1
|
Guan X, Li WJ, Shuai MS, Zhang M, Zhou CC, Fu XZ, Yang YY, Zhou M, He B, Zhao YL. Rh(III)-Catalyzed C7-Alkylation of Isatogens with Malonic Acid Diazoesters. J Org Chem 2024; 89:2984-2995. [PMID: 38334453 DOI: 10.1021/acs.joc.3c02405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Rh(III)-catalyzed C7-alkylation of isatogens (indolin-3-one N-oxides) with malonic acid diazoesters has been developed. This strategy utilizes oxygen anion on the N-oxide group of isatogens as a directing group and successfully achieves the synthesis of a series of C7-alkylated isatogens with moderate to good yields (48-86% yields). Moreover, the N-oxides of isatogens can not only serve as the simple directing group for C7-H bond cleavage but also be deoxidized for easy removal.
Collapse
Affiliation(s)
- Xiang Guan
- School of Pharmacy, and Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, P.R. China
| | - Wen-Jie Li
- School of Pharmacy, and Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, P.R. China
| | - Ming-Shan Shuai
- School of Pharmacy, and Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, P.R. China
| | - Mao Zhang
- School of Pharmacy, and Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, P.R. China
| | - Chao-Chao Zhou
- School of Pharmacy, and Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, P.R. China
| | - Xiao-Zhong Fu
- School of Pharmacy, and Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, P.R. China
| | - Yuan-Yong Yang
- School of Pharmacy, and Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, P.R. China
| | - Meng Zhou
- School of Pharmacy, and Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, P.R. China
| | - Bin He
- School of Pharmacy, and Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, P.R. China
| | - Yong-Long Zhao
- School of Pharmacy, and Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, P.R. China
| |
Collapse
|
2
|
Mantle P, Roberts A, Beaumont C. Notoamide R: A Prominent Diketopiperazine Fermentation Metabolite amongst Others of Aspergillus ochraceus in the Absence of Ochratoxins. Molecules 2023; 28:3518. [PMID: 37110751 PMCID: PMC10143996 DOI: 10.3390/molecules28083518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/29/2023] Open
Abstract
Ochratoxin A is historically the most notable secondary metabolite of Aspergillus ochraceus on account of its toxicity to animals and fish. Currently, over 150 compounds of diverse structure and biosynthesis is a challenge to predict the array for any particular isolate. A brief focus 30 years ago on the failure to produce ochratoxins in foods in Europe and the USA revealed consistent failures to produce ochratoxin A by isolates from some USA beans. Analysis for familiar or novel metabolites particularly focused on a compound for which mass and NMR analyses were inconclusive. Resort to 14C-labelled biosynthetic precursors, particularly phenylalanine, to search for any close alternative to ochratoxins, was combined with conventional shredded-wheat/shaken-flask fermentation. This yielded, for an extract, an autoradiograph of a preparative silica gel chromatogram, which was subsequently analysed for an excised fraction using spectroscopic methodologies. Circumstances then delayed progress for many years until the present collaboration revealed notoamide R. Meanwhile, pharmaceutical discovery around the turn of the millennium revealed stephacidins and notoamides, biosynthetically combining indole, isoprenyl and diketopiperazine components. Later, in Japan, notoamide R was added as a metabolite of an Aspergillus sp. isolated from a marine mussel, and the compound was recovered from 1800 Petri dish fermentations. Renewed attention to our former studies in England has since shown for the first time that notoamide R can be a prominent metabolite of A. ochraceus, sourced from a single shredded wheat flask culture with its structure confirmed by spectroscopic data, and in the absence of ochratoxins. Renewed attention to the archived autoradiographed chromatogram allowed further exploration, but in particular has stimulated a fundamental biosynthetic approach to considering influences redirecting intermediary metabolism to secondary metabolite accumulation.
Collapse
Affiliation(s)
- Peter Mantle
- Biochemistry Department and Centre for Environmental Policy, Imperial College London, London SW7 2AZ, UK
| | - Andrew Roberts
- Analytical Development, GlaxoSmithKline, Stevenage SG1 2NY, UK
| | - Claire Beaumont
- Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, Stevenage SG1 2NY, UK
| |
Collapse
|
3
|
Athira M, Shanmugam P. BF3.OEt2 catalysed synthesis of diverse 9‑fluorenlidene appended indole-1-oxides and spiro[fluorene-9,10′-indeno[1,2-b]indol]-5′-yl) ethanones from 9-(phenylethynyl)-fluoren-9-ol and nitrosobenzene. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
4
|
Hareeri RH, Aldurdunji MM, Abdallah HM, Alqarni AA, Mohamed SGA, Mohamed GA, Ibrahim SRM. Aspergillus ochraceus: Metabolites, Bioactivities, Biosynthesis, and Biotechnological Potential. Molecules 2022; 27:6759. [PMID: 36235292 PMCID: PMC9572620 DOI: 10.3390/molecules27196759] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/27/2022] [Accepted: 10/08/2022] [Indexed: 11/24/2022] Open
Abstract
Fungus continues to attract great attention as a promising pool of biometabolites. Aspergillus ochraceus Wilh (Aspergillaceae) has established its capacity to biosynthesize a myriad of metabolites belonging to different chemical classes, such as isocoumarins, pyrazines, sterols, indole alkaloids, diketopiperazines, polyketides, peptides, quinones, polyketides, and sesquiterpenoids, revealing various bioactivities that are antimicrobial, cytotoxic, antiviral, anti-inflammatory, insecticidal, and neuroprotective. Additionally, A. ochraceus produces a variety of enzymes that could have variable industrial and biotechnological applications. From 1965 until June 2022, 165 metabolites were reported from A. ochraceus isolated from different sources. In this review, the formerly separated metabolites from A. ochraceus, including their bioactivities and biosynthesis, in addition, the industrial and biotechnological potential of A. ochraceus are highlighted.
Collapse
Affiliation(s)
- Rawan H. Hareeri
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohammed M. Aldurdunji
- Department of Clinical Pharmacy, College of Pharmacy, Umm Al-Qura University, P.O. Box 13578, Makkah 21955, Saudi Arabia
| | - Hossam M. Abdallah
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Ali A. Alqarni
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Pharmaceutical Care Department, Ministry of National Guard—Health Affairs, Jeddah 22384, Saudi Arabia
| | | | - Gamal A. Mohamed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sabrin R. M. Ibrahim
- Department of Chemistry, Preparatory Year Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| |
Collapse
|
5
|
Chen L, Li E, Wu W, Wang G, Zhang J, Guo X, Xing F. The Secondary Metabolites and Biosynthetic Diversity From Aspergillus ochraceus. Front Chem 2022; 10:938626. [PMID: 36092677 PMCID: PMC9452667 DOI: 10.3389/fchem.2022.938626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/21/2022] [Indexed: 12/04/2022] Open
Abstract
Aspergillus ochraceus, generally known as a food spoilage fungus, is the representative species in Aspergillus section Circumdati. A. ochraceus strains are widely distributed in nature, and usually isolated from cereal, coffee, fruit, and beverage. Increasing cases suggest A. ochraceus acts as human and animal pathogens due to producing the mycotoxins. However, in terms of benefits to mankind, A. ochraceus is the potential source of industrial enzymes, and has excellent capability to produce diverse structural products, including polyketides, nonribosomal peptides, diketopiperazine alkaloids, benzodiazepine alkaloids, pyrazines, bis-indolyl benzenoids, nitrobenzoyl sesquiterpenoids, and steroids. This review outlines recent discovery, chemical structure, biosynthetic pathway, and bio-activity of the natural compounds from A. ochraceus.
