1
|
D'Ambrosio A, Zamboni S, Camerini S, Casella M, Sanchez M, Pietraforte D, Vanacore N, Diociauti M, Altieri M, Di Piero V, Francia A, Pontecorvo S, Puthenparampil M, Gallo P, Margutti P. Proteomic profile of extracellular vesicles from plasma and CSF of multiple sclerosis patients reveals disease activity-associated EAAT2. J Neuroinflammation 2024; 21:217. [PMID: 39223661 PMCID: PMC11370133 DOI: 10.1186/s12974-024-03148-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/30/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND AND OBJECTIVES There is an urgent need to discover blood-based biomarkers of multiple sclerosis (MS) to better define the underlying biology of relapses and monitor disease progression. The main goal of this study is to search for candidate biomarkers of MS relapses associated with circulating extracellular vesicles (EVs), an emerging tool for biomarker discovery. METHODS EVs, purified from unpaired plasma and CSF samples of RRMS patients by size-exclusion chromatography (SEC), underwent proteomic analysis to discover novel biomarkers associated with MS relapses. The candidate biomarkers of disease activity were detected by comparison approach between plasma- and CSF-EV proteomes associated with relapses. Among them, a selected potential biomarker was evaluated in a cohort of MS patients, using a novel and highly reproducible flow cytometry-based approach in order to detect low abundant EV subsets in a complex body fluid such as plasma. RESULTS The proteomic profiles of both SEC-purified plasma EVs (from 6 patients in relapse and 5 patients in remission) and SEC-purified CSF EVs (from 4 patients in relapse and 3 patients in remission) revealed a set of proteins associated with MS relapses significant enriched in the synaptic transmission pathway. Among common proteins, excitatory amino-acid transporter 2, EAAT2, responsible for the majority of the glutamate uptake in CNS, was worthy of further investigation. By screening plasma samples from 110 MS patients, we found a significant association of plasma EV-carried EAAT2 protein (EV-EAAT2) with MS relapses, regardless of disease-modifying therapies. This finding was confirmed by investigating the presence of EV-EAAT2 in plasma samples collected longitudinally from 10 RRMS patients, during relapse and remission. Moreover, plasma EV-EAAT2 levels correlated positively with Expanded Disability Status Scale (EDSS) score in remitting MS patients but showed a negative correlation with age in patients with secondary progressive (SPMS). CONCLUSION Our results emphaticize the usefulness of plasma EVs as a source of accessible biomarkers to remotely analyse the CNS status. Plasma EV-EAAT2 showed to be a promising biomarker for MS relapses. Further studies are required to assess the clinical relevance of this biomarker also for disability progression independent of relapse activity and transition from RRMS towards SPMS.
Collapse
Affiliation(s)
- Antonella D'Ambrosio
- Department of Neuroscience, Istituto Superiore di Sanità, Vle Regina Elena 299, 00161, Rome, Italy
| | - Silvia Zamboni
- Department of Neuroscience, Istituto Superiore di Sanità, Vle Regina Elena 299, 00161, Rome, Italy
| | - Serena Camerini
- Core Facilities, Istituto Superiore di Sanità, 00161, Rome, Italy
| | | | - Massimo Sanchez
- Core Facilities, Istituto Superiore di Sanità, 00161, Rome, Italy
| | | | - Nicola Vanacore
- Center of Disease Prevention and Health Promotion, Istituto Superiore di Sanità, 00161, Rome, Italy
| | - Marco Diociauti
- Center of Disease Prevention and Health Promotion, Istituto Superiore di Sanità, 00161, Rome, Italy
| | - Marta Altieri
- Department of Human Neurosciences, University "La Sapienza", 00185, Rome, Italy
| | - Vittorio Di Piero
- Department of Human Neurosciences, University "La Sapienza", 00185, Rome, Italy
| | - Ada Francia
- Department of Human Neurosciences, University "La Sapienza", 00185, Rome, Italy
| | - Simona Pontecorvo
- Department of Human Neurosciences, University "La Sapienza", 00185, Rome, Italy
| | | | - Paolo Gallo
- Department of Neurosciences, University of Padua, 35128, Padua, Italy
| | - Paola Margutti
- Department of Neuroscience, Istituto Superiore di Sanità, Vle Regina Elena 299, 00161, Rome, Italy.
| |
Collapse
|
2
|
Toader C, Dobrin N, Brehar FM, Popa C, Covache-Busuioc RA, Glavan LA, Costin HP, Bratu BG, Corlatescu AD, Popa AA, Ciurea AV. From Recognition to Remedy: The Significance of Biomarkers in Neurodegenerative Disease Pathology. Int J Mol Sci 2023; 24:16119. [PMID: 38003309 PMCID: PMC10671641 DOI: 10.3390/ijms242216119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/28/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
With the inexorable aging of the global populace, neurodegenerative diseases (NDs) like Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS) pose escalating challenges, which are underscored by their socioeconomic repercussions. A pivotal aspect in addressing these challenges lies in the elucidation and application of biomarkers for timely diagnosis, vigilant monitoring, and effective treatment modalities. This review delineates the quintessence of biomarkers in the realm of NDs, elucidating various classifications and their indispensable roles. Particularly, the quest for novel biomarkers in AD, transcending traditional markers in PD, and the frontier of biomarker research in ALS are scrutinized. Emergent susceptibility and trait markers herald a new era of personalized medicine, promising enhanced treatment initiation especially in cases of SOD1-ALS. The discourse extends to diagnostic and state markers, revolutionizing early detection and monitoring, alongside progression markers that unveil the trajectory of NDs, propelling forward the potential for tailored interventions. The synergy between burgeoning technologies and innovative techniques like -omics, histologic assessments, and imaging is spotlighted, underscoring their pivotal roles in biomarker discovery. Reflecting on the progress hitherto, the review underscores the exigent need for multidisciplinary collaborations to surmount the challenges ahead, accelerate biomarker discovery, and herald a new epoch of understanding and managing NDs. Through a panoramic lens, this article endeavors to provide a comprehensive insight into the burgeoning field of biomarkers in NDs, spotlighting the promise they hold in transforming the diagnostic landscape, enhancing disease management, and illuminating the pathway toward efficacious therapeutic interventions.
Collapse
Affiliation(s)
- Corneliu Toader
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (L.A.G.); (H.P.C.); (B.-G.B.); (A.D.C.); (A.V.C.)
- Department of Vascular Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 077160 Bucharest, Romania
| | - Nicolaie Dobrin
- Department of Neurosurgery, Clinical Emergency Hospital “Prof. Dr. Nicolae Oblu”, 700309 Iasi, Romania
| | - Felix-Mircea Brehar
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (L.A.G.); (H.P.C.); (B.-G.B.); (A.D.C.); (A.V.C.)
