1
|
Chen HA, Tai YN, Hsieh EH, Thacker M, Lin IC, Tseng CL, Lin FH. Injectable cross-linked hyaluronic acid hydrogels with epigallocatechin gallate loading as vitreous substitutes. Int J Biol Macromol 2024; 275:133467. [PMID: 38945319 DOI: 10.1016/j.ijbiomac.2024.133467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/15/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
Hyaluronic acid (HA) serves as a vitreous substitute owing to its ability to mimic the physical functions of native vitreous humor. However, pure HA hydrogels alone do not provide sufficient protection against potential inflammatory risks following vitrectomy. In this study, HA was crosslinked with 1,4-butanediol diglycidyl ether (BDDE) to form HA hydrogels (HB). Subsequently, the anti-inflammatory agent epigallocatechin gallate (EGCG) was added to the hydrogel (HBE) for ophthalmic applications as a vitreous substitute. The characterization results indicated the successful preparation of HB with transparency, refractive index, and osmolality similar to those of native vitreous humor, and with good injectability. The anti-inflammatory ability of HBE was also confirmed by the reduced expression of inflammatory genes in retinal pigment epithelial cells treated with HBE compared with those treated with HB. In a New Zealand white rabbit model undergoing vitreous substitution treatment, HBE 50 (EGCG 50 μM addition) exhibited positive results at 28 days post-surgery. These outcomes included restored intraocular pressure, improved electroretinogram responses, minimal increase in corneal thickness, and no inflammation during histological examination. This study demonstrated the potential of an injectable HA-BDDE cross-linked hydrogel containing EGCG as a vitreous substitute for vitrectomy applications, offering prolonged degradation time and anti-inflammatory effects postoperatively.
Collapse
Affiliation(s)
- Huai-An Chen
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Shuang-Ho Campus, New Taipei City, Taiwan
| | - Yi-Ning Tai
- Institute of Biomedical Engineering, College of Medicine & College of Engineering, National Taiwan University, Taipei City, Taiwan
| | - Erh-Hsuan Hsieh
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Shuang-Ho Campus, New Taipei City, Taiwan
| | - Minal Thacker
- Institute of Biomedical Engineering, College of Medicine & College of Engineering, National Taiwan University, Taipei City, Taiwan; Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong
| | - I-Chan Lin
- Department of Ophthalmology, Wan Fang Hospital, Taipei Medical University, Taipei City, Taiwan; Department of Ophthalmology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan
| | - Ching-Li Tseng
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Shuang-Ho Campus, New Taipei City, Taiwan; International Ph. D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Shuang-Ho Campus, New Taipei City, Taiwan; Research Center of Biomedical Device, College of Biomedical Engineering, Taipei Medical University, Taipei City, Taiwan; International Ph. D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan..
| | - Feng-Huei Lin
- Institute of Biomedical Engineering, College of Medicine & College of Engineering, National Taiwan University, Taipei City, Taiwan; Institute of Biomedical Engineering & Nanomedicine (IBEN), National Health Research Institutes, Miaoli County, Taiwan.
| |
Collapse
|
2
|
Tanabe H, Suzuki T, Ohishi T, Isemura M, Nakamura Y, Unno K. Effects of Epigallocatechin-3-Gallate on Matrix Metalloproteinases in Terms of Its Anticancer Activity. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020525. [PMID: 36677584 PMCID: PMC9862901 DOI: 10.3390/molecules28020525] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/29/2022] [Accepted: 12/31/2022] [Indexed: 01/06/2023]
Abstract
Epidemiological studies have shown that the consumption of green tea has beneficial effects against cancer. Basic studies have provided evidence that epigallocatechin gallate (EGCG) is a major contributor to these effects. Matrix metalloproteinases (MMPs) are zinc-dependent metalloproteinases with the ability to degrade the extracellular matrix proteins and are involved in various diseases including cancer in which MMPs have a critical role in invasion and metastasis. In this review, we discuss the effects of EGCG on several types of MMPs in the context of its anticancer activity. In the promoter region, MMPs have binding sites for at least one transcription factor of AP-1, Sp1, and NF-κB, and EGCG can downregulate these transcription factors through signaling pathways mediated by reactive oxygen species. EGCG can also decrease nuclear ERK, p38, heat shock protein-27 (Hsp27), and β-catenin levels, leading to suppression of MMPs' expression. Other mechanisms by which EGCG inhibits MMPs include direct binding to MMPs to prevent their activation and downregulation of NF-κB to suppress the production of inflammatory cytokines such as TNFα and IL-1β. Findings from studies on EGCG presented here may be useful in the development of more effective anti-MMP agents, which would give beneficial effects on cancer and other diseases.