Collapse
Affiliation(s)
- Lin Chen
- Comprehensive Utilization of Edible and Medicinal Plant Resources Engineering Technology Research Center, Zhengzhou Key Laboratory of Synthetic Biology of Natural Products, Zhengzhou Key Laboratory of Medicinal Resources Research, Huanghe Science and Technology College, Zhengzhou, China
| | - Erfeng Li
- Horticulture and Landscape College, Tianjin Agricultural University, Tianjin, China
| | - Wenqing Wu
- Horticulture and Landscape College, Tianjin Agricultural University, Tianjin, China
| | - Gang Wang
- Comprehensive Utilization of Edible and Medicinal Plant Resources Engineering Technology Research Center, Zhengzhou Key Laboratory of Synthetic Biology of Natural Products, Zhengzhou Key Laboratory of Medicinal Resources Research, Huanghe Science and Technology College, Zhengzhou, China
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiaqian Zhang
- Horticulture and Landscape College, Tianjin Agricultural University, Tianjin, China
| | - Xu Guo
- Horticulture and Landscape College, Tianjin Agricultural University, Tianjin, China
| | - Fuguo Xing
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
6
|
Guo X, Meng Q, Liu J, Wu J, Jia H, Liu D, Gu Y, Liu J, Huang J, Fan A, Lin W. Sclerotiamides C-H, Notoamides from a Marine Gorgonian-Derived Fungus with Cytotoxic Activities. JOURNAL OF NATURAL PRODUCTS 2022; 85:1067-1078. [PMID: 35213164 DOI: 10.1021/acs.jnatprod.1c01194] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Bioassay-guided fractionation in association with LC-MS and NMR detection led to the isolation of six new alkaloids, sclerotiamides C-H (1-6), from the marine gorgonian-derived fungus Aspergillus sclerotiorum LZDX-33-4. Their structures were determined from extensive spectroscopic data, including ECD data and single-crystal X-ray diffraction analysis for configurational assignments. Sclerotiamides C (1) and D (2) are notoamide-type alkaloids with the incorporation of a unique 2,2-diaminopropane unit, and sclerotiamides E (3) and F (4) are unprecedented notoamide hybrids with a new coumarin unit. Sclerotiamide H (6) represents a new highly oxidized notoamide scaffold. Sclerotiamides C and F showed significant inhibition against a panel of tumor cell lines with IC50 values ranging from 1.6 to 7.9 μM. Sclerotiamide C induces apoptosis in HeLa cells by arresting the cell cycle, activating ROS production, and regulating apoptosis-related proteins in the MAPK signaling pathway. The present study extends the scaffold diversity of the notoamides and provides a potential lead for the development of a cytotoxic agent.
Collapse
Affiliation(s)
- Xiang Guo
- State Key Laboratory of Natural and Biomimetic Drugs, Institute of Ocean Research, Peking University, Beijing, 100191, People's Republic of China
| | - Qinyu Meng
- State Key Laboratory of Natural and Biomimetic Drugs, Institute of Ocean Research, Peking University, Beijing, 100191, People's Republic of China
| | - Jie Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Institute of Ocean Research, Peking University, Beijing, 100191, People's Republic of China
| | - Jingshuai Wu
- State Key Laboratory of Natural and Biomimetic Drugs, Institute of Ocean Research, Peking University, Beijing, 100191, People's Republic of China
| | - Hongli Jia
- State Key Laboratory of Natural and Biomimetic Drugs, Institute of Ocean Research, Peking University, Beijing, 100191, People's Republic of China
| | - Dong Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Institute of Ocean Research, Peking University, Beijing, 100191, People's Republic of China
| | - Yucheng Gu
- Syngenta, Jealott's Hill International Research Centre Bracknell, Berks RG42 6EY, U.K
| | - Jianrong Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Institute of Ocean Research, Peking University, Beijing, 100191, People's Republic of China
| | - Jian Huang
- State Key Laboratory of Natural and Biomimetic Drugs, Institute of Ocean Research, Peking University, Beijing, 100191, People's Republic of China
| | - Aili Fan
- State Key Laboratory of Natural and Biomimetic Drugs, Institute of Ocean Research, Peking University, Beijing, 100191, People's Republic of China
| | - Wenhan Lin
- State Key Laboratory of Natural and Biomimetic Drugs, Institute of Ocean Research, Peking University, Beijing, 100191, People's Republic of China
| |
Collapse
|
7
|
Bojarska J, Mieczkowski A, Ziora ZM, Skwarczynski M, Toth I, Shalash AO, Parang K, El-Mowafi SA, Mohammed EHM, Elnagdy S, AlKhazindar M, Wolf WM. Cyclic Dipeptides: The Biological and Structural Landscape with Special Focus on the Anti-Cancer Proline-Based Scaffold. Biomolecules 2021; 11:1515. [PMID: 34680148 PMCID: PMC8533947 DOI: 10.3390/biom11101515] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022] Open
Abstract
Cyclic dipeptides, also know as diketopiperazines (DKP), the simplest cyclic forms of peptides widespread in nature, are unsurpassed in their structural and bio-functional diversity. DKPs, especially those containing proline, due to their unique features such as, inter alia, extra-rigid conformation, high resistance to enzyme degradation, increased cell permeability, and expandable ability to bind a diverse of targets with better affinity, have emerged in the last years as biologically pre-validated platforms for the drug discovery. Recent advances have revealed their enormous potential in the development of next-generation theranostics, smart delivery systems, and biomaterials. Here, we present an updated review on the biological and structural profile of these appealing biomolecules, with a particular emphasis on those with anticancer properties, since cancers are the main cause of death all over the world. Additionally, we provide a consideration on supramolecular structuring and synthons, based on the proline-based DKP privileged scaffold, for inspiration in the design of compound libraries in search of ideal ligands, innovative self-assembled nanomaterials, and bio-functional architectures.
Collapse
Affiliation(s)
- Joanna Bojarska
- Faculty of Chemistry, Institute of General & Inorganic Chemistry, Technical University of Lodz, 90-924 Lodz, Poland;
| | - Adam Mieczkowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland;
| | - Zyta M. Ziora
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia; (Z.M.Z.); (I.T.)
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (M.S.); (A.O.S.)
| | - Istvan Toth
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia; (Z.M.Z.); (I.T.)
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (M.S.); (A.O.S.)
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Ahmed O. Shalash
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (M.S.); (A.O.S.)
| | - Keykavous Parang
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Harry and Diane Rinker Health Science Campus, School of Pharmacy, Chapman University, Irvine, CA 92618, USA; (K.P.); (S.A.E.-M.); (E.H.M.M.)
| | - Shaima A. El-Mowafi
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Harry and Diane Rinker Health Science Campus, School of Pharmacy, Chapman University, Irvine, CA 92618, USA; (K.P.); (S.A.E.-M.); (E.H.M.M.)
| | - Eman H. M. Mohammed
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Harry and Diane Rinker Health Science Campus, School of Pharmacy, Chapman University, Irvine, CA 92618, USA; (K.P.); (S.A.E.-M.); (E.H.M.M.)
| | - Sherif Elnagdy
- Botany Department, Faculty of Science, Cairo University, Giza 12613, Egypt; (S.E.); (M.A.)
| | - Maha AlKhazindar
- Botany Department, Faculty of Science, Cairo University, Giza 12613, Egypt; (S.E.); (M.A.)
| | - Wojciech M. Wolf
- Faculty of Chemistry, Institute of General & Inorganic Chemistry, Technical University of Lodz, 90-924 Lodz, Poland;
| |
Collapse
|
8
|
Wang ML, Chen R, Sun FJ, Cao PR, Chen XR, Yang MH. Three alkaloids and one polyketide from Aspergillus cristatus harbored in Pinellia ternate tubers. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.152914] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
9
|
Ivanov AV, Martynovskaya SV, Shcherbakova VS, Ushakov IA, Borodina TN, Bobkov AS, Vitkovskaya NM. Ambient access to a new family of pyrrole-fused pyrazine nitrones via 2-carbonyl- N-allenylpyrroles. Org Chem Front 2020. [DOI: 10.1039/d0qo00762e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The chemo-, regio- and stereoselective synthesis of pyrrole-fused pyrazine nitrones via the direct reaction of 2-carbonyl-N-allenylpyrroles (readily accessible from the corresponding NH-pyrroles) with hydroxyl amine hydrochloride has been developed.
