1
|
Gorai PK, Bharti PS, Kumar S, Rajacharya GH, Bandyopadhyay S, Pal S, Dhingra R, Kumar R, Nikolajeff F, Kumar S, Rani N. C1QA and COMP: plasma-based biomarkers for early diagnosis of pancreatic neuroendocrine tumors. Sci Rep 2023; 13:21021. [PMID: 38030709 PMCID: PMC10686980 DOI: 10.1038/s41598-023-48323-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/24/2023] [Indexed: 12/01/2023] Open
Abstract
Pancreatic Neuroendocrine tumors (PanNET) are challenging to diagnose and often detected at advanced stages due to a lack of specific and sensitive biomarkers. This study utilized proteomics as a valuable approach for cancer biomarker discovery; therefore, mass spectrometry-based proteomic profiling was conducted on plasma samples from 12 subjects (3 controls; 5 Grade I, 4 Grade II PanNET patients) to identify potential proteins capable of effectively distinguishing PanNET from healthy controls. Data are available via ProteomeXchange with the identifier PXD045045. 13.2% of proteins were uniquely identified in PanNET, while 60% were commonly expressed in PanNET and controls. 17 proteins exhibiting significant differential expression between PanNET and controls were identified with downstream analysis. Further, 5 proteins (C1QA, COMP, HSP90B1, ITGA2B, and FN1) were selected by pathway analysis and were validated using Western blot analysis. Significant downregulation of C1QA (p = 0.001: within groups, 0.03: control vs. grade I, 0.0013: grade I vs. grade II) and COMP (p = 0.011: within groups, 0.019: control vs grade I) were observed in PanNET Grade I & II than in controls. Subsequently, ELISA on 38 samples revealed significant downregulation of C1QA and COMP with increasing disease severity. This study shows the potential of C1QA and COMP in the early detection of PanNET, highlighting their role in the search for early-stage (Grade-I and Grade-II) diagnostic markers and therapeutic targets for PanNET.
Collapse
Affiliation(s)
- Priya Kumari Gorai
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | | | - Shashi Kumar
- Department of Metabolic Engineering, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Girish H Rajacharya
- Department of Metabolic Engineering, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | | | - Sujoy Pal
- Department of GI Surgery, All India Institute of Medical Sciences, New Delhi, India
| | - Renu Dhingra
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Rakesh Kumar
- Department of Nuclear Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Fredrik Nikolajeff
- Department of Health Science, Lulea University of Technology, Luleå, Sweden
| | - Saroj Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India.
- Department of Health Science, Lulea University of Technology, Luleå, Sweden.
| | - Neerja Rani
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
2
|
Li N, Desiderio DM, Zhan X. The use of mass spectrometry in a proteome-centered multiomics study of human pituitary adenomas. MASS SPECTROMETRY REVIEWS 2022; 41:964-1013. [PMID: 34109661 DOI: 10.1002/mas.21710] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 05/21/2021] [Accepted: 05/26/2021] [Indexed: 06/12/2023]
Abstract
A pituitary adenoma (PA) is a common intracranial neoplasm, and is a complex, chronic, and whole-body disease with multicausing factors, multiprocesses, and multiconsequences. It is very difficult to clarify molecular mechanism and treat PAs from the single-factor strategy model. The rapid development of multiomics and systems biology changed the paradigms from a traditional single-factor strategy to a multiparameter systematic strategy for effective management of PAs. A series of molecular alterations at the genome, transcriptome, proteome, peptidome, metabolome, and radiome levels are involved in pituitary tumorigenesis, and mutually associate into a complex molecular network system. Also, the center of multiomics is moving from structural genomics to phenomics, including proteomics and metabolomics in the medical sciences. Mass spectrometry (MS) has been extensively used in phenomics studies of human PAs to clarify molecular mechanisms, and to discover biomarkers and therapeutic targets/drugs. MS-based proteomics and proteoform studies play central roles in the multiomics strategy of PAs. This article reviews the status of multiomics, multiomics-based molecular pathway networks, molecular pathway network-based pattern biomarkers and therapeutic targets/drugs, and future perspectives for personalized, predeictive, and preventive (3P) medicine in PAs.
