1
|
Kookli K, Soleimani KT, Amr EF, Ehymayed HM, Zabibah RS, Daminova SB, Saadh MJ, Alsaikhan F, Adil M, Ali MS, Mohtashami S, Akhavan-Sigari R. Role of microRNA-146a in cancer development by regulating apoptosis. Pathol Res Pract 2024; 254:155050. [PMID: 38199132 DOI: 10.1016/j.prp.2023.155050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 01/12/2024]
Abstract
Despite great advances in diagnostic and treatment options for cancer, like chemotherapy surgery, and radiation therapy it continues to remain a major global health concern. Further research is necessary to find new biomarkers and possible treatment methods for cancer. MicroRNAs (miRNAs), tiny non-coding RNAs found naturally in the body, can influence the activity of several target genes. These genes are often disturbed in diseases like cancer, which perturbs functions like differentiation, cell division, cell cycle, apoptosis and proliferation. MiR-146a is a commonly and widely used miRNA that is often overexpressed in malignant tumors. The expression of miR-146a has been correlated with many pathological and physiological changes in cancer cells, such as the regulation of various cell death paths. It's been established that the control of cell death pathways has a huge influence on cancer progression. To improve our understanding of the interrelationship between miRNAs and cancer cell apoptosis, it's necessary to explore the impact of miRNAs through the alteration in their expression levels. Research has demonstrated that the appearance and spread of cancer can be mitigated by moderating the expression of certain miRNA - a commencement of treatment that presents a hopeful approach in managing cancer. Consequently, it is essential to explore the implications of miR-146a with respect to inducing different forms of tumor cell death, and evaluate its potential to serve as a target for improved chemotherapy outcomes. Through this review, we provide an outline of miR-146a's biogenesis and function, as well as its significant involvement in apoptosis. As well, we investigate the effects of exosomal miR-146a on the promotion of apoptosis in cancer cells and look into how it could possibly help combat chemotherapeutic resistance.
Collapse
Affiliation(s)
- Keihan Kookli
- International Campus, Iran University of Medical Sciences, Tehran, Iran
| | | | - Eman Fathy Amr
- College of Nursing, National University of Science and Technology, Dhi Qar, Iraq
| | | | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Shakhnoza B Daminova
- Department of Prevention of Dental Diseases, Tashkent State Dental Institute, Tashkent, Uzbekistan; Department of Scientific affairs, Tashkent Medical Pediatric Institute, Bogishamol Street 223, Tashkent, Uzbekistan
| | - Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia; School of Pharmacy, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia.
| | | | | | - Saghar Mohtashami
- University of California Los Angeles, School of Dentistry, Los Angeles, CA, USA.
| | - Reza Akhavan-Sigari
- Department of Neurosurgery, University Medical Center Tuebingen, Germany; Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw Management University Warsaw, Poland
| |
Collapse
|
2
|
Tong T, Zhou Y, Huang Q, Xiao C, Bai Q, Deng B, Chen L. The regulation roles of miRNAs in Helicobacter pylori infection. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2023:10.1007/s12094-023-03094-9. [PMID: 36781601 DOI: 10.1007/s12094-023-03094-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/17/2023] [Indexed: 02/15/2023]
Abstract
Helicobacter pylori is a kind of Gram-negative bacteria that parasitizes on human gastric mucosa. Helicobacter pylori infection is very common in human beings, which often causes gastrointestinal diseases, including chronic gastritis, duodenal ulcer and gastric cancer. MicroRNAs are a group of endogenous non-coding single stranded RNAs, which play an important role in cell proliferation, differentiation, autophagy, apoptosis and inflammation. In recent years, relevant studies have found that the expression of microRNA is changed after Helicobacter pylori infection, and then regulate the biological process of host cells. This paper reviews the regulation role of microRNAs on cell biological behavior through different signal pathways after Helicobacter pylori infection.
