1
|
Bouvet J, Maraval V, Ballereau S, Bernardes-Génisson V, Génisson Y. Natural and Bioinspired Lipidic Alkynylcarbinols as Leishmanicidal, Antiplasmodial, Trypanocidal, Fungicidal, Antibacterial, and Antimycobacterial Agents. JOURNAL OF NATURAL PRODUCTS 2024; 87:2550-2566. [PMID: 39303021 DOI: 10.1021/acs.jnatprod.4c00513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
The present review article recapitulates for the first time the antipathogenic biological data of a series of lipidic natural products and synthetic analogues thereof characterized by the presence in their structure of an alkynylcarbinol unit. The cytotoxic properties of such natural and bioinspired compounds have been covered by several literature overviews, but to date, no review article detailing their activity against pathogens has been proposed. This article thus aims at providing a comprehensive overview of the field including early studies from the 1970s and 1980s with a specific focus on results published from the late 1990s until nowadays. Publications presenting the data of almost 50 different natural products are reported. Detailed activities encompass the fields of leishmanicidal, antiplasmodial, trypanocidal, fungicidal, and mainly antibacterial and antimycobacterial compounds. The few published studies aimed at exploring the structure-activity relationship in these series are also described. Around 15 different synthetic analogues of natural products, selected among the most active reported, are also presented. The rare data available regarding the antipathogenic mode of action of these products are recalled, and finally, a comparative analysis of the available biological data is proposed with the aim of identifying the key structural determinants for the bioactivity against pathogens of these unusual compounds.
Collapse
Affiliation(s)
- Jon Bouvet
- Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique (SPCMIB), UMR 5068, CNRS, Université Paul Sabatier-Toulouse III, Toulouse 31062, France
- LCC-CNRS, Université de Toulouse, CNRS UPR 8241, UPS, Toulouse 31062, France
| | - Valérie Maraval
- LCC-CNRS, Université de Toulouse, CNRS UPR 8241, UPS, Toulouse 31062, France
| | - Stéphanie Ballereau
- Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique (SPCMIB), UMR 5068, CNRS, Université Paul Sabatier-Toulouse III, Toulouse 31062, France
| | | | - Yves Génisson
- Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique (SPCMIB), UMR 5068, CNRS, Université Paul Sabatier-Toulouse III, Toulouse 31062, France
| |
Collapse
|
2
|
Chin WC, Zhou YZ, Wang HY, Feng YT, Yang RY, Huang ZF, Yang YL. Bacterial polyynes uncovered: a journey through their bioactive properties, biosynthetic mechanisms, and sustainable production strategies. Nat Prod Rep 2024; 41:977-989. [PMID: 38284321 DOI: 10.1039/d3np00059a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Covering: up to 2023Conjugated polyynes are natural compounds characterized by alternating single and triple carbon-carbon bonds, endowing them with distinct physicochemical traits and a range of biological activities. While traditionally sourced mainly from plants, recent investigations have revealed many compounds originating from bacterial strains. This review synthesizes current research on bacterial-derived conjugated polyynes, delving into their biosynthetic routes, underscoring the variety in their molecular structures, and examining their potential applications in biotechnology. Additionally, we outline future directions for metabolic and protein engineering to establish more robust and stable platforms for their production.
Collapse
Affiliation(s)
- Wei-Chih Chin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan.
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
| | - Yang-Zhi Zhou
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan.
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
| | - Hao-Yung Wang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan.
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
- Department of Wood Based Materials and Design, National Chiayi University, Chiayi, Taiwan
| | - Yu-Ting Feng
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan.
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
| | - Ru-Yin Yang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan.
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
| | - Zih-Fang Huang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan.
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
| | - Yu-Liang Yang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan.