Collapse
Affiliation(s)
- Hiroki Tanabe
- Faculty of Health and Welfare Science, Nayoro City University, Nayoro 096-8641, Hokkaido, Japan
- Correspondence: (H.T.); (T.O.)
| | - Takuji Suzuki
- Department of Food Science and Nutrition, Faculty of Human Life and Science, Doshisha Women’s College of Liberal Arts, Kyoto 602-0893, Japan
| | - Tomokazu Ohishi
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Microbial Chemistry Research Foundation, Numazu 410-0301, Shizuoka, Japan
- Institute of Microbial Chemistry (BIKAKEN), Laboratory of Oncology, Microbial Chemistry Research Foundation, Shinagawa, Tokyo 141-0021, Japan
- Correspondence: (H.T.); (T.O.)
| | - Mamoru Isemura
- Tea Science Center, University of Shizuoka, Suruga-ku, Shizuoka 422-8526, Japan
| | - Yoriyuki Nakamura
- Tea Science Center, University of Shizuoka, Suruga-ku, Shizuoka 422-8526, Japan
| | - Keiko Unno
- Tea Science Center, University of Shizuoka, Suruga-ku, Shizuoka 422-8526, Japan
| |
Collapse
|
3
|
The influence of antioxidant dietary-derived polyphenolic combination on breast cancer: Molecular study. Biomed Pharmacother 2022; 149:112835. [PMID: 35325850 DOI: 10.1016/j.biopha.2022.112835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 03/13/2022] [Accepted: 03/16/2022] [Indexed: 12/24/2022] Open
Abstract
Breast cancer remains a leading cause of female mortality worldwide. Therefore, novel complementary treatments have been sought. Recently, there has been a growing interest in investigating the possible complementary effects of polyphenolic compounds against various malignancies. In the present study, using MCF-7 and MDA-MB-231 human breast adenocarcinoma cells, the anticancer efficacy of a polyphenolic mixture (PFM) was investigated. PFM is composed of curcumin, resveratrol, epigallocatechin gallate, and quercetin. PFM treatment led to a dose-dependent inhibition of cell proliferation, with IC50 values of 25.9 ± 3 µg/ml and 29.4 ± 0.9 µg/ml for MCF-7 and MDA-MB-231 cells, respectively. In addition, PFM induced apoptosis in MDA-MB-231 cells and cell cycle arrest at the S phase in MCF-7 cells. Using RT-qPCR, PFM treatment was observed to result in significant downregulation of the oncogenic miR-155 (P < 0.05), as well as significant downregulation of the rate-limiting glycolytic enzyme, hexokinase 2 (HK2) (P < 0.05), while upregulating the expression of the zinc finger E-box binding homeobox 2 gene (P < 0.01). PFM was also found to exert an anti-migration effect in breast cancer cells using the wound healing assay, as well as significantly (P < 0.05) increasing the median survival of Ehrlich ascites carcinoma (EAC) tumor-bearing mice. These results suggest that PFM possesses potential antitumor effects against breast cancer. A possible mechanism of action could be due to PFM's effect in modulating the expression of the glycolytic enzyme HK2 through suppression of miR-155 in MCF-7 cells. Combining polyphenolic compounds that interact with one another could result in synergistic effects that potentially target various tumour hallmarks.