Collapse
Affiliation(s)
- Ting Tong
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.,Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.,Hengyang Engineering Technology Research Center, Hengyang, 421001, Hunan, China
| | - You Zhou
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.,Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.,Hengyang Engineering Technology Research Center, Hengyang, 421001, Hunan, China
| | - Qiaoling Huang
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.,Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.,Hengyang Engineering Technology Research Center, Hengyang, 421001, Hunan, China
| | - Cui Xiao
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.,Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.,Hengyang Engineering Technology Research Center, Hengyang, 421001, Hunan, China
| | - Qinqin Bai
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.,Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.,Hengyang Engineering Technology Research Center, Hengyang, 421001, Hunan, China
| | - Bo Deng
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.,Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.,Hengyang Engineering Technology Research Center, Hengyang, 421001, Hunan, China
| | - Lili Chen
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China. .,Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China. .,Hengyang Engineering Technology Research Center, Hengyang, 421001, Hunan, China.
| |
Collapse
|
3
|
Liu Q, Li D, Dai Y, Zhang Y, Lan S, Luo Q, Ye J, Chen X, Li P, Chen W, Li R, Hu L. Functional gene polymorphisms and expression alteration of selected microRNAs and the risk of various gastric lesions in Helicobacter pylori-related gastric diseases. Front Genet 2023; 13:1097543. [PMID: 36712871 PMCID: PMC9878693 DOI: 10.3389/fgene.2022.1097543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/31/2022] [Indexed: 01/13/2023] Open
Abstract
Background: Helicobacter pylori (Hp) persistent infection is an important pathogenic factor for a series of chronic gastric diseases from chronic gastritis to gastric cancer. Genetic and epigenetic abnormalities of microRNAs may play a vital role in the pathological evolution of gastric mucosa in Helicobacter pylori-related gastric diseases (HPGD). This study aimed to investigate the relationship between miR-146a, miR-196a2, miR-149, miR-499 and miR-27a gene single nucleotide polymorphisms (SNPs) and their expressions with pathological changes in gastric mucosa, and to further analyze the interactions between SNPs and Hp. Methods: Subjects in this study included patients diagnosed with HPGD and healthy controls. MiR-146a rs2910164, miR-196a2 rs11614913, miR-149 rs2292832, miR-499 rs3746444 and miR-27a rs895819 were genotyped by direct sequencing. Fluorescence quantitative PCR was used to detect microRNA expressions. Gene-gene and gene-environment interactions were evaluated by multifactor dimensionality reduction (MDR) method. Results: we found that frequency distribution of miR-196a2 rs11614913 CT genotype in gastric precancerous lesion (GPL) group and gastric cancer (GC) group was significantly higher than normal control (NOR) group [adjusted OR = 6.16, 95%CI (1.46-26.03); adjusted OR = 11.83, 95%CI (1.65-84.72), respectively]. CT genotype and C allele of miR-27a rs895819 were associated with increased risk of GC [adjusted OR = 10.14, 95%CI (2.25-45.77); adjusted OR = 3.71, 95%CI(1.46-9.44), respectively]. The MDR analysis results showed that the interaction between miR-196a2 rs11614913 and Hp was associated with the risk of GPL (p = 0.004). Meanwhile, the expression level of miR-196a2 in GC group was significantly higher than NOR, chronic inflammation (CI) and early precancerous lesion (EPL) groups among Hp-positive subjects. And expressions of miR-499 and miR-27a in GC group were both higher than EPL group. Also, miR-27a expression in GC group was higher than CI and gastric atrophy (GA) groups. Conclusion: miR-196a2 rs11614913 and miR-27a rs895819 may affect the genetic susceptibility to GPL or GC. MiR-196a2 rs11614913 and Hp have a synergistic effect in the occurrence and development of GPL. The up-regulation of miR-499, miR-196a2 and miR-27a expression caused by Hp infection may be an important mechanism of gastric carcinogenesis.