Collapse
Affiliation(s)
- Andrey V. Ivanov
- Favorsky Irkutsk Institute of Chemistry
- Siberian Branch of the Russian Academy of Sciences
- 664033 Irkutsk
- Russian Federation
| | - Svetlana V. Martynovskaya
- Favorsky Irkutsk Institute of Chemistry
- Siberian Branch of the Russian Academy of Sciences
- 664033 Irkutsk
- Russian Federation
| | - Victoria S. Shcherbakova
- Favorsky Irkutsk Institute of Chemistry
- Siberian Branch of the Russian Academy of Sciences
- 664033 Irkutsk
- Russian Federation
| | - Igor A. Ushakov
- Favorsky Irkutsk Institute of Chemistry
- Siberian Branch of the Russian Academy of Sciences
- 664033 Irkutsk
- Russian Federation
| | - Tatyana N. Borodina
- Favorsky Irkutsk Institute of Chemistry
- Siberian Branch of the Russian Academy of Sciences
- 664033 Irkutsk
- Russian Federation
| | - Alexander S. Bobkov
- Laboratory of Quantum Chemical Modeling of Molecular Systems
- Irkutsk State University
- 664003 Irkutsk
- Russian Federation
| | - Nadezhda M. Vitkovskaya
- Laboratory of Quantum Chemical Modeling of Molecular Systems
- Irkutsk State University
- 664003 Irkutsk
- Russian Federation
| |
Collapse
|
10
|
Design and Synthesis of Anti-Cancer Chimera Molecules Based on Marine Natural Products. Mar Drugs 2019; 17:md17090500. [PMID: 31461968 PMCID: PMC6780274 DOI: 10.3390/md17090500] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/07/2019] [Accepted: 08/16/2019] [Indexed: 12/16/2022] Open
Abstract
In this paper, the chemical conjugation of marine natural products with other bioactive molecules for developing an advanced anti-cancer agent is described. Structural complexity and the extraordinary biological features of marine natural products have led to tremendous research in isolation, structural elucidation, synthesis, and pharmacological evaluation. In addition, this basic scientific achievement has made it possible to hybridize two or more biologically important skeletons into a single compound. The hybridization strategy has been used to identify further opportunities to overcome certain limitations, such as structural complexity, scarcity problems, poor solubility, severe toxicity, and weak potency of marine natural products for advanced development in drug discovery. Further, well-designed marine chimera molecules can function as a platform for target discovery or degradation. In this review, the design, synthesis, and biological evaluation of recent marine chimera molecules are presented.
Collapse
|
11
|
Li D, Wu P, Sun N, Lu YJ, Wong WL, Fang Z, Zhang K. The Diversity of Heterocyclic N-oxide Molecules: Highlights on their Potential in Organic Synthesis, Catalysis and Drug Applications. CURR ORG CHEM 2019. [DOI: 10.2174/1385272823666190408095257] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The synthesis and chemistry of heterocyclic N-oxide derivatives such as those from pyridine and indazole are very well-known due to their usefulness as versatile synthetic intermediates and their biological importance. These classes of organic compounds have been demonstrated in many interesting and amazing functionalities, particularly vital in the areas including metal complexes formation, catalysts design, asymmetric catalysis and synthesis, and medicinal applications (some potent N-oxide compounds with anticancer, antibacterial, anti-inflammatory activity, etc.). Therefore, the heterocyclic N-oxide motif has been successfully employed in a number of recent advanced chemistry and drug development investigations. In the present review, our primary aim was to provide a relevant summary focusing on the topics of organic synthesis and medical application potential of the compounds cited, which could be attractive and give some insights to researchers in the field. Therefore, we mainly highlight the importance of heterocyclic N-oxide derivatives including those synthesized from imidazole, indazole, indole, pyridazine, pyrazine, pyridine, and pyrimidine in organic syntheses and catalysis, and drug applications. Over the past years, a number of reviews have been published on the organic synthesis and catalysis of N-oxides. We thus concentrated on highlighting those rarely mentioned or recently reported systems.
Collapse
Affiliation(s)
- Dongli Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, P.R, China
| | - Panpan Wu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, P.R, China
| | - Ning Sun
- Institute of Natural Medicine and Green Chemistry, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R, China
| | - Yu-Jing Lu
- Institute of Natural Medicine and Green Chemistry, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R, China
| | - Wing-Leung Wong
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, P.R, China
| | - Zhiyuang Fang
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510700, P.R., China
| | - Kun Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, P.R, China
| |
Collapse
|
12
|
Ge Y, Han Z, Wang Z, Ding K. Ir-Catalyzed Double Asymmetric Hydrogenation of 3,6-Dialkylidene-2,5-diketopiperazines for Enantioselective Synthesis of Cyclic Dipeptides. J Am Chem Soc 2019; 141:8981-8988. [PMID: 31079460 DOI: 10.1021/jacs.9b02920] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
An Ir/spiro[4,4]-1,6-nonadiene-based phosphine-oxazoline ligand (SpinPHOX) complex-catalyzed double asymmetric hydrogenation of 3,6-dialkylidene-1,4-dimethylpiperazine-2,5-diones has been developed, providing efficient and practical access to a wide variety of chiral 3,6-disubstituted-2,5-diketopiperazines in high yields with exclusive cis-diastereo- and excellent enantioselectivities (>99% de, up to 98% ee). The synthetic utilities of the protocol have been demonstrated in a gram scale synthesis of 6a and efficient construction of chiral products 8, 14, and 17 as well as a 2-butenyl-bridged bicyclic diketopiperazine 10 and hydroxydiketopiperazine 11. With an analogous achiral Ir catalyst, the hydrogenation of enantiopure monohydrogenated intermediate 7a gave cis-6a as the only product, indicating that the second-step hydrogenation of the titled transformation is a chiral substrate controlled process. The reaction profile study for asymmetric hydrogenation (AH) of 5a revealed that the concentration of the monohydrogenation intermediate 7a remained at a low level (<8%) during the course of hydrogenation. The hydrogenation of 5a to 6a proceeded significantly faster than that of its half-hydrogenated intermediate ( S)-7a, indicating that the titled reaction involves primarily a processive mechanism, in which a single catalyst molecule performs consecutive hydrogenation of the two C═C double bonds in substrate 5a without dissociation of the partially reduced 7a. The present protocol represents a rare example of asymmetric catalytic consecutive hydrogenation of heterocycles and provides an alternative way for efficient construction of cyclic dipeptides.
