Li
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, 350117, China.
| |
Collapse
|
18
|
Li B, Cao H, Zheng J, Ni B, Lu X, Tian X, Tian Y, Li D. Click Modification of a Metal-Organic Framework for Two-Photon Photodynamic Therapy with Near-Infrared Excitation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:9739-9747. [PMID: 33617221 DOI: 10.1021/acsami.1c00583] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The exploitation of effective strategies to develop materials bearing deep tissue focal fluorescence imaging capacity and excellent reactive oxygen species (ROS) generation ability is of great interest to address the high-priority demand of photodynamic therapy (PDT). Therefore, we use a rational strategy to fabricate a two-photon-active metal-organic framework via a click reaction (PCN-58-Ps). Moreover, PCN-58-Ps is capped with hyaluronic acid through coordination to obtain cancer cell-specific targeting properties. As a result, the optimized composite PCN-58-Ps-HA exhibits considerable two-photon activity (upon laser excitation at a wavelength of 910 nm) and excellent light-triggered ROS (1O2 and O2•-) generation ability. In summary, the interplay of these two critical factors within the PCN-58-Ps-HA framework gives rise to near-infrared light-activated two-photon PDT for deep tissue cancer imaging and treatment, which has great potential for future clinical applications.
Collapse
Affiliation(s)
- Bo Li
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei 230601, China
| | - Hongzhi Cao
- School of Life Science, Anhui University, Hefei 230601, China
| | - Jun Zheng
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei 230601, China
| | - Bo Ni
- College of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China
| | - Xin Lu
- College of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China
| | - Xiaohe Tian
- School of Life Science, Anhui University, Hefei 230601, China
| | - Yupeng Tian
- College of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China
| | - Dandan Li
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei 230601, China
| |
Collapse
|
19
|
Li Y, Tang R, Liu X, Gong J, Zhao Z, Sheng Z, Zhang J, Li X, Niu G, Kwok RTK, Zheng W, Jiang X, Tang BZ. Bright Aggregation-Induced Emission Nanoparticles for Two-Photon Imaging and Localized Compound Therapy of Cancers. ACS NANO 2020; 14:16840-16853. [PMID: 33197171 DOI: 10.1021/acsnano.0c05610] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Photodynamic therapy (PDT), a noninvasive therapeutic strategy for cancer treatment, which always suffers from the low reactive oxygen species (ROS) yield of traditional organic dyes. Herein, we present lipid-encapsulated aggregation-induced emission nanoparticles (AIE NPs) that have a high quantum yield (23%) and a maximum two-photon absorption (TPA) cross-section of 560 GM irradiated by near-infrared light (800 nm). The AIE NPs can serve as imaging agents for spatiotemporal imaging of tumor tissues with a penetration depth up to 505 μm on mice melanoma model. Importantly, the AIE NPs can simultaneously generate singlet oxygen (1O2) and highly toxic hydroxyl radicals (•OH) upon irradiation with 800 nm irradiation for photodynamic tumor ablation. In addition, the AIE NPs can be effectively cleared from the mouse body after the imaging and therapy. This study provides a strategy to develop theranostic agents for cancer image-guided PDT with high brightness, superior photostability, and high biosafety.
Collapse
Affiliation(s)
- Ying Li
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518061, China
| | - Rongbing Tang
- School of Stomatology, Lanzhou University, 199 Donggang Western Rd, Lanzhou 730000, China
- GBA Research Innovation Institute for Nanotechnology, CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology, BeiYiTiao, Zhongguancun, Beijing 100190, China
| | - Xiaoyan Liu
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen 518055, China
- GBA Research Innovation Institute for Nanotechnology, CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology, BeiYiTiao, Zhongguancun, Beijing 100190, China
| | - Junyi Gong
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Zonghai Sheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, CAS Key Laboratory of Health Informatics, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jiangjiang Zhang
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen 518055, China
| | - Xuanyu Li
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen 518055, China
| | - Guangle Niu
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ryan T K Kwok
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Wenfu Zheng
- GBA Research Innovation Institute for Nanotechnology, CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology, BeiYiTiao, Zhongguancun, Beijing 100190, China
| | - Xingyu Jiang
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen 518055, China
| | - Ben Zhong Tang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518061, China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
20
|
Mendoza C, Désert A, Chateau D, Monnereau C, Khrouz L, Lerouge F, Andraud C, Monbaliu JCM, Parola S, Heinrichs B. Au nanobipyramids@mSiO 2 core-shell nanoparticles for plasmon-enhanced singlet oxygen photooxygenations in segmented flow microreactors. NANOSCALE ADVANCES 2020; 2:5280-5287. [PMID: 36132037 PMCID: PMC9416853 DOI: 10.1039/d0na00533a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 08/28/2020] [Indexed: 05/21/2023]
Abstract
The plasmonic features of gold nanomaterials provide intriguing optical effects which can find potential applications in various fields. These effects depend strongly on the size and shape of the metal nanostructures. For instance, Au bipyramids (AuBPs) exhibit intense and well-defined plasmon resonance, easily tunable by controlling their aspect ratio, which can act synergistically with chromophores for enhancing their photophysical properties. In Rose Bengal-nanoparticle systems it is now well established that the control of the dye-to-nanoparticle distance ranging from 10 to 20 nm as well as spectral overlaps is crucial to achieve appropriate coupling between the plasmon resonance and the dye, thus affecting its ability to generate singlet oxygen (1O2). We have developed AuBPs@mSiO2 core-shell nanostructures that provide control over the distance between the metal surface and the photosensitizers for improving the production of 1O2 (metal-enhanced 1O2 production - ME1O2). A drastic enhancement of 1O2 generation is evidenced for the resulting AuBPs and AuBPs@mSiO2 in the presence of Rose Bengal, using a combination of three indirect methods of 1O2 detection, namely in operando Electron Paramagnetic Resonance (EPR) with 2,2,6,6-tetramethylpiperidine (TEMP) as a chemical trap, photooxygenation of the fluorescence probe anthracene-9,10-dipropionic acid (ADPA), and photooxygenation of methionine to methionine sulfoxide in a segmented flow microreactor.