Collapse
Affiliation(s)
- Qi Liu
- Institute of Gastroenterology, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Danyan Li
- Institute of Gastroenterology, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yunkai Dai
- Institute of Gastroenterology, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yunzhan Zhang
- Institute of Gastroenterology, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shaoyang Lan
- Department of Gastroenterology, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qi Luo
- Department of Gastroenterology, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jintong Ye
- Department of Gastroenterology, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xu Chen
- Department of Gastroenterology, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Peiwu Li
- Department of Gastroenterology, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Weijing Chen
- Institute of Gastroenterology, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ruliu Li
- Institute of Gastroenterology, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ling Hu
- Institute of Gastroenterology, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China,*Correspondence: Ling Hu,
| |
Collapse
|
4
|
Pita I, Libânio D, Dias F, Teixeira AL, Nogueira I, Medeiros R, Dinis-Ribeiro M, Pimentel-Nunes P. Original Article: MicroRNA Dysregulation in the Gastric Carcinogenesis Cascade: Can We Anticipate Its Role in Individualized Care? Pathobiology 2021; 88:338-350. [PMID: 34274936 DOI: 10.1159/000515548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/01/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Gastric carcinogenesis progresses from normal mucosa, atrophic/metaplastic gastritis, and dysplasia to adenocarcinoma. MicroRNAs (miRNAs) regulate DNA expression and have been implicated; however, their role is not fully established. AIMS The aim of this study was to characterize plasma and tissue expression of several miRNAs in gastric carcinogenesis stages. METHODS Single-center cross-sectional study in 64 patients: 19 controls (normal mucosa); 15 with extensive atrophic/metaplastic gastritis; and 30 with early gastric neoplasia (EGN). Seven miRNAs (miR-21, miR-146a, miR-181b, miR-370, miR-375, miR 181b, and miR-490) were quantified by real time-qPCR in peripheral blood and endoscopic biopsy samples. RESULTS We found a significant upregulation of miR-181b, miR-490, and miR-21 in the EGN mucosa (overexpression 2-14-times higher than controls). We observed a significant underexpression of miR-146a and miR-370 in atrophic/metaplastic gastritis (86 and 66% decrease, p = 0.008 and p = 0.001) and in EGN (89 and 62% reduction, p = 0.034 and p = 0.032) compared with controls. There were no differences between lesions and nonneoplastic mucosa and no dysregulation of plasma miRNAs. CONCLUSION We found significant dysregulation of 5 miRNAs in gastric carcinogenesis, suggesting a tumor suppressor role for miR-146a and miR-370 and oncogenic potential for miR-21, miR-181, and miR-490. These changes happen diffusely in the gastric mucosa, suggesting a high-risk field defect, which may influence these patients' surveillance.
Collapse
Affiliation(s)
- Inês Pita
- Gastroenterology Department, Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal
| | - Diogo Libânio
- Gastroenterology Department, Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal.,MEDCIDS - Department of Community Medicine, Health Information and Decision of the Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal
| | - Francisca Dias
- Molecular Oncology and Viral Pathology Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Porto, Portugal
| | - Ana Luísa Teixeira
- Molecular Oncology and Viral Pathology Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal
| | - Inês Nogueira
- Molecular Oncology and Viral Pathology Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Porto, Portugal.,Research Department of the Portuguese League Against Cancer Regional Nucleus of the North (LPCC-NRN), Porto, Portugal
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal.,Research Department of the Portuguese League Against Cancer Regional Nucleus of the North (LPCC-NRN), Porto, Portugal.,Faculty of Medicine, University of Porto (FMUP), Porto, Portugal.,Biomedical Research Center (CEBIMED), Faculty of Health Sciences of the Fernando Pessoa University (UFP), Porto, Portugal
| | - Mário Dinis-Ribeiro
- Gastroenterology Department, Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal.,MEDCIDS - Department of Community Medicine, Health Information and Decision of the Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal
| | - Pedro Pimentel-Nunes
- Gastroenterology Department, Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal.,MEDCIDS - Department of Community Medicine, Health Information and Decision of the Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal
| |
Collapse
|
5
|
Parizadeh SM, Jafarzadeh-Esfehani R, Avan A, Ghandehari M, Goldani F, Parizadeh SM. The Prognostic and Predictive Value of microRNAs in Patients with H. pylori-positive Gastric Cancer. Curr Pharm Des 2019; 24:4639-4645. [PMID: 30636577 DOI: 10.2174/1381612825666190110144254] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/24/2018] [Accepted: 12/24/2018] [Indexed: 01/19/2023]
Abstract
Gastric cancer (GC) has a high mortality rate with a poor 5-year survival. Helicobacter pylori (H. pylori) is present as part of the normal flora of stomach. It is found in the gastric mucosa of more than half of the world population. This bacterium is involved in developing H. pylori-induced GC due to the regulation of different micro ribonucleic acid (miRNA or miR). miRNAs are small noncoding RNAs and are recognized as prognostic biomarkers for GC that may control gene expression. miRNAs may function as tumor suppressors, or oncogenes. In this review, we evaluated studies that investigated the ectopic expression of miRNAs in the prognosis of H. pylori positive and negative GC.