Collapse
|
4
|
Stavroullakis AT, Goncalves LL, Levesque CM, Kishen A, Prakki A. Interaction of epigallocatechin-gallate and chlorhexidine with Streptococcus mutans stimulated odontoblast-like cells: Cytotoxicity, Interleukin-1β and co-species proteomic analyses. Arch Oral Biol 2021; 131:105268. [PMID: 34571395 DOI: 10.1016/j.archoralbio.2021.105268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 08/10/2021] [Accepted: 09/15/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVES The dentin therapeutic agent chlorhexidine has inflammatory and cytotoxic characteristics urging investigation of alternatives like the natural compound epigallocatechin-gallate. The aim is to verify the effect of epigallocatechin-gallate and chlorhexidine on viability, interleukin-1β (IL-1β) and differential protein expression of MDPC-23 odontoblast-like cells stimulated by Streptococcus mutans. DESIGN Cells were stimulated with heat-killed S. mutans at multiplicity of infection (MOI) of 100-1000 and subsequently treated with 100-1 µM of epigallocatechin-gallate. Cells with no treatment or chlorhexidine were controls. Combined stimulated/treated cells were tested for cytotoxicity (Alamar-Blue, N = 3, n = 3), total protein (N = 3, n = 3), IL-1β (ELISA, N = 3, n = 3), and differential protein expression by liquid chromatography-tandem mass spectrometry (LC-MS/MS, n = 2). RESULTS Cells stimulated at MOI 100/1000 and treated with 10 µM epigallocatechin-gallate and chlorhexidine did not present cytotoxicity. IL-1β significantly increased in both un-stimulated and stimulated chlorhexidine 10 µM groups when compared to un-treated control (p < 0.05). MOI 100 chlorhexidine 10 µM group significantly increased IL-1β compared to un-stimulated chlorhexidine 10 µM and epigallocatechin-gallate 10 µM groups, as well as to MOI 100 epigallocatechin-gallate 10 µM group (p < 0.05). LC-MS/MS revealed S. mutans and mammalian proteins, with tooth-specific proteins exhibiting different abundance levels, depending on the tested condition. CONCLUSIONS Odontoblast-like cells stimulated with S. mutans at different MOI combined with epigallocatechin-gallate treatment did not cause cytotoxicity. S. mutans stimulation combined with chlorhexidine 100 µM treatment decreased cell viability, while treatment with chlorhexidine 10 µM concentration significantly increased IL-1β. S. mutans stimulation and treatment of cells resulted in varied protein expression.
Collapse
Affiliation(s)
- Alexander Terry Stavroullakis
- Department of Clinical Sciences - Restorative, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Lucelia Lemes Goncalves
- Department of Clinical Sciences - Restorative, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada; Department of Restorative Dentistry, Institute of Science and Technology of São José dos Campos, Sao Paulo State University, São Paulo, Brazil
| | - Celine Marie Levesque
- Department of Biological and Diagnostic Sciences-Oral Microbiology, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Anil Kishen
- Dental Research Institute, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Anuradha Prakki
- Department of Clinical Sciences - Restorative, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
5
|
Protective Effects of Epigallocatechin Gallate (EGCG) on Endometrial, Breast, and Ovarian Cancers. Biomolecules 2020; 10:biom10111481. [PMID: 33113766 PMCID: PMC7694163 DOI: 10.3390/biom10111481] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 02/07/2023] Open
Abstract
Green tea and its major bioactive component, (-)-epigallocatechin gallate (EGCG), possess diverse biological properties, particularly antiproliferation, antimetastasis, and apoptosis induction. Many studies have widely investigated the anticancer and synergistic effects of EGCG due to the side effects of conventional cytotoxic agents. This review summarizes recent knowledge of underlying mechanisms of EGCG on protective roles for endometrial, breast, and ovarian cancers based on both in vitro and in vivo animal studies. EGCG has the ability to regulate many pathways, including the activation of nuclear factor erythroid 2-related factor 2 (Nrf2), inhibition of nuclear factor-κB (NF-κB), and protection against epithelial-mesenchymal transition (EMT). EGCG has also been found to interact with DNA methyltransferases (DNMTs) and histone deacetylases (HDACs), which affect epigenetic modifications. Finally, the action of EGCG may exert a suppressive effect on gynecological cancers and have beneficial effects on auxiliary therapies for known drugs. Thus, future clinical intervention studies with EGCG will be necessary to more and clear evidence for the benefit to these cancers.