Collapse
Affiliation(s)
- Carlos Mendoza
- Nanomaterials, Catalysis & Electrochemistry (NCE), Department of Chemical Engineering, University of Liège B-4000 Liège Belgium
| | - Anthony Désert
- Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS, Université Lyon 1, UMR 5182, Laboratoire de Chimie 46 Allée d'Italie Lyon F69364 France
| | - Denis Chateau
- Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS, Université Lyon 1, UMR 5182, Laboratoire de Chimie 46 Allée d'Italie Lyon F69364 France
| | - Cyrille Monnereau
- Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS, Université Lyon 1, UMR 5182, Laboratoire de Chimie 46 Allée d'Italie Lyon F69364 France
| | - Lhoussain Khrouz
- Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS, Université Lyon 1, UMR 5182, Laboratoire de Chimie 46 Allée d'Italie Lyon F69364 France
| | - Fréderic Lerouge
- Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS, Université Lyon 1, UMR 5182, Laboratoire de Chimie 46 Allée d'Italie Lyon F69364 France
| | - Chantal Andraud
- Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS, Université Lyon 1, UMR 5182, Laboratoire de Chimie 46 Allée d'Italie Lyon F69364 France
| | - Jean-Christophe M Monbaliu
- Center for Integrated Technology and Organic Synthesis (CiTOS), Research Unit MolSys, University of Liège B-4000 Liège Belgium
| | - Stéphane Parola
- Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS, Université Lyon 1, UMR 5182, Laboratoire de Chimie 46 Allée d'Italie Lyon F69364 France
| | - Benoît Heinrichs
- Nanomaterials, Catalysis & Electrochemistry (NCE), Department of Chemical Engineering, University of Liège B-4000 Liège Belgium
| |
Collapse
|
21
|
Chuang YC, Chu CH, Cheng SH, Liao LD, Chu TS, Chen NT, Paldino A, Hsia Y, Chen CT, Lo LW. Annealing-modulated nanoscintillators for nonconventional X-ray activation of comprehensive photodynamic effects in deep cancer theranostics. Theranostics 2020; 10:6758-6773. [PMID: 32550902 PMCID: PMC7295068 DOI: 10.7150/thno.41752] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 05/04/2020] [Indexed: 01/10/2023] Open
Abstract
Photodynamic therapy (PDT), which involves the generation of reactive oxygen species (ROS) through interactions of a photosensitizer (PS) with light and oxygen, has been applied in oncology. Over the years, PDT techniques have been developed for the treatment of deep-seated cancers. However, (1) the tissue penetration limitation of excitation photon, (2) suppressed efficiency of PS due to multiple energy transfers, and (3) insufficient oxygen source in hypoxic tumor microenvironment still constitute major challenges facing the clinical application of PDT for achieving effective treatment. We present herein a PS-independent, ionizing radiation-induced PDT agent composed of yttrium oxide nanoscintillators core and silica shell (Y2O3:Eu@SiO2) with an annealing process. Our results revealed that annealed Y2O3:Eu@SiO2 could directly induce comprehensive photodynamic effects under X-ray irradiation without the presence of PS molecules. The crystallinity of Y2O3:Eu@SiO2 was demonstrated to enable the generation of electron-hole (e--h+) pairs in Y2O3 under ionizing irradiation, giving rise to the formation of ROS including superoxide, hydroxyl radical and singlet oxygen. In particular, combining Y2O3:Eu@SiO2 with fractionated radiation therapy increased radio-resistant tumor cell damage. Furthermore, photoacoustic imaging of tumors showed re-distribution of oxygen saturation (SO2) and reoxygenation of the hypoxia region. The results of this study support applicability of the integration of fractionated radiation therapy with Y2O3:Eu@SiO2, achieving synchronously in-depth and oxygen-insensitive X-ray PDT. Furthermore, we demonstrate Y2O3:Eu@SiO2 exhibited radioluminescence (RL) under X-ray irradiation and observed the virtually linear correlation between X-ray-induced radioluminescence (X-RL) and the Y2O3:Eu@SiO2 concentration in vivo. With the pronounced X-RL for in-vivo imaging and dosimetry, it possesses significant potential for utilization as a precision theranostics producing highly efficient X-ray PDT for deep-seated tumors.
Collapse
|
22
|
Huang Y, Qiu F, Chen R, Yan D, Zhu X. Fluorescence resonance energy transfer-based drug delivery systems for enhanced photodynamic therapy. J Mater Chem B 2020; 8:3772-3788. [DOI: 10.1039/d0tb00262c] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this Review, recent advances in fluorescence resonance energy transfer-based drug delivery systems for enhanced photodynamic therapy are described, and the current challenges and perspectives in this emerging field are also discussed.
Collapse
Affiliation(s)
- Yu Huang
- School of Chemistry and Chemical Engineering
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Feng Qiu
- Department of Oral & Maxillofacial-Head & Neck Oncology, Department of Laser and Aesthetic Medicine, Shanghai Ninth People's Hospital
- National Clinical Research Centre for Oral Diseases
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200011
- P. R. China
| | - Rongjun Chen
- Department of Chemical Engineering
- Imperial College London
- London
- UK
| | - Deyue Yan
- School of Chemistry and Chemical Engineering
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| |
Collapse
|
23
|
Hong F, Tang C, Xue Q, Zhao L, Shi H, Hu B, Zhang X. Simultaneously Enhanced Singlet Oxygen and Fluorescence Production of Nanoplatform by Surface Plasmon Resonance Coupling for Biomedical Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:14833-14839. [PMID: 31600446 DOI: 10.1021/acs.langmuir.9b01727] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Photodynamic therapy (PDT) and fluorescence imaging offer the possibility of precise and personalized treatment of cancer, but low singlet oxygen production of a commercial photosensitizer and the quenching effect of fluorescent dyes limit the further application of PDT treatment and fluorescence imaging. In addition, the single nanoplatform that simultaneously achieved singlet oxygen and fluorescence enhancement is rare. In this paper, a novel simultaneously enhanced singlet oxygen and fluorescence production nanoplatform of AuNR@mSiO2-Ce6-Cy5.5 has been successfully designed and synthesized by surface plasmon resonance coupling. The as-synthesized nanoplatform achieved a 1.8-fold enhancement of the singlet oxygen production of Ce6 and a 5.0-fold enhancement of the fluorescence production of Cy5.5 by surface plasmon resonance coupling. The as-synthesized nanoplatform simultaneously enhances the photodynamic therapy and fluorescence imaging of cancer, which will have great potential in biomedical applications.
Collapse
Affiliation(s)
- Fenxiang Hong
- School of Life Science and Technology, Library , Xidian University , Xi'an 710126 , Shaanxi , P.R. China
| | - Chu Tang
- School of Life Science and Technology, Library , Xidian University , Xi'an 710126 , Shaanxi , P.R. China
| | - Qilu Xue
- School of Life Science and Technology, Library , Xidian University , Xi'an 710126 , Shaanxi , P.R. China
| | - Lei Zhao
- School of Life Science and Technology, Library , Xidian University , Xi'an 710126 , Shaanxi , P.R. China
| | - Hongyan Shi
- School of Life Science and Technology, Library , Xidian University , Xi'an 710126 , Shaanxi , P.R. China
- Kunpad Communication Pty. Ltd. , Kunshan 215300 , Jiangsu , P.R. China
| | - Bo Hu
- School of Life Science and Technology, Library , Xidian University , Xi'an 710126 , Shaanxi , P.R. China
| | - Xianghan Zhang
- School of Life Science and Technology, Library , Xidian University , Xi'an 710126 , Shaanxi , P.R. China
| |
Collapse
|
24
|
Polyaniline-grafted nanodiamonds for efficient photothermal tumor therapy. Colloids Surf B Biointerfaces 2019; 180:273-280. [DOI: 10.1016/j.colsurfb.2019.04.063] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 04/09/2019] [Accepted: 04/29/2019] [Indexed: 01/16/2023]
|
25
|
Zhu H, Xie C, Chen P, Pu K. Organic Nanotheranostics for Photoacoustic Imaging-Guided Phototherapy. Curr Med Chem 2019; 26:1389-1405. [PMID: 28933283 DOI: 10.2174/0929867324666170921103152] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/07/2017] [Accepted: 04/07/2017] [Indexed: 12/23/2022]
Abstract
Phototherapies including photothermal therapy (PTT) and photodynamic therapy (PDT) have emerged as one of the avant-garde strategies for cancer treatment. Photoacoustic (PA) imaging is a new hybrid imaging modality that shows great promise for real-time in vivo monitoring of biological processes with deep tissue penetration and high spatial resolution. To enhance therapeutic efficacy, reduce side effects and minimize the probability of over-medication, it is necessary to use imaging and diagnostic methods to identify the ideal therapeutic window and track the therapeutic outcome. With this regard, nanotheranostics with the ability to conduct PA imaging and PTT/PDT are emerging. This review summarizes the recent progress of organic nanomaterials including nearinfrared (NIR) dyes and semiconducting polymer nanoparticles (SPNs) in PA imaging guided cancer phototherapy, and also addresses their present challenges and potential in clinical applications.
Collapse
Affiliation(s)
- Houjuan Zhu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore
| | - Chen Xie
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore
| | - Peng Chen
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore
| |
Collapse
|
26
|
Navyatha B, Nara S. Gold nanostructures as cancer theranostic probe: promises and hurdles. Nanomedicine (Lond) 2019; 14:766-796. [DOI: 10.2217/nnm-2018-0170] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Gold nanostructures (GNSts) have emerged as substitute for conventional contrast agents in imaging techniques and therapeutic probes due to their tunable surface plasmon resonance and optical properties in near-infrared region. Thus GNSts provide platform for the amalgamation of diagnosis and treatment (theranostics) into a single molecule for a more precise treatment. Hence, the article talks about the application of GNSts in imaging techniques and provide a holistic view on differently shaped GNSts in cancer theranostics. However, with promises GNSts also face various hurdles for their use as theranostic probe which are primarily associated with toxicity. Finally, the article attempts to discuss the challenges faced by GNSts and the way ahead that need to be traversed to place them in nanomedicine.