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
| |
Collapse
|
3
|
Kawahara D, Kai K. Disproof of the Structures and Biosynthesis of Ergoynes, Gs-Polyyne-l-Ergothioneine Cycloadducts from Gynuella sunshinyii YC6258. J Org Chem 2024; 89:5715-5725. [PMID: 38593068 DOI: 10.1021/acs.joc.4c00243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Some bacteria produce "bacterial polyynes" bearing a conjugated C≡C bond that starts with a terminal alkyne. Ergoynes A and B have been reported as sulfur-containing metabolites from Gynuella sunshinyii YC6258. These compounds were thought to be formed by cycloaddition between a bacterial polyyne (named Gs-polyyne) and l-ergothioneine. The biosynthetic gene clusters (BGCs), which may contribute to their synthesis, were present in the YC6258 genome. The biosynthetic origin of Gs-polyyne is interesting considering its rare 2-isopentyl fatty acyl skeleton. Here, the structures and biosynthesis of Gs-polyyne and ergoynes were verified by analytical, chemical, and genetic techniques. In the YC6258 extract, which was prepared considering their instability, Gs-polyyne was detected as a major LC peak, and ergoynes were not detected. The NMR data of the isolated Gs-polyyne contradicted the proposed structure and identified it as the previously reported protegenin A. The expression of Gs-polyyne BGC in Escherichia coli BL21(DE3) also yielded protegenin A. The cyclization between protegenin A and l-ergothioneine did not proceed during sample preparation; a base, such as potassium carbonate, was required. Overall, Gs-polyyne was identified as protegenin A, while ergoynes were determined to be artifacts. This cyclization may provide a derivatization to stabilize polyynes or create new chemical space.
Collapse
Affiliation(s)
- Daiki Kawahara
- Graduate School of Agriculture, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Kenji Kai
- Graduate School of Agriculture, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
4
|
Kim HJ, Ishida K, Hertweck C. Thiotemplated Biosynthesis of Bacterial Polyyne Fatty Acids by a Designated Desaturase Triad. Chembiochem 2022; 23:e202200430. [PMID: 36107027 PMCID: PMC9828172 DOI: 10.1002/cbic.202200430] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/14/2022] [Indexed: 01/12/2023]
Abstract
Various bacterial species are capable of producing highly modified fatty acid derivatives with conjugated triple bonds, which play important ecological roles as antifungals and toxins in mutualistic and pathogenic interactions. Furthermore, the terminal polyyne moiety is of interest as pharmacophore and as tag in bioorthogonal chemistry and live imaging. To gain insight into the assembly of these highly reactive natural products, we investigated tetrayne (caryoynencin and protegencin) biosynthesis genes (cay and pgn) from Trinickia caryophylli and Pseudomonas protegens. Pathway dissection and reconstitution in the heterologous host Burkholderia graminis revealed the genes minimally required for polyyne formation. Mutational analyses and biochemical assays demonstrated that polyyne biosynthesis is thiotemplated, involving a fatty acyl-AMP ligase, a designated acyl carrier protein, and a thioesterase. Heterologous expression of point-mutated desaturase genes showed that three desaturases work synergistically to introduce four triple bonds. These findings point to an intricate desaturase complex and provide important information for future bioengineering experiments.
Collapse
Affiliation(s)
- Hak Joong Kim
- Department Biomolecular ChemistryLeibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI)Beutenbergstr. 11a07745JenaGermany
| | - Keishi Ishida
- Department Biomolecular ChemistryLeibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI)Beutenbergstr. 11a07745JenaGermany
| | - Christian Hertweck
- Department Biomolecular ChemistryLeibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI)Beutenbergstr. 11a07745JenaGermany
- Institute for Microbiology, Faculty of Biological SciencesFriedrich Schiller University Jena07743JenaGermany
| |
Collapse
|
5
|
Lin CC, Hoo SY, Ma LT, Lin C, Huang KF, Ho YN, Sun CH, Lee HJ, Chen PY, Shu LJ, Wang BW, Hsu WC, Ko TP, Yang YL. Integrated omics approach to unveil antifungal bacterial polyynes as acetyl-CoA acetyltransferase inhibitors. Commun Biol 2022; 5:454. [PMID: 35551233 PMCID: PMC9098870 DOI: 10.1038/s42003-022-03409-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 04/23/2022] [Indexed: 11/17/2022] Open
Abstract
Bacterial polyynes are highly active natural products with a broad spectrum of antimicrobial activities. However, their detailed mechanism of action remains unclear. By integrating comparative genomics, transcriptomics, functional genetics, and metabolomics analysis, we identified a unique polyyne resistance gene, masL (encoding acetyl-CoA acetyltransferase), in the biosynthesis gene cluster of antifungal polyynes (massilin A 1, massilin B 2, collimonin C 3, and collimonin D 4) of Massilia sp. YMA4. Crystallographic analysis indicated that bacterial polyynes serve as covalent inhibitors of acetyl-CoA acetyltransferase. Moreover, we confirmed that the bacterial polyynes disrupted cell membrane integrity and inhibited the cell viability of Candida albicans by targeting ERG10, the homolog of MasL. Thus, this study demonstrated that acetyl-CoA acetyltransferase is a potential target for developing antifungal agents. In a multi-omics analysis, bacterial polyynes are found to act as antifungal agents by inhibiting the Candida albicans polyyne resistance gene ERG10, the homolog of MasL encoding acetyl-CoA acetyltransferase.