Collapse
Affiliation(s)
| | - Reza Jafarzadeh-Esfehani
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Ghandehari
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Faculty of Medicine, Islamic Azad University, Mashhad Branch, Mashhad, Iran
| | - Fatemeh Goldani
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | |
Collapse
|
6
|
Shi Y, Yang Z, Zhang T, Shen L, Li Y, Ding S. SIRT1-targeted miR-543 autophagy inhibition and epithelial-mesenchymal transition promotion in Helicobacter pylori CagA-associated gastric cancer. Cell Death Dis 2019; 10:625. [PMID: 31423013 PMCID: PMC6698481 DOI: 10.1038/s41419-019-1859-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 07/14/2019] [Accepted: 07/26/2019] [Indexed: 02/07/2023]
Abstract
Gastric cancer is an important cause of death worldwide with Helicobacter pylori (H. pylori) considered a leading and known risk factor for its development. More particularly and despite the underlying mechanisms not being very clear, studies have revealed that the H. pylori cytotoxin-associated gene A (CagA) protein plays a key role in this process. In this study it was found that H. pylori increased the expression of miR-543 in human gastric cancer tissue when compared with H. pylori-negative gastric cancer tissue samples. In vitro experiments showed that increased expression of miR-543 induced by CagA is a strong promoter of cell proliferation, migration, and invasion. Conversely, a miR-543 inhibitor suppressed or reversed these effects. It was furthermore found that silencing miR-543 inhibited autophagy and led to epithelial-mesenchymal transition (EMT) under in vitro. The mechanisms by which miR-543 targets SIRT1 to downregulate autophagy was also described. The results suggest that in the progression of H. pylori-associated gastric cancer, CagA induces overexpression of miR-543, which subsequently targets SIRT1 to suppress autophagy. This may be followed by increased expression of EMT causing cell migration and invasion. Consequently, miR-543 might be considered a therapeutic target for H. pylori-associated gastric cancer.
Collapse
Affiliation(s)
- Yanyan Shi
- Research Center of Clinical Epidemiology, Peking University Third Hospital, 100191, Beijing, PR China
| | - Ziwei Yang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, Liaoning, PR China
| | - Ting Zhang
- Department of Microbiology, Peking University Health Science Center, 100191, Beijing, PR China
| | - Lijuan Shen
- Department of Gastroenterology, Affiliated Hospital of Qinghai University, 810001, Xining, PR China
| | - Yuan Li
- Department of Gastroenterology, Peking University Third Hospital, 100191, Beijing, PR China.
| | - Shigang Ding
- Department of Gastroenterology, Peking University Third Hospital, 100191, Beijing, PR China.
| |
Collapse
|
7
|
Wu X, Shen J, Xiao Z, Li J, Zhao Y, Zhao Q, Cho CH, Li M. An overview of the multifaceted roles of miRNAs in gastric cancer: Spotlight on novel biomarkers and therapeutic targets. Biochem Pharmacol 2019; 163:425-439. [PMID: 30857828 DOI: 10.1016/j.bcp.2019.03.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/07/2019] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) are a group of small non-coding RNAs that have displayed strong association with gastric cancer (GC). Through the repression of target mRNAs, miRNAs regulate many biological pathways that are involved in cell proliferation, apoptosis, migration, invasion, metastasis as well as drug resistance. The detection of miRNAs in tissues and in body fluids emerges as a promising method in the diagnosis and prognosis of GC, due to their unique expression pattern in correlation with GC. Notably, miRNAs are also identified as potential therapeutic targets for GC therapy. The present review is thus to highlight the multifaceted roles of miRNAs in GC and in GC therapies, which would give indications for future research.
Collapse
Affiliation(s)
- Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Jing Li
- Department of Oncology and Hematology, Hospital (T.C.M.) Affiliated to Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Qijie Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Chi Hin Cho
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China.