Collapse
Affiliation(s)
- Yao Ge
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry , Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Zhaobin Han
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry , Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , China
| | - Zheng Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry , Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , China
| | - Kuiling Ding
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry , Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China.,Collaborative Innovation Center of Chemical Science and Engineering , Nankai University , Tianjin 300071 , China
| |
Collapse
|
13
|
Klas KR, Kato H, Frisvad JC, Yu F, Newmister SA, Fraley AE, Sherman DH, Tsukamoto S, Williams RM. Structural and stereochemical diversity in prenylated indole alkaloids containing the bicyclo[2.2.2]diazaoctane ring system from marine and terrestrial fungi. Nat Prod Rep 2019; 35:532-558. [PMID: 29632911 DOI: 10.1039/c7np00042a] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Covering: up to February 2017 Various fungi of the genera Aspergillus, Penicillium, and Malbranchea produce prenylated indole alkaloids possessing a bicyclo[2.2.2]diazaoctane ring system. After the discovery of distinct enantiomers of the natural alkaloids stephacidin A and notoamide B, from A. protuberus MF297-2 and A. amoenus NRRL 35660, another fungi, A. taichungensis, was found to produce their diastereomers, 6-epi-stephacidin A and versicolamide B, as major metabolites. Distinct enantiomers of stephacidin A and 6-epi-stephacidin A may be derived from a common precursor, notoamide S, by enzymes that form a bicyclo[2.2.2]diazaoctane core via a putative intramolecular hetero-Diels-Alder cycloaddition. This review provides our current understanding of the structural and stereochemical homologies and disparities of these alkaloids. Through the deployment of biomimetic syntheses, whole-genome sequencing, and biochemical studies, a unified biogenesis of both the dioxopiperazine and the monooxopiperazine families of prenylated indole alkaloids constituted of bicyclo[2.2.2]diazaoctane ring systems is presented.
Collapse
Affiliation(s)
- Kimberly R Klas
- Department of Chemistry, Colorado State University, 1301 Center Avenue, Fort Collins, CO 80523, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Al-Fakih AA, Almaqtri WQA. Overview on antibacterial metabolites from terrestrial Aspergillus spp. Mycology 2019; 10:191-209. [PMID: 31632829 PMCID: PMC6781474 DOI: 10.1080/21501203.2019.1604576] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 03/31/2019] [Indexed: 12/12/2022] Open
Abstract
Medicines developed from natural sources are a frequent target for the research and discovery of antimicrobial compounds. Discovering of penicillin in 1928 was a motive to explore of nature as a source of new antimicrobial agents. Fungi produce a diverse range of bioactive metabolites, making them rich source of different types of medicines. The purpose of this paper was to review studies on antibacterials from terrestrial Aspergillus published exclusively during 1942-2018, with emphasis on their antibacterial activities, structures, and mechanisms of action if present. According to the results from different studies in the world, large number of compounds and extracts showed different activities against different bacterial species, including Gram-positive and Gram-negative bacteria. The most prominent result was that of the compound CJ-17,665, isolated from A. ochraceus, showing good activity against multi-drug resistant Staphylococcus aureus, which is well-recognised to be one of the most important current public health problem. These findings may motivate scientists to undertake a project that may result in the development of novel antibacterial drugs from terrestrial-derived Aspergillus spp., although further toxicity assays (in vivo) must be performed before their application.
Collapse
|
15
|
Ieronimo G, Palmisano G, Maspero A, Marzorati A, Scapinello L, Masciocchi N, Cravotto G, Barge A, Simonetti M, Ameta KL, Nicholas KM, Penoni A. A novel synthesis of N-hydroxy-3-aroylindoles and 3-aroylindoles. Org Biomol Chem 2019; 16:6853-6859. [PMID: 30065979 DOI: 10.1039/c8ob01471j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A straightforward indole synthesis via annulation of C-nitrosoaromatics with conjugated terminal alkynones was realised achieving a simple, highly regioselective, atom- and step economical access to 3-aroylindoles in moderate to good yields. Further functionalizations of indole scaffolds were investigated and an easy way to JWH-018, a synthetic cannabinoid, was achieved.
Collapse
Affiliation(s)
- Gabriella Ieronimo
- Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell'Insubria, via Valleggio 9, 22100, Como, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Trottmann F, Franke J, Ishida K, García-Altares M, Hertweck C. A Pair of Bacterial Siderophores Releases and Traps an Intercellular Signal Molecule: An Unusual Case of Natural Nitrone Bioconjugation. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201811131] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Felix Trottmann
- Department of Biomolecular Chemistry; Leibniz Institute, for Natural Product Chemistry and Infection Biology (HKI); Beutenbergstrasse 11a 07745 Jena Germany
| | - Jakob Franke
- Department of Biomolecular Chemistry; Leibniz Institute, for Natural Product Chemistry and Infection Biology (HKI); Beutenbergstrasse 11a 07745 Jena Germany
| | - Keishi Ishida
- Department of Biomolecular Chemistry; Leibniz Institute, for Natural Product Chemistry and Infection Biology (HKI); Beutenbergstrasse 11a 07745 Jena Germany
| | - María García-Altares
- Department of Biomolecular Chemistry; Leibniz Institute, for Natural Product Chemistry and Infection Biology (HKI); Beutenbergstrasse 11a 07745 Jena Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry; Leibniz Institute, for Natural Product Chemistry and Infection Biology (HKI); Beutenbergstrasse 11a 07745 Jena Germany
- Natural Product Chemistry, Faculty of Biological Sciences; Friedrich Schiller University Jena; 07743 Jena Germany
| |
Collapse
|
17
|
Trottmann F, Franke J, Ishida K, García-Altares M, Hertweck C. A Pair of Bacterial Siderophores Releases and Traps an Intercellular Signal Molecule: An Unusual Case of Natural Nitrone Bioconjugation. Angew Chem Int Ed Engl 2018; 58:200-204. [PMID: 30375753 DOI: 10.1002/anie.201811131] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Indexed: 01/10/2023]
Abstract
In microbial interactions bacteria employ diverse molecules with specific functions, such as sensing the environment, communication with other microbes or hosts, and conferring virulence. Insights into the molecular basis of bacterial communication are thus of high relevance for ecology and medicine. Targeted gene activation and in vitro studies revealed that the cell-to-cell signaling molecule and disease mediator IQS (aeruginaldehyde) of the human pathogen Pseudomonas aeruginosa and related bacteria derives from the siderophore pyochelin. Addition of IQS to bacterial cultures (Burkholderia thailandensis) showed that the signaling molecule is captured by a congener of another siderophore family, malleobactin, to form a nitrone conjugate (malleonitrone) that is active against the IQS-producer. This study uncovers complex communication processes with derailed siderophore functions, a novel nitrone bioconjugation, and a new type of antibiotic against Gram-negative bacteria.
Collapse
Affiliation(s)
- Felix Trottmann
- Department of Biomolecular Chemistry, Leibniz Institute, for Natural Product Chemistry and Infection Biology (HKI), Beutenbergstrasse 11a, 07745, Jena, Germany
| | - Jakob Franke
- Department of Biomolecular Chemistry, Leibniz Institute, for Natural Product Chemistry and Infection Biology (HKI), Beutenbergstrasse 11a, 07745, Jena, Germany
| | - Keishi Ishida
- Department of Biomolecular Chemistry, Leibniz Institute, for Natural Product Chemistry and Infection Biology (HKI), Beutenbergstrasse 11a, 07745, Jena, Germany
| | - María García-Altares
- Department of Biomolecular Chemistry, Leibniz Institute, for Natural Product Chemistry and Infection Biology (HKI), Beutenbergstrasse 11a, 07745, Jena, Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute, for Natural Product Chemistry and Infection Biology (HKI), Beutenbergstrasse 11a, 07745, Jena, Germany.,Natural Product Chemistry, Faculty of Biological Sciences, Friedrich Schiller University Jena, 07743, Jena, Germany
| |
Collapse
|
18
|
Synthesis of isatin-conjugated 3H-indole-N-oxides and their serendipitous conversion to spiroindolenines. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
19
|
Clemente I, Aznar M, Nerín C. Effect of an active label based on benzyl isothiocyanate on the morphology and ochratoxins production of Aspergillus ochraceus. Food Res Int 2017; 101:61-72. [DOI: 10.1016/j.foodres.2017.08.060] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/31/2017] [Accepted: 08/27/2017] [Indexed: 11/24/2022]
|
20
|
Mukai K, de Sant'Ana DP, Hirooka Y, Mercado-Marin EV, Stephens DE, Kou KGM, Richter SC, Kelley N, Sarpong R. Bioinspired chemical synthesis of monomeric and dimeric stephacidin A congeners. Nat Chem 2017; 10:38-44. [PMID: 29256515 DOI: 10.1038/nchem.2862] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 08/01/2017] [Indexed: 12/28/2022]
Abstract
Stephacidin A and its congeners are a collection of secondary metabolites that possess intriguing structural motifs. They stem from unusual biosynthetic sequences that lead to the incorporation of a prenyl or reverse-prenyl group into a bicyclo[2.2.2]diazaoctane framework, a chromene unit or the vestige thereof. To complement biosynthetic studies, which normally play a significant role in unveiling the biosynthetic pathways of natural products, here we demonstrate that chemical synthesis can provide important insights into biosynthesis. We identify a short total synthesis of congeners in the reverse-prenylated indole alkaloid family related to stephacidin A by taking advantage of a direct indole C6 halogenation of the related ketopremalbrancheamide. This novel strategic approach has now made possible the syntheses of several natural products, including malbrancheamides B and C, notoamides F, I and R, aspergamide B, and waikialoid A, which is a heterodimer of avrainvillamide and aspergamide B. Our approach to the preparation of these prenylated and reverse-prenylated indole alkaloids is bioinspired, and may also inform the as-yet undetermined biosynthesis of several congeners.