Collapse
Affiliation(s)
- Bankuru Navyatha
- Department of Biotechnology, Motilal Nehru National Institute of Technology Prayagraj, Uttar Pradesh, 211004, India
| | - Seema Nara
- Department of Biotechnology, Motilal Nehru National Institute of Technology Prayagraj, Uttar Pradesh, 211004, India
| |
Collapse
|
27
|
Sivasubramanian M, Chuang YC, Lo LW. Evolution of Nanoparticle-Mediated Photodynamic Therapy: From Superficial to Deep-Seated Cancers. Molecules 2019; 24:E520. [PMID: 30709030 PMCID: PMC6385004 DOI: 10.3390/molecules24030520] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 01/22/2019] [Accepted: 01/25/2019] [Indexed: 12/03/2022] Open
Abstract
Enthusiasm for photodynamic therapy (PDT) as a potential therapeutic intervention for cancer has increased exponentially in recent decades. Photodynamic therapy constitutes a clinically approved, minimally invasive treatment modality that uses a photosensitizer (light absorbing molecule) and light to kill cancer cells. The principle of PDT is, when irradiated with a light of a suitable wavelength, a photosensitizer absorbs the light energy and generates cytotoxic free radicals through various mechanisms. The overall efficiency of PDT depends on characteristics of activation light and in-situ dosimetry, including the choice of photosensitizer molecule, wavelength of the light, and tumor location and microenvironment, for instance, the use of two-photon laser or an X-ray irradiator as the light source increases tissue-penetration depth, enabling it to achieve deep PDT. In this mini-review, we discuss the various designs and strategies for single, two-photon, and X-ray-mediated PDT for improved clinical outcomes.
Collapse
Affiliation(s)
- Maharajan Sivasubramanian
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan 350, Taiwan.
| | - Yao Chen Chuang
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan 350, Taiwan.
| | - Leu-Wei Lo
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan 350, Taiwan.
| |
Collapse
|
28
|
Artiga Á, Serrano-Sevilla I, De Matteis L, Mitchell SG, de la Fuente JM. Current status and future perspectives of gold nanoparticle vectors for siRNA delivery. J Mater Chem B 2019; 7:876-896. [PMID: 32255093 DOI: 10.1039/c8tb02484g] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Discovering the vast therapeutic potential of siRNA opened up new clinical research areas focussing on a number of diseases and applications; however significant problems with siRNA stability and delivery have hindered its clinical applicability. As a result, interest in the development of practical siRNA delivery systems has grown in recent years. Of the numerous siRNA delivery strategies currently on offer, gold nanoparticles (AuNPs) stand out thanks to their biocompatibility and capacity to protect siRNA against degradation; not to mention the versatility offered by their tuneable shape, size and optical properties. Herein this review provides a complete summary of the methodologies for functionalizing AuNPs with siRNA, paying singular attention to the AuNP shape, size and surface coating, since these key factors heavily influence cellular interaction, internalization and, ultimately, the efficacy of the hybrid particle. The most noteworthy hybridization strategies have been highlighted along with the most innovative and outstanding in vivo studies with a view to increasing clinical interest in the use of AuNPs as siRNA nanocarriers.
Collapse
Affiliation(s)
- Álvaro Artiga
- Instituto de Ciencia de Materiales de Aragón (ICMA), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Zaragoza and CIBER-BBN, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain.
| | | | | | | | | |
Collapse
|
29
|
Gold Nanorods as Theranostic Nanoparticles for Cancer Therapy. Nanotheranostics 2019. [DOI: 10.1007/978-3-030-29768-8_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
30
|
Sun X, Ji Z, He S. SHG-enhanced NIR-excited in vitro photodynamic therapy using composite nanoparticles of barium titanate and rose Bengal. RSC Adv 2019; 9:8056-8064. [PMID: 35521188 PMCID: PMC9061351 DOI: 10.1039/c9ra00432g] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 03/06/2019] [Indexed: 01/05/2023] Open
Abstract
Near infrared (NIR) light excited photodynamic therapy (PDT) has been considered as a possible way to increase the therapy depth. Besides the traditional two-photon excited PDT and upconversion PDT by rare-earth ion materials, SHG has drawn much attention recently to act as an additional choice to achieve NIR light excited PDT. Herein, by using the electrostatic absorption method, barium titanate and rose Bengal composite nanoparticles (BT@PAH/RB/PAH, BT–RB) were synthesized. Compared with rose Bengal (RB) molecules and a mixture of barium titanate nanoparticles and RB (BT + RB), BT–RB nanoparticles were shown to be able to produce more reactive oxygen species (ROS) ex vivo and in vitro. Afterwards, the SHG-enhanced localized PDT was applied on Hela cells, in which BT–RB nanoparticles showed a better performance than BT + RB. Our work has shown that the SHG-enhanced PDT has good prospects and the close combination of harmonic nanoparticles and photosensitizers may facilitate the development of novel reagents for NIR light excited PDT. Composite nanoparticles of barium titanate and rose Bengal are used to achieve second harmonic generation (SHG) enhanced photodynamic therapy excited by near infrared (NIR) light.![]()
Collapse
Affiliation(s)
- Xianhe Sun
- State Key Laboratory of Modern Optical Instrumentations
- Centre for Optical and Electromagnetic Research
- Zhejiang University
- Hangzhou 310058
- China
| | - Zhang Ji
- State Key Laboratory of Modern Optical Instrumentations
- Centre for Optical and Electromagnetic Research
- Zhejiang University
- Hangzhou 310058
- China
| | - Sailing He
- State Key Laboratory of Modern Optical Instrumentations
- Centre for Optical and Electromagnetic Research
- Zhejiang University
- Hangzhou 310058
- China
| |
Collapse
|
31
|
Croissant JG, Durand JO. Mesoporous Silica-Based Nanoparticles for Light-Actuated Biomedical Applications via Near-Infrared Two-Photon Absorption. Enzymes 2018; 43:67-99. [PMID: 30244809 DOI: 10.1016/bs.enz.2018.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this review, we highlight the design of nanomaterials for two-photon excitation, in order to treat tumors with a high accuracy. Indeed two-photon excitation allows remote control of the nanoparticles with a spatio-temporal resolution. The nanomaterials are based on mesoporous silica-organosilica nanoparticles including core-shell systems. The therapeutic treatments include drug delivery, photodynamic therapy, gene silencing, and their combinations. At first, the nanosystems designed for two-photon-triggered cytotoxic drug delivery are reviewed. Then the nanomaterials prepared for two-photon photodynamic therapy and reactive oxygen species delivery are discussed. Finally, the nanosystems combining drug delivery or gene silencing with two-photon photodynamic therapy are presented. Due to the rapid progresses concerning two-photon-excited nanomaterials and the interest of near-infrared light to treat deep tumors, we believe this technology could be of high interest for the personalized medicine of the future.