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China.
| |
Collapse
|
8
|
Zou D, Xu L, Li H, Ma Y, Gong Y, Guo T, Jing Z, Xu X, Zhang Y. Role of abnormal microRNA expression in Helicobacter pylori associated gastric cancer. Crit Rev Microbiol 2019; 45:239-251. [PMID: 30776938 DOI: 10.1080/1040841x.2019.1575793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Epidemiological studies have shown that Helicobacter pylori (HP) infection is a risk factor for gastric cancer (GC). HP infection may induce the release of pro-inflammatory mediators, and abnormally increase the level of reactive oxygen species (ROS), nitric oxide (NO), and cytokines in mucosal epithelial cells of the stomach. However, the specific mechanism underlying the pathogenesis of HP-associated GC is still poorly understood. Recent studies have revealed that abnormal microRNA expression may affect the proliferation, differentiation, and apoptosis of mucosal epithelial cells of the stomach to further influence GC occurrence, development, and metastasis. Herein, we summarize the role of abnormal microRNAs in the regulation of HP-associated GC progression. Abnormal microRNA expression in HP-positive GC may be a biomarker for GC diagnosis, occurrence, and development as well as its targeted treatment and prognosis.
Collapse
Affiliation(s)
- Dan Zou
- a The First laboratory of cancer institute , First Hospital of China Medical University , Shenyang , China
| | - Ling Xu
- b Department of Medical Oncology , First Hospital of China Medical University , Shenyang , China
| | - Heming Li
- b Department of Medical Oncology , First Hospital of China Medical University , Shenyang , China.,c Department of Oncology , Affiliated Zhongshan Hospital of Dalian University , Dalian , China
| | - Yanju Ma
- b Department of Medical Oncology , First Hospital of China Medical University , Shenyang , China.,d Department of Medical Oncology , Cancer Hospital of China Medical University , Shenyang , China
| | - Yuehua Gong
- e Department of Tumor Etiology and Screening Department of Cancer Institute and General Surgery, First Hospital of China Medical University , Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department , Shenyang , China
| | - Tianshu Guo
- b Department of Medical Oncology , First Hospital of China Medical University , Shenyang , China
| | - Zhitao Jing
- f Department of Neurosurgery , First Hospital of China Medical University , Shenyang , China
| | - Xiuying Xu
- g Department of Gastroenterology , First Hospital of China Medical University , Shenyang , China
| | - Ye Zhang
- a The First laboratory of cancer institute , First Hospital of China Medical University , Shenyang , China
| |
Collapse
|
9
|
Mechanisms of Inflammasome Signaling, microRNA Induction and Resolution of Inflammation by Helicobacter pylori. Curr Top Microbiol Immunol 2019; 421:267-302. [PMID: 31123893 DOI: 10.1007/978-3-030-15138-6_11] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Inflammasome-controlled transcription and subsequent cleavage-mediated activation of mature IL-1β and IL-18 cytokines exemplify a crucial innate immune mechanism to combat intruding pathogens. Helicobacter pylori represents a predominant persistent infection in humans, affecting approximately half of the population worldwide, and is associated with the development of chronic gastritis, peptic ulcer disease, and gastric cancer. Studies in knockout mice have demonstrated that the pro-inflammatory cytokine IL-1β plays a central role in gastric tumorigenesis. Infection by H. pylori was recently reported to stimulate the inflammasome both in cells of the mouse and human immune systems. Using mouse models and in vitro cultured cell systems, the bacterial pathogenicity factors and molecular mechanisms of inflammasome activation have been analyzed. On the one hand, it appears that H. pylori-stimulated IL-1β production is triggered by engagement of the immune receptors TLR2 and NLRP3, and caspase-1. On the other hand, microRNA hsa-miR-223-3p is induced by the bacteria, which controls the expression of NLRP3. This regulating effect by H. pylori on microRNA expression was also described for more than 60 additionally identified microRNAs, indicating a prominent role for inflammatory and other responses. Besides TLR2, TLR9 becomes activated by H. pylori DNA and further TLR10 stimulated by the bacteria induce the secretion of IL-8 and TNF, respectively. Interestingly, TLR-dependent pathways can accelerate both pro- and anti-inflammatory responses during H. pylori infection. Balancing from a pro-inflammation to anti-inflammation phenotype results in a reduction in immune attack, allowing H. pylori to persistently colonize and to survive in the gastric niche. In this chapter, we will pinpoint the role of H. pylori in TLR- and NLRP3 inflammasome-dependent signaling together with the differential functions of pro- and anti-inflammatory cytokines. Moreover, the impact of microRNAs on H. pylori-host interaction will be discussed, and its role in resolution of infection versus chronic infection, as well as in gastric disease development.