- Department of Neurosurgery, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania
| | - Constantin Popa
- Department of Neurology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Neurology, National Institute of Neurology and Neurovascular Diseases, 077160 Bucharest, Romania
- Medical Science Section, Romanian Academy, 060021 Bucharest, Romania
| | - Razvan-Adrian Covache-Busuioc
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (L.A.G.); (H.P.C.); (B.-G.B.); (A.D.C.); (A.V.C.)
| | - Luca Andrei Glavan
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (L.A.G.); (H.P.C.); (B.-G.B.); (A.D.C.); (A.V.C.)
| | - Horia Petre Costin
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (L.A.G.); (H.P.C.); (B.-G.B.); (A.D.C.); (A.V.C.)
| | - Bogdan-Gabriel Bratu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (L.A.G.); (H.P.C.); (B.-G.B.); (A.D.C.); (A.V.C.)
| | - Antonio Daniel Corlatescu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (L.A.G.); (H.P.C.); (B.-G.B.); (A.D.C.); (A.V.C.)
| | - Andrei Adrian Popa
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (L.A.G.); (H.P.C.); (B.-G.B.); (A.D.C.); (A.V.C.)
| | - Alexandru Vlad Ciurea
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (L.A.G.); (H.P.C.); (B.-G.B.); (A.D.C.); (A.V.C.)
- Medical Science Section, Romanian Academy, 060021 Bucharest, Romania
- Neurosurgery Department, Sanador Clinical Hospital, 010991 Bucharest, Romania
| |
Collapse
|
3
|
Evolution of acute "black hole" lesions in patients with relapsing-remitting multiple sclerosis. Acta Neurol Belg 2022:10.1007/s13760-022-01938-9. [PMID: 35397094 DOI: 10.1007/s13760-022-01938-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 03/20/2022] [Indexed: 11/01/2022]
Abstract
OBJECTIVE Gadolinium-enhanced T1-weighted lesions are a well-established marker of areas with acute inflammatory activity. A majority of these gadolinium-enhanced T1 lesions are isointense relative to the surrounding white matter, but 20-40% of such active lesions will evolve during one year into areas of low signal ("black hole"). This study sought to characterize evolution of "black hole" lesions in patients with relapsing-remitting multiple sclerosis (MS) using the magnetic resonance imaging (MRI), which measures active lesions via the count of new or enlarged T2 and gadolinium-enhanced T1-weighted lesions. MATERIALS AND METHODS This was a prospective, observational case-series study which utilized pre- and post-gadolinium contrast T1-weighted and Proton density MRI scans. Twenty-nine patients (8 males and 21 females) with average age of 38.86 ± 6.58 years and disease duration of 5.75 ± 7.00 years were used to analyze 196 acute demyelinating plaques detected on MRI images during the 24-month follow-up of post-gadolinium signal intensity enhancement of MS plaques. RESULTS Significant difference in black hole development was found between the shapes of acute and chronic "black holes". Ring-shaped and patchy plaques were 4.09 (1.87-8.91) times more likely and 1.49 (0.71-3.12) times less likely to develop an acute "black holes" than homogeneous plaques, respectively. Acute plaques with higher lesion-to-CSF SI ratio and larger surface area showed a greater tendency to develop into acute and chronic "black holes". CONCLUSIONS The value of lesion-to-CSF SI ratio and surface area were found as the predictors of the "black hole" formation.
Collapse
|
4
|
Hunter SF, Bindra J, Chopra I, Niewoehner J, Panaccio MP, Wan GJ. Cost-Effectiveness of Repository Corticotropin Injection for the Treatment of Acute Exacerbations in Multiple Sclerosis. CLINICOECONOMICS AND OUTCOMES RESEARCH 2021; 13:883-892. [PMID: 34675568 PMCID: PMC8523315 DOI: 10.2147/ceor.s330118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/22/2021] [Indexed: 11/23/2022] Open
Abstract
Background Relapses are common among patients with multiple sclerosis (MS) despite treatment with disease-modifying therapies. Repository corticotropin injection (RCI, Acthar® Gel), plasmapheresis (PMP), and intravenous immunoglobulin (IVIg) are alternative therapies for MS relapse. There is a dearth of economic assessments of these therapies for the acute exacerbations of MS. This study estimated the cost-effectiveness of RCI compared to PMP or IVIg. Methods A Markov state-transition model compared outcomes (costs, relapses, remission, and utilities) with RCI versus PMP or IVIg for the acute exacerbations in MS. The model was developed from the United States (US) payer and societal perspectives over one to three years. Patients initiated on alternative therapies were evaluated in one-day increments for the first 30 days during treatment. The model assumes the natural history of MS after treatment in the first month, adjusting for the effect of treatment. Incremental cost-effectiveness ratios (ICERs) were estimated as cost per quality-adjusted life-year (QALY) gained. The uncertainty in model parameters was evaluated in probabilistic sensitivity analyses. Results In the base case, RCI has an ICER of USD 42,078 per QALY compared to PMP over one year from the payer perspective and is dominant over two and three years; RCI is dominant compared to PMP from the societal perspective over all three years. Compared to IVIg, RCI is a dominant strategy from both payer and societal perspectives over all three years. Probabilistic sensitivity analysis supports the base case findings, suggesting that RCI may be cost-effective versus PMP and IVIg for acute exacerbations in MS. Conclusion RCI is a cost-effective alternative treatment for MS relapses compared to PMP and IVIg from the US payer and societal perspectives.