Collapse
Affiliation(s)
- Jonas G Croissant
- Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM, United States; Center for Micro-Engineered Materials, Advanced Materials Laboratory, University of New Mexico, Albuquerque, NM, United States.
| | - Jean-Olivier Durand
- Institut Charles Gerhardt Montpellier, UMR-5253 CNRS-UM-ENSCM, Montpellier, France
| |
Collapse
|
32
|
Croissant JG, Zink JI, Raehm L, Durand JO. Two-Photon-Excited Silica and Organosilica Nanoparticles for Spatiotemporal Cancer Treatment. Adv Healthc Mater 2018; 7:e1701248. [PMID: 29345434 DOI: 10.1002/adhm.201701248] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 12/08/2017] [Indexed: 12/11/2022]
Abstract
Coherent two-photon-excited (TPE) therapy in the near-infrared (NIR) provides safer cancer treatments than current therapies lacking spatial and temporal selectivities because it is characterized by a 3D spatial resolution of 1 µm3 and very low scattering. In this review, the principle of TPE and its significance in combination with organosilica nanoparticles (NPs) are introduced and then studies involving the design of pioneering TPE-NIR organosilica nanomaterials are discussed for bioimaging, drug delivery, and photodynamic therapy. Organosilica nanoparticles and their rich and well-established chemistry, tunable composition, porosity, size, and morphology provide ideal platforms for minimal side-effect therapies via TPE-NIR. Mesoporous silica and organosilica nanoparticles endowed with high surface areas can be functionalized to carry hydrophobic and biologically unstable two-photon absorbers for drug delivery and diagnosis. Currently, most light-actuated clinical therapeutic applications with NPs involve photodynamic therapy by singlet oxygen generation, but low photosensitizing efficiencies, tumor resistance, and lack of spatial resolution limit their applicability. On the contrary, higher photosensitizing yields, versatile therapies, and a unique spatial resolution are available with engineered two-photon-sensitive organosilica particles that selectively impact tumors while healthy tissues remain untouched. Patients suffering pathologies such as retinoblastoma, breast, and skin cancers will greatly benefit from TPE-NIR ultrasensitive diagnosis and therapy.
Collapse
Affiliation(s)
- Jonas G. Croissant
- Chemical and Biological Engineering; University of New Mexico; 210 University Blvd NE Albuquerque NM 87131-0001 USA
- Center for Micro-Engineered Materials; Advanced Materials Laboratory; University of New Mexico; MSC04 2790, 1001 University Blvd SE, Suite 103 Albuquerque NM 87106 USA
| | - Jeffrey I. Zink
- Department of Chemistry and Biochemistry; University of California Los Angeles; 405 Hilgard Avenue Los Angeles CA 90095 USA
| | - Laurence Raehm
- Institut Charles Gerhardt de Montpellier; UMR 5253 CNRS-UM-ENSCM; Université de Montpellier; Place Eugène Bataillon 34095 Montpellier Cedex 05 France
| | - Jean-Olivier Durand
- Institut Charles Gerhardt de Montpellier; UMR 5253 CNRS-UM-ENSCM; Université de Montpellier; Place Eugène Bataillon 34095 Montpellier Cedex 05 France
| |
Collapse
|
33
|
Hsu CC, Lin SL, Chang CA. Lanthanide-Doped Core-Shell-Shell Nanocomposite for Dual Photodynamic Therapy and Luminescence Imaging by a Single X-ray Excitation Source. ACS APPLIED MATERIALS & INTERFACES 2018; 10:7859-7870. [PMID: 29405703 DOI: 10.1021/acsami.8b00015] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Photodynamic therapy (PDT) could be highly selective and noninvasive, with low side effects as an adjuvant therapy for cancer treatment. Because excitation sources such as UV and visible lights for most of the photosensitizers do not penetrate deeply enough into biological tissues, PDT is useful only when the lesions are located within 10 mm below the skin. In addition, there is no prior example of theranostics capable of both PDT and imaging with a single deep-penetrating X-ray excitation source. Here we report a new theranostic scintillator nanoparticle (ScNP) composite in a core-shell-shell arrangement, that is, NaLuF4:Gd(35%),Eu(15%)@NaLuF4:Gd(40%)@NaLuF4:Gd(35%),Tb(15%), which is capable of being excited by a single X-ray radiation source to allow potentially deep tissue PDT and optical imaging with a low dark cytotoxicity and effective photocytotoxicity. With the X-ray excitation, the ScNPs can emit visible light at 543 nm (from Tb3+) to stimulate the loaded rose bengal (RB) photosensitizer and cause death of efficient MDA-MB-231 and MCF-7 cancer cells. The ScNPs can also emit light at 614 and 695 nm (from Eu3+) for luminescence imaging. The middle shell in the core-shell-shell ScNPs is unique to separate the Eu3+ in the core and the Tb3+ in the outer shell to prevent resonance quenching between them and to result in good PDT efficiency. Also, it was demonstrated that although the addition of a mesoporous SiO2 layer resulted in the transfer of 82.7% fluorescence resonance energy between Tb3+ and RB, the subsequent conversion of the energy from RB to generate 1O2 was hampered, although the loaded amount of the RB was almost twice that without the mSiO2 layer. A unique method to compare the wt % and mol % compositions calculated by using the morphological transmission electron microscope images and the inductively coupled plasma elemental analysis data of the core, core-shell, and core-shell-shell ScNPs is also introduced.
Collapse
|
34
|
Sengar P, Juárez P, Verdugo-Meza A, Arellano DL, Jain A, Chauhan K, Hirata GA, Fournier PGJ. Development of a functionalized UV-emitting nanocomposite for the treatment of cancer using indirect photodynamic therapy. J Nanobiotechnology 2018; 16:19. [PMID: 29482561 PMCID: PMC5827996 DOI: 10.1186/s12951-018-0344-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 02/13/2018] [Indexed: 01/08/2023] Open
Abstract
Background Photodynamic therapy is a promising cancer therapy modality but its application for deep-seated tumor is mainly hindered by the shallow penetration of visible light. X-ray-mediated photodynamic therapy (PDT) has gained a major attention owing to the limitless penetration of X-rays. However, substantial outcomes have still not been achieved due to the low luminescence efficiency of scintillating nanoparticles and weak energy transfer to the photosensitizer. The present work describes the development of Y2.99Pr0.01Al5O12-based (YP) mesoporous silica coated nanoparticles, multifunctionalized with protoporphyrin IX (PpIX) and folic acid (YPMS@PpIX@FA) for potential application in targeted deep PDT. Results A YP nanophosphor core was synthesized using the sol–gel method to be used as X-ray energy transducer and was then covered with a mesoporous silica layer. The luminescence analysis indicated a good spectral overlap between the PpIX and nanoscintillator at the Soret as well as Q-band region. The comparison of the emission spectra with or without PpIX showed signs of energy transfer, a prerequisite for deep PDT. In vitro studies showed the preferential uptake of the nanocomposite in cancer cells expressing the folate receptorFolr1, validating the targeting efficiency. Direct activation of conjugated PpIX with UVA in vitro induced ROS production causing breast and prostate cancer cell death indicating that the PpIX retained its activity after conjugation to the nanocomposite. The in vivo toxicity analysis showed the good biocompatibility and non-immunogenic response of YPMS@PpIX@FA. Conclusion Our results indicate that YPMS@PpIX@FA nanocomposites are promising candidates for X-ray-mediated PDT of deep-seated tumors. The design of these nanoparticles allows the functionalization with exchangeable targeting ligands thus offering versatility, in order to target various cancer cells, expressing different molecular targets on their surface. Electronic supplementary material The online version of this article (10.1186/s12951-018-0344-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Prakhar Sengar
- Biomedical Innovation Department, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California, (CICESE), Carretera Tijuana Ensenada No. 3918, Zona Playitas, 22860, Ensenada, Baja California, Mexico.,Centro de Nanociencias y Nanotecnología (CNyN), Universidad Nacional Autónoma de México (UNAM), Ensenada, Baja California, Mexico.,Posgrado en Física de Materiales, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California, (CICESE), Ensenada, Baja California, Mexico
| | - Patricia Juárez
- Biomedical Innovation Department, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California, (CICESE), Carretera Tijuana Ensenada No. 3918, Zona Playitas, 22860, Ensenada, Baja California, Mexico
| | - Andrea Verdugo-Meza
- Biomedical Innovation Department, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California, (CICESE), Carretera Tijuana Ensenada No. 3918, Zona Playitas, 22860, Ensenada, Baja California, Mexico
| | - Danna L Arellano
- Biomedical Innovation Department, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California, (CICESE), Carretera Tijuana Ensenada No. 3918, Zona Playitas, 22860, Ensenada, Baja California, Mexico
| | - Akhil Jain
- Biomedical Innovation Department, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California, (CICESE), Carretera Tijuana Ensenada No. 3918, Zona Playitas, 22860, Ensenada, Baja California, Mexico.,Centro de Nanociencias y Nanotecnología (CNyN), Universidad Nacional Autónoma de México (UNAM), Ensenada, Baja California, Mexico.,Posgrado en Física de Materiales, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California, (CICESE), Ensenada, Baja California, Mexico
| | - Kanchan Chauhan
- Centro de Nanociencias y Nanotecnología (CNyN), Universidad Nacional Autónoma de México (UNAM), Ensenada, Baja California, Mexico
| | - Gustavo A Hirata
- Centro de Nanociencias y Nanotecnología (CNyN), Universidad Nacional Autónoma de México (UNAM), Ensenada, Baja California, Mexico
| | - Pierrick G J Fournier
- Biomedical Innovation Department, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California, (CICESE), Carretera Tijuana Ensenada No. 3918, Zona Playitas, 22860, Ensenada, Baja California, Mexico.