Collapse
|
10
|
Yang L, Li C, Jia Y. MicroRNA-99b promotes Helicobacter pylori-induced autophagyand suppresses carcinogenesis by targeting mTOR. Oncol Lett 2018; 16:5355-5360. [PMID: 30250606 DOI: 10.3892/ol.2018.9269] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 05/27/2017] [Indexed: 12/14/2022] Open
Abstract
The regulatory mechanism of Helicobacter pylori-induced gastric carcinogenesis remains unclear. Autophagy has previously been identified as an effective method of regulating carcinogenesis. In the present study, microRNA (miR)-99b levels increased in H. pylori-infected gastric cancer tissues and the BGC-823 gastric cancer cell line. Overexpression of miR-99b significantly enhanced autophagy, decreased intracellular bacterial loads and blocked cell proliferation. The effect on autophagy was demonstrated to be triggered by mammalian target of rapamycin inhibition. These results indicate that miR-99b expression serves a key role in preventing H. pylori-associated gastric cancer formation and this may provide potential targets for the future treatment of H. pylori-associated diseases.
Collapse
Affiliation(s)
- Liu Yang
- Department of Pathophysiology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Cong Li
- Department of Pathophysiology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Yujie Jia
- Department of Pathophysiology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| |
Collapse
|
11
|
Mir-513a-3p contributes to the controlling of cellular migration processes in the A549 lung tumor cells by modulating integrin β-8 expression. Mol Cell Biochem 2017; 444:43-52. [DOI: 10.1007/s11010-017-3229-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/24/2017] [Indexed: 01/05/2023]
|
12
|
Keck J, Gupta R, Christenson LK, Arulanandam BP. MicroRNA mediated regulation of immunity against gram-negative bacteria. Int Rev Immunol 2017; 36:287-299. [PMID: 28800263 PMCID: PMC6904929 DOI: 10.1080/08830185.2017.1347649] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Evidence over the last couple decades has comprehensively established that short, highly conserved, non-coding RNA species called microRNA (miRNA) exhibit the ability to regulate expression and function of host genes at the messenger RNA (mRNA) level. MicroRNAs play key regulatory roles in immune cell development, differentiation, and protective function. Intrinsic host immune response to invading pathogens rely on intricate orchestrated events in the development of innate and adaptive arms of immunity. We discuss the involvement of miRNAs in regulating these processes against gram negative pathogens in this review.
Collapse
Affiliation(s)
- Jonathon Keck
- South Texas Center for Emerging Infectious Diseases and Center of Excellence in Infection Genomics, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249
| | - Rishein Gupta
- South Texas Center for Emerging Infectious Diseases and Center of Excellence in Infection Genomics, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249
| | - Lane K. Christenson
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Bernard P. Arulanandam
- South Texas Center for Emerging Infectious Diseases and Center of Excellence in Infection Genomics, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249
| |
Collapse
|
13
|
Zhang J, Liang J, Huang J. Downregulated microRNA-26a modulates prostate cancer cell proliferation and apoptosis by targeting COX-2. Oncol Lett 2016; 12:3397-3402. [PMID: 27900011 DOI: 10.3892/ol.2016.5070] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 05/24/2016] [Indexed: 12/11/2022] Open
Abstract
MicroRNA-26a (miR-26a) is expressed at lower levels in prostate cancer cells compared with normal prostate cells. However, the regulatory mechanism of miR-26a in tumorigenesis and metastasis is not clear. In the present study, the expression profile of cellular miR-26a was analyzed by reverse transcription-quantitative polymerase chain reaction. The potential target of miR-26a was identified by luciferase assay and western blotting. Examination of miR-26a function was performed by transfection with miR-26a mimics and inhibitor. It was found that miR-26a expression was decreased in prostate cancer tissues and cell lines, with androgen-independent prostate cancer (AIPC) showing lower miR-26a expression compared with androgen-dependent prostate cancer (ADPC). Overexpression of miR-26a by transfecting miR-26a mimics could significantly enhance apoptosis, and this upregulation of apoptosis was triggered by cytochrome c oxidase subunit II inhibition. Furthermore, it was found that lower miR-26a density resulted in an evidently poor prognosis. Understanding the important roles of miR-26a in regulating cell apoptosis in human prostate cancer cells may aid the exploration of AIPC transformation mechanisms and contribute to the development of miRNA-based therapy in the future.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Oncology, Urumqi General Hospital of Lanzhou Military Command of the Chinese People's Liberation Army, Urumqi, Xinjiang 830000, P.R. China