Collapse
Affiliation(s)
- Na Li
- Shandong Key Laboratory of Radiation Oncology, Cancer Hospital of Shandong First Medical University, Jinan, Shandong, China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, Shandong, China
| | - Dominic M Desiderio
- The Charles B. Stout Neuroscience Mass Spectrometry Laboratory, Department of Neurology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Xianquan Zhan
- Shandong Key Laboratory of Radiation Oncology, Cancer Hospital of Shandong First Medical University, Jinan, Shandong, China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
3
|
Wen S, Li C, Zhan X. Muti-omics integration analysis revealed molecular network alterations in human nonfunctional pituitary neuroendocrine tumors in the framework of 3P medicine. EPMA J 2022; 13:9-37. [PMID: 35273657 PMCID: PMC8897533 DOI: 10.1007/s13167-022-00274-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 02/09/2022] [Indexed: 12/12/2022]
Abstract
Nonfuctional pituitary neuroendocrine tumor (NF-PitNET) is highly heterogeneous and generally considered a common intracranial tumor. A series of molecules are involved in NF-PitNET pathogenesis that alter in multiple levels of genome, transcriptome, proteome, and metabolome, and those molecules mutually interact to form dynamically associated molecular-network systems. This article reviewed signaling pathway alterations in NF-PitNET based on the analyses of the genome, transcriptome, proteome, and metabolome, and emphasized signaling pathway network alterations based on the integrative omics, including calcium signaling pathway, cGMP-PKG signaling pathway, mTOR signaling pathway, PI3K/AKT signaling pathway, MAPK (mitogen-activated protein kinase) signaling pathway, oxidative stress response, mitochondrial dysfunction, and cell cycle dysregulation, and those signaling pathway networks are important for NF-PitNET formation and progression. Especially, this review article emphasized the altered signaling pathways and their key molecules related to NF-PitNET invasiveness and aggressiveness that are challenging clinical problems. Furthermore, the currently used medication and potential therapeutic agents that target these important signaling pathway networks are also summarized. These signaling pathway network changes offer important resources for insights into molecular mechanisms, discovery of effective biomarkers, and therapeutic targets for patient stratification, predictive diagnosis, prognostic assessment, and targeted therapy of NF-PitNET.
Collapse
Affiliation(s)
- Siqi Wen
- Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China ,Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, 6699 Qingdao Road, Jinan, Shandong 250117 People’s Republic of China ,Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Central South University, 87 Xiangya Road, Changsha, Hunan 410008 People’s Republic of China
| | - Chunling Li
- Department of Anesthesiology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008 People’s Republic of China
| | - Xianquan Zhan
- Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, 440 Jiyan Road, Jinan, Shandong 250117 People’s Republic of China ,Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, 6699 Qingdao Road, Jinan, Shandong 250117 People’s Republic of China ,Gastroenterology Research Institute and Clinical Center, Shandong First Medical University, 38 Wuying Shan Road, Jinan, Shandong 250031 People’s Republic of China
| |
Collapse
|
4
|
Ortega MA, Fraile-Martínez O, García-Honduvilla N, Coca S, Álvarez-Mon M, Buján J, Teus MA. Update on uveal melanoma: Translational research from biology to clinical practice (Review). Int J Oncol 2020; 57:1262-1279. [PMID: 33173970 PMCID: PMC7646582 DOI: 10.3892/ijo.2020.5140] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 09/24/2020] [Indexed: 02/06/2023] Open
Abstract
Uveal melanoma is the most common type of intraocular cancer with a low mean annual incidence of 5‑10 cases per million. Tumours are located in the choroid (90%), ciliary body (6%) or iris (4%) and of 85% are primary tumours. As in cutaneous melanoma, tumours arise in melanocytes; however, the characteristics of uveal melanoma differ, accounting for 3‑5% of melanocytic cancers. Among the numerous risk factors are age, sex, genetic and phenotypic predisposition, the work environment and dermatological conditions. Management is usually multidisciplinary, including several specialists such as ophthalmologists, oncologists and maxillofacial surgeons, who participate in the diagnosis, treatment and complex follow‑up of these patients, without excluding the management of the immense emotional burden. Clinically, uveal melanoma generates symptoms that depend as much on the affected ocular globe site as on the tumour size. The anatomopathological study of uveal melanoma has recently benefited from developments in molecular biology. In effect, disease classification or staging according to molecular profile is proving useful for the assessment of this type of tumour. Further, the improved knowledge of tumour biology is giving rise to a more targeted approach to diagnosis, prognosis and treatment development; for example, epigenetics driven by microRNAs as a target for disease control. In the present study, the main epidemiological, clinical, physiopathological and molecular features of this disease are reviewed, and the associations among all these factors are discussed.