Collapse
Affiliation(s)
| | - Jas Bindra
- Falcon Research Group, North Potomac, MD, USA
| | | | | | | | | |
Collapse
|
5
|
Oliver BJ, Walsh K, Messier R, Mehta F, Cabot A, Klawiter E, Pagnotta P, Solomon A, England SE. System-Level Variation in Multiple Sclerosis Care Outcomes: Initial Findings from the Multiple Sclerosis Continuous Quality Improvement Research Collaborative. Popul Health Manag 2021; 25:46-56. [PMID: 34134513 DOI: 10.1089/pop.2021.0040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Multiple sclerosis (MS) is a "3C" (complex, chronic, costly) condition that is a common and disabling neurological illness affecting approximately 1 million adults in the United States. MS has been studied at the basic science, individual, and population levels, but not at the system level to assess small-area variation effects on MS population health outcomes. System-level effects have been observed in other 3C conditions including cystic fibrosis, rheumatoid arthritis, and inflammatory bowel disease. The authors report here on system-level variation findings from the baseline period during the first year of the Multiple Sclerosis Continuous Quality Improvement (MS-CQI) study. Stepwise binary logistic regression analyses were conducted to investigate system-level (small-area variation) effects on MS relapses (exacerbations), disease-modifying therapy (DMT) utilization, and brain MRI utilization, controlling for demographics (age and sex) and other potential confounders. Significant differences were observed in people with MS (PwMS) between centers for a number of demographic and disease characteristics, including sex, age, and MS subtype. Controlling for these factors, significant system-level effects were observed on outcomes, including DMT utilization, MRI utilization, and relapses. Significant relationships also were observed between outcomes and urgent care utilization, including emergency department visits and hospitalizations. This initial study provides evidence establishing the presence of system-level variation effects on MS outcomes in a multicenter population study - where PwMS get their care can influence their outcomes. Results support continued systems-level research and improvement initiatives to optimize MS population health outcomes in this challenging and costly complex chronic condition.
Collapse
Affiliation(s)
- Brant J Oliver
- Department of Community and Family Medicine, Geisel School of Medicine at Dartmouth and Dartmouth-Hitchcock-Health, Lebanon, New Hampshire, USA.,The Dartmouth Institute for Health Policy & Clinical Practice, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA.,Department of Psychiatry, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA.,Multiple Sclerosis Specialty Care Program, Concord Hospital Neurology, Concord, New Hampshire, USA
| | - Karen Walsh
- Jefferson College of Population Health, Philadelphia, Pennsylvania, USA
| | | | - Falguni Mehta
- Department of Community and Family Medicine, Geisel School of Medicine at Dartmouth and Dartmouth-Hitchcock-Health, Lebanon, New Hampshire, USA
| | - Ann Cabot
- Multiple Sclerosis Specialty Care Program, Concord Hospital Neurology, Concord, New Hampshire, USA
| | - Eric Klawiter
- Multiple Sclerosis Center, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Patricia Pagnotta
- Multiple Sclerosis Center, Department of Neurology, University of Vermont Medical Center and Larner College of Medicine at the University of Vermont, Burlington, Vermont, USA
| | | | | |
Collapse
|
6
|
Wan GJ, Chopra I, Niewoehner J, Hunter SF. Cost per response analysis of repository corticotropin injection versus other alternative treatments for acute exacerbations of multiple sclerosis. Drugs Context 2021; 9:dic-2020-9-4. [PMID: 33408750 PMCID: PMC7747790 DOI: 10.7573/dic.2020-9-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 11/21/2020] [Indexed: 12/18/2022] Open
Abstract
Background Relapses are common in patients with multiple sclerosis (MS) even after the use of disease-modifying therapies. Repository corticotropin injection (RCI), plasmapheresis (PMP), and intravenous immunoglobulin (IVIg) may be utilized as alternative therapies in the management of MS relapse. There is a lack of health economic studies on these alternative therapies for the acute exacerbations of MS. The objective of this study was to estimate the cost per response of RCI compared with PMP or IVIg from the United States (US) commercial payer perspective. Methods Costs and response rates were sourced from published peer-reviewed observational studies. The cost of care included MS-related inpatient, outpatient, and medication costs. Treatment response was defined as no evidence of additional relapse treatment or procedure claims within 30 days after treatment. The cost per response for each treatment was calculated by dividing the total annual cost of care by the proportion of patients with resolved relapse for each treatment. The incremental cost per response ratio was calculated by dividing the difference in costs and the proportion of responses for RCI versus PMP or IVIg. One-way sensitivity analysis (OWSA) was conducted for both costs and response rates. All included costs were inflated to the 2019 US dollars. Results With a lower total annual cost of care and a higher response rate, RCI had a lower cost per response (US$141,970) compared with PMP or IVIg (US$253,331). RCI had a lower cost per response even when more stringent estimates for RCI were applied in the OWSA. The annual cost of care had a greater influence on the cost per response in the OWSA. Conclusions Based on the estimates from the real-world evidence, our economic evaluation suggests that RCI may have real-world clinical and economic benefits for patients with MS relapse who fail on corticosteroid therapy.
Collapse
Affiliation(s)
- George J Wan
- Mallinckrodt Pharmaceuticals, Bedminster, NJ, USA
| | | | | | | |
Collapse
|
7
|
Ziemssen T, Akgün K, Brück W. Molecular biomarkers in multiple sclerosis. J Neuroinflammation 2019; 16:272. [PMID: 31870389 PMCID: PMC6929340 DOI: 10.1186/s12974-019-1674-2] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 12/16/2019] [Indexed: 11/30/2022] Open
Abstract
Multiple sclerosis (MS) is an inflammatory-neurodegenerative disease of the central nervous system presenting with significant inter- and intraindividual heterogeneity. However, the application of clinical and imaging biomarkers is currently not able to allow individual characterization and prediction. Complementary, molecular biomarkers which are easily quantifiable come from the areas of immunology and neurobiology due to the causal pathomechanisms and can excellently complement other disease characteristics. Only a few molecular biomarkers have so far been routinely used in clinical practice as their validation and transfer take a long time. This review describes the characteristics that an ideal MS biomarker should have and the challenges of establishing new biomarkers. In addition, clinically relevant and promising biomarkers from the blood and cerebrospinal fluid are presented which are useful for MS diagnosis and prognosis as well as for the assessment of therapy response and side effects.
Collapse
Affiliation(s)
- Tjalf Ziemssen
- MS center, Center of Clinical Neuroscience, University Clinic Carl-Gustav Carus, Dresden University of Technology, Dresden, Germany.