Collapse
Affiliation(s)
- Ching-Chih Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Nankang Dist., Taipei, 115, Taiwan.,Biotechnology Center in Southern Taiwan, Academia Sinica, Guiren Dist., Tainan, 711, Taiwan
| | - Sin Yong Hoo
- Agricultural Biotechnology Research Center, Academia Sinica, Nankang Dist., Taipei, 115, Taiwan.,Biotechnology Center in Southern Taiwan, Academia Sinica, Guiren Dist., Tainan, 711, Taiwan
| | - Li-Ting Ma
- Agricultural Biotechnology Research Center, Academia Sinica, Nankang Dist., Taipei, 115, Taiwan.,Biotechnology Center in Southern Taiwan, Academia Sinica, Guiren Dist., Tainan, 711, Taiwan
| | - Chih Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Nankang Dist., Taipei, 115, Taiwan
| | - Kai-Fa Huang
- Institute of Biological Chemistry, Academia Sinica, Nankang Dist., Taipei, 115, Taiwan
| | - Ying-Ning Ho
- Institute of Marine Biology and Center of Excellence for the Oceans, National Taiwan Ocean University, Jhongjheng Dist., Keelung, 202, Taiwan
| | - Chi-Hui Sun
- Agricultural Biotechnology Research Center, Academia Sinica, Nankang Dist., Taipei, 115, Taiwan
| | - Han-Jung Lee
- Agricultural Biotechnology Research Center, Academia Sinica, Nankang Dist., Taipei, 115, Taiwan
| | - Pi-Yu Chen
- Agricultural Biotechnology Research Center, Academia Sinica, Nankang Dist., Taipei, 115, Taiwan
| | - Lin-Jie Shu
- Agricultural Biotechnology Research Center, Academia Sinica, Nankang Dist., Taipei, 115, Taiwan
| | - Bo-Wei Wang
- Agricultural Biotechnology Research Center, Academia Sinica, Nankang Dist., Taipei, 115, Taiwan.,Biotechnology Center in Southern Taiwan, Academia Sinica, Guiren Dist., Tainan, 711, Taiwan.,Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Gushan Dist., Kaohsiung, 804, Taiwan
| | - Wei-Chen Hsu
- Agricultural Biotechnology Research Center, Academia Sinica, Nankang Dist., Taipei, 115, Taiwan.,Biotechnology Center in Southern Taiwan, Academia Sinica, Guiren Dist., Tainan, 711, Taiwan
| | - Tzu-Ping Ko
- Institute of Biological Chemistry, Academia Sinica, Nankang Dist., Taipei, 115, Taiwan
| | - Yu-Liang Yang
- Agricultural Biotechnology Research Center, Academia Sinica, Nankang Dist., Taipei, 115, Taiwan. .,Biotechnology Center in Southern Taiwan, Academia Sinica, Guiren Dist., Tainan, 711, Taiwan.
| |
Collapse
|
6
|
Bach E, Passaglia LMP, Jiao J, Gross H. Burkholderia in the genomic era: from taxonomy to the discovery of new antimicrobial secondary metabolites. Crit Rev Microbiol 2021; 48:121-160. [PMID: 34346791 DOI: 10.1080/1040841x.2021.1946009] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Species of Burkholderia are highly versatile being found not only abundantly in soil, but also as plants and animals' commensals or pathogens. Their complex multireplicon genomes harbour an impressive number of polyketide synthase (PKS) and nonribosomal peptide-synthetase (NRPS) genes coding for the production of antimicrobial secondary metabolites (SMs), which have been successfully deciphered by genome-guided tools. Moreover, genome metrics supported the split of this genus into Burkholderia sensu stricto (s.s.) and five new other genera. Here, we show that the successful antimicrobial SMs producers belong to Burkholderia s.s. Additionally, we reviewed the occurrence, bioactivities, modes of action, structural, and biosynthetic information of thirty-eight Burkholderia antimicrobial SMs shedding light on their diversity, complexity, and uniqueness as well as the importance of genome-guided strategies to facilitate their discovery. Several Burkholderia NRPS and PKS display unusual features, which are reflected in their structural diversity, important bioactivities, and varied modes of action. Up to now, it is possible to observe a general tendency of Burkholderia SMs being more active against fungi. Although the modes of action and biosynthetic gene clusters of many SMs remain unknown, we highlight the potential of Burkholderia SMs as alternatives to fight against new diseases and antibiotic resistance.