Collapse
Affiliation(s)
- Miguel A. Ortega
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, 28871 Madrid
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid
- University Center for The Defense of Madrid (CUD-ACD), 28047 Madrid
| | - Oscar Fraile-Martínez
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, 28871 Madrid
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, 28871 Madrid
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid
- University Center for The Defense of Madrid (CUD-ACD), 28047 Madrid
| | - Santiago Coca
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, 28871 Madrid
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid
- University Center for The Defense of Madrid (CUD-ACD), 28047 Madrid
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, 28871 Madrid
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid
- University Center for The Defense of Madrid (CUD-ACD), 28047 Madrid
- Internal and Oncology Service (CIBER-EHD), University Hospital Príncipe de Asturias, Alcalá de Henares, 28805 Madrid
| | - Julia Buján
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, 28871 Madrid
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid
- University Center for The Defense of Madrid (CUD-ACD), 28047 Madrid
| | - Miguel A. Teus
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, 28871 Madrid
- Ophthalmology Service, University Hospital Príncipe de Asturias, Alcalá de Henares, 28805 Madrid, Spain
| |
Collapse
|
5
|
Tang J, Wang Y, Luo Y, Fu J, Zhang Y, Li Y, Xiao Z, Lou Y, Qiu Y, Zhu F. Computational advances of tumor marker selection and sample classification in cancer proteomics. Comput Struct Biotechnol J 2020; 18:2012-2025. [PMID: 32802273 PMCID: PMC7403885 DOI: 10.1016/j.csbj.2020.07.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 12/11/2022] Open
Abstract
Cancer proteomics has become a powerful technique for characterizing the protein markers driving transformation of malignancy, tracing proteome variation triggered by therapeutics, and discovering the novel targets and drugs for the treatment of oncologic diseases. To facilitate cancer diagnosis/prognosis and accelerate drug target discovery, a variety of methods for tumor marker identification and sample classification have been developed and successfully applied to cancer proteomic studies. This review article describes the most recent advances in those various approaches together with their current applications in cancer-related studies. Firstly, a number of popular feature selection methods are overviewed with objective evaluation on their advantages and disadvantages. Secondly, these methods are grouped into three major classes based on their underlying algorithms. Finally, a variety of sample separation algorithms are discussed. This review provides a comprehensive overview of the advances on tumor maker identification and patients/samples/tissues separations, which could be guidance to the researches in cancer proteomics.