| | - Katja Akgün
- MS center, Center of Clinical Neuroscience, University Clinic Carl-Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Wolfgang Brück
- Institute of Neuropathology, University Medical Center, Göttingen, Germany
| |
Collapse
|
8
|
Saida T, Yamamura T, Kondo T, Yun J, Yang M, Li J, Mahadavan L, Zhu B, Sheikh SI. A randomized placebo-controlled trial of delayed-release dimethyl fumarate in patients with relapsing-remitting multiple sclerosis from East Asia and other countries. BMC Neurol 2019; 19:5. [PMID: 30616596 PMCID: PMC6322309 DOI: 10.1186/s12883-018-1220-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 12/06/2018] [Indexed: 01/03/2023] Open
Abstract
Background Delayed-release dimethyl fumarate (DMF) has demonstrated efficacy and a favorable benefit-risk profile in phase 2 and 3 studies that enrolled predominantly white patients with relapsing-remitting multiple sclerosis (RRMS). In this study (APEX, Part I), we evaluated the efficacy/safety outcomes of DMF in a predominantly East Asian population of patients with RRMS. Methods In this 24-week, randomized, double-blind, placebo-controlled phase 3 study, 225 patients, 142 of which were East Asian (63.4%), were enrolled: Japan (n = 114), South Korea (n = 20), Taiwan (n = 8), the Czech Republic (n = 42), and Poland (n = 40). Key exclusion criteria included diagnosis of neuromyelitis optica spectrum disorder. Stratified by country, patients were randomized 1:1 to receive DMF 240 mg twice daily or placebo. Clinical assessments, including neurological examination and EDSS scoring, were conducted at baseline and at weeks 12 and 24. Results A total of 213 patients (95.1%) completed the study. From weeks 12 – 24, the total number of new gadolinium-enhancing (Gd+) lesions was reduced by 84% (p < 0.0001) in DMF compared with placebo. For the secondary endpoint, from baseline to week 24, the total number of new Gd+ lesions was reduced by 75% and the mean number of new/newly enlarging T2 hyperintense lesions was reduced by 63% (both p < 0.0001). Flushing and flushing-related symptoms, and gastrointestinal events were adverse events related to DMF treatment. Efficacy and safety results in the Japanese subgroup and the East Asian subgroup (which included patients from Japan, Taiwan, and South Korea) were consistent with the overall study population. Conclusion The strong efficacy and favorable benefit-risk profile of DMF extends to Japanese, and more broadly, East Asian patients with RRMS. Trial registration This trial is registered on ClinicalTrials.gov (identifier: NCT01838668), April 20, 2013 (retrospectively registered). The registration can be found at the following URL: https://clinicaltrials.gov/ct2/show/NCT01838668 Electronic supplementary material The online version of this article (10.1186/s12883-018-1220-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Takahiko Saida
- Kansai Multiple Sclerosis Centre, Kyoto Min-iren Central Hospital, Nishinokyo-Kasuga-cho 16-44-409, Nakakyo-ku, Kyoto, 604-8453, Japan.
| | | | | | | | | | - Jie Li
- Biogen, Cambridge, MA, USA.,Sanofi, Cambridge, MA, USA
| | - Lalitha Mahadavan
- Biogen, Cambridge, MA, USA.,Faculty of Pharmaceutical Medicine, London, UK
| | | | | |
Collapse
|
9
|
Montalban X, Gold R, Thompson AJ, Otero-Romero S, Amato MP, Chandraratna D, Clanet M, Comi G, Derfuss T, Fazekas F, Hartung HP, Havrdova E, Hemmer B, Kappos L, Liblau R, Lubetzki C, Marcus E, Miller DH, Olsson T, Pilling S, Selmaj K, Siva A, Sorensen PS, Sormani MP, Thalheim C, Wiendl H, Zipp F. ECTRIMS/EAN Guideline on the pharmacological treatment of people with multiple sclerosis. Mult Scler 2018; 24:96-120. [PMID: 29353550 DOI: 10.1177/1352458517751049] [Citation(s) in RCA: 433] [Impact Index Per Article: 61.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Multiple sclerosis (MS) is a complex disease with new drugs becoming available in the past years. There is a need for a reference tool compiling current data to aid professionals in treatment decisions. OBJECTIVES To develop an evidence-based clinical practice guideline for the pharmacological treatment of people with MS. METHODS This guideline has been developed using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) methodology and following the updated EAN recommendations. Clinical questions were formulated in Patients-Intervention-Comparator-Outcome (PICO) format and outcomes were prioritized. The quality of evidence was rated into four categories according to the risk of bias. The recommendations with assigned strength (strong and weak) were formulated based on the quality of evidence and the risk-benefit balance. Consensus between the panelists was reached by use of the modified nominal group technique. RESULTS A total of 10 questions were agreed, encompassing treatment efficacy, response criteria, strategies to address suboptimal response and safety concerns and treatment strategies in MS and pregnancy. The guideline takes into account all disease-modifying drugs approved by the European Medicine Agency (EMA) at the time of publication. A total of 21 recommendations were agreed by the guideline working group after three rounds of consensus. CONCLUSION The present guideline will enable homogeneity of treatment decisions across Europe.
Collapse
Affiliation(s)
- Xavier Montalban
- Department of Neurology-Neuroimmunology, Multiple Sclerosis Centre of Catalonia (Cemcat), Vall d'Hebron University Hospital, Barcelona, Spain
| | - Ralf Gold
- Department of Neurology, Ruhr University, St. Josef-Hospital, Bochum, Germany
| | - Alan J Thompson
- Department of Brain Repair & Rehabilitation and Faculty of Brain Sciences, University College London Institute of Neurology, London, UK
| | - Susana Otero-Romero
- Department of Neurology-Neuroimmunology, Multiple Sclerosis Centre of Catalonia (Cemcat), Vall d'Hebron University Hospital, Barcelona, Spain/Preventive Medicine and Epidemiology Department, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Maria Pia Amato
- Department of Neurosciences, Psychology, Drugs and Child Health Area (NEUROFARBA), Section Neurosciences, University of Florence, Florence, Italy
| | | | - Michel Clanet
- Department of Neurology, Toulouse University Hospital, Toulouse, France
| | - Giancarlo Comi
- Neurological Department, Institute of Experimental Neurology (INSPE), Scientific Institute Hospital San Raffaele, Universita' Vita-Salute San Raffaele, Milan, Italy
| | - Tobias Derfuss
- Departments of Neurology and Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Franz Fazekas
- Department of Neurology, Medical University of Graz, Graz, Austria
| | - Hans Peter Hartung
- Multiple Sclerosis Center, Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Eva Havrdova
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine and General University Hospital, Charles University, Prague, Czech Republic
| | - Bernhard Hemmer
- Department of Neurology, Klinikum Rechts der Isar, Technische Universität München and Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | | | - Roland Liblau
- INSERM UMR U1043 - CNRS U5282, Université de Toulouse, UPS, Centre de Physiopathologie de Toulouse Purpan, Toulouse, France
| | - Catherine Lubetzki
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S 1127, ICM-GHU Pitié-Salpêtrière, Paris, France