Collapse
Affiliation(s)
- Evelise Bach
- Departamento de Genética and Programa de Pós-graduação em Genética e Biologia Molecular, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Luciane Maria Pereira Passaglia
- Departamento de Genética and Programa de Pós-graduação em Genética e Biologia Molecular, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Junjing Jiao
- Department for Pharmaceutical Biology, Pharmaceutical Institute, University of Tübingen, Tübingen, Germany
| | - Harald Gross
- Department for Pharmaceutical Biology, Pharmaceutical Institute, University of Tübingen, Tübingen, Germany
| |
Collapse
|
7
|
Discovery of the Pseudomonas Polyyne Protegencin by a Phylogeny-Guided Study of Polyyne Biosynthetic Gene Cluster Diversity. mBio 2021; 12:e0071521. [PMID: 34340549 PMCID: PMC8406139 DOI: 10.1128/mbio.00715-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Natural products that possess alkyne or polyyne moieties have been isolated from a variety of biological sources and possess a broad a range of bioactivities. In bacteria, the basic biosynthesis of polyynes is known, but their biosynthetic gene cluster (BGC) distribution and evolutionary relationship to alkyne biosynthesis have not been addressed. Through comprehensive genomic and phylogenetic analyses, the distribution of alkyne biosynthesis gene cassettes throughout bacteria was explored, revealing evidence of multiple horizontal gene transfer events. After investigation of the evolutionary connection between alkyne and polyyne biosynthesis, a monophyletic clade was identified that possessed a conserved seven-gene cassette for polyyne biosynthesis that built upon the conserved three-gene cassette for alkyne biosynthesis. Further diversity mapping of the conserved polyyne gene cassette revealed a phylogenetic subclade for an uncharacterized polyyne BGC present in several Pseudomonas species, designated pgn. Pathway mutagenesis and high-resolution analytical chemistry showed the Pseudomonas protegenspgn BGC directed the biosynthesis of a novel polyyne, protegencin. Exploration of the biosynthetic logic behind polyyne production, through BGC mutagenesis and analytical chemistry, highlighted the essentiality of a triad of desaturase proteins and a thioesterase in both the P. protegenspgn and Trinickia caryophylli (formerly Burkholderia caryophylli) caryoynencin pathways. We have unified and expanded knowledge of polyyne diversity and uniquely demonstrated that alkyne and polyyne biosynthetic gene clusters are evolutionarily related and widely distributed within bacteria. The systematic mapping of conserved biosynthetic genes across the available bacterial genomic diversity proved to be a fruitful method for discovering new natural products and better understanding polyyne biosynthesis.
Collapse
|
8
|
Ohno H, Inuki S. Nonbiomimetic total synthesis of indole alkaloids using alkyne-based strategies. Org Biomol Chem 2021; 19:3551-3568. [PMID: 33908430 DOI: 10.1039/d0ob02577a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Biomimetic natural product synthesis is generally straightforward and efficient because of its established feasibility in nature and utility in comprehensive synthesis, and the cost-effectiveness of naturally derived starting materials. On the other hand, nonbiomimetic strategies can be an important option in natural product synthesis since (1) nonbiomimetic synthesis offers more flexibility and can demonstrate the originality of chemists, and (2) the structures of derivatives accessible by nonbiomimetic synthesis can be considerably different from those that are synthesised in nature. This review summarises nonbiomimetic total syntheses of indole alkaloids using alkyne chemistry for constructing core structures, including ergot alkaloids, monoterpene indole alkaloids (mainly corynanthe, aspidosperma, strychnos, and akuammiline), and pyrroloindole and related alkaloids. To clarify the differences between alkyne-based strategies and biosynthesis, the alkynes in nature and the biosyntheses of indole alkaloids are also outlined.
Collapse
Affiliation(s)
- Hiroaki Ohno
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Shinsuke Inuki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
9
|
Kai K. Bioorganic chemistry of signaling molecules in microbial communication. JOURNAL OF PESTICIDE SCIENCE 2019; 44:200-207. [PMID: 31530977 PMCID: PMC6718359 DOI: 10.1584/jpestics.j19-02] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/02/2019] [Indexed: 06/01/2023]
Abstract
Microorganisms produce and secrete a variety of secondary metabolites including fatty acids, polyketides, terpenoids, alkaloids, and peptides. Among them, many molecules act as chemical signals that play important roles in inter-/intra-species microbial communication or the interaction with host organisms. In this review, I focus on our recent reports of the microbial signaling molecules involved in bacterium-fungus, bacterium-plant, and fungus-plant interactions. Their potential contribution to pest management is also discussed.