Collapse
|
6
|
Matrix metalloproteinase inhibitors identified from Camellia sinensis for COVID-19 prophylaxis: an in silico approach. ADVANCES IN TRADITIONAL MEDICINE 2020. [PMCID: PMC7538275 DOI: 10.1007/s13596-020-00508-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
To respond to the public panic, government and private research organizations of every country keep working on the COVID-19 pandemic, even though still there is a lack of more efficacious medicine for the choice of Coronavirus disease treatment. To counteract on this situation several approved drugs including anti-malarial (hydroxychloroquine and chloroquine), and few anti-viral (remdesvir) agents are choice of treatment for COVID-19. However, these agents suffer from certain limitation in their uses and pointed that there is no specific treatment or vaccine available to counter this contagious disease. Hence, there is urgent requirement to find a specific cure for the disease. In this view, there are several ongoing clinical trials of both western and traditional medicines. In present study, phytochemicals from Camellia sinensis were retrieved from the database and identified based on their ability to inhibit matrix metalloproteinase (MMPs) against SARS-CoV-2 main protease. Camellia sinensis entails of a massive number of phytochemicals with a good source of polyphenols such as Catechin, Epicatechin, Epigallocatechin and (–)-Epigallocatechin gallate. Molecular docking was performed using the GLIDE docking module of Schrodinger Suite software. The analysis displayed docking score for the five polyphenols i.e. theaflavin (− 8.701), 1-O-caffeoylquinic acid (− 7.795), Genistein (− 7.168), Epigallocatechin 3-gallate (− 6.282) and Ethyl trans-caffeate (− 5.356). Interestingly, theaflavin and Epigallocatechin 3-gallate have not revealed any side effects. These polyphenolic compounds had a strong binding affinity with hydrogen bonds and a good drug-likeness score. Therefore, Camellia sinensis could be the beneficial option in the prophylaxis of the COVID-19 outbreak.
Collapse
|
7
|
Wang L, Song J, Liu A, Xiao B, Li S, Wen Z, Lu Y, Du G. Research Progress of the Antiviral Bioactivities of Natural Flavonoids. NATURAL PRODUCTS AND BIOPROSPECTING 2020; 10:271-283. [PMID: 32948973 PMCID: PMC7500501 DOI: 10.1007/s13659-020-00257-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 06/24/2020] [Indexed: 05/05/2023]
Abstract
Flavonoids are now considered as an indispensable component in a variety of nutraceutical and pharmaceutical applications. Most recent researches have focused on the health aspects of flavonoids for humans. Especially, different flavonoids have been investigated for their potential antiviral activities, and several natural flavonoids exhibited significant antiviral properties both in vitro and in vivo. This review provides a survey of the literature regarding the evidence for antiviral bioactivities of natural flavonoids, highlights the cellular and molecular mechanisms of natural flavonoids on viruses, and presents the details of most reported flavonoids. Meanwhile, future perspectives on therapeutic applications of flavonoids against viral infections were discussed.
Collapse
Affiliation(s)
- Lin Wang
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, China
| | - Junke Song
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, China
| | - Ailin Liu
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, China
| | - Bin Xiao
- Laboratory of Clinical Pharmacy, Ordos Central Hospital, Ordos School of Clinical Medicine, Inner Mongolia Medical University, Ordos, 017000, China
| | - Sha Li
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, China
| | - Zhang Wen
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, China
| | - Yang Lu
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, China
| | - Guanhua Du
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, China.
| |
Collapse
|
8
|
A Review of the Antiviral Role of Green Tea Catechins. Molecules 2017; 22:molecules22081337. [PMID: 28805687 PMCID: PMC6152177 DOI: 10.3390/molecules22081337] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/07/2017] [Accepted: 08/10/2017] [Indexed: 12/16/2022] Open
Abstract
Over the centuries, infectious diseases caused by viruses have seriously threatened human health globally. Viruses are responsible not only for acute infections but also many chronic infectious diseases. To prevent diseases caused by viruses, the discovery of effective antiviral drugs, in addition to vaccine development, is important. Green tea catechins (GTCs) are polyphenolic compounds from the leaves of Camelliasinensis. In recent decades, GTCs have been reported to provide various health benefits against numerous diseases. Studies have shown that GTCs, especially epigallocatechin-3-gallate (EGCG), have antiviral effects against diverse viruses. The aim of this review is to summarize the developments regarding the antiviral activities of GTCs, to discuss the mechanisms underlying these effects and to offer suggestions for future research directions and perspectives on the antiviral effects of EGCG.