| | - Elena Marcus
- Centre for Outcomes Research and Effectiveness (CORE), Research Department of Clinical, Educational and Health Psychology, University College London, London, UK
| | - David H Miller
- NMR Research Unit and Queen Square Multiple Sclerosis Centre, University College London Institute of Neurology, London, UK
| | - Tomas Olsson
- Neuroimmunology Unit, Center for Molecular Medicine, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Steve Pilling
- Centre for Outcomes Research and Effectiveness (CORE), Research Department of Clinical, Educational and Health Psychology, University College London, London, UK
| | - Krysztof Selmaj
- Department of Neurology, Medical University of Lodz, Lodz, Poland
| | - Axel Siva
- Clinical Neuroimmunology Unit and MS Clinic, Department of Neurology, Cerrahpasa School of Medicine, Istanbul University, Istanbul, Turkey
| | - Per Soelberg Sorensen
- Department of Neurology, Danish Multiple Sclerosis Center, Copenhagen University Hospital, Rigshospitalet, Denmark
| | | | | | - Heinz Wiendl
- Department of Neurology, University of Münster, Münster, Germany
| | - Frauke Zipp
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunology (FZI), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
10
|
Montalban X, Gold R, Thompson AJ, Otero‐Romero S, Amato MP, Chandraratna D, Clanet M, Comi G, Derfuss T, Fazekas F, Hartung HP, Havrdova E, Hemmer B, Kappos L, Liblau R, Lubetzki C, Marcus E, Miller DH, Olsson T, Pilling S, Selmaj K, Siva A, Sorensen PS, Sormani MP, Thalheim C, Wiendl H, Zipp F. ECTRIMS
/
EAN
guideline on the pharmacological treatment of people with multiple sclerosis. Eur J Neurol 2018; 25:215-237. [DOI: 10.1111/ene.13536] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 11/27/2017] [Indexed: 01/21/2023]
Affiliation(s)
- X. Montalban
- Multiple Sclerosis Centre of Catalonia (Cemcat) Department of Neurology‐Neuroimmunology Vall d'Hebron University Hospital Barcelona Spain
| | - R. Gold
- Department of Neurology Ruhr University, St Josef‐Hospital Bochum Germany
| | - A. J. Thompson
- Department of Brain Repair and Rehabilitation Faculty of Brain Sciences University College London Institute of Neurology London UK
| | - S. Otero‐Romero
- Multiple Sclerosis Centre of Catalonia (Cemcat) Department of Neurology‐Neuroimmunology Vall d'Hebron University Hospital Barcelona Spain
- Preventive Medicine and Epidemiology Department Vall d'Hebron University Hospital Barcelona Spain
| | - M. P. Amato
- Department NEUROFARBA Section Neurosciences University of Florence Florence Italy
| | | | - M. Clanet
- Department of Neurology Toulouse University Hospital Toulouse France
| | - G. Comi
- Neurological Department Institute of Experimental Neurology (INSPE) Scientific Institute Hospital San Raffaele University Vita‐Salute San Raffaele Milan Italy
| | - T. Derfuss
- Departments of Neurology and Biomedicine University Hospital Basel Basel Switzerland
| | - F. Fazekas
- Department of Neurology Medical University of Graz Graz Austria
| | - H. P. Hartung
- Department of Neurology Medical Faculty, Multiple Sclerosis Heinrich‐Heine‐University Düsseldorf Germany
| | - E. Havrdova
- Department of Neurology and Centre of Clinical Neuroscience First Faculty of Medicine and General University Hospital Charles University Prague Czech Republic
| | - B. Hemmer
- Department of Neurology Klinikum Rechts der Isar Technische Universität München MunichGermany
- Munich Cluster for Systems Neurology (SyNergy) Munich Germany
| | - L. Kappos
- University Hospital Basel Basel Switzerland
| | - R. Liblau
- INSERM UMR U1043 – CNRS U5282 Centre de Physiopathologie de Toulouse Purpan Université de Toulouse, UPS ToulouseFrance
| | - C. Lubetzki
- ICM‐GHU Pitié‐Salpêtrière Sorbonne Universités UPMC Univ Paris 06, UMR_S 1127 Paris France
| | - E. Marcus
- Centre for Outcomes Research and Effectiveness (CORE) Research Department of Clinical, Educational and Health Psychology University College London LondonUK
| | - D. H. Miller
- NMR Research Unit Queen Square Multiple Sclerosis Centre University College London (UCL) Institute of Neurology London UK
| | - T. Olsson
- Neuroimmunology Unit Centre for Molecular Medicine, L8:04 Karolinska University Hospital (Solna) Stockholm Sweden
| | - S. Pilling
- Centre for Outcomes Research and Effectiveness (CORE) Research Department of Clinical, Educational and Health Psychology University College London LondonUK
| | - K. Selmaj
- Department of Neurology Medical University of Lodz Lodz Poland
| | - A. Siva
- Clinical Neuroimmunology Unit and MS Clinic Department of Neurology Cerrahpasa School of Medicine Istanbul University Istanbul Turkey
| | - P. S. Sorensen
- Danish Multiple Sclerosis Centre Department of Neurology Copenhagen University Hospital Rigshospitalet Copenhagen Denmark
| | | | - C. Thalheim
- European Multiple Sclerosis Platform (EMSP) Schaerbeek/Brussels Belgium
| | - H. Wiendl
- Department of Neurology University of Münster MünsterGermany
| | - F. Zipp
- Department of Neurology Focus Program Translational Neuroscience (FTN) and Immunology (FZI) Rhine‐Main Neuroscience Network (rmn2) University Medical Centre of the Johannes Gutenberg University Mainz Mainz Germany
| |
Collapse
|
11
|
Traboulsee A, Li D, Tam R, Zhao G, Riddehough A, Fang J, Dangond F, Kappos L. Subcutaneous interferon β-1a three times weekly and the natural evolution of gadolinium-enhancing lesions into chronic black holes in relapsing and progressive multiple sclerosis: Analysis of PRISMS and SPECTRIMS trials. Mult Scler J Exp Transl Clin 2017; 3:2055217317745340. [PMID: 29276624 PMCID: PMC5734469 DOI: 10.1177/2055217317745340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 11/03/2017] [Indexed: 11/17/2022] Open
Abstract
Background Evolution of gadolinium-enhancing lesions into chronic black holes (CBH) may be reduced by interferon (IFN) therapy. Objective The objective of this paper is to assess the effect of IFN β-1a and placebo on CBH evolution and disability in patients with relapsing–remitting multiple sclerosis (RRMS), as well as CBH evolution in patients with secondary progressive multiple sclerosis (SPMS). Methods A post hoc, exploratory analysis of patients with RRMS and SPMS with monthly MRI scans (months –1 to 9) from two separate placebo-controlled clinical trials of IFN β-1a was conducted. Results In RRMS patients, the risk of ≥1 evolved CBH was lower for IFN β-1a versus placebo (odds ratio 0.42; p = 0.024); volume of newly evolved CBH was numerically reduced. A numerically higher proportion of patients with ≥1 evolving CBH vs no evolving CBH had confirmed three-month disability progression (four-year rate 55.8% vs 43.1%, respectively). Proportion of lesions evolving into CBH (patient level: 34.7% vs 12.6%, p < 0.0001; lesion level: 28.8% vs 11.0%, p < 0.0001) and evolved CBH volume (median 33.5 mm3 (Quartile 1, 0.0; Quartile 3, 173.4) vs 0.0 mm3 (0.0; 52.4); p = 0.0008) was higher for SPMS than RRMS patients treated with IFN β-1a. Conclusion In RRMS, IFN β-1a significantly decreased the proportion of new T1 Gd+ lesions evolving into CBH and the risk of developing a CBH. In patients with SPMS, more lesions develop to CBH, indicating reduced repair capacity, and the natural history of lesion development appears to be unaffected by IFN β-1a treatment.