Collapse
Key Words
- ANN, Artificial Neural Network
- ANOVA, Analysis of Variance
- CFS, Correlation-based Feature Selection
- Cancer proteomics
- Computational methods
- DAPC, Discriminant Analysis of Principal Component
- DT, Decision Trees
- EDA, Estimation of Distribution Algorithm
- FC, Fold Change
- GA, Genetic Algorithms
- GR, Gain Ratio
- HC, Hill Climbing
- HCA, Hierarchical Cluster Analysis
- IG, Information Gain
- LDA, Linear Discriminant Analysis
- LIMMA, Linear Models for Microarray Data
- MBF, Markov Blanket Filter
- MWW, Mann–Whitney–Wilcoxon test
- OPLS-DA, Orthogonal Partial Least Squares Discriminant Analysis
- PCA, Principal Component Analysis
- PLS-DA, Partial Least Square Discriminant Analysis
- RF, Random Forest
- RF-RFE, Random Forest with Recursive Feature Elimination
- SA, Simulated Annealing
- SAM, Significance Analysis of Microarrays
- SBE, Sequential Backward Elimination
- SFS, and Sequential Forward Selection
- SOM, Self-organizing Map
- SU, Symmetrical Uncertainty
- SVM, Support Vector Machine
- SVM-RFE, Support Vector Machine with Recursive Feature Elimination
- Sample classification
- Tumor marker selection
- sPLSDA, Sparse Partial Least Squares Discriminant Analysis
- t-SNE, Student t Distribution
- χ2, Chi-square
Collapse
Affiliation(s)
- Jing Tang
- Department of Bioinformatics, Chongqing Medical University, Chongqing 400016, China.,College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yunxia Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yongchao Luo
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jianbo Fu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yang Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.,School of Pharmaceutical Sciences and Innovative Drug Research Centre, Chongqing University, Chongqing 401331, China
| | - Yi Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ziyu Xiao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yan Lou
- Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital, Zhejiang University, Hangzhou 310000, China
| | - Yunqing Qiu
- Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital, Zhejiang University, Hangzhou 310000, China
| | - Feng Zhu
- Department of Bioinformatics, Chongqing Medical University, Chongqing 400016, China.,College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
6
|
Rong D, Lin X, Luo Y, Mok TS, Wang Q, Wang H, Zhang T. Identification of the differentially expressed proteins in nasopharyngeal carcinoma by proteomics. Transl Cancer Res 2020; 9:21-29. [PMID: 35117154 PMCID: PMC8798420 DOI: 10.21037/tcr.2019.11.14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 10/23/2019] [Indexed: 11/24/2022]
Abstract
Background We sought to determine the differences with respect to the proteome of nasopharyngeal tissues between patients with nasopharyngeal carcinoma (NPC) and healthy controls by using sequential windowed acquisition of all theoretical fragment ion mass spectra (SWATHTM-MS) and ingenuity pathway analysis (IPA). Our primary purpose was to identify specific protein markers that can be applied for diagnosis or treatment of NPC. Methods The CNE-1, CNE-2 and H1299 cell lines were cultured in stable isotope labeling of amino acids in cell culture (SILAC) medium for 10 generations to obtain labeled proteins. Thirty samples of NPC and 30 healthy control nasopharyngeal tissues were collected from the Department of Otolaryngology of the First Affiliated Hospital of Jinan University. Proteome of the nasopharyngeal tissues were analyzed and compared by SWATH-MS to identify differently expressed proteins. Further, extraction of target proteins and biological pathways was performed by IPA. Super-SILAC technique and liquid chromatography-tandem mass spectrometry were used to verify the reliability of the data obtained using SWATH-MS. Results We identified 1,415 differentially expressed proteins between NPC patients and healthy controls. On IPA analysis, EIF2AK2 and MAPK1 proteins were found to be enriched in multiple biological pathways and functional networks. Conclusions The differentially expressed proteins EIF2AK2 and MAPK seem to play an important role in the biological network of NPC or may help discover the specific functional proteins of NPC. Further studies are required to identify the pathways and molecular mechanisms that underlie NPC.
Collapse
Affiliation(s)
- Dongxiu Rong
- Department of Otorhinolaryngology, The First Affiliated Hospital, Jinan University, Guangzhou 510632, China
| | - Xiuxian Lin
- Department of Otorhinolaryngology, The First Affiliated Hospital, Jinan University, Guangzhou 510632, China
| | - Yanzhang Luo
- Department of Otorhinolaryngology, The First Affiliated Hospital, Jinan University, Guangzhou 510632, China
| | - Tin Seak Mok
- Department of Otorhinolaryngology, Centro Hospitalar Conde de São Januário, Macao SAR 999078, China
| | - Qing Wang
- Department of Otorhinolaryngology, The First Affiliated Hospital, Jinan University, Guangzhou 510632, China
| | - Haiyan Wang
- Department of Otorhinolaryngology, The First Affiliated Hospital, Jinan University, Guangzhou 510632, China
| | - Tao Zhang
- Department of Otorhinolaryngology, The First Affiliated Hospital, Jinan University, Guangzhou 510632, China
| |
Collapse
|
7
|
Luo L, Dong LY, Yan QG, Cao SJ, Wen XT, Huang Y, Huang XB, Wu R, Ma XP. Research progress in applying proteomics technology to explore early diagnosis biomarkers of breast cancer, lung cancer and ovarian cancer. Asian Pac J Cancer Prev 2015; 15:8529-38. [PMID: 25374164 DOI: 10.7314/apjcp.2014.15.20.8529] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
According to the China tumor registry 2013 annual report , breast cancer, lung cancer, and ovarian cancer are three common cancers in China nowadays, with high mortality due to the absence of early diagnosis technology. However, proteomics has been widespreadly implanted into every field of life science and medicine as an important part of post-genomics era research. The development of theory and technology in proteomics has provided new ideas and research fields for cancer research. Proteomics can be used not only for elucidating the mechanisms of carcinogenesis focussing on whole proteins of the tissue or cell, but also seeking the biomarkers for diagnosis and therapy of cancer. In this review, we introduce proteomics principles, covering current technology used in exploring early diagnosis biomarkers of breast cancer, lung cancer and ovarian cancer.