Collapse
|
9
|
Karamese M, Aydogdu S, Karamese SA, Altoparlak U, Gundogdu C. Preventive effects of a major component of green tea, epigallocathechin-3-gallate, on hepatitis-B virus DNA replication. Asian Pac J Cancer Prev 2016; 16:4199-202. [PMID: 26028072 DOI: 10.7314/apjcp.2015.16.10.4199] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hepatitis B virus infection is one of the major world health problems. Epigallocatechin-3 gallate is the major component of the polyphenolic fraction of green tea and it has an anti-viral, anti-mutagenic, anti- tumorigenic, anti-angiogenic, anti-proliferative, and/or pro-apoptotic effects on mammalian cells. In this study, our aim was to investigate the inhibition of HBV replication by epigallocatechin-3 gallate in the Hep3B2.1-7 hepatocellular carcinoma cell line. MATERIALS AND METHODS HBV-replicating Hep3B2.1-7 cells were used to investigate the preventive effects of epigallocatechin-3 gallate on HBV DNA replication. The expression levels of HBsAg and HBeAg were determined using ELISA. Quantitative real-time-PCR was applied for the determination of the expression level of HBV DNA. RESULTS Cytotoxicity of epigallocathechin-3-gallate was not observed in the hepatic carcinoma cell line when the dose was lower than 100 μM. The ELISA method demonstrated that epigallocatechin-3 gallate have strong effects on HBsAg and HBeAg levels. Also it was detected by real-time PCR that epigallocatechin-3 gallate could prevent HBV DNA replication. CONCLUSIONS The obtained data pointed out that although the exact mechanism of HBV DNA replication and related diseases remains unclear, epigallocatechin-3 gallate has a potential as an effective anti-HBV agent with low toxicity.
Collapse
Affiliation(s)
- Murat Karamese
- Department of Microbiology, Medical Faculty, Kafkas University, Kars, Turkey E-mail :
| | | | | | | | | |
Collapse
|
10
|
Epigallocatechin 3-gallate ameliorates bile duct ligation induced liver injury in mice by modulation of mitochondrial oxidative stress and inflammation. PLoS One 2015; 10:e0126278. [PMID: 25955525 PMCID: PMC4425400 DOI: 10.1371/journal.pone.0126278] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 03/31/2015] [Indexed: 12/31/2022] Open
Abstract
Cholestatic liver fibrosis was achieved by bile duct ligation (BDL) in mice. Liver injury associated with BDL for 15 days included significant reactive oxygen/nitrogen species generation, liver inflammation, cell death and fibrosis. Administration of Epigallocatechin 3-Gallate (EGCG) in animals reduced liver fibrosis involving parenchymal cells in BDL model. EGCG attenuated BDL-induced gene expression of pro-fibrotic markers (Collagen, Fibronectin, alpha 2 smooth muscle actin or SMA and connective tissue growth factor or CTGF), mitochondrial oxidative stress, cell death marker (DNA fragmentation and PARP activity), NFκB activity and pro-inflammatory cytokines (TNFα, MIP1α, IL1β, and MIP2). EGCG also improved BDL induced damages of mitochondrial electron transport chain complexes and antioxidant defense enzymes such as glutathione peroxidase and manganese superoxide dismutase. EGCG also attenuated hydrogen peroxide induced cell death in hepatocytes in vitro and alleviate stellate cells mediated fibrosis through TIMP1, SMA, Collagen 1 and Fibronectin in vitro. In conclusion, the reactive oxygen/nitrogen species generated from mitochondria plays critical pathogenetic role in the progression of liver inflammation and fibrosis and this study indicate that EGCG might be beneficial for reducing liver inflammation and fibrosis.