Collapse
Affiliation(s)
- A Traboulsee
- Department of Medicine, Faculty of Medicine, University of British Columbia, Canada
| | - Dkb Li
- Department of Medicine, Faculty of Medicine, University of British Columbia, Canada
| | - R Tam
- University of British Columbia, Canada
| | - G Zhao
- Division of Neurology, University of British Columbia, Canada
| | - A Riddehough
- Division of Neurology, University of British Columbia, Canada
| | | | | | - L Kappos
- Departments of Medicine, Biomedicine, Clinical Research and Biomedical Engineering, University Hospital Basel, Switzerland
| | | |
Collapse
|
12
|
Melanocortins, Melanocortin Receptors and Multiple Sclerosis. Brain Sci 2017; 7:brainsci7080104. [PMID: 28805746 PMCID: PMC5575624 DOI: 10.3390/brainsci7080104] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/07/2017] [Accepted: 08/08/2017] [Indexed: 02/07/2023] Open
Abstract
The melanocortins and their receptors have been extensively investigated for their roles in the hypothalamo-pituitary-adrenal axis, but to a lesser extent in immune cells and in the nervous system outside the hypothalamic axis. This review discusses corticosteroid dependent and independent effects of melanocortins on the peripheral immune system, central nervous system (CNS) effects mediated through neuronal regulation of immune system function, and direct effects on endogenous cells in the CNS. We have focused on the expression and function of melanocortin receptors in oligodendroglia (OL), the myelin producing cells of the CNS, with the goal of identifying new therapeutic approaches to decrease CNS damage in multiple sclerosis as well as to promote repair. It is clear that melanocortin signaling through their receptors in the CNS has potential for neuroprotection and repair in diseases like MS. Effects of melanocortins on the immune system by direct effects on the circulating cells (lymphocytes and monocytes) and by signaling through CNS cells in regions lacking a mature blood brain barrier are clear. However, additional studies are needed to develop highly effective MCR targeted therapies that directly affect endogenous cells of the CNS, particularly OL, their progenitors and neurons.
Collapse
|
13
|
McNamara C, Sugrue G, Murray B, MacMahon PJ. Current and Emerging Therapies in Multiple Sclerosis: Implications for the Radiologist, Part 1-Mechanisms, Efficacy, and Safety. AJNR Am J Neuroradiol 2017; 38:1664-1671. [PMID: 28408630 DOI: 10.3174/ajnr.a5147] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Imaging for the diagnosis and follow-up of patients with suspected or confirmed multiple sclerosis is a common scenario for many general radiologists and subspecialty neuroradiologists. The field of MS therapeutics has rapidly evolved with multiple new agents now being used in routine clinical practice. To provide an informed opinion in discussions concerning newer MS agents, radiologists must have a working understanding of the strengths and limitations of the various novel therapies. The role of imaging in MS has advanced beyond monitoring and surveillance of disease activity to include treatment complications. An understanding of the new generation of MS drugs in conjunction with the key role that MR imaging plays in the detection of disease progression, opportunistic infections, and drug-related adverse events is of vital importance to the radiologist and clinical physician alike. Radiologists are in a unique position to detect many of the described complications well in advance of clinical symptoms. Part 1 of this review outlines recent developments in the treatment of MS and discusses the published clinical data on the efficacy and safety of the currently approved and emerging therapies in this condition as they apply to the radiologist. Part 2 will cover pharmacovigilance and the role the neuroradiologist plays in monitoring patients for signs of opportunistic infection and/or disease progression.
Collapse
Affiliation(s)
- C McNamara
- From the Departments of Radiology (C.M., G.S., P.J.M.)
| | - G Sugrue
- From the Departments of Radiology (C.M., G.S., P.J.M.)
| | - B Murray
- Neurology (B.M.), Mater Misericordiae University Hospital, Dublin, Ireland
| | - P J MacMahon
- From the Departments of Radiology (C.M., G.S., P.J.M.)
| |
Collapse
|
14
|
Cree BAC, Gourraud PA, Oksenberg JR, Bevan C, Crabtree-Hartman E, Gelfand JM, Goodin DS, Graves J, Green AJ, Mowry E, Okuda DT, Pelletier D, von Büdingen HC, Zamvil SS, Agrawal A, Caillier S, Ciocca C, Gomez R, Kanner R, Lincoln R, Lizee A, Qualley P, Santaniello A, Suleiman L, Bucci M, Panara V, Papinutto N, Stern WA, Zhu AH, Cutter GR, Baranzini S, Henry RG, Hauser SL. Long-term evolution of multiple sclerosis disability in the treatment era. Ann Neurol 2016; 80:499-510. [PMID: 27464262 PMCID: PMC5105678 DOI: 10.1002/ana.24747] [Citation(s) in RCA: 296] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 07/12/2016] [Accepted: 07/24/2016] [Indexed: 12/20/2022]
Abstract
Objective To characterize the accrual of long‐term disability in a cohort of actively treated multiple sclerosis (MS) patients and to assess whether clinical and magnetic resonance imaging (MRI) data used in clinical trials have long‐term prognostic value. Methods This is a prospective study of 517 actively managed MS patients enrolled at a single center. Results More than 91% of patients were retained, with data ascertained up to 10 years after the baseline visit. At this last assessment, neurologic disability as measured by the Expanded Disability Status Scale (EDSS) was stable or improved compared to baseline in 41% of patients. Subjects with no evidence of disease activity (NEDA) by clinical and MRI criteria during the first 2 years had long‐term outcomes that were no different from those of the cohort as a whole. 25‐OH vitamin D serum levels were inversely associated with short‐term MS disease activity; however, these levels had no association with long‐term disability. At a median time of 16.8 years after disease onset, 10.7% (95% confidence interval [CI] = 7.2–14%) of patients reached an EDSS ≥ 6, and 18.1% (95% CI = 13.5–22.5%) evolved from relapsing MS to secondary progressive MS (SPMS). Interpretation Rates of worsening and evolution to SPMS were substantially lower when compared to earlier natural history studies. Notably, the NEDA 2‐year endpoint was not a predictor of long‐term stability. Finally, the data call into question the utility of annual MRI assessments as a treat‐to‐target approach for MS care. Ann Neurol 2016;80:499–510
Collapse
Affiliation(s)
| | - Bruce A C Cree
- Department of Neurology, University of California, San Francisco, San Francisco, CA.