Collapse
Affiliation(s)
- Kenji Kai
- Graduate School of Life and Environmental Sciences, Osaka Prefectural University, 1–1 Gakuen-cho, Naka-ku, Sakai, Osaka 599–8531, Japan
| |
Collapse
|
10
|
Kai K, Sogame M, Sakurai F, Nasu N, Fujita M. Collimonins A–D, Unstable Polyynes with Antifungal or Pigmentation Activities from the Fungus-Feeding Bacterium Collimonas fungivorans Ter331. Org Lett 2018; 20:3536-3540. [DOI: 10.1021/acs.orglett.8b01311] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kenji Kai
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Mai Sogame
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Fumie Sakurai
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Norihiro Nasu
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Makoto Fujita
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
11
|
Sharma RK, Gaur R, Yadav M, Goswami A, Zbořil R, Gawande MB. An efficient copper-based magnetic nanocatalyst for the fixation of carbon dioxide at atmospheric pressure. Sci Rep 2018; 8:1901. [PMID: 29382886 PMCID: PMC5789884 DOI: 10.1038/s41598-018-19551-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 01/02/2018] [Indexed: 12/21/2022] Open
Abstract
In the last few decades, the emission of carbon dioxide (CO2) in the environment has caused havoc across the globe. One of the most promising strategies for fixation of CO2 is the cycloaddition reaction between epoxides and CO2 to produce cyclic carbonates. For the first time, we have fabricated copper-based magnetic nanocatalyst and have applied for the CO2 fixation. The prepared catalyst was thoroughly characterized using various techniques including XRD, FT-IR, TEM, FE-SEM, XPS, VSM, ICP-OES and elemental mapping. The reactions proceeded at atmospheric pressure, relatively lower temperature, short reaction time, solvent- less and organic halide free reaction conditions. Additionally, the ease of recovery through an external magnet, reusability of the catalyst and excellent yields of the obtained cyclic carbonates make the present protocol practical and sustainable.
Collapse
Affiliation(s)
- Rakesh Kumar Sharma
- Green Chemistry Network Centre, Department of Chemistry, University of Delhi, Delhi, 110007, India.
| | - Rashmi Gaur
- Green Chemistry Network Centre, Department of Chemistry, University of Delhi, Delhi, 110007, India
| | - Manavi Yadav
- Green Chemistry Network Centre, Department of Chemistry, University of Delhi, Delhi, 110007, India
| | - Anandarup Goswami
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
- Division of Chemistry, Department of Sciences and Humanities Vignan's Foundation for Science, Technology and Research (VFSTR) Vadlamudi, Guntur, 522 213, Andhra Pradesh, India
| | - Radek Zbořil
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Manoj B Gawande
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic.
| |
Collapse
|
12
|
|
13
|
Savi DC, Shaaban KA, Vargas N, Ponomareva LV, Possiede YM, Thorson JS, Glienke C, Rohr J. Microbispora sp. LGMB259 endophytic actinomycete isolated from Vochysia divergens (Pantanal, Brazil) producing β-carbolines and indoles with biological activity. Curr Microbiol 2014; 70:345-54. [PMID: 25385358 DOI: 10.1007/s00284-014-0724-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Accepted: 09/24/2014] [Indexed: 12/19/2022]
Abstract
Endophytic actinomycetes encompass bacterial groups that are well known for the production of a diverse range of secondary metabolites. Vochysia divergens is a medicinal plant, common in the "Pantanal" region (Brazil) and was focus of many investigations, but never regarding its community of endophytic symbionts. During a screening program, an endophytic strain isolated from the V. divergens, was investigated for its potential to show biological activity. The strain was characterized as Microbispora sp. LGMB259 by spore morphology and molecular analyze using nucleotide sequence of the 16S rRNA gene. Strain LGMB259 was cultivated in R5A medium producing metabolites with significant antibacterial activity. The strain produced 4 chemically related β-carbolines, and 3 Indoles. Compound 1-vinyl-β-carboline-3-carboxylic acid displayed potent activity against the Gram-positive bacterial strains Micrococcus luteus NRRL B-2618 and Kocuria rosea B-1106, and was highly active against two human cancer cell lines, namely the prostate cancer cell line PC3 and the non-small-cell lung carcinoma cell line A549, with IC50 values of 9.45 and 24.67 µM, respectively. 1-Vinyl-β-carboline-3-carboxylic acid also showed moderate activity against the yeast Saccharomyces cerevisiae ATCC204508, as well as the phytopathogenic fungi Phyllosticta citricarpa LGMB06 and Colletotrichum gloeosporioides FDC83.