Collapse
|
11
|
Harakeh S, Azar R, Azhar E, Damanhouri GA, Assidi M, Abu-Elmagd M, Alqahtani MH, Kumosani T, Niedzwiecki A, Rath M, Al-Hejin A, Barbour E, Diab-Assaf M. pecific nutrient combination effects on tax, NF- κB and MMP-9 in human T-cell lymphotropic virus -1 positive malignant T-lymphocytes. BMC Cancer 2015; 15 Suppl 1:S2. [PMID: 25708621 PMCID: PMC4331725 DOI: 10.1186/1471-2407-15-s1-s2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Adult T-cell Leukemia (ATL) is a disease with no known cure. The disease manifests itself as an aggressive proliferation of CD4+ cells with the human T-cell Lymphotropic virus type 1 (HTLV-1). The leukemogenesis of the virus is mainly attributed to the viral oncoprotein. Tax activates the Nuclear Factor kappa B (NF-κB) which stimulates the activity and expression of the matrix metalloproteinase-9 (MMP-9). The objective of this study was to investigate the efficacy of a specific nutrient synergy (SNS) on proliferation, Tax expression, NF-κB levels as well as on MMP-9 activity and expression both at the transcriptional and translational levels in two HTLV-1 positive cell lines, HuT-102 and C91-PL at 48h and 96h of incubation. Cytotoxicity of Epigallocatechin-3-gallate (EGCG) was assayed using CytoTox 96 Non-radioactive and proliferation was measured using Cell Titer96TM Nonradioactive Cell Proliferation kit (MTT- based assay). Enzyme linked immunosorbant assay (ELISA) and electrophoretic mobility shift assay (EMSA) were used to assess the effect of SNS on NF-κB mobility. Zymography was used to determine the effects of SNS on the activity and secretion of MMP-9. The expression of MMP-9 was done using RT-PCR at the translational level and Immunoblotting at the transcriptional level. RESULTS A significant inhibition of proliferation was seen in both cell lines starting at a concentration of 200μg/ml and in a dose dependent manner. SNS induced a dose dependent decrease in Tax expression, which was paralleled by a down-regulation of the nuclearization of NF-κB. This culminated in the inhibition of the activity of MMP-9 and their expression both at the transcriptional and translational levels. CONCLUSIONS The results of this study indicate that a specific nutrient synergy targeted multiple levels pertinent to the progression of ATL. Its activity was mediated through the NF-κB pathway, and hence has the potential to be integrated in the treatment of this disease as a natural potent anticancer agent.
Collapse
|
12
|
Sak K, Everaus H. Multi-Target Cytotoxic Actions of Flavonoids in Blood Cancer Cells. Asian Pac J Cancer Prev 2015; 16:4843-4847. [PMID: 26163601 DOI: 10.7314/apjcp.2015.16.12.4843] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024] Open
Abstract
To date, cytotoxic effects of flavonoids in various cancer cells are well accepted. However, the intracellular signaling cascades triggered by these natural compounds remain largely unknown and elusive. In this mini- review, the multiplicity of molecular targets of flavonoids in blood cancer cells is discussed by demonstrating the involvement of various signaling pathways in induction of apoptotic responses. Although these data reveal a great potential of flavonoids for the development of novel agents against different types of hematological malignancies, the pleiotropic nature of these compounds in modulation of cellular processes and their interactions certainly need unraveling and further investigation.
Collapse
Affiliation(s)
- Katrin Sak
- Department of Hematology and Oncology, University of Tartu, Tartu, Estonia E-mail :
| | | |
Collapse
|
13
|
Ding J, Wang H, Wu ZB, Zhao J, Zhang S, Li W. Protection of murine spermatogenesis against ionizing radiation-induced testicular injury by a green tea polyphenol. Biol Reprod 2014; 92:6. [PMID: 25395675 DOI: 10.1095/biolreprod.114.122333] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Epigallocatechin-3-gallate (EGCG), a bioactive polyphenol in green tea, exerts antiapoptotic activity and prevents tissue damage against different stimuli. Herein, we investigated the effects of EGCG treatment to simultaneously improve spermatogenesis following ionizing radiation (IR) (at a dose of 2 Gy). Mice were intraperitoneally injected with 50 mg/kg EGCG or vehicle control 3 days prior to the irradiation, and the treatment lasted intermittently for 24 days. Supplement with exogenous EGCG protected against short-term germ cell loss and attenuated IR-elicited testicular oxidative stress. Mechanistically, prosurvival effects of EGCG treatment upon IR stress were regulated, at least in part, via the mitogen-activated protein kinase/BCL2 family/caspase 3 pathway. Consistently, at post-IR Day 21, histological analyses revealed tubule damage, desquamation of germ cells, and impairment of caudal parameters in irradiated testis, which could be significantly improved by intermittent EGCG treatment. In addition, long-term EGCG application ameliorated the IR-induced blood-testicular barrier permeability and suppressed testicular steroidogenesis, thus exerting a stimulatory effect on the spermatogenic recovery. Collectively, EGCG appeared to efficiently prevent germ cells from radiation-induced cell death via multiple mechanisms. Employment of this bioactive polyphenol should be an attractive strategy to preserve fertility in males exposed to conventional radiation therapy and warrants further investigation.