| | | | - Jorge R Oksenberg
- Department of Neurology, University of California, San Francisco, San Francisco, CA
| | - Carolyn Bevan
- Department of Neurology, University of California, San Francisco, San Francisco, CA
| | | | - Jeffrey M Gelfand
- Department of Neurology, University of California, San Francisco, San Francisco, CA
| | - Douglas S Goodin
- Department of Neurology, University of California, San Francisco, San Francisco, CA
| | - Jennifer Graves
- Department of Neurology, University of California, San Francisco, San Francisco, CA
| | - Ari J Green
- Department of Neurology, University of California, San Francisco, San Francisco, CA
| | - Ellen Mowry
- Department of Neurology, University of California, San Francisco, San Francisco, CA
| | - Darin T Okuda
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Daniel Pelletier
- Department of Neurology, University of Southern California, Los Angeles, CA
| | | | - Scott S Zamvil
- Department of Neurology, University of California, San Francisco, San Francisco, CA
| | - Alisha Agrawal
- Department of Neurology, University of California, San Francisco, San Francisco, CA
| | - Stacy Caillier
- Department of Neurology, University of California, San Francisco, San Francisco, CA
| | - Caroline Ciocca
- Department of Neurology, University of California, San Francisco, San Francisco, CA
| | - Refujia Gomez
- Department of Neurology, University of California, San Francisco, San Francisco, CA
| | - Rachel Kanner
- Department of Neurology, University of California, San Francisco, San Francisco, CA
| | - Robin Lincoln
- Department of Neurology, University of California, San Francisco, San Francisco, CA
| | - Antoine Lizee
- Department of Neurology, University of California, San Francisco, San Francisco, CA
| | - Pamela Qualley
- Department of Neurology, University of California, San Francisco, San Francisco, CA
| | - Adam Santaniello
- Department of Neurology, University of California, San Francisco, San Francisco, CA
| | - Leena Suleiman
- Department of Neurology, University of California, San Francisco, San Francisco, CA
| | - Monica Bucci
- Department of Neurology, University of California, San Francisco, San Francisco, CA
| | - Valentina Panara
- Department of Neurology, University of California, San Francisco, San Francisco, CA
| | - Nico Papinutto
- Department of Neurology, University of California, San Francisco, San Francisco, CA
| | - William A Stern
- Department of Neurology, University of California, San Francisco, San Francisco, CA
| | - Alyssa H Zhu
- Department of Neurology, University of California, San Francisco, San Francisco, CA
| | - Gary R Cutter
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL
| | - Sergio Baranzini
- Department of Neurology, University of California, San Francisco, San Francisco, CA
| | - Roland G Henry
- Department of Neurology, University of California, San Francisco, San Francisco, CA
| | - Stephen L Hauser
- Department of Neurology, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
15
|
Ziemssen T, Kern R, Thomas K. Multiple sclerosis: clinical profiling and data collection as prerequisite for personalized medicine approach. BMC Neurol 2016; 16:124. [PMID: 27484848 PMCID: PMC4971685 DOI: 10.1186/s12883-016-0639-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 07/19/2016] [Indexed: 12/19/2022] Open
Abstract
Multiple sclerosis (MS) is a highly heterogeneous disease as it can present inter-individually as well as intra-individually, with different disease phenotypes emerging during different stages in the long-term disease course. In addition to advanced immunological, genetic and magnetic resonance imaging (MRI) profiling of the patient, the clinical profiling of MS patients needs to be widely implemented in clinical practice and improved by including a greater range of relevant parameters as patient-reported outcomes. It is crucial to implement a high standard of clinical characterization of individual patients as this is key to effective long-term observation and evaluation. To generate reliable real-world data, individual clinical data should be collected in specific MS registries and/or using intelligent software instruments as the Multiple Sclerosis Documentation System 3D. Computational analysis of biological processes will play a key role in the transition to personalized MS treatment. Major breakthroughs in the areas of bioinformatics and computational systems biology will be required to process this complex information to enable improved personalization of treatment for MS patients.
Collapse
Affiliation(s)
- Tjalf Ziemssen
- MS Center Dresden, Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, Dresden University of Technology, Fetscherstr 74, 01307, Dresden, Germany.
| | - Raimar Kern
- MS Center Dresden, Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, Dresden University of Technology, Fetscherstr 74, 01307, Dresden, Germany
| | - Katja Thomas
- MS Center Dresden, Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, Dresden University of Technology, Fetscherstr 74, 01307, Dresden, Germany
| |
Collapse
|
16
|
Wattjes MP, Rovira À, Miller D, Yousry TA, Sormani MP, de Stefano MP, Tintoré M, Auger C, Tur C, Filippi M, Rocca MA, Fazekas F, Kappos L, Polman C, Frederik Barkhof, Xavier Montalban. Evidence-based guidelines: MAGNIMS consensus guidelines on the use of MRI in multiple sclerosis--establishing disease prognosis and monitoring patients. Nat Rev Neurol 2015; 11:597-606. [PMID: 26369511 DOI: 10.1038/nrneurol.2015.157] [Citation(s) in RCA: 351] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The role of MRI in the assessment of multiple sclerosis (MS) goes far beyond the diagnostic process. MRI techniques can be used as regular monitoring to help stage patients with MS and measure disease progression. MRI can also be used to measure lesion burden, thus providing useful information for the prediction of long-term disability. With the introduction of a new generation of immunomodulatory and/or immunosuppressive drugs for the treatment of MS, MRI also makes an important contribution to the monitoring of treatment, and can be used to determine baseline tissue damage and detect subsequent repair. This use of MRI can help predict treatment response and assess the efficacy and safety of new therapies. In the second part of the MAGNIMS (Magnetic Resonance Imaging in MS) network's guidelines on the use of MRI in MS, we focus on the implementation of this technique in prognostic and monitoring tasks. We present recommendations on how and when to use MRI for disease monitoring, and discuss some promising MRI approaches that may be introduced into clinical practice in the near future.
