1
|
Collie GW, Clark MA, Keefe AD, Madin A, Read JA, Rivers EL, Zhang Y. Screening Ultra-Large Encoded Compound Libraries Leads to Novel Protein-Ligand Interactions and High Selectivity. J Med Chem 2024; 67:864-884. [PMID: 38197367 PMCID: PMC10823476 DOI: 10.1021/acs.jmedchem.3c01861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/17/2023] [Accepted: 12/04/2023] [Indexed: 01/11/2024]
Abstract
The DNA-encoded library (DEL) discovery platform has emerged as a powerful technology for hit identification in recent years. It has become one of the major parallel workstreams for small molecule drug discovery along with other strategies such as HTS and data mining. For many researchers working in the DEL field, it has become increasingly evident that many hits and leads discovered via DEL screening bind to target proteins with unique and unprecedented binding modes. This Perspective is our attempt to analyze reports of DEL screening with the purpose of providing a rigorous and useful account of the binding modes observed for DEL-derived ligands with a focus on binding mode novelty.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ying Zhang
- X-Chem,
Inc., Waltham, Massachusetts 02453, United States
| |
Collapse
|
2
|
Guruvaiah P, Chava S, Sun CW, Singh N, Penn CA, Gupta R. ATAD2 is a driver and a therapeutic target in ovarian cancer that functions by upregulating CENPE. Cell Death Dis 2023; 14:456. [PMID: 37479754 PMCID: PMC10362061 DOI: 10.1038/s41419-023-05993-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 07/23/2023]
Abstract
Ovarian cancer is a complex disease associated with multiple genetic and epigenetic alterations. The emergence of treatment resistance in most patients causes ovarian cancer to become incurable, and novel therapies remain necessary. We identified epigenetic regulator ATPase family AAA domain-containing 2 (ATAD2) is overexpressed in ovarian cancer and is associated with increased incidences of metastasis and recurrence. Genetic knockdown of ATAD2 or its pharmacological inhibition via ATAD2 inhibitor BAY-850 suppressed ovarian cancer growth and metastasis in both in vitro and in vivo models. Transcriptome-wide mRNA expression profiling of ovarian cancer cells treated with BAY-850 revealed that ATAD2 inhibition predominantly alters the expression of centromere regulatory genes, particularly centromere protein E (CENPE). In ovarian cancer cells, changes in CENPE expression following ATAD2 inhibition resulted in cell-cycle arrest and apoptosis induction, which led to the suppression of ovarian cancer growth. Pharmacological CENPE inhibition phenotypically recapitulated the cellular changes induced by ATAD2 inhibition, and combined pharmacological inhibition of both ATAD2 and CENPE inhibited ovarian cancer cell growth more potently than inhibition of either alone. Thus, our study identified ATAD2 as regulators of ovarian cancer growth and metastasis that can be targeted either alone or in combination with CENPE inhibitors for effective ovarian cancer therapy.
Collapse
Affiliation(s)
- Praveen Guruvaiah
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Suresh Chava
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Chiao-Wang Sun
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Nirupama Singh
- Department of Pathology, Division of Laboratory Medicine, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Courtney A Penn
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Romi Gupta
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, AL, 35233, USA.
- O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, AL, 35233, USA.
| |
Collapse
|
3
|
Winter-Holt JJ, Bardelle C, Chiarparin E, Dale IL, Davey PRJ, Davies NL, Denz C, Fillery SM, Guérot CM, Han F, Hughes SJ, Kulkarni M, Liu Z, Milbradt A, Moss TA, Niu H, Patel J, Rabow AA, Schimpl M, Shi J, Sun D, Yang D, Guichard S. Discovery of a Potent and Selective ATAD2 Bromodomain Inhibitor with Antiproliferative Activity in Breast Cancer Models. J Med Chem 2022; 65:3306-3331. [PMID: 35133824 DOI: 10.1021/acs.jmedchem.1c01871] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
ATAD2 is an epigenetic bromodomain-containing target which is overexpressed in many cancers and has been suggested as a potential oncology target. While several small molecule inhibitors have been described in the literature, their cellular activity has proved to be underwhelming. In this work, we describe the identification of a novel series of ATAD2 inhibitors by high throughput screening, confirmation of the bromodomain region as the site of action, and the optimization campaign undertaken to improve the potency, selectivity, and permeability of the initial hit. The result is compound 5 (AZ13824374), a highly potent and selective ATAD2 inhibitor which shows cellular target engagement and antiproliferative activity in a range of breast cancer models.