Collapse
Affiliation(s)
- Lu Luo
- College of Veterinary Medicine, Sichuan Agricultural University, Yaan, Sichuan, China E-mail :
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Keskin C. Antioxidant, Anticancer and Anticholinesterase Activities of Flower, Fruit and Seed Extracts of Hypericum amblysepalum HOCHST. Asian Pac J Cancer Prev 2015; 16:2763-9. [DOI: 10.7314/apjcp.2015.16.7.2763] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
9
|
Wu DM, Zhang P, Xu GC, Tong AP, Zhou C, Lang JY, Wang CT. Pemetrexed induces G1 phase arrest and apoptosis through inhibiting Akt activation in human non small lung cancer cell line A549. Asian Pac J Cancer Prev 2015; 16:1507-13. [PMID: 25743822 DOI: 10.7314/apjcp.2015.16.4.1507] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Pemetrexed is an antifolate agent which has been used for treating malignant pleural mesothelioma and non small lung cancer in the clinic as a chemotherapeutic agent. In this study, pemetrexed inhibited cell growth and induced G1 phase arrest in the A549 cell line. To explore the molecular mechanisms of pemetrexed involved in cell growth, we used a two-dimensional polyacrylamide gel electrophoresis (2-DE) proteomics approach to analyze proteins changed in A549 cells treated with pemetrexed. As a result, twenty differentially expressed proteins were identified by ESI-Q-TOF MS/MS analysis in A549 cells incubated with pemetrexed compared with non-treated A549 cells. Three key proteins (GAPDH, HSPB1 and EIF4E) changed in pemetrexed treated A549 cells were validated by Western blotting. Accumulation of GAPDH and decrease of HSPB1 and EIF4E which induce apoptosis through inhibiting phosphorylation of Akt were noted. Expression of p-Akt in A549 cells treated with pemetrexed was reduced. Thus, pemetrexed induced apoptosis in A549 cells through inhibiting the Akt pathway.
Collapse
Affiliation(s)
- Dong-Ming Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China E-mail :
| | | | | | | | | | | | | |
Collapse
|
10
|
Karimi P, Peters KO, Bidad K, Strickland PT. Polycyclic aromatic hydrocarbons and childhood asthma. Eur J Epidemiol 2015; 30:91-101. [PMID: 25600297 DOI: 10.1007/s10654-015-9988-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Accepted: 01/05/2015] [Indexed: 11/25/2022]
Abstract
Asthma is the most common chronic illness in children living in developed countries and the leading cause of childhood hospitalization and school absenteeism. Prevalence rates of asthma are increasing and show disparities across gender, geographic regions, and ethnic/racial groups. Common risk factors for developing childhood asthma include exposure to tobacco smoke, previous allergic reactions, a family history of asthma, allergic rhinitis or eczema, living in an urban environment, obesity and lack of physical exercise, severe lower respiratory tract infections, and male gender. Asthma exacerbation in children can be triggered by a variety of factors, including allergens (e.g., pollen, dust mites, and animal dander), viral and bacterial infections, exercise, and exposure to airway irritants. Recent studies have shown that exposure to polycyclic aromatic hydrocarbons (PAHs), a major component of fine particulate matter from combustion sources, is also associated with onset of asthma, and increasing asthmatic symptoms. In this paper, we review sources of childhood PAH exposure and the association between airborne PAH exposure and childhood asthma prevalence and exacerbation.