Collapse
Affiliation(s)
- Jin Ding
- Department of Clinical Immunology, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China Department of Human Anatomy, Histology and Embryology, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Hui Wang
- School of Preclinical Medicine, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Zhen-Biao Wu
- Department of Clinical Immunology, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Jie Zhao
- Department of Human Anatomy, Histology and Embryology, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Shun Zhang
- Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Wei Li
- Department of Human Anatomy, Histology and Embryology, Fourth Military Medical University, Xi'an, People's Republic of China
| |
Collapse
|
14
|
Harakeh S, Abou-Khouzam R, Damanhouri GA, Al-Hejin A, Kumosani T, Niedzwiecki A, Rath M, Barbour E, Diab-Assaf M, Azar R. Effects of nutrients on matrix metalloproteinases in human T-lymphotropic virus type 1 positive and negative malignant T-lymphocytes. Int J Oncol 2014; 45:2159-66. [PMID: 25189759 DOI: 10.3892/ijo.2014.2638] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 08/08/2014] [Indexed: 11/05/2022] Open
Abstract
Experimental and clinical studies have revealed the effectiveness of a specific nutrient synergy (SNS) mixture composed of ascorbic acid (AA), lysine, proline, arginine, epigallocatechin gallate (EGCG) and other micronutrients in targeting crucial physiological mechanisms involved in cancer progression and metastasis. HTLV-1 causes adult T-cell leukemia (ATL). The spread and metastases of ATL as well as other tumors has been associated with matrix metalloproteinases, especially the gelatinases MMP-2 and MMP-9. The objective of this study was to investigate whether SNS, AA and EGCG affects the gelatinolytic activity of MMP-2 and its transcriptional and translational levels in HTLV-1-positive and -negative malignant T-cells. The results indicated that SNS and EGCG caused a dose-dependent decline in the activity, transcription and translation of MMP-2 after treatment with SNS and EGCG, while AA was only able to inhibit the activity at maximum doses tested and to some extent, the protein expression levels of MMP-2, without affecting their transcriptional levels. The highest activity was noted in the case of SNS which is likely to be due to a synergistic effect of the different constituents in the formulation. These results point towards the potential integration of SNS in the anti-invasive treatment of ATL and related diseases.
Collapse
Affiliation(s)
- Steve Harakeh
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Kingdom of Saudi Arabia
| | - Raefa Abou-Khouzam
- Molecular Tumor-genesis and Anticancer Pharmacology, EDST, Lebanese University, Hadath, Lebanon
| | - Ghazi A Damanhouri
- Department of Hematology, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Ahmed Al-Hejin
- Department of Biological Sciences, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Taha Kumosani
- Department of Biochemistry, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | | | - Mathias Rath
- Dr. Rath Research Institute, Santa Clara, CA, USA
| | - Elie Barbour
- Department of Animal and Veterinary Sciences, American University of Beirut (AUB), Beirut 11-0236, Lebanon
| | - Mona Diab-Assaf
- Molecular Tumor-genesis and Anticancer Pharmacology, EDST, Lebanese University, Hadath, Lebanon
| | - Rania Azar
- Molecular Tumor-genesis and Anticancer Pharmacology, EDST, Lebanese University, Hadath, Lebanon
| |
Collapse
|
15
|
Aras A, Khokhar AR, Qureshi MZ, Silva MF, Sobczak-Kupiec A, Pineda EAG, Hechenleitner AAW, Farooqi AA. Targeting Cancer with Nano-Bullets: Curcumin, EGCG, Resveratrol and Quercetin on Flying Carpets. Asian Pac J Cancer Prev 2014; 15:3865-71. [DOI: 10.7314/apjcp.2014.15.9.3865] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|