| |
Collapse
|
35
|
Chen S, Poyer F, Garcia G, Fiorini-Debuisschert C, Rosilio V, Maillard P. Amphiphilic Glycoconjugated Porphyrin Heterodimers as Two-Photon Excitable Photosensitizers: Design, Synthesis, Photophysical and Photobiological Studies. ChemistrySelect 2018. [DOI: 10.1002/slct.201703013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Su Chen
- Department Chemistry and Modelisation and Imaging for Biology (CMIB); Institut Curie, Research Center; PSL Research University, Bât 110-112, Centre Universitaire; Rue Henri Becquerel F-91405 Orsay Cedex France
- CNRS UMR 9187 - INSERM U 1196; Université Paris-Saclay; Université Paris Sud 11, Bât 110-112, Centre Universitaire; Rue Henri Becquerel F-91405 Orsay Cedex France
| | - Florent Poyer
- Department Chemistry and Modelisation and Imaging for Biology (CMIB); Institut Curie, Research Center; PSL Research University, Bât 110-112, Centre Universitaire; Rue Henri Becquerel F-91405 Orsay Cedex France
- CNRS UMR 9187 - INSERM U 1196; Université Paris-Saclay; Université Paris Sud 11, Bât 110-112, Centre Universitaire; Rue Henri Becquerel F-91405 Orsay Cedex France
| | - Guillaume Garcia
- Department Chemistry and Modelisation and Imaging for Biology (CMIB); Institut Curie, Research Center; PSL Research University, Bât 110-112, Centre Universitaire; Rue Henri Becquerel F-91405 Orsay Cedex France
- CNRS UMR 9187 - INSERM U 1196; Université Paris-Saclay; Université Paris Sud 11, Bât 110-112, Centre Universitaire; Rue Henri Becquerel F-91405 Orsay Cedex France
| | | | - Véronique Rosilio
- Institut Galien Paris Sud, CNRS UMR 8612; Université Paris Sud 11; Université Paris-Saclay; 5 rue J.-B. Clément F-92296 Châtenay-Malabry France
| | - Philippe Maillard
- Department Chemistry and Modelisation and Imaging for Biology (CMIB); Institut Curie, Research Center; PSL Research University, Bât 110-112, Centre Universitaire; Rue Henri Becquerel F-91405 Orsay Cedex France
- CNRS UMR 9187 - INSERM U 1196; Université Paris-Saclay; Université Paris Sud 11, Bât 110-112, Centre Universitaire; Rue Henri Becquerel F-91405 Orsay Cedex France
| |
Collapse
|
36
|
Zhou J, Cao Z, Panwar N, Hu R, Wang X, Qu J, Tjin SC, Xu G, Yong KT. Functionalized gold nanorods for nanomedicine: Past, present and future. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.08.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
37
|
Mauriello-Jimenez C, Henry M, Aggad D, Raehm L, Cattoën X, Wong Chi Man M, Charnay C, Alpugan S, Ahsen V, Tarakci DK, Maillard P, Maynadier M, Garcia M, Dumoulin F, Gary-Bobo M, Coll JL, Josserand V, Durand JO. Porphyrin- or phthalocyanine-bridged silsesquioxane nanoparticles for two-photon photodynamic therapy or photoacoustic imaging. NANOSCALE 2017; 9:16622-16626. [PMID: 29082396 DOI: 10.1039/c7nr04677d] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Porphyrin- or phthalocyanine-bridged silsesquioxane nanoparticles (BSPOR and BSPHT) were prepared. Their endocytosis in MCF-7 cancer cells was shown with two-photon excited fluorescence (TPEF) imaging. With two-photon excited photodynamic therapy (TPE-PDT), BSPOR was more phototoxic than BSPHT, which in contrast displayed a very high signal for photoacoustic imaging in mice.
Collapse
Affiliation(s)
- Chiara Mauriello-Jimenez
- Institut Charles Gerhardt Montpellier, UMR-5253 CNRS-UM-ENSCM, cc 1701, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Mebert AM, Baglole CJ, Desimone MF, Maysinger D. Nanoengineered silica: Properties, applications and toxicity. Food Chem Toxicol 2017; 109:753-770. [DOI: 10.1016/j.fct.2017.05.054] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 05/26/2017] [Indexed: 02/06/2023]
|
39
|
Guo L, Ge J, Liu Q, Jia Q, Zhang H, Liu W, Niu G, Liu S, Gong J, Hackbarth S, Wang P. Versatile Polymer Nanoparticles as Two-Photon-Triggered Photosensitizers for Simultaneous Cellular, Deep-Tissue Imaging, and Photodynamic Therapy. Adv Healthc Mater 2017; 6. [PMID: 28338291 DOI: 10.1002/adhm.201601431] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 01/23/2017] [Indexed: 11/10/2022]
Abstract
Clinical applications of current photodynamic therapy (PDT) photosensitizers (PSs) are often limited by their absorption in the UV-vis range that possesses limited tissue penetration ability, leading to ineffective therapeutic response for deep-seated tumors. Alternatively, two-photon excited PS (TPE-PS) using NIR light triggered is one the most promising candidates for PDT improvement. Herein, multimodal polymer nanoparticles (PNPs) from polythiophene derivative as two-photon fluorescence imaging as well as two-photon-excited PDT agent are developed. The prepared PNPs exhibit excellent water dispersibility, high photostability and pH stability, strong fluorescence brightness, and low dark toxicity. More importantly, the PNPs also possess other outstanding features including: (1) the high 1 O2 quantum yield; (2) the strong two-photon-induced fluorescence and efficient 1 O2 generation; (3) the specific accumulation in lysosomes of HeLa cells; and (4) the imaging detection depth up to 2100 µm in the mock tissue under two-photon. The multifunctional PNPs are promising candidates as TPE-PDT agent for simultaneous cellular, deep-tissue imaging, and highly efficient in vivo PDT of cancer.