Collapse
Affiliation(s)
- Parisa Karimi
- Program in Occupational and Environmental Health, Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Room E7535, Baltimore, MD, USA
| | | | | | | |
Collapse
|
11
|
Shender VO, Pavlyukov MS, Ziganshin RH, Arapidi GP, Kovalchuk SI, Anikanov NA, Altukhov IA, Alexeev DG, Butenko IO, Shavarda AL, Khomyakova EB, Evtushenko E, Ashrafyan LA, Antonova IB, Kuznetcov IN, Gorbachev AY, Shakhparonov MI, Govorun VM. Proteome-metabolome profiling of ovarian cancer ascites reveals novel components involved in intercellular communication. Mol Cell Proteomics 2014; 13:3558-71. [PMID: 25271300 DOI: 10.1074/mcp.m114.041194] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Ovarian cancer ascites is a native medium for cancer cells that allows investigation of their secretome in a natural environment. This medium is of interest as a promising source of potential biomarkers, and also as a medium for cell-cell communication. The aim of this study was to elucidate specific features of the malignant ascites metabolome and proteome. In order to omit components of the systemic response to ascites formation, we compared malignant ascites with cirrhosis ascites. Metabolome analysis revealed 41 components that differed significantly between malignant and cirrhosis ascites. Most of the identified cancer-specific metabolites are known to be important signaling molecules. Proteomic analysis identified 2096 and 1855 proteins in the ovarian cancer and cirrhosis ascites, respectively; 424 proteins were specific for the malignant ascites. Functional analysis of the proteome demonstrated that the major differences between cirrhosis and malignant ascites were observed for the cluster of spliceosomal proteins. Additionally, we demonstrate that several splicing RNAs were exclusively detected in malignant ascites, where they probably existed within protein complexes. This result was confirmed in vitro using an ovarian cancer cell line. Identification of spliceosomal proteins and RNAs in an extracellular medium is of particular interest; the finding suggests that they might play a role in the communication between cancer cells. In addition, malignant ascites contains a high number of exosomes that are known to play an important role in signal transduction. Thus our study reveals the specific features of malignant ascites that are associated with its function as a medium of intercellular communication.
Collapse
Affiliation(s)
- Victoria O Shender
- From the ‡Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya str. 16/10, Moscow 117997, Russian Federation;
| | - Marat S Pavlyukov
- From the ‡Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya str. 16/10, Moscow 117997, Russian Federation
| | - Rustam H Ziganshin
- From the ‡Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya str. 16/10, Moscow 117997, Russian Federation
| | - Georgij P Arapidi
- From the ‡Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya str. 16/10, Moscow 117997, Russian Federation; ‖Moscow Institute of Physics and Technology, Institutskiy pereulok 9, Dolgoprudny 141700, Russian Federation
| | - Sergey I Kovalchuk
- From the ‡Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya str. 16/10, Moscow 117997, Russian Federation
| | - Nikolay A Anikanov
- From the ‡Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya str. 16/10, Moscow 117997, Russian Federation
| | - Ilya A Altukhov
- ‖Moscow Institute of Physics and Technology, Institutskiy pereulok 9, Dolgoprudny 141700, Russian Federation; **Research Institute of Physical Chemical Medicine, Malaya Pirogovskaya str., 1a, Moscow 119435, Russian Federation
| | - Dmitry G Alexeev
- ‖Moscow Institute of Physics and Technology, Institutskiy pereulok 9, Dolgoprudny 141700, Russian Federation; **Research Institute of Physical Chemical Medicine, Malaya Pirogovskaya str., 1a, Moscow 119435, Russian Federation
| | - Ivan O Butenko
- **Research Institute of Physical Chemical Medicine, Malaya Pirogovskaya str., 1a, Moscow 119435, Russian Federation
| | - Alexey L Shavarda