Collapse
|
17
|
Goodin DS, Reder AT, Bermel RA, Cutter GR, Fox RJ, John GR, Lublin FD, Lucchinetti CF, Miller AE, Pelletier D, Racke MK, Trapp BD, Vartanian T, Waubant E. Relapses in multiple sclerosis: Relationship to disability. Mult Scler Relat Disord 2015; 6:10-20. [PMID: 27063617 DOI: 10.1016/j.msard.2015.09.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 08/21/2015] [Accepted: 09/02/2015] [Indexed: 12/21/2022]
Abstract
Multiple sclerosis (MS) is a recurrent inflammatory disease of the central nervous system, which ultimately causes substantial disability in many patients. A key clinical feature of this disease is the occurrence of relapses, consisting of episodes of neurological dysfunction followed by periods of remission. This review considers in detail the importance of the occurrence of relapses to the ultimate course of MS and the impact of relap setreatment (both acutely and prophylactically) on the long-term outcome for individuals. The ultimate goal of therapy in MS is the reduction of long-term disability. Clinical trials in MS, however, typically only extend for a very short time period compared to the time it takes for disability to evolve. Consequently, short-term outcome measures that are associated with, and predict, future disability need to be identified. In this regard, not only are relapses a characteristic feature of MS, they have also been proven to be associated with the occurrence of long-term disability. Moreover, treatments that reduce the number and severity of these attacks improve the long-term prognosis.
Collapse
Affiliation(s)
- Douglas S Goodin
- Multiple Sclerosis Center, University of California, San Francisco Medical Center, San Francisco, CA, United States; Department of Neurology, University of California, San Francisco School of Medicine, San Francisco, CA, United States.
| | - Anthony T Reder
- Department of Neurology, The University of Chicago, Chicago, IL, United States
| | - Robert A Bermel
- Mellen Center for Multiple Sclerosis, Cleveland Clinic, Cleveland, OH, United States
| | - Gary R Cutter
- Department of Biostatistics, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Robert J Fox
- Mellen Center for Multiple Sclerosis, Neurological Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Gareth R John
- Multiple Sclerosis Research Laboratory, Corinne Goldsmith Dickinson Center for Multiple Sclerosis, Friedman Brain Institute, New York, NY, United States; Department of Neurology, Mount Sinai School of Medicine, New York, NY, United States
| | - Fred D Lublin
- Corinne Goldsmith Dickinson Center for Multiple Sclerosis, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | | - Aaron E Miller
- Corinne Goldsmith Dickinson Center for Multiple Sclerosis, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Daniel Pelletier
- Neuro-Immunology Division and Yale Multiple Sclerosis Center, Advanced Imaging in Multiple Sclerosis (AIMS) Laboratory, Yale University School of Medicine, New Haven, CT, United States
| | - Michael K Racke
- Department of Neurology, Wexner Medical Center at The Ohio State University, Columbus, OH, United States
| | - Bruce D Trapp
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Timothy Vartanian
- Judith Jaffe Multiple Sclerosis Center, New York-Presbyterian Hospital/Weill Cornell Medical Center, Weill Cornell Medical College, United States
| | - Emmanuelle Waubant
- UCSF Regional Pediatric MS Center, Race to Erase MS, San Francisco, CA, United States
| |
Collapse
|
18
|
Frischer JM, Weigand SD, Guo Y, Kale N, Parisi JE, Pirko I, Mandrekar J, Bramow S, Metz I, Brück W, Lassmann H, Lucchinetti CF. Clinical and pathological insights into the dynamic nature of the white matter multiple sclerosis plaque. Ann Neurol 2015; 78:710-21. [PMID: 26239536 DOI: 10.1002/ana.24497] [Citation(s) in RCA: 487] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 07/27/2015] [Accepted: 07/29/2015] [Indexed: 11/07/2022]
Abstract
OBJECTIVE An extensive analysis of white matter plaques in a large sample of multiple sclerosis (MS) autopsies provides insights into the dynamic nature of MS pathology. METHODS One hundred twenty MS cases (1,220 tissue blocks) were included. Plaque types were classified according to demyelinating activity based on stringent criteria. Early active, late active, smoldering, inactive, and shadow plaques were distinguished. A total of 2,476 MS white matter plaques were identified. Plaque type distribution was analyzed in relation to clinical data. RESULTS Active plaques were most often found in early disease, whereas at later stages, smoldering, inactive, and shadow plaques predominated. The presence of early active plaques rapidly declined with disease duration. Plaque type distribution differed significantly by clinical course. The majority of plaques in acute monophasic and relapsing-remitting MS (RRMS) were active. Among secondary progressive MS (SPMS) cases with attacks, all plaque types could be distinguished including active plaques, in contrast to SPMS without attacks, in which inactive plaques predominated. Smoldering plaques were frequently and almost exclusively found in progressive MS. At 47 years of age, an equilibrium was observed between active and inactive plaques, whereas smoldering plaques began to peak. Men displayed a higher proportion of smoldering plaques. INTERPRETATION Disease duration, clinical course, age, and gender contribute to the dynamic nature of white matter MS pathology. Active MS plaques predominate in acute and early RRMS and are the likely substrate of clinical attacks. Progressive MS transitions to an accumulation of smoldering plaques characterized by microglial activation and slow expansion of pre-existing plaques. Whether current MS therapeutics impact this pathological driver of disease progression remains uncertain.
Collapse
Affiliation(s)
- Josa M Frischer
- Department of Neurosurgery, Medical University Vienna, Vienna, Austria
| | - Stephen D Weigand
- Department of Health Sciences Research, College of Medicine, Mayo Clinic, Rochester, MN
| | - Yong Guo
- Department of Neurology, College of Medicine, Mayo Clinic, Rochester, MN
| | - Nilufer Kale
- Department of Neurology, College of Medicine, Mayo Clinic, Rochester, MN
| | - Joseph E Parisi
- Department of Neurology, College of Medicine, Mayo Clinic, Rochester, MN
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Istvan Pirko
- Department of Neurology, College of Medicine, Mayo Clinic, Rochester, MN
| | - Jay Mandrekar
- Department of Health Sciences Research, College of Medicine, Mayo Clinic, Rochester, MN
| | - Stephan Bramow
- Department of Neurology, Copenhagen University Hospital, Bispebjerg, Denmark
- Department of Pathology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Imke Metz
- Department of Neuropathology, University of Göttingen, Göttingen, Germany
| | - Wolfgang Brück
- Department of Neuropathology, University of Göttingen, Göttingen, Germany
| | - Hans Lassmann
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | | |
Collapse
|