Collapse
Affiliation(s)
- Liang Guo
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsTechnical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Future TechnologyUniversity of Chinese Academy of Sciences Beijing 100049 China
| | - Jiechao Ge
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsTechnical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Future TechnologyUniversity of Chinese Academy of Sciences Beijing 100049 China
| | - Qian Liu
- School of Future TechnologyUniversity of Chinese Academy of Sciences Beijing 100049 China
- National Center for Nanoscience and Technology Beijing 100190 China
| | - Qingyan Jia
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsTechnical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Future TechnologyUniversity of Chinese Academy of Sciences Beijing 100049 China
| | - Hongyan Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsTechnical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Future TechnologyUniversity of Chinese Academy of Sciences Beijing 100049 China
| | - Weimin Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsTechnical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Future TechnologyUniversity of Chinese Academy of Sciences Beijing 100049 China
| | - Guangle Niu
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsTechnical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Future TechnologyUniversity of Chinese Academy of Sciences Beijing 100049 China
| | - Sha Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsTechnical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Future TechnologyUniversity of Chinese Academy of Sciences Beijing 100049 China
| | - Jianru Gong
- National Center for Nanoscience and Technology Beijing 100190 China
| | - Steffen Hackbarth
- Photobiophysik – Singlet Oxygen LabHumboldt‐Universität zu Berlin Berlin 12489 Germany
| | - Pengfei Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsTechnical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Future TechnologyUniversity of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
40
|
Lan M, Zhao S, Xie Y, Zhao J, Guo L, Niu G, Li Y, Sun H, Zhang H, Liu W, Zhang J, Wang P, Zhang W. Water-Soluble Polythiophene for Two-Photon Excitation Fluorescence Imaging and Photodynamic Therapy of Cancer. ACS APPLIED MATERIALS & INTERFACES 2017; 9:14590-14595. [PMID: 28401752 DOI: 10.1021/acsami.6b15537] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Positively charged water-soluble polythiophene (PT0) that could self-assemble into nanoparticles in pure water solution was designed and synthesized. PT0 exhibited high photostabilities and pH stabilities, excellent biocompatibility, strong 1O2 generation capability, and large two-photon absorption cross sections. Moreover, we showed that the fluorescence of PT0 was unaffected by the interference of biomolecules and metal ions. As an example application, PT0 was demonstrated to be capable of simultaneous cell imaging and photodynamic therapy under either one-photon or two-photon excitation modes.
Collapse
Affiliation(s)
| | | | | | - Junfang Zhao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry (TIPC), Chinese Academy of Sciences (CAS) , Beijing, China
| | - Liang Guo
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry (TIPC), Chinese Academy of Sciences (CAS) , Beijing, China
| | - Guangle Niu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry (TIPC), Chinese Academy of Sciences (CAS) , Beijing, China
| | - Ying Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry (TIPC), Chinese Academy of Sciences (CAS) , Beijing, China
| | | | - Hongyan Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry (TIPC), Chinese Academy of Sciences (CAS) , Beijing, China
| | - Weimin Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry (TIPC), Chinese Academy of Sciences (CAS) , Beijing, China
| | | | - Pengfei Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU-CAS Joint Laboratory of Functional Materials and Devices, Technical Institute of Physics and Chemistry (TIPC), Chinese Academy of Sciences (CAS) , Beijing, China
- School of Future Technology, University of Chinese Academy of Sciences , Beijing, China
| | | |
Collapse
|
41
|
Chen NT, Souris JS, Cheng SH, Chu CH, Wang YC, Konda V, Dougherty U, Bissonnette M, Mou CY, Chen CT, Lo LW. Lectin-functionalized mesoporous silica nanoparticles for endoscopic detection of premalignant colonic lesions. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:1941-1952. [PMID: 28363770 DOI: 10.1016/j.nano.2017.03.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 03/02/2017] [Indexed: 12/23/2022]
Abstract
Colorectal cancer (CRC) is one of the leading causes of cancer-deaths worldwide. Methods for the early in situ detection of colorectal adenomatous polyps and their precursors - prior to their malignancy transformation into CRC - are urgently needed. Unfortunately at present, the primary diagnostic method, colonoscopy, can only detect polyps and carcinomas by shape/morphology; with sessile polyps more likely to go unnoticed than polypoid lesions. Here we describe our development of polyp-targeting, fluorescently-labeled mesoporous silica nanoparticles (MSNs) that serve as targeted endoscopic contrast agents for the early detection of colorectal polyps and cancer. In vitro cell studies, ex vivo histopathological analysis, and in vivo colonoscopy and endoscopy of murine colorectal cancer models, demonstrate significant binding specificity of our nanoconstructs to pathological lesions via targeting aberrant α-L-fucose expression. Our findings strongly suggest that lectin-functionalized fluorescent MSNs could serve as a promising endoscopic contrast agent for in situ diagnostic imaging of premalignant colonic lesions.
Collapse
Affiliation(s)
- Nai-Tzu Chen
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes Zhunan, Miaoli, Taiwan; Department of Chemistry, National Taiwan University Taipei, Taiwan; Department of Radiology, The University of Chicago, Chicago, IL, USA; Institute of New Drug Development, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, Taiwan
| | - Jeffrey S Souris
- Department of Radiology, The University of Chicago, Chicago, IL, USA
| | - Shih-Hsun Cheng
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes Zhunan, Miaoli, Taiwan; Department of Radiology, The University of Chicago, Chicago, IL, USA
| | - Chia-Hui Chu
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes Zhunan, Miaoli, Taiwan
| | - Yu-Chao Wang
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes Zhunan, Miaoli, Taiwan
| | - Vani Konda
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | | | - Marc Bissonnette
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Chung-Yuan Mou
- Department of Chemistry, National Taiwan University Taipei, Taiwan
| | - Chin-Tu Chen
- Department of Radiology, The University of Chicago, Chicago, IL, USA
| | - Leu-Wei Lo
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes Zhunan, Miaoli, Taiwan.
| |
Collapse
|
42
|
Croissant JG, Fatieiev Y, Khashab NM. Degradability and Clearance of Silicon, Organosilica, Silsesquioxane, Silica Mixed Oxide, and Mesoporous Silica Nanoparticles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1604634. [PMID: 28084658 DOI: 10.1002/adma.201604634] [Citation(s) in RCA: 420] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 10/13/2016] [Indexed: 05/27/2023]
Abstract
The biorelated degradability and clearance of siliceous nanomaterials have been questioned worldwide, since they are crucial prerequisites for the successful translation in clinics. Typically, the degradability and biocompatibility of mesoporous silica nanoparticles (MSNs) have been an ongoing discussion in research circles. The reason for such a concern is that approved pharmaceutical products must not accumulate in the human body, to prevent severe and unpredictable side-effects. Here, the biorelated degradability and clearance of silicon and silica nanoparticles (NPs) are comprehensively summarized. The influence of the size, morphology, surface area, pore size, and surface functional groups, to name a few, on the degradability of silicon and silica NPs is described. The noncovalent organic doping of silica and the covalent incorporation of either hydrolytically stable or redox- and enzymatically cleavable silsesquioxanes is then described for organosilica, bridged silsesquioxane (BS), and periodic mesoporous organosilica (PMO) NPs. Inorganically doped silica particles such as calcium-, iron-, manganese-, and zirconium-doped NPs, also have radically different hydrolytic stabilities. To conclude, the degradability and clearance timelines of various siliceous nanomaterials are compared and it is highlighted that researchers can select a specific nanomaterial in this large family according to the targeted applications and the required clearance kinetics.
Collapse
Affiliation(s)
- Jonas G Croissant
- Smart Hybrid Materials Laboratory (SHMs), Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Yevhen Fatieiev
- Smart Hybrid Materials Laboratory (SHMs), Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Niveen M Khashab
- Smart Hybrid Materials Laboratory (SHMs), Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| |
Collapse
|
43
|
Zhao S, Niu G, Wu F, Yan L, Zhang H, Zhao J, Zeng L, Lan M. Lysosome-targetable polythiophene nanoparticles for two-photon excitation photodynamic therapy and deep tissue imaging. J Mater Chem B 2017; 5:3651-3657. [DOI: 10.1039/c7tb00371d] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Polythiophene nanoparticles with large TPA cross section and high1O2generation quantum yield have been developed for simultaneous lysosome-targetable fluorescence imaging and photodynamic therapy.