Collapse
Affiliation(s)
- Ken Mukai
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | | | - Yasuo Hirooka
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | | | - David E Stephens
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Kevin G M Kou
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Sven C Richter
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Naomi Kelley
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Richmond Sarpong
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| |
Collapse
|
21
|
Peng X, Wang Y, Zhu T, Zhu W. Pyrazinone derivatives from the coral-derived Aspergillus ochraceus LCJ11-102 under high iodide salt. Arch Pharm Res 2017; 41:184-191. [DOI: 10.1007/s12272-017-0928-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 07/02/2017] [Indexed: 10/19/2022]
|
22
|
Muthusamy S, Balasubramani A, Suresh E. Boron Trifluoride-Catalyzed Synthesis of 3-Alkylidene-3H-indoleN-OxidesviaTandem Reaction of Propargylic Alcohols and Nitrosobenzenes. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201601151] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | | | - Eringathodi Suresh
- Analytical Discipline and Centralized Instrumentation Facility; Central Salt & Marine Chemicals Research Institute; Bhavnagar - 364002 India
| |
Collapse
|
23
|
Ma YM, Liang XA, Kong Y, Jia B. Structural Diversity and Biological Activities of Indole Diketopiperazine Alkaloids from Fungi. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:6659-6671. [PMID: 27538469 DOI: 10.1021/acs.jafc.6b01772] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Indole diketopiperazine alkaloids are secondary metabolites of microorganisms that are widely distributed in filamentous fungi, especially in the genera Aspergillus and Penicillium of the phylum Ascomycota or sac fungi. These alkaloids represent a group of natural products characterized by diversity in both chemical structures and biological activities. This review aims to summarize 166 indole diketopiperazine alkaloids from fungi published from 1944 to mid-2015. The emphasis is on diverse chemical structures within these alkaloids and their relevant biological activities. The aim is to assess which of these compounds merit further study for purposes of drug development.
Collapse
Affiliation(s)
- Yang-Min Ma
- Key Laboratory of Auxiliary Chemistry & Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science & Technology , Xi'an 710021, Shaanxi, China
| | - Xi-Ai Liang
- Key Laboratory of Auxiliary Chemistry & Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science & Technology , Xi'an 710021, Shaanxi, China
| | - Yang Kong
- Key Laboratory of Auxiliary Chemistry & Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science & Technology , Xi'an 710021, Shaanxi, China
| | - Bin Jia
- Key Laboratory of Auxiliary Chemistry & Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science & Technology , Xi'an 710021, Shaanxi, China
| |
Collapse
|
24
|
Newmister SA, Gober CM, Romminger S, Yu F, Tripathi A, Parra LLL, Williams RM, Berlinck RG, Joullie MM, Sherman DH. OxaD: A Versatile Indolic Nitrone Synthase from the Marine-Derived Fungus Penicillium oxalicum F30. J Am Chem Soc 2016; 138:11176-84. [PMID: 27505044 PMCID: PMC5014723 DOI: 10.1021/jacs.6b04915] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Indole alkaloids are a diverse class of natural products known for their wide range of biological activities and complex chemical structures. Rarely observed in this class are indolic nitrones, such as avrainvillamide and waikialoid, which possess potent bioactivities. Herein the oxa gene cluster from the marine-derived fungus Penicillium oxalicum F30 is described along with the characterization of OxaD, a flavin-dependent oxidase that generates roquefortine L, a nitrone-bearing intermediate in the biosynthesis of oxaline. Nitrone functionality in roquefortine L was confirmed by spectroscopic methods and 1,3-dipolar cycloaddition with methyl acrylate. OxaD is a versatile biocatalyst that converts an array of semisynthetic roquefortine C derivatives bearing indoline systems to their respective nitrones. This work describes the first implementation of a nitrone synthase as a biocatalyst and establishes a novel platform for late-stage diversification of a range of complex natural products.
Collapse
Affiliation(s)
- Sean A. Newmister
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Claire M. Gober
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Stelamar Romminger
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Fengan Yu
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Ashootosh Tripathi
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Lizbeth Lorena L. Parra
- Instituto de Quimica de Sao Carlos, Universidade de Sao Paulo, CP 780, CEP 13560-970 Sao Carlos, SP, Brazil
| | - Robert M. Williams
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
- University of Colorado Cancer Center, Aurora, Colorado 80045, United States
| | - Roberto G.S. Berlinck
- Instituto de Quimica de Sao Carlos, Universidade de Sao Paulo, CP 780, CEP 13560-970 Sao Carlos, SP, Brazil
| | - Madeleine M. Joullie
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - David H. Sherman
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Microbiology & Immunology, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
25
|
Kagiyama I, Kato H, Nehira T, Frisvad JC, Sherman DH, Williams RM, Tsukamoto S. Taichunamides: Prenylated Indole Alkaloids from Aspergillus taichungensis (IBT 19404). Angew Chem Int Ed Engl 2015; 55:1128-32. [PMID: 26644336 DOI: 10.1002/anie.201509462] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Indexed: 11/11/2022]
Abstract
Seven new prenylated indole alkaloids, taichunamides A-G, were isolated from the fungus Aspergillus taichungensis (IBT 19404). Taichunamides A and B contained an azetidine and 4-pyridone units, respectively, and are likely biosynthesized from notoamide S via (+)-6-epi-stephacidin A. Taichunamides C and D contain endoperoxide and methylsulfonyl units, respectively. This fungus produced indole alkaloids containing an anti-bicyclo[2.2.2]diazaoctane core, whereas A. protuberus and A. amoenus produced congeners with a syn-bicyclo[2.2.2]diazaoctane core. Plausible biosynthetic pathways to access these cores within the three species likely arise from an intramolecular hetero Diels-Alder reaction.