- ‡‡Research Resource Center molecular and Cell Technologies, Saint-Petersburg State University, Universitetskaya nab. 7-9, Saint-Petersburg 199034, Russian Federation; §§Analytical Phytochemistry Laboratory, Komarov Botanical Institute, Prof. Popov Street 2, Saint-Petersburg 197376, Russia
| | - Elena B Khomyakova
- **Research Institute of Physical Chemical Medicine, Malaya Pirogovskaya str., 1a, Moscow 119435, Russian Federation
| | - Evgeniy Evtushenko
- ¶¶Faculty of Chemistry, Lomonosov Moscow State University, Leninskiye Gory 1-3, Moscow 119991, Russian Federation
| | - Lev A Ashrafyan
- ‖‖Russian Scientific Center of Roentgenoradiology, Profsoyuznaya str. 86, Moscow 117997, Russian Federation
| | - Irina B Antonova
- ‖‖Russian Scientific Center of Roentgenoradiology, Profsoyuznaya str. 86, Moscow 117997, Russian Federation
| | - Igor N Kuznetcov
- ‖‖Russian Scientific Center of Roentgenoradiology, Profsoyuznaya str. 86, Moscow 117997, Russian Federation
| | - Alexey Yu Gorbachev
- **Research Institute of Physical Chemical Medicine, Malaya Pirogovskaya str., 1a, Moscow 119435, Russian Federation
| | - Mikhail I Shakhparonov
- From the ‡Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya str. 16/10, Moscow 117997, Russian Federation
| | - Vadim M Govorun
- From the ‡Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya str. 16/10, Moscow 117997, Russian Federation; **Research Institute of Physical Chemical Medicine, Malaya Pirogovskaya str., 1a, Moscow 119435, Russian Federation; Kazan Federal University, Kremlyovskaya str. 18, Kazan 420008, Russian Federation
| |
Collapse
|
12
|
Arican GO, Khalilia W, Serbes U, Akman G, Cetin I, Arican E. Effects of hypobaric conditions on apoptosis signalling pathways in HeLa cells. Asian Pac J Cancer Prev 2014; 15:5043-7. [PMID: 24998584 DOI: 10.7314/apjcp.2014.15.12.5043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Nowadays increasing effectiveness in cancer therapy and investigation of formation of new strategies that enhance antiproliferative activity against target organs has become a subject of interest. Although the molecular mechanisms of apoptosis can not be fully explained, it is known that cell suicide program existing in their memory genetically is activated by pathophysiological conditions and events such as oxidative stress. Low pressure (hypobaric) conditions that create hypoxia promote apoptosis by inhibiting cell cycling. In this study, determination of the effects of fractional hypobaric applications at different times on HeLa cells at cellular and molecular levels were targeted. Experiments were carried out under hypobaric conditions (35.2 kPa) in a specially designed hypobaric cabin including 2% O2 and 98% N. Application of fractional hypobaric conditions was repeated two times for 3 hours with an interval of 24 hours. At the end of the implementation period cells were allowed to incubate for 24 hours for activation of repair mechanisms. Cell kinetic parameters such as growth rate (MTT) and apoptotic index were used in determination of the effect of hypobaric conditions on HeLa cells. Also in our study expression levels of the Bcl-2 gene family that have regulatory roles in apoptosis were determined by the RT-PCR technique to evaluate molecular mechanisms. The results showed that antiproliferative effect of hypobaric conditions on HeLa cells started three hours from the time of application and increased depending on the period of exposure. While there was a significant decrease in growth rate values, there was a significant increase in apoptotic index values (p<0.01). Also molecular studies showed that hypobaric conditions caused a significant increase in expression level of proapoptotic gene Bax and significant decrease in antiapoptotic Bfl-1. Consequently fractional application of hypobaric conditions on HeLa cell cultures increased both antiproliferative and apoptotic effects and these effects were triggered by the Bax gene.
Collapse
Affiliation(s)
- Gul Ozcan Arican
- Department of Biology, Faculty of Science, Istanbul University, Istanbul, Turkey E-mail :
| | | | | | | | | | | |
Collapse
|