Collapse
Affiliation(s)
- Shaojing Zhao
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion
- School of Chemistry & Chemical Engineering
- Tianjin University of Technology
- Tianjin
- China
| | - Guangle Niu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry (TIPC)
- Chinese Academy of Sciences (CAS)
- Beijing
- China
| | - Feng Wu
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion
- School of Chemistry & Chemical Engineering
- Tianjin University of Technology
- Tianjin
- China
| | - Li Yan
- Center of Super-Diamond and Advanced Films (COSDAF) & Department of Physics and Materials Science
- City University of Hong Kong
- China
| | - Hongyan Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry (TIPC)
- Chinese Academy of Sciences (CAS)
- Beijing
- China
| | - Junfang Zhao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry (TIPC)
- Chinese Academy of Sciences (CAS)
- Beijing
- China
| | - Lintao Zeng
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion
- School of Chemistry & Chemical Engineering
- Tianjin University of Technology
- Tianjin
- China
| | - Minhuan Lan
- Center of Super-Diamond and Advanced Films (COSDAF) & Department of Physics and Materials Science
- City University of Hong Kong
- China
| |
Collapse
|
44
|
Huang Y, Qiu F, Shen L, Chen D, Su Y, Yang C, Li B, Yan D, Zhu X. Combining Two-Photon-Activated Fluorescence Resonance Energy Transfer and Near-Infrared Photothermal Effect of Unimolecular Micelles for Enhanced Photodynamic Therapy. ACS NANO 2016; 10:10489-10499. [PMID: 27792300 DOI: 10.1021/acsnano.6b06450] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Recent years have witnessed significant progress in the field of two-photon-activated photodynamic therapy (2P-PDT). However, the traditional photosensitizer (PS)-based 2P-PDT remains a critical challenge in clinics due to its low two-photon absorption (2PA) cross sections. Here, we propose that the therapeutic activity of current PSs can be enhanced through a combination of two-photon excited fluorescence resonance energy transfer (FRET) strategy and photothermal effect of near-infrared (NIR) light. A core-shell unimolecular micelle with a large two-photon-absorbing conjugated polymer core and thermoresponsive shell was constructed as a high two-photon light-harvesting material. After PSs were grafted onto the surface of a unimolecular micelle, the FRET process from the conjugated core to PSs could be readily switched "on" to kill cancer by the collapsed thermoresponsive shell due to the photothermal effect of NIR light. Such NIR-triggered FRET leads to an enhanced 2PA activity of the traditional PSs and, in turn, amplifies their cytotoxic singlet oxygen generation. Eventually, both in vitro and in vivo PDT efficiencies treated with the thermoresponsive micelles were dramatically enhanced under NIR light irradiation, as compared to pure PSs excited by traditional visible light. Such a facile and simple methodology for the enhancement of the photodynamic antitumor effect holds great promises for cancer therapy with further development.
Collapse
Affiliation(s)
- Yu Huang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Feng Qiu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology , 100 Haiquan Road, Shanghai 201418, People's Republic of China
| | - Lingyue Shen
- Department of Oral Maxillofacial-Head Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University , 639 Zhizaoju Road, Shanghai 200011, People's Republic of China
| | - Dong Chen
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Yue Su
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Chao Yang
- Key Laboratory of Polar Materials and Devices, Ministry of Education, East China Normal University , 500 Dongchuan Road, Shanghai 200241, People's Republic of China
| | - Bo Li
- Key Laboratory of Polar Materials and Devices, Ministry of Education, East China Normal University , 500 Dongchuan Road, Shanghai 200241, People's Republic of China
| | - Deyue Yan
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| |
Collapse
|
45
|
Zhou Z, Song J, Nie L, Chen X. Reactive oxygen species generating systems meeting challenges of photodynamic cancer therapy. Chem Soc Rev 2016; 45:6597-6626. [PMID: 27722328 PMCID: PMC5118097 DOI: 10.1039/c6cs00271d] [Citation(s) in RCA: 1314] [Impact Index Per Article: 146.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The reactive oxygen species (ROS)-mediated mechanism is the major cause underlying the efficacy of photodynamic therapy (PDT). The PDT procedure is based on the cascade of synergistic effects between light, a photosensitizer (PS) and oxygen, which greatly favors the spatiotemporal control of the treatment. This procedure has also evoked several unresolved challenges at different levels including (i) the limited penetration depth of light, which restricts traditional PDT to superficial tumours; (ii) oxygen reliance does not allow PDT treatment of hypoxic tumours; (iii) light can complicate the phototherapeutic outcomes because of the concurrent heat generation; (iv) specific delivery of PSs to sub-cellular organelles for exerting effective toxicity remains an issue; and (v) side effects from undesirable white-light activation and self-catalysation of traditional PSs. Recent advances in nanotechnology and nanomedicine have provided new opportunities to develop ROS-generating systems through photodynamic or non-photodynamic procedures while tackling the challenges of the current PDT approaches. In this review, we summarize the current status and discuss the possible opportunities for ROS generation for cancer therapy. We hope this review will spur pre-clinical research and clinical practice for ROS-mediated tumour treatments.
Collapse
Affiliation(s)
- Zijian Zhou
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China. and Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Jibin Song
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Liming Nie
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
46
|
Davidson LM, Barkalina N, Yeste M, Jones C, Coward K. Development of a laser-activated mesoporous silica nanocarrier delivery system for applications in molecular and genetic research. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:115002. [PMID: 27842157 DOI: 10.1117/1.jbo.21.11.115002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 10/25/2016] [Indexed: 06/06/2023]
Abstract
Nanoparticles have revolutionized medical research over the last decade. One notable emerging area of nanomedicine is research developments in the reproductive sciences. Since increasing evidence indicates links between abnormal gene expression and previously unexplained states of infertility, there is a strong impetus to develop tools, such as nanoparticle platforms, to elucidate the pathophysiological mechanisms underlying such states. Mesoporous silica nanoparticles (MSNPs) represent a powerful and safe delivery tool for molecular and genetic investigations. Nevertheless, ongoing progress is restricted by low efficiency and unpredictable control of cargo delivery. Here, we describe for the first time, the development of a laser-activated MSNP system with heat-responsive cargo. Data derived from human embryonic kidney cells (HEK293T) indicate that when driven by a heat-shock promoter, MSNP cargo exhibits a significantly increased expression following infrared laser stimulus to stimulate a heat-shock response, without adverse cytotoxic effects. This delivery platform, with increased efficiency and the ability to impart spatial and temporal control, is highly useful for molecular and genetic investigations. We envision that this straightforward stimuli-responsive system could play a significant role in developing efficient nanodevices for research applications, for example in reproductive medicine.
Collapse
Affiliation(s)
- Lien M Davidson
- University of Oxford, Nuffield Department of Obstetrics and Gynaecology, Level 3, Women's Centre, John Radcliffe Hospital, Headington, Oxford OX3 9DU, United Kingdom
| | - Natalia Barkalina
- University of Oxford, Nuffield Department of Obstetrics and Gynaecology, Level 3, Women's Centre, John Radcliffe Hospital, Headington, Oxford OX3 9DU, United Kingdom
| | - Marc Yeste
- University of Oxford, Nuffield Department of Obstetrics and Gynaecology, Level 3, Women's Centre, John Radcliffe Hospital, Headington, Oxford OX3 9DU, United Kingdom
| | - Celine Jones
- University of Oxford, Nuffield Department of Obstetrics and Gynaecology, Level 3, Women's Centre, John Radcliffe Hospital, Headington, Oxford OX3 9DU, United Kingdom
| | - Kevin Coward
- University of Oxford, Nuffield Department of Obstetrics and Gynaecology, Level 3, Women's Centre, John Radcliffe Hospital, Headington, Oxford OX3 9DU, United Kingdom
| |
Collapse
|
47
|
Mallidi S, Anbil S, Bulin AL, Obaid G, Ichikawa M, Hasan T. Beyond the Barriers of Light Penetration: Strategies, Perspectives and Possibilities for Photodynamic Therapy. Theranostics 2016; 6:2458-2487. [PMID: 27877247 PMCID: PMC5118607 DOI: 10.7150/thno.16183] [Citation(s) in RCA: 253] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 09/01/2016] [Indexed: 12/20/2022] Open
Abstract
Photodynamic therapy (PDT) is a photochemistry based treatment modality that involves the generation of cytotoxic species through the interactions of a photosensitizer molecule with light irradiation of an appropriate wavelength. PDT is an approved therapeutic modality for several cancers globally and in several cases has proved to be effective where traditional treatments have failed. The key parameters that determine PDT efficacy are 1. the photosensitizer (nature of the molecules, selectivity, and macroscopic and microscopic localization etc.), 2. light application (wavelength, fluence, fluence rate, irradiation regimes etc.) and 3. the microenvironment (vascularity, hypoxic regions, stromal tissue density, molecular heterogeneity etc.). Over the years, several groups aimed to monitor and manipulate the components of these critical parameters to improve the effectiveness of PDT treatments. However, PDT is still misconstrued to be a surface treatment primarily due to the limited depths of light penetration. In this review, we present the recent advances, strategies and perspectives in PDT approaches, particularly in cancer treatment, that focus on increasing the 'damage zone' beyond the reach of light in the body. This is enabled by a spectrum of approaches that range from innovative photosensitizer excitation strategies, increased specificity of phototoxicity, and biomodulatory approaches that amplify the biotherapeutic effects induced by photodynamic action. Along with the increasing depth of understanding of the underlying physical, chemical and physiological mechanisms, it is anticipated that with the convergence of these strategies, the clinical utility of PDT will be expanded to a powerful modality in the armamentarium for the management of cancer.