Collapse
Affiliation(s)
- Ippei Kagiyama
- Graduated School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto, 862-0973, Japan
| | - Hikaru Kato
- Graduated School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto, 862-0973, Japan
| | - Tatsuo Nehira
- Graduated School of Integrated Arts and Sciences, Hiroshima University, 1-7-1 Kagamiyama, Higashi-hiroshima, 739-8521, Japan
| | - Jens C Frisvad
- Section for Eukaryotic Biotechnology, Departments of System Biology, Technical University of Denmark, Building 221, 2800, Kongens Lyngby, Denmark
| | - David H Sherman
- Life Sciences Institute and Departments of Medicinal Chemistry, Chemistry, Microbiology & Immunology, The University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI, 48109-2216, USA
| | - Robert M Williams
- Department of Chemistry, Colorado State University, 1301 Center Avenue, Fort Collins, CO, 80523, USA.,Department of Chemistry, Colorado State University, 1301 Center Avenue, Fort Collins, CO, 80523, USA
| | - Sachiko Tsukamoto
- Graduated School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto, 862-0973, Japan.
| |
Collapse
|
26
|
Kagiyama I, Kato H, Nehira T, Frisvad JC, Sherman DH, Williams RM, Tsukamoto S. Taichunamides: Prenylated Indole Alkaloids from Aspergillus taichungensis
(IBT 19404). Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201509462] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ippei Kagiyama
- Graduated School of Pharmaceutical Sciences; Kumamoto University; 5-1 Oe-honmachi Kumamoto 862-0973 Japan
| | - Hikaru Kato
- Graduated School of Pharmaceutical Sciences; Kumamoto University; 5-1 Oe-honmachi Kumamoto 862-0973 Japan
| | - Tatsuo Nehira
- Graduated School of Integrated Arts and Sciences; Hiroshima University; 1-7-1 Kagamiyama Higashi-hiroshima 739-8521 Japan
| | - Jens C. Frisvad
- Section for Eukaryotic Biotechnology, Departments of System Biology; Technical University of Denmark; Building 221 2800 Kongens Lyngby Denmark
| | - David H. Sherman
- Life Sciences Institute and Departments of Medicinal Chemistry, Chemistry, Microbiology & Immunology; The University of Michigan; 210 Washtenaw Avenue Ann Arbor MI 48109-2216 USA
| | - Robert M. Williams
- Department of Chemistry; Colorado State University; 1301 Center Avenue Fort Collins CO 80523 USA
- Department of Chemistry; Colorado State University; 1301 Center Avenue Fort Collins CO 80523 USA
| | - Sachiko Tsukamoto
- Graduated School of Pharmaceutical Sciences; Kumamoto University; 5-1 Oe-honmachi Kumamoto 862-0973 Japan
| |
Collapse
|
27
|
Yang Y, Wang X, Li Y, Zhou B. A [4+1] Cyclative Capture Approach to 3H-Indole-N-oxides at Room Temperature by Rhodium(III)-Catalyzed CH Activation. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201508702] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
28
|
Yang Y, Wang X, Li Y, Zhou B. A [4+1] Cyclative Capture Approach to 3
H
‐Indole‐
N
‐oxides at Room Temperature by Rhodium(III)‐Catalyzed CH Activation. Angew Chem Int Ed Engl 2015; 54:15400-4. [DOI: 10.1002/anie.201508702] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Indexed: 01/19/2023]
Affiliation(s)
- Yaxi Yang
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203 (PR China)
| | - Xuan Wang
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203 (PR China)
| | - Yuanchao Li
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203 (PR China)
| | - Bing Zhou
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203 (PR China)
| |
Collapse
|
29
|
Giessen TW, Marahiel MA. Rational and combinatorial tailoring of bioactive cyclic dipeptides. Front Microbiol 2015; 6:785. [PMID: 26284060 PMCID: PMC4519757 DOI: 10.3389/fmicb.2015.00785] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Accepted: 07/17/2015] [Indexed: 01/17/2023] Open
Abstract
Modified cyclic dipeptides represent a diverse family of microbial secondary metabolites. They display a broad variety of biological and pharmacological activities and have long been recognized as privileged structures with the ability to bind to a wide range of receptors. This is due to their conformationally constrained 2, 5-diketopiperazine (DKP) scaffold and the diverse set of DKP tailoring enzymes present in nature. After initial DKP assembly through different biosynthetic systems modifying enzymes are responsible for installing functional groups crucial for the biological activities of the resulting modified DKPs. They represent a vast and largely untapped enzyme repository very useful for synthetic biology approaches aiming at introducing structural variations into DKP scaffolds. In this review we focus on these DKP modification enzymes found in various microbial secondary metabolite gene clusters. We will give a brief overview of their distribution and highlight a select number of characterized DKP tailoring enzymes before turning to their application potential in combinatorial biosynthesis with the aim of producing molecules with improved or entirely new biological and medicinally relevant properties.
Collapse
Affiliation(s)
- Tobias W Giessen
- Department of Systems Biology, Harvard Medical School, Boston MA, USA ; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston MA, USA
| | - Mohamed A Marahiel
- Department of Chemistry, Philipps-University Marburg Marburg, Germany ; LOEWE Center for Synthetic Microbiology, Philipps-University Marburg Marburg, Germany
| |
Collapse
|
30
|
Mikkola R, Andersson MA, Hautaniemi M, Salkinoja-Salonen MS. Toxic indole alkaloids avrainvillamide and stephacidin B produced by a biocide tolerant indoor mold Aspergillus westerdijkiae. Toxicon 2015; 99:58-67. [PMID: 25804991 DOI: 10.1016/j.toxicon.2015.03.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 02/15/2015] [Accepted: 03/19/2015] [Indexed: 10/23/2022]
Abstract
Toxic Aspergillus westerdijkiae were present in house dust and indoor air fall-out from a residence and a kindergarten where the occupants suffered from building related ill health. The A. westerdijkiae isolates produced indole alkaloids avrainvillamide (445 Da) and its dimer stephacidin B (890 Da). It grew and sporulated in presence of high concentrations of boron or polyguanidine (PHMB, PHMG) based antimicrobial biocides used to remediate mold infested buildings. The boar sperm cells were used as sensor cells to purify toxins from HPLC fractions of the fungal biomass. Submicromolar concentrations (EC50 0.3-0.4 μM) blocked boar spermatozoan motility and killed porcine kidney tubular epithelial cells (PK-15). Plate grown hyphal mass of the A. westerdijkiae isolates contained 300-750 ng of avrainvillamide and 30-300 ng of stephacidin B per mg (wet weight). The toxins induced rapid (30 min) loss of boar sperm motility, followed (24 h) by loss of mitochondrial membrane potential (ΔΨm). Apoptotic cell death was observed in PK-15 cell monolayers, prior to cessation of glucose uptake or loss of ΔΨm. Avrainvillamide and stephacidin B were 100-fold more potent towards the porcine cells than the mycotoxins stephacidin A, ochratoxin A, sterigmatocystin and citrinin. The high toxicity of stephacidin B indicates a role of nitrone group in the mechanism of toxicity. Avrainvillamide and stephacidin B represent a new class of toxins with possible a threat to human health in buildings. Furthermore, the use of biocides highly enhanced the growth of toxigenic A. westerdijkiae.
Collapse
Affiliation(s)
- Raimo Mikkola
- Dept of Food and Environmental Science, POB56, University of Helsinki, FI-00014 Finland.
| | - Maria A Andersson
- Dept of Food and Environmental Science, POB56, University of Helsinki, FI-00014 Finland
| | - Maria Hautaniemi
- Finnish Food Safety Authority (EVIRA), Mustialankatu 3, FI000790 Helsinki, Finland
| | | |
Collapse
|
31
|
Khan I, Khan S, Tyagi V, Chouhan PS, Chauhan PMS. Diversity-oriented reconstruction of primitive diketopiperazine-fused tetrahydro-β-carboline ring systems via Pictet–Spengler/Ugi-4CR/deprotection-cyclization reactions. RSC Adv 2015. [DOI: 10.1039/c5ra17259d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
An expedient construction of tetrahydro-β-carbolinediketopiperazine ring systems, which are present in various indole alkaloids, is documented.