Collapse
Affiliation(s)
| | - Catherine Bardelle
- BioPharmaceuticals R&D, AstraZeneca, Alderley Park, Macclesfield, Cheshire SK10 4TG, United Kingdom
| | | | | | | | | | - Christopher Denz
- Oncology R&D, AstraZeneca, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | | | | | - Fujin Han
- Pharmaron Beijing Co. Ltd., 6 Taihe Road, BDA, Beijing 100176, P. R. China
| | | | - Meghana Kulkarni
- Oncology R&D, AstraZeneca, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Zhaoqun Liu
- Pharmaron Beijing Co. Ltd., 6 Taihe Road, BDA, Beijing 100176, P. R. China
| | | | | | - Huijun Niu
- Pharmaron Beijing Co. Ltd., 6 Taihe Road, BDA, Beijing 100176, P. R. China
| | | | | | | | - Junjie Shi
- Pharmaron Beijing Co. Ltd., 6 Taihe Road, BDA, Beijing 100176, P. R. China
| | - Dongqing Sun
- Pharmaron Beijing Co. Ltd., 6 Taihe Road, BDA, Beijing 100176, P. R. China
| | - Dejian Yang
- Pharmaron Beijing Co. Ltd., 6 Taihe Road, BDA, Beijing 100176, P. R. China
| | - Sylvie Guichard
- Oncology R&D, AstraZeneca, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| |
Collapse
|
4
|
Mirahmadi Y, Nabavi R, Taheri F, Samadian MM, Ghale-Noie ZN, Farjami M, Samadi-khouzani A, Yousefi M, Azhdari S, Salmaninejad A, Sahebkar A. MicroRNAs as Biomarkers for Early Diagnosis, Prognosis, and Therapeutic Targeting of Ovarian Cancer. JOURNAL OF ONCOLOGY 2021; 2021:3408937. [PMID: 34721577 PMCID: PMC8553480 DOI: 10.1155/2021/3408937] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/27/2021] [Indexed: 02/06/2023]
Abstract
Ovarian cancer is the major cause of gynecologic cancer-related mortality. Regardless of outstanding advances, which have been made for improving the prognosis, diagnosis, and treatment of ovarian cancer, the majority of the patients will die of the disease. Late-stage diagnosis and the occurrence of recurrent cancer after treatment are the most important causes of the high mortality rate observed in ovarian cancer patients. Unraveling the molecular mechanisms involved in the pathogenesis of ovarian cancer may help find new biomarkers and therapeutic targets for ovarian cancer. MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression, mostly at the posttranscriptional stage, through binding to mRNA targets and inducing translational repression or degradation of target via the RNA-induced silencing complex. Over the last two decades, the role of miRNAs in the pathogenesis of various human cancers, including ovarian cancer, has been documented in multiple studies. Consequently, these small RNAs could be considered as reliable markers for prognosis and early diagnosis. Furthermore, given the function of miRNAs in various cellular pathways, including cell survival and differentiation, targeting miRNAs could be an interesting approach for the treatment of human cancers. Here, we review our current understanding of the most updated role of the important dysregulation of miRNAs and their roles in the progression and metastasis of ovarian cancer. Furthermore, we meticulously discuss the significance of miRNAs as prognostic and diagnostic markers. Lastly, we mention the opportunities and the efforts made for targeting ovarian cancer through inhibition and/or stimulation of the miRNAs.
Collapse
Affiliation(s)
- Yegane Mirahmadi
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Centre, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Fourough Taheri
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Mohammad Mahdi Samadian
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zari Naderi Ghale-Noie
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Centre, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahsa Farjami
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Centre, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abbas Samadi-khouzani
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Meysam Yousefi
- Department of Medical Genetics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sara Azhdari
- Department of Anatomy and Embryology, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Arash Salmaninejad
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Centre, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Genetics, Faculty of Medicine, Guilan University of Medical Sciences, Guilan, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
Boyson SP, Gao C, Quinn K, Boyd J, Paculova H, Frietze S, Glass KC. Functional Roles of Bromodomain Proteins in Cancer. Cancers (Basel) 2021; 13:3606. [PMID: 34298819 PMCID: PMC8303718 DOI: 10.3390/cancers13143606] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/09/2021] [Accepted: 07/09/2021] [Indexed: 12/31/2022] Open
Abstract
Histone acetylation is generally associated with an open chromatin configuration that facilitates many cellular processes including gene transcription, DNA repair, and DNA replication. Aberrant levels of histone lysine acetylation are associated with the development of cancer. Bromodomains represent a family of structurally well-characterized effector domains that recognize acetylated lysines in chromatin. As part of their fundamental reader activity, bromodomain-containing proteins play versatile roles in epigenetic regulation, and additional functional modules are often present in the same protein, or through the assembly of larger enzymatic complexes. Dysregulated gene expression, chromosomal translocations, and/or mutations in bromodomain-containing proteins have been correlated with poor patient outcomes in cancer. Thus, bromodomains have emerged as a highly tractable class of epigenetic targets due to their well-defined structural domains, and the increasing ease of designing or screening for molecules that modulate the reading process. Recent developments in pharmacological agents that target specific bromodomains has helped to understand the diverse mechanisms that bromodomains play with their interaction partners in a variety of chromatin processes, and provide the promise of applying bromodomain inhibitors into the clinical field of cancer treatment. In this review, we explore the expression and protein interactome profiles of bromodomain-containing proteins and discuss them in terms of functional groups. Furthermore, we highlight our current understanding of the roles of bromodomain-containing proteins in cancer, as well as emerging strategies to specifically target bromodomains, including combination therapies using bromodomain inhibitors alongside traditional therapeutic approaches designed to re-program tumorigenesis and metastasis.
Collapse
Affiliation(s)
- Samuel P. Boyson
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, VT 05446, USA;
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA;
| | - Cong Gao
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA; (C.G.); (J.B.); (H.P.)
| | - Kathleen Quinn
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA;
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA; (C.G.); (J.B.); (H.P.)
| | - Joseph Boyd
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA; (C.G.); (J.B.); (H.P.)
| | - Hana Paculova
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA; (C.G.); (J.B.); (H.P.)
| | - Seth Frietze
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA; (C.G.); (J.B.); (H.P.)
- University of Vermont Cancer Center, Burlington, VT 05405, USA
| | - Karen C. Glass
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, VT 05446, USA;
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA;
- University of Vermont Cancer Center, Burlington, VT 05405, USA
| |
Collapse
|
6
|
Nayak A, Dutta M, Roychowdhury A. Emerging oncogene ATAD2: Signaling cascades and therapeutic initiatives. Life Sci 2021; 276:119322. [PMID: 33711386 DOI: 10.1016/j.lfs.2021.119322] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/12/2021] [Accepted: 02/27/2021] [Indexed: 12/11/2022]
Abstract
ATAD2 is a promising oncoprotein with tumor-promoting functions in many cancers. It is a valid cancer drug-target and a potential cancer-biomarker for multiple malignancies. As a cancer/testis antigen (CTA), ATAD2 could also be a probable candidate for immunotherapy. It is a unique CTA that belongs to both AAA+ ATPase and bromodomain family proteins. Since 2007, several research groups have been reported on the pleiotropic oncogenic functions of ATAD2 in diverse signaling pathways, including Rb/E2F-cMyc pathway, steroid hormone signaling pathway, p53 and p38-MAPK-mediated apoptotic pathway, AKT pathway, hedgehog signaling pathway, HIF1α signaling pathway, and Epithelial to Mesenchymal Transition (EMT) pathway in various cancers. In all these pathways, ATAD2 participates in chromatin dynamics, DNA replication, and gene transcription, demonstrating its role as an epigenetic reader and transcription factor or coactivator to promote tumorigenesis. However, despite the progress, an overall mechanism of ATAD2-mediated oncogenesis in diverse origin is elusive. In this review, we summarize the accumulated evidence to envision the overall ATAD2 signaling networks during carcinogenesis and highlight the area where missing links await further research. Besides, the structure-function aspect of ATAD2 is also discussed. Since the efforts have already been initiated to explore targeted drug molecules and RNA-based therapeutic alternatives against ATAD2, their potency and prospects have been elucidated. Together, we believe this is a well-rounded review on ATAD2, facilitating a new drift in ATAD2 research, essential for its clinical implication as a biomarker and/or cancer drug-target.
Collapse
Affiliation(s)
- Aditi Nayak
- Biochemistry and Cell Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha 752050, India
| | - Madhuri Dutta
- Biochemistry and Cell Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha 752050, India
| | - Anasuya Roychowdhury
- Biochemistry and Cell Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha 752050, India.
| |
Collapse
|
7
|
Lloyd JT, McLaughlin K, Lubula MY, Gay JC, Dest A, Gao C, Phillips M, Tonelli M, Cornilescu G, Marunde MR, Evans CM, Boyson SP, Carlson S, Keogh MC, Markley JL, Frietze S, Glass KC. Structural Insights into the Recognition of Mono- and Diacetylated Histones by the ATAD2B Bromodomain. J Med Chem 2020; 63:12799-12813. [PMID: 33084328 DOI: 10.1021/acs.jmedchem.0c01178] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Bromodomains exhibit preferences for specific patterns of post-translational modifications on core and variant histone proteins. We examined the ligand specificity of the ATAD2B bromodomain and compared it to its closely related paralogue in ATAD2. We show that the ATAD2B bromodomain recognizes mono- and diacetyllysine modifications on histones H4 and H2A. A structure-function approach was used to identify key residues in the acetyllysine-binding pocket that dictate the molecular recognition process, and we examined the binding of an ATAD2 bromodomain inhibitor by ATAD2B. Our analysis demonstrated that critical contacts required for bromodomain inhibitor coordination are conserved between the ATAD2/B bromodomains, with many residues playing a dual role in acetyllysine recognition. We further characterized an alternative splice variant of ATAD2B that results in a loss of function. Our results outline the structural and functional features of the ATAD2B bromodomain and identify a novel mechanism regulating the interaction of the ATAD2B protein with chromatin.
Collapse
Affiliation(s)
- Jonathan T Lloyd
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, 261 Mountain View Drive, Colchester, Vermont 05446, United States
| | - Kyle McLaughlin
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, Vermont 05405, United States
| | - Mulu Y Lubula
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, 261 Mountain View Drive, Colchester, Vermont 05446, United States
| | - Jamie C Gay
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, 261 Mountain View Drive, Colchester, Vermont 05446, United States
| | - Andrea Dest
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, Vermont 05405, United States
| | - Cong Gao
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, Vermont 05405, United States
| | - Margaret Phillips
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, 261 Mountain View Drive, Colchester, Vermont 05446, United States
| | - Marco Tonelli
- National Magnetic Resonance Facility at Madison and Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Gabriel Cornilescu
- National Magnetic Resonance Facility at Madison and Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | | | - Chiara M Evans
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, 261 Mountain View Drive, Colchester, Vermont 05446, United States
| | - Samuel P Boyson
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, 261 Mountain View Drive, Colchester, Vermont 05446, United States
| | - Samuel Carlson
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, 261 Mountain View Drive, Colchester, Vermont 05446, United States
| | | | - John L Markley
- National Magnetic Resonance Facility at Madison and Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Seth Frietze
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, Vermont 05405, United States
| | - Karen C Glass
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, 261 Mountain View Drive, Colchester, Vermont 05446, United States
| |
Collapse
|
8
|
Ge T, Liu T, Guo L, Chen Z, Lou G. MicroRNA-302 represses epithelial-mesenchymal transition and cisplatin resistance by regulating ATAD2 in ovarian carcinoma. Exp Cell Res 2020; 396:112241. [PMID: 32835657 DOI: 10.1016/j.yexcr.2020.112241] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/07/2020] [Accepted: 08/18/2020] [Indexed: 12/21/2022]
Abstract
Epithelial-mesenchymal transition (EMT) is an important contributor to drug resistance in ovarian cancer. The aims of this study were to explore the potential role of the miR-302 cluster in modulating EMT and cisplatin resistance in ovarian cancer. We used qRT-PCR and western blotting to show that miR-302 expression was lower in chemoresistant than in chemosensitive cells, and miR-302 was upregulated in chemosensitive, but not chemoresistant ovarian cancer cells in response to cisplatin treatment. We identified ATAD2 as a target of miR-302 and showed that ectopic expression of miR-302 increased cisplatin sensitivity and inhibited EMT and the invasiveness of cisplatin-resistant cells in vitro by targeting ATAD2. Knockdown of ATAD2 restored cisplatin sensitivity and reversed EMT/metastasis in cisplatin-resistant cells, as shown by western blotting and invasion/migration assays. The effect of miR-302 overexpression on EMT and invasiveness was mediated by the modulation of β-catenin nuclear expression. Immunofluorescence analysis showed that ATAD2 overexpression reversed the miR-302-induced downregulation of nuclear β-catenin in cisplatin resistant cells. A xenograft tumor model was used to show that miR-302 increases the antitumor effect of cisplatin in vivo. Taken together, these results identify a potential regulatory axis involving miR-302 and ATAD2 with a role in chemoresistance, indicating that activation of miR-302 or inactivation of ATAD2 could serve as a novel approach to reverse cisplatin resistance in ovarian cancer.
Collapse
Affiliation(s)
- Tingting Ge
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Tianbo Liu
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Liyuan Guo
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Zhuo Chen
- Department of Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Ge Lou
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, China.
| |
Collapse
|
9
|
Zhang W, Klinkebiel D, Barger CJ, Pandey S, Guda C, Miller A, Akers SN, Odunsi K, Karpf AR. Global DNA Hypomethylation in Epithelial Ovarian Cancer: Passive Demethylation and Association with Genomic Instability. Cancers (Basel) 2020; 12:cancers12030764. [PMID: 32213861 PMCID: PMC7140107 DOI: 10.3390/cancers12030764] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 03/19/2020] [Indexed: 02/08/2023] Open
Abstract
A hallmark of human cancer is global DNA hypomethylation (GDHO), but the mechanisms accounting for this defect and its pathological consequences have not been investigated in human epithelial ovarian cancer (EOC). In EOC, GDHO was associated with advanced disease and reduced overall and disease-free survival. GDHO (+) EOC tumors displayed a proliferative gene expression signature, including FOXM1 and CCNE1 overexpression. Furthermore, DNA hypomethylation in these tumors was enriched within genomic blocks (hypomethylated blocks) that overlapped late-replicating regions, lamina-associated domains, PRC2 binding sites, and the H3K27me3 histone mark. Increased proliferation coupled with hypomethylated blocks at late-replicating regions suggests a passive hypomethylation mechanism. This hypothesis was further supported by our observation that cytosine DNA methyltransferases (DNMTs) and UHRF1 showed significantly reduced expression in GDHO (+) EOC after normalization to canonical proliferation markers, including MKI67. Finally, GDHO (+) EOC tumors had elevated chromosomal instability (CIN), and copy number alterations (CNA) were enriched at the DNA hypomethylated blocks. Together, these findings implicate a passive DNA demethylation mechanism in ovarian cancer that is associated with genomic instability and poor prognosis.
Collapse
Affiliation(s)
- Wa Zhang
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE 68198, USA; (W.Z.); (C.J.B.)
| | - David Klinkebiel
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; (D.K.); (C.G.)
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Carter J. Barger
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE 68198, USA; (W.Z.); (C.J.B.)
| | - Sanjit Pandey
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Chittibabu Guda
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; (D.K.); (C.G.)
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Austin Miller
- Department of Biostatistics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
| | - Stacey N. Akers
- Department of Gynecologic Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (S.N.A.); (K.O.)
| | - Kunle Odunsi
- Department of Gynecologic Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (S.N.A.); (K.O.)
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
- Center for Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Adam R. Karpf
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE 68198, USA; (W.Z.); (C.J.B.)
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; (D.K.); (C.G.)
- Correspondence: ; Tel.: +1-402-559-6115; Fax: +1-402-599-4651
| |
Collapse
|
10
|
Sun T, Du B, Diao Y, Li X, Chen S, Li Y. ATAD2 expression increases [18F]Fluorodeoxyglucose uptake value in lung adenocarcinoma via AKT-GLUT1/HK2 pathway. BMB Rep 2020. [PMID: 31186081 PMCID: PMC6675242 DOI: 10.5483/bmbrep.2019.52.7.042] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
[18F]Fluorodeoxyglucose (FDG) PET/CT imaging has been widely used in the diagnosis of malignant tumors. ATPase family AAA domain-containing protein 2 (ATAD2) plays important roles in tumor growth, invasion and metastasis. However, the relationship between [18F]FDG accumulation and ATAD2 expression remains largely unknown. This study aimed to investigate the correlation between ATAD2 expression and [18F]FDG uptake in lung adenocarcinoma (LUAD), and elucidate its underlying molecular mechanisms. The results showed that ATAD2 expression was positively correlated with maximum standardized uptake value (SUVmax), total lesion glycolysis (TLG), glucose transporter type 1 (GLUT1) expression and hexokinase2 (HK2) expression in LUAD tissues. In addition, ATAD2 knockdown significantly inhibited the proliferation, tumorigenicity, migration, [18F]FDG uptake and lactate production of LUAD cells, while, ATAD2 overexpression exhibited the opposite effects. Furthermore, ATAD2 modulated the glycometabolism of LUAD via AKT-GLUT1/HK2 pathway, as assessed using LY294002 (an inhibitor of PI3K/AKT pathway). In summary, to explore the correlation between ATAD2 expression and glycometabolism is expected to bring good news for anti-energy metabolism therapy of cancers.
Collapse
Affiliation(s)
- Tong Sun
- Department of Nuclear Medicine, The first Hospital of China Medical University, Liaoning 110001, China
| | - Bulin Du
- Department of Nuclear Medicine