Collapse
Affiliation(s)
- Srivalleesha Mallidi
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114
| | - Sriram Anbil
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815
- The University of Texas School of Medicine at San Antonio, San Antonio, TX 78229
| | - Anne-Laure Bulin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114
| | - Girgis Obaid
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114
| | - Megumi Ichikawa
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114
| | - Tayyaba Hasan
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114
| |
Collapse
|
48
|
Jijie R, Dumych T, Chengnan L, Bouckaert J, Turcheniuk K, Hage CH, Heliot L, Cudennec B, Dumitrascu N, Boukherroub R, Szunerits S. Particle-based photodynamic therapy based on indocyanine green modified plasmonic nanostructures for inactivation of a Crohn's disease-associated Escherichia coli strain. J Mater Chem B 2016; 4:2598-2605. [PMID: 32263283 DOI: 10.1039/c5tb02697k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Particle-based photodynamic therapy (PPDT) holds great promise in theranostic applications. Herein, we demonstrate that PPDT based on gold nanorods coated with an indocyanine green (ICG)-loaded silica shell allows for the inactivation of the Crohn's disease-associated adherent-invasive Escherichia coli strain LF82 (E. coli LF82) under pulsed laser light irradiation at 810 nm. Fine-tuning of the plasmonic structures together with maximizing the photosensitizer loading onto the nanostructures allowed optimizing the singlet oxygen generation capability and the PPDT efficiency. Using a nanoparticle concentration low enough to suppress photothermal heating effects, 6 log10 reduction in E. coli LF82 viability could be achieved using gold nanostructures displaying a plasmonic band at 900 nm. An additional modality of nanoparticle-based photoinactivation of E. coli is partly observed, with 3 log10 reduction of bacterial viability using Au NRs@SiO2 without ICG, due to the two-photon induced formation of reactive oxygen species. Interaction of the particles with the bacterial surface, responsible for the disruption of the bacterial integrity, together with the generation of moderate quantities of singlet oxygen could account for this behavior.
Collapse
Affiliation(s)
- Roxana Jijie
- Institut d'Electronique, de Microélectronique et de Nanotechnologie (IEMN), UMR CNRS8520, Université Lille1, Avenue Poincaré-BP 60069, 59652 Villeneuve d'Ascq, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Liu B, Li C, Cheng Z, Hou Z, Huang S, Lin J. Functional nanomaterials for near-infrared-triggered cancer therapy. Biomater Sci 2016; 4:890-909. [PMID: 26971704 DOI: 10.1039/c6bm00076b] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The near-infrared (NIR) region (700-1100 nm) is the so-called transparency "therapeutic window" for biological applications owing to its deeper tissue penetration and minimal damage to healthy tissues. In recent years, various NIR-based therapeutic and interventional strategies, such as NIR-triggered drug delivery, photothermal therapy (PTT) and photodynamic therapy (PDT), are under research in intensive preclinical and clinical investigations for cancer treatment. The NIR control in these cancer therapy systems is considered crucial to boost local effective tumor suppression while minimizing side effects, resulting in improved therapeutic efficacy. Some researchers even predict the NIR-triggered cancer therapy to be a new and exciting possibility for clinical nanomedicine applications. In this review, the rapid development of NIR light-responsive cancer therapy based on various smartly designed nanocomposites for deep tumor treatments is introduced. In detail, the use of NIR-sensitive materials for chemotherapy, PTT as well as PDT is highlighted, and the associated challenges and potential solutions are discussed. The applications of NIR-sensitive cancer therapy modalities summarized here can highlight their potential use as promising nanoagents for deep tumor therapy.
Collapse
Affiliation(s)
- Bei Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.
| | | | | | | | | | | |
Collapse
|
50
|
Croissant JG, Qi C, Maynadier M, Cattoën X, Wong Chi Man M, Raehm L, Mongin O, Blanchard-Desce M, Garcia M, Gary-Bobo M, Durand JO. Multifunctional Gold-Mesoporous Silica Nanocomposites for Enhanced Two-Photon Imaging and Therapy of Cancer Cells. Front Mol Biosci 2016; 3:1. [PMID: 26870736 PMCID: PMC4737918 DOI: 10.3389/fmolb.2016.00001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 01/14/2016] [Indexed: 11/14/2022] Open
Abstract
Three dimensional sub-micron resolution has made two-photon nanomedicine a very promising medical tool for cancer treatment since current techniques cause significant side effects for lack of spatial selectivity. Two-photon-excited (TPE) photodynamic therapy (PDT) has been achieved via mesoporous nanoscaffolds, but the efficiency of the treatment could still be improved. Herein, we demonstrate the enhancement of the treatment efficiency via gold-mesoporous organosilica nanocomposites for TPE-PDT in cancer cells when compared to mesoporous organosilica particles. We performed the first comparative study of the influence of the shape and spatial position of gold nanoparticles (AuNPs) with mesoporous silica nanoparticles (MSN) functionalized with thiol groups and doped with a two-photon electron donor (2PS). The resulting multifunctional nanocarriers displayed TPE-fluorescence and were imaged inside cells. Furthermore, mesoporous organosilica NPs decorated gold nanospheres (AuNSs) induced 63 percent of selective killing on MCF-7 breast cancer cells. This study thus provides insights for the design of more effective multifunctional two-photon-sensitive nanocomposites via AuNPs for biomedical applications.
Collapse
Affiliation(s)
- Jonas G. Croissant
- Institut Charles Gerhardt Montpellier, UMR-5253 CNRS-UM2-ENSCM-UM1Montpellier, France
| | - Christian Qi
- Institut Charles Gerhardt Montpellier, UMR-5253 CNRS-UM2-ENSCM-UM1Montpellier, France
| | | | - Xavier Cattoën
- Institut NEEL, CNRS, Université Grenoble AlpesGrenoble, France
| | - Michel Wong Chi Man
- Institut Charles Gerhardt Montpellier, UMR-5253 CNRS-UM2-ENSCM-UM1Montpellier, France
| | - Laurence Raehm
- Institut Charles Gerhardt Montpellier, UMR-5253 CNRS-UM2-ENSCM-UM1Montpellier, France
| | - Olivier Mongin
- Institut Des Sciences Chimiques de Rennes, CNRS UMR 6226 Université Rennes 1Rennes, France
| | | | - Marcel Garcia
- Institut des Biomolécules Max Mousseron UMR 5247 CNRS; UM 1; UM 2 - Faculté de Pharmacie, Université MontpellierMontpellier, France
| | - Magali Gary-Bobo
- Institut des Biomolécules Max Mousseron UMR 5247 CNRS; UM 1; UM 2 - Faculté de Pharmacie, Université MontpellierMontpellier, France
| | - Jean-Olivier Durand
- Institut Charles Gerhardt Montpellier, UMR-5253 CNRS-UM2-ENSCM-UM1Montpellier, France
| |
Collapse
|