Collapse
Affiliation(s)
- Irfan Khan
- Division of Medicinal and Process Chemistry
- CSIR-Central Drug Research Institute
- Lucknow 226031
- India
| | - Shahnawaz Khan
- Division of Medicinal and Process Chemistry
- CSIR-Central Drug Research Institute
- Lucknow 226031
- India
| | - Vikas Tyagi
- Division of Medicinal and Process Chemistry
- CSIR-Central Drug Research Institute
- Lucknow 226031
- India
| | - Pradeep Singh Chouhan
- Division of Medicinal and Process Chemistry
- CSIR-Central Drug Research Institute
- Lucknow 226031
- India
| | - Prem M. S. Chauhan
- Division of Medicinal and Process Chemistry
- CSIR-Central Drug Research Institute
- Lucknow 226031
- India
| |
Collapse
|
32
|
Simpkins NS, Pavlakos I, Weller MD, Male L. The cascade radical cyclisation approach to prenylated alkaloids: synthesis of stephacidin A and notoamide B. Org Biomol Chem 2013; 11:4957-70. [PMID: 23797367 DOI: 10.1039/c3ob40979a] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A strategy for the synthesis of members of the prenylated indole alkaloid family is described, which involves a radical cascade process of an appropriately substituted diketopiperazine (DKP) core structure. Several approaches to the generation of the initial radical were explored, with the most successful involving treatment of a sulfenyl substituted DKP under classical reductive conditions by heating with Bu3SnH and a radical initiator. The required, fully substituted, radical precursor DKP structures were prepared using regio- and stereocontrolled enolate chemistry of simpler proline-tryptophan derived DKPs. The new approach allowed rapid access to a key polycyclic indoline structure, which was converted into either of the natural products stephacidin A or notoamide B.
Collapse
Affiliation(s)
- Nigel S Simpkins
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | | | | | | |
Collapse
|
33
|
Cai S, Luan Y, Kong X, Zhu T, Gu Q, Li D. Isolation and Photoinduced Conversion of 6-epi-Stephacidins from Aspergillus taichungensis. Org Lett 2013; 15:2168-71. [DOI: 10.1021/ol400694h] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shengxin Cai
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003, P. R. China
| | - Yepeng Luan
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003, P. R. China
| | - Xianglan Kong
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003, P. R. China
| | - Tianjiao Zhu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003, P. R. China
| | - Qianqun Gu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003, P. R. China
| | - Dehai Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, 266003, P. R. China
| |
Collapse
|
34
|
Bhatnagar I, Kim SK. Pharmacologically prospective antibiotic agents and their sources: a marine microbial perspective. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2012; 34:631-643. [PMID: 23121870 DOI: 10.1016/j.etap.2012.08.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 08/30/2012] [Accepted: 08/31/2012] [Indexed: 06/01/2023]
Abstract
Marine microbes have been a storehouse of bioactive metabolites with tremendous potential as drug candidates. Marine microorganism derived secondary metabolites (chemical compounds/peptides) are considered to be a burning area of research since recent past. Many of such compounds have been proven to be anti-bacterial, anti-fungal, anti-algal, anti-HIV, anti-helminthic, anti-protozoan, anti-tumor and anti-allergic agents. Marine bacteria and fungi have been reported to be the producers of such compounds owing to their defense mechanisms and metabolic by products. Although the number of natural products isolated from these classes of marine microbial flora is large, a limited number of such compounds reach the clinical trial and even less number of them get approved as a drug. Here we discuss the recent studies on the isolation, characterization and the pharmacological significances of anti-bacterial, anti-fungal and anti-infective agents of marine microbial origin. Further, the clinical status of such compounds has also been discussed in comparison with those derived from their terrestrial counterparts.
Collapse
Affiliation(s)
- Ira Bhatnagar
- Marine Biochemistry Laboratory, Department of Chemistry, Pukyong National University, Busan 608-737, Republic of Korea.
| | | |
Collapse
|
35
|
Pandey S, Khan S, Singh A, Gauniyal HM, Kumar B, Chauhan PMS. Access to Indole- And Pyrrole-Fused Diketopiperazines via Tandem Ugi-4CR/Intramolecular Cyclization and Its Regioselective Ring-Opening by Intermolecular Transamidation. J Org Chem 2012; 77:10211-27. [DOI: 10.1021/jo3018704] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Shashi Pandey
- Medicinal
and Process Chemistry Division, ‡Sophisticated Analytical Instrument Facility, CSIR-Central Drug Research Institute, Lucknow, 226 001, India
| | - Shahnawaz Khan
- Medicinal
and Process Chemistry Division, ‡Sophisticated Analytical Instrument Facility, CSIR-Central Drug Research Institute, Lucknow, 226 001, India
| | - Awantika Singh
- Medicinal
and Process Chemistry Division, ‡Sophisticated Analytical Instrument Facility, CSIR-Central Drug Research Institute, Lucknow, 226 001, India
| | - Harsh M. Gauniyal
- Medicinal
and Process Chemistry Division, ‡Sophisticated Analytical Instrument Facility, CSIR-Central Drug Research Institute, Lucknow, 226 001, India
| | - Brijesh Kumar
- Medicinal
and Process Chemistry Division, ‡Sophisticated Analytical Instrument Facility, CSIR-Central Drug Research Institute, Lucknow, 226 001, India
| | - Prem M. S. Chauhan
- Medicinal
and Process Chemistry Division, ‡Sophisticated Analytical Instrument Facility, CSIR-Central Drug Research Institute, Lucknow, 226 001, India
| |
Collapse
|
36
|
Zhuravleva OI, Afiyatullov SS, Denisenko VA, Ermakova SP, Slinkina NN, Dmitrenok PS, Kim NY. Secondary metabolites from a marine-derived fungus Aspergillus carneus Blochwitz. PHYTOCHEMISTRY 2012; 80:123-31. [PMID: 22658281 DOI: 10.1016/j.phytochem.2012.05.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 04/11/2012] [Accepted: 05/09/2012] [Indexed: 05/05/2023]
Abstract
Prenylated indole alkaloids, carneamides A-C (1-3), quinazolinone derivatives, carnequinazolines A-C (5-7), aryl C-glycosides, carnemycin A, B (8, 9) and a drimane sesquiterpenoid (10), together with known compounds (11-21) were isolated from the marine-derived fungus Aspergillus carneus (Trichocomaceae) KMM 4638. The antimicrobial and cytotoxic activities of the several alkaloids were examined.