| | - Jinghao Liang
- Department of Orthopedics, Urumqi General Hospital of Lanzhou Military Command of the Chinese People's Liberation Army, Urumqi, Xinjiang 830000, P.R. China
| | - Jianguo Huang
- Department of Oncology, Urumqi General Hospital of Lanzhou Military Command of the Chinese People's Liberation Army, Urumqi, Xinjiang 830000, P.R. China
| |
Collapse
|
14
|
Chen Y, Zhao J, Luo Y, Wang Y, Jiang Y. Downregulated expression of miRNA-149 promotes apoptosis in side population cells sorted from the TSU prostate cancer cell line. Oncol Rep 2016; 36:2587-2600. [PMID: 27573045 DOI: 10.3892/or.2016.5047] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 03/30/2016] [Indexed: 11/06/2022] Open
Abstract
The objective of the present study was to identify prostate cancer stem cells and determine the effects of modulating specific miRNAs on prostate CSC proliferation and apoptosis. We applied flow cytometry sorting of side population cells to cultures of prostate cancer cell lines (TSU, DU145, PC-3 and LNCaP). The proportion of SP cells in the TSU line was 1.60±0.40% (mean ± SD), while that of the DU145, PC-3 and LNCaP lines was 0.60±0.05, 0.80±0.05 and 0.60±0.20%, respectively. Because the proportion of SP cells derived from TSU cells is greater, these cells were selected to sort side population cells and non-side population cells. The stem-like properties of SP cells had been identified by in vivo and in vitro experiments, and the related study was published. RNA was extracted from the SP cells and non-SP cells and analyzed using miRNA microarray technology. Fifty-three miRNAs with significant differences in their expression were detected in total. Furthermore, 20 of these miRNAs were validated by qPCR. We found that hsa-miR‑149 expression in SP cells and non-SP cells was significantly different; hsa-miR-149 was significantly upregulated in SP cells. By constructing a vector for lentiviral infection, we found that the downregulation of hsa-miR-149 leads to a reduction in proliferation, an increase in apoptosis, and a significant reduction in the colony formation potential, thus, inhibiting tumor growth in vivo of SP cells from the TSU cell line. The present study will provide new avenues toward understanding the function of prostate cancer stem cells (PCSCs) in tumorigenicity and metastasis.
Collapse
Affiliation(s)
- Yatong Chen
- Department of Urology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, P.R. China
| | - Jiahui Zhao
- Department of Urology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, P.R. China
| | - Yong Luo
- Department of Urology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, P.R. China
| | - Yongxing Wang
- Department of Urology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, P.R. China
| | - Yongguang Jiang
- Department of Urology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, P.R. China
| |
Collapse
|
15
|
Wu K, Zhu C, Yao Y, Wang X, Song J, Zhai J. MicroRNA-155-enhanced autophagy in human gastric epithelial cell in response to Helicobacter pylori. Saudi J Gastroenterol 2016; 22:30-6. [PMID: 26831604 PMCID: PMC4763526 DOI: 10.4103/1319-3767.173756] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND/AIM MicroRNAs (miRNAs) are a class of small noncoding RNAs acting as posttranscriptional gene expression regulators in many physiological and pathological conditions. MiR-155 is one kind of miRNAs that plays an important role in causing various diseases. However, the precise molecular mechanism of the ectopic expression of miR-155 in Helicobacter pylori infection remains poorly understood. Autophagy has recently been identified as an effective way to control the intracellular bacterium survival. In the present study, we demonstrate a novel role of miR-155 in regulating the autophagy-mediated anti-H. pylori response. PATIENTS AND METHODS Totally 86 H. pylori-positive patients together with 10 H. pylori-negative, healthy control subjects were included in the study. Correlation between immunohistochemical grades and miR-155 expression were determined. Molecular mechanism of miR-155 on regulation of autophagy and elimination of intracellular H. pylori were determined using the GES-1 cell model. RESULTS We found that overexpression of miR-155 by transfecting miR-155 mimics could significantly decrease the survival of intracellular H. pylori, and this process was through induction of autophagy. Furthermore, there was a significant correlation between miR-155 and immunohistochemical grades in H. pylori-positive patients, and miR-155 expression were decreased in the intestinal metaplasia group. CONCLUSIONS The results have indicated that the miR-155 expression level plays a key role in immunity response against H. pylori and this might provide potential targets for the future treatment of H. pylori-related diseases.
