1
|
Dashti Y, Errington J. Chemistry and biology of specialized metabolites produced by Actinomadura. Nat Prod Rep 2024; 41:370-401. [PMID: 38099919 PMCID: PMC10951976 DOI: 10.1039/d3np00047h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Indexed: 03/21/2024]
Abstract
Covering: up to the end of 2022In recent years rare Actinobacteria have become increasingly recognised as a rich source of novel bioactive metabolites. Actinomadura are Gram-positive bacteria that occupy a wide range of ecological niches. This review highlights about 230 secondary metabolites produced by Actinomadura spp., reported until the end of 2022, including their bioactivities and selected biosynthetic pathways. Notably, the bioactive compounds produced by Actinomadura spp. demonstrate a wide range of activities, including antimicrobial, antitumor and anticoccidial effects, highlighting their potential in various fields.
Collapse
Affiliation(s)
- Yousef Dashti
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2015, Australia.
| | - Jeff Errington
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2015, Australia.
| |
Collapse
|
2
|
Shaaban KA, Saunders MA, Zhang Y, Tran T, Elshahawi SI, Ponomareva LV, Wang X, Zhang J, Copley GC, Sunkara M, Kharel MK, Morris AJ, Hower JC, Tremblay MS, Prendergast MA, Thorson JS. Spoxazomicin D and Oxachelin C, Potent Neuroprotective Carboxamides from the Appalachian Coal Fire-Associated Isolate Streptomyces sp. RM-14-6. JOURNAL OF NATURAL PRODUCTS 2017; 80:2-11. [PMID: 28029795 PMCID: PMC5337259 DOI: 10.1021/acs.jnatprod.6b00948] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The isolation and structure elucidation of six new bacterial metabolites [spoxazomicin D (2), oxachelins B and C (4, 5), and carboxamides 6-8] and 11 previously reported bacterial metabolites (1, 3, 9-12a, and 14-18) from Streptomyces sp. RM-14-6 is reported. Structures were elucidated on the basis of comprehensive 1D and 2D NMR and mass spectrometry data analysis, along with direct comparison to synthetic standards for 2, 11, and 12a,b. Complete 2D NMR assignments for the known metabolites lenoremycin (9) and lenoremycin sodium salt (10) were also provided for the first time. Comparative analysis also provided the basis for structural revision of several previously reported putative aziridine-containing compounds [exemplified by madurastatins A1, B1, C1 (also known as MBJ-0034), and MBJ-0035] as phenol-dihydrooxazoles. Bioactivity analysis [including antibacterial, antifungal, cancer cell line cytotoxicity, unfolded protein response (UPR) modulation, and EtOH damage neuroprotection] revealed 2 and 5 as potent neuroprotectives and lenoremycin (9) and its sodium salt (10) as potent UPR modulators, highlighting new functions for phenol-oxazolines/salicylates and polyether pharmacophores.
Collapse
Affiliation(s)
- Khaled A. Shaaban
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
- Corresponding Authors: ,
| | - Meredith A. Saunders
- Department of Psychology and Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Yinan Zhang
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Tuan Tran
- California Institute for Biomedical Research (Calibr), La Jolla, California 92037, United States
| | - Sherif I. Elshahawi
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Larissa V. Ponomareva
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Xiachang Wang
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Jianjun Zhang
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Gregory C. Copley
- Center for Applied Energy Research, University of Kentucky, Lexington, Kentucky 40511, United States
| | - Manjula Sunkara
- Division of Cardiovascular Medicine, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Madan K. Kharel
- School of Pharmacy, University of Maryland Eastern Shore, Princess Anne, Maryland 21853, United States
| | - Andrew J. Morris
- Division of Cardiovascular Medicine, University of Kentucky, Lexington, Kentucky 40536, United States
| | - James C. Hower
- Center for Applied Energy Research, University of Kentucky, Lexington, Kentucky 40511, United States
| | - Matthew S. Tremblay
- California Institute for Biomedical Research (Calibr), La Jolla, California 92037, United States
| | - Mark A. Prendergast
- Department of Psychology and Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Jon S. Thorson
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
- Corresponding Authors: ,
| |
Collapse
|
3
|
Taghvaee M, Gossage RA. Coordination chemistry and applications of metal phenolates containing an oxazoline group. REV INORG CHEM 2013. [DOI: 10.1515/revic-2013-0004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractThis review details the coordination chemistry aspects, applications, and catalytic relevance of materials containing a phenol unit appended to an oxazoline ring. The latter functionality can be chiral or achiral in nature. The binding motifs and catalytic potency of these materials in carbon-carbon bond forming processes and related reactions are compared and contrasted.
Collapse
Affiliation(s)
- Mahroo Taghvaee
- 1Department of Chemistry and Biology, Ryerson University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada
| | - Robert A. Gossage
- 1Department of Chemistry and Biology, Ryerson University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada
| |
Collapse
|
8
|
Quadri LE, Sello J, Keating TA, Weinreb PH, Walsh CT. Identification of a Mycobacterium tuberculosis gene cluster encoding the biosynthetic enzymes for assembly of the virulence-conferring siderophore mycobactin. CHEMISTRY & BIOLOGY 1998; 5:631-45. [PMID: 9831524 DOI: 10.1016/s1074-5521(98)90291-5] [Citation(s) in RCA: 327] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Many pathogenic bacteria secrete iron-chelating siderophores as virulence factors in the iron-limiting environments of their vertebrate hosts to compete for ferric iron. Mycobacterium tuberculosis mycobactins are mixed polyketide/nonribosomal peptides that contain a hydroxyaryloxazoline cap and two N-hydroxyamides that together create a high-affinity site for ferric ion. The mycobactin structure is analogous to that of the yersiniabactin and vibriobactin siderophores from the bacteria that cause plague and cholera, respectively. RESULTS A ten-gene cluster spanning 24 kilobases of the M. tuberculosis genome, designated mbtA-J, contains the core components necessary for mycobactin biogenesis. The gene products MbtB, MbtE and MbtF are proposed to be peptide synthetases, MbtC and MbtD polyketide synthases, MbtI an isochorismate synthase that provides a salicylate activated by MbtA, and MbtG a required hydroxylase. An aryl carrier protein (ArCP) domain is encoded in mbtB, and is probably the site of siderophore chain initiation. Overproduction and purification of the mbtB ArCP domain and MbtA in Escherichia coli allowed validation of the mycobactin initiation hypothesis, as sequential action of PptT (a phosphopantetheinyl transferase) and MbtA (a salicyl-AMP ligase) resulted in the mbtB ArCP domain being activated as salicyl-S-ArCP. CONCLUSIONS Mycobactins are produced in M. tuberculosis using a polyketide synthase/nonribosomal peptide synthetase strategy. The mycobactin gene cluster has organizational homologies to the yersiniabactin and enterobactin synthetase genes. Enzymatic targets for inhibitor design and therapeutic intervention are suggested by the similar ferric-ion ligation strategies used in the siderophores from Mycobacteria, Yersinia and E. coli pathogens.
Collapse
Affiliation(s)
- L E Quadri
- Department of Biological Chemistry and Molecular Pharmacology Harvard Medical School Boston MA 02115 USA
| | | | | | | | | |
Collapse
|