Collapse
Affiliation(s)
- Olesya I Zhuravleva
- Pacific Institute of Bioorganic Chemistry, Far East Branch of the Russian Academy of Sciences, Prospect 100 let Vladivostoku 159, Vladivostok 690022, Russian Federation
| | | | | | | | | | | | | |
Collapse
|
37
|
Rafiemanzelat F, Zonuz AF, Abdollahi E. Fast and eco-friendly synthesis of new hydrolysable and biodegradable copolyurethanes derived from L-leucine cyclodipeptide and different molecular weights of PEG in TBAB under microwave irradiation. Macromol Res 2012. [DOI: 10.1007/s13233-012-0137-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
38
|
Borthwick AD. 2,5-Diketopiperazines: synthesis, reactions, medicinal chemistry, and bioactive natural products. Chem Rev 2012; 112:3641-716. [PMID: 22575049 DOI: 10.1021/cr200398y] [Citation(s) in RCA: 611] [Impact Index Per Article: 50.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
39
|
Wang X, You J, King JB, Powell DR, Cichewicz RH. Waikialoid A suppresses hyphal morphogenesis and inhibits biofilm development in pathogenic Candida albicans. JOURNAL OF NATURAL PRODUCTS 2012; 75:707-715. [PMID: 22400916 PMCID: PMC3338887 DOI: 10.1021/np2009994] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
A chemically prolific strain of Aspergillus was isolated from a soil sample collected near Waikiki Beach, Honolulu, Hawaii. The fungus produced several secondary metabolites, which were purified and placed in our natural products library and were later screened for substances capable of inhibiting biofilm formation by Candida albicans. It was determined that one of the secondary metabolites from the Hawaiian fungal isolate, a new complex prenylated indole alkaloid named waikialoid A (1), inhibited biofilm formation with an IC(50) value of 1.4 μM. Another structurally unrelated, presumably polyketide metabolite, waikialide A (15), also inhibited C. albicans biofilm formation, but was much less potent (IC(50) value of 32.4 μM). Microscopy studies revealed that compound 1 also inhibited C. albicans hyphal morphogenesis. While metabolite 1 appears ineffective at disrupting preformed biofilms, the accumulated data indicate that the new compound may exert its activity against C. albicans during the early stages of surface colonization involving cell adherence, hyphal development, and/or biofilm assembly. Unlike some other stephacidin/notoamide compounds, metabolite 1 was not cytotoxic to fungi or human cells (up to 200 μM), which makes this an intriguing model compound for studying the adjunctive use of biofilm inhibitors in combination with standard antifungal antibiotics.
Collapse
|
40
|
Finefield JM, Frisvad JC, Sherman DH, Williams RM. Fungal origins of the bicyclo[2.2.2]diazaoctane ring system of prenylated indole alkaloids. JOURNAL OF NATURAL PRODUCTS 2012; 75:812-33. [PMID: 22502590 PMCID: PMC3485739 DOI: 10.1021/np200954v] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Over eight different families of natural products consisting of nearly 70 secondary metabolites that contain the bicyclo[2.2.2]diazaoctane ring system have been isolated from various Aspergillus, Penicillium, and Malbranchea species. Since 1968, these secondary metabolites have been the focus of numerous biogenetic, synthetic, taxonomic, and biological studies and, as such, have made a lasting impact across multiple scientific disciplines. This review covers the isolation, biosynthesis, and biological activity of these unique secondary metabolites containing the bridging bicyclo[2.2.2]diazaoctane ring system. Furthermore, the diverse fungal origin of these natural products is closely examined and, in many cases, updated to reflect the currently accepted fungal taxonomy.
Collapse
Affiliation(s)
- Jennifer M Finefield
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA
| | | | | | | |
Collapse
|
41
|
Rafiemanzelat F, Fathollahi Zonouz A, Emtiazi G. Synthesis and characterization of poly(ether-urethane)s derived from 3,6-diisobutyl-2,5-diketopiperazine and PTMG and study of their degradability in environment. Polym Degrad Stab 2012. [DOI: 10.1016/j.polymdegradstab.2011.10.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
42
|
Gersch M, Kreuzer J, Sieber SA. Electrophilic natural products and their biological targets. Nat Prod Rep 2012; 29:659-82. [DOI: 10.1039/c2np20012k] [Citation(s) in RCA: 193] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
43
|
Simpkins N, Pavlakos I, Male L. Rapid access to polycyclic indolines related to the stephacidin alkaloids using a radical cascade. Chem Commun (Camb) 2012; 48:1958-60. [DOI: 10.1039/c1cc16510k] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
44
|
Zhang L, Jia L, Zhang L, Guo H, Zhou Z, Weng J, Qi F. Synchrotron vacuum ultraviolet (VUV) photo-induced fragmentation of cyclic dipeptides radical cations. Amino Acids 2011; 43:279-87. [DOI: 10.1007/s00726-011-1072-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Accepted: 08/29/2011] [Indexed: 11/24/2022]
|
45
|
Rafiemanzelat F, Abdollahi E. Rapid synthesis of new block copolyurethanes derived from L-leucine-PEG in ionic liquids under microwave irradiation. J Appl Polym Sci 2011. [DOI: 10.1002/app.34691] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
46
|
Finefield JM, Kato H, Greshock TJ, Sherman DH, Tsukamoto S, Williams RM. Biosynthetic studies of the notoamides: isotopic synthesis of stephacidin A and incorporation into notoamide B and sclerotiamide. Org Lett 2011; 13:3802-5. [PMID: 21714564 DOI: 10.1021/ol201284y] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The advanced natural product stephacidin A is proposed as a biosynthetic precursor to notoamide B in various Aspergillus species. Doubly (13)C-labeled racemic stephacidin A was synthesized and fed to cultures of the terrestrial-derived fungus, Aspergillus versicolor NRRL 35600, and the marine-derived fungus, Aspergillus sp. MF297-2. Analysis of the metabolites revealed enantiospecific incorporation of intact (-)-stephacidin A into (+)-notoamide B in Aspergillus versicolor and (+)-stephacidin A into (-)-notoamide B in Aspergillus sp. MF297-2. (13)C-Labeled sclerotiamide was also isolated from both fungal cultures.
Collapse
Affiliation(s)
- Jennifer M Finefield
- Department of Chemistry, Colorado State University, 1301 Center Avenue, Fort Collins, Colorado 80523, USA
| | | | | | | | | | | |
Collapse
|
47
|
Rapid synthesis of new block copolyurethanes derived from l-leucine cyclodipeptide in reusable molten ammonium salts: novel and efficient green media for the synthesis of new hydrolysable and biodegradable copolyurethanes. Amino Acids 2011; 42:2177-86. [DOI: 10.1007/s00726-011-0957-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 06/07/2011] [Indexed: 10/18/2022]
|
48
|
Williams RM. Natural products synthesis: enabling tools to penetrate Nature's secrets of biogenesis and biomechanism. J Org Chem 2011; 76:4221-59. [PMID: 21438619 PMCID: PMC3174107 DOI: 10.1021/jo2003693] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Selected examples from our laboratory of how synthetic technology platforms developed for the total synthesis of several disparate families of natural products was harnessed to penetrate biomechanistic and/or biosynthetic queries is discussed. Unexpected discoveries of biomechanistic reactivity and/or penetrating the biogenesis of naturally occurring substances were made possible through access to substances available only through chemical synthesis. Hypothesis-driven total synthesis programs are emerging as very useful conceptual templates for penetrating and exploiting the inherent reactivity of biologically active natural substances. In many instances, new enabling synthetic technologies were required to be developed. The examples demonstrate the often untapped richness of complex molecule synthesis to provide powerful tools to understand, manipulate and exploit Nature's vast and creative palette of secondary metabolites.
Collapse
Affiliation(s)
- Robert M Williams
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States.
| |
Collapse
|
49
|
Tsukamoto S, Umaoka H, Yoshikawa K, Ikeda T, Hirota H. Notoamide O, a structurally unprecedented prenylated indole alkaloid, and notoamides P-R from a marine-derived fungus, Aspergillus sp. JOURNAL OF NATURAL PRODUCTS 2010; 73:1438-1440. [PMID: 20795742 DOI: 10.1021/np1002498] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Notoamides O-R were isolated from a marine-derived Aspergillus sp. Notoamide O possesses a novel hemiacetal/hemiaminal ether functionality hitherto unknown among this family of prenylated indole alkaloids. The structure represents an unusual branch point for the oxidative modification of other members in the family of prenylated indole alkaloids in the biogenetic pathway.
Collapse
Affiliation(s)
- Sachiko Tsukamoto
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan.
| | | | | | | | | |
Collapse
|
50
|
Frebault FC, Simpkins NS. A cationic cyclisation route to prenylated indole alkaloids: synthesis of malbrancheamide B and brevianamide B, and progress towards stephacidin A. Tetrahedron 2010. [DOI: 10.1016/j.tet.2010.04.093] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|