Collapse
Affiliation(s)
- Daiani C Savi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, 40536-0596, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Ross C, Scherlach K, Kloss F, Hertweck C. The Molecular Basis of Conjugated Polyyne Biosynthesis in Phytopathogenic Bacteria. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201403344] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
15
|
Ross C, Scherlach K, Kloss F, Hertweck C. The Molecular Basis of Conjugated Polyyne Biosynthesis in Phytopathogenic Bacteria. Angew Chem Int Ed Engl 2014; 53:7794-8. [DOI: 10.1002/anie.201403344] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Indexed: 01/12/2023]
|
16
|
Affiliation(s)
- Hua Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, P. R. China
| | | | | |
Collapse
|
17
|
Graham ER, Tykwinski RR. Chiral Propargyl Alcohols via the Enantioselective Addition of Terminal Di- and Triynes to Aldehydes. J Org Chem 2011; 76:6574-83. [DOI: 10.1021/jo2008719] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Erin R. Graham
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Rik R. Tykwinski
- Institut für Organische Chemie, Friedrich-Alexander-Universität, Erlangen-Nürnberg, Henkestrasse 42, D-91054 Erlangen, Germany
| |
Collapse
|
18
|
Yan P, Tan X, Jing H, Duan S, Wang X, Liu Z. One Approach to Cyclic Carbonates via a Three-Component Cyclization of Phenacyl Bromide, CO2, and Aldehyde. J Org Chem 2011; 76:2459-64. [DOI: 10.1021/jo1020294] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Peng Yan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, Gansu, People's Republic of China
| | - Xueqin Tan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, Gansu, People's Republic of China
| | - Huanwang Jing
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, Gansu, People's Republic of China
| | - Shuhui Duan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, Gansu, People's Republic of China
| | - Xiaoxuan Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, Gansu, People's Republic of China
| | - Zhongli Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, Gansu, People's Republic of China
| |
Collapse
|
19
|
Yamaguchi M, Park HJ, Hirama M, Torisu K, Nakamura S, Minami T, Nishihara H, Hiraoka T. Synthesis and Reactions of Monosilylated 1,3,5-Hexatriyne and 1,3,5,7-Octatetrayne. Total Synthesis of Caryoynencins. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 1994. [DOI: 10.1246/bcsj.67.1717] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
20
|
Horan AC. Aerobic actinomycetes: a continuing source of novel natural products. BIOTECHNOLOGY (READING, MASS.) 1994; 26:3-30. [PMID: 7749308 DOI: 10.1016/b978-0-7506-9003-4.50007-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- A C Horan
- Schering-Plough Research Institute, Kenilworth, New Jersey, USA
| |
Collapse
|
21
|
Abstract
The study of antibiotics and other fermentation products has shown that a seemingly unlimited number of compounds with diverse structures are produced by microorganisms. The continued high rate of discovery of new chemical entities, in the light of the abundance of microbial products already described, is due to creative screening procedures that incorporate such features as the emphasis on unusual microorgnaisms, their special propagation and fermentation requirements, supersensitive and highly selective assays, genetic engineering both for the biosynthesis of new compounds and in the development of screening systems, early in vivo evaluation, improved isolation techniques, modern procedures for structure determination, computer-assisted identification, and an efficient multidisciplinary approach. This review focuses on the genesis and development of the gamut of methodologies that have led to the successful detection of the wide variety of novel secondary metabolites that include antibacterial, antigungal, antiviral and antitumour antibiotics, enzyme inhibitors, pharmacologically and immunologically active agents, products useful in agriculture and animal husbandry, microbial regulators, and other compounds for which no bioactive role has yet been found.
Collapse
Affiliation(s)
- C M Franco
- Microbiology Department, Hoechst Centre for Basic Research, Hoechst India Limited, Lal Bahadur Shastri Marg, Mulund, Bombay
| | | |
Collapse
|
22
|
Yadav J, Rajagopal D. Total synthesis of triyne carbonate L-660, 631 methylester from D-glucose. Tetrahedron Lett 1990. [DOI: 10.1016/s0040-4039(00)97810-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|