Collapse
Affiliation(s)
- Kai Wu
- Department of Gastroenterology, 309 Hospital of Chinese Peoples Liberation Army, Beijing, China,Address for correspondence: Dr. Kai Wu, Department of Gastroenterology, 309 Hospital of Chinese Peoples Liberation Army, Beijing - 100 091, China. E-mail:
| | - Chaohui Zhu
- Department of Gastroenterology, 309 Hospital of Chinese Peoples Liberation Army, Beijing, China
| | - Yi Yao
- Department of Gastroenterology, 309 Hospital of Chinese Peoples Liberation Army, Beijing, China
| | - Xin Wang
- Department of Gastroenterology, 309 Hospital of Chinese Peoples Liberation Army, Beijing, China
| | - Jiugang Song
- Department of Gastroenterology, 309 Hospital of Chinese Peoples Liberation Army, Beijing, China
| | - Junshan Zhai
- Department of Gastroenterology, 309 Hospital of Chinese Peoples Liberation Army, Beijing, China
| |
Collapse
|
16
|
Mu YP, Tang S, Sun WJ, Gao WM, Wang M, Su XL. Association of miR-193b down-regulation and miR-196a up-regulation with clinicopathological features and prognosis in gastric cancer. Asian Pac J Cancer Prev 2015; 15:8893-900. [PMID: 25374225 DOI: 10.7314/apjcp.2014.15.20.8893] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Dysregulated expression of microRNAs (miRNAs) has been shown to be closely associated with tumor development, progression, and carcinogenesis. However, their clinical implications for gastric cancer remain elusive. To investigate the hypothesis that genome-wide alternations of miRNAs differentiate gastric cancer tissues from those matched adjacent non-tumor tissues (ANTTs), miRNA arrays were employed to examine miRNA expression profiles for the 5-pair discovery stage, and the quantitative real-time polymerase chain reaction (qRT- PCR) was applied to validate candidate miRNAs for 48-pair validation stage. Furthermore, the relationship between altered miRNA and clinicopathological features and prognosis of gastric cancer was explored. Among a total of 1,146 miRNAs analyzed, 16 miRNAs were found to be significantly different expressed in tissues from gastric cancer compared to ANTTs (p<0.05). qRT-PCR further confirmed the variation in expression of miR-193b and miR-196a in the validation stage. Down-expression of miR-193b was significantly correlated with Lauren type, differentiation, UICC stage, invasion, and metastasis of gastric cancer (p<0.05), while over-expression of miR-196a was significantly associated with poor differentiation (p=0.022). Moreover, binary logistic regression analysis demonstrated that the UICC stage was a significant risk factor for down-expression of miR-193b (adjusted OR=8.69; 95%CI=1.06-56.91; p=0.043). Additionally, Kaplan-Meier survival curves indicated that patients with a high fold-change of down-regulated miR-193b had a significantly shorter survival time (n=19; median survival=29 months) compared to patients with a low fold-change of down-regulated miR-193b (n=29; median survival=54 months) (p=0.001). Overall survival time of patients with a low fold-change of up-regulated miR- 196a (n=27; median survival=52 months) was significantly longer than that of patients with a high fold-change of up-regulated miR-196a (n=21; median survival=46 months) (p=0.003). Hence, miR-193b and miR-196a may be applied as novel and promising prognostic markers in gastric cancer.
Collapse
Affiliation(s)
- Yong-Ping Mu
- Department of Clinical Laboratory Center, The Affiliated People's Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China E-mail : ;
| | | | | | | | | | | |
Collapse
|
17
|
Li B, Li YM, Guo JW, Wei YC. Relationship between Helicobacter pylori infection and gastric cancer. Shijie Huaren Xiaohua Zazhi 2015; 23:1083-1089. [DOI: 10.11569/wcjd.v23.i7.1083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer is one of the most common malignancies worldwide, and Helicobacter pylori (H. pylori) infection is the most important risk factor. More than 50% of the world population is infected by H. pylori, but less than 2% develop gastric cancer. Other risk factors like host and environmental factors also play a role in the occurrence of gastric cancer. The pathogenesis of gastric cancer is a multi-factorial and multi-step process, and its outcome is influenced by a combination of host, bacterial, and environmental factors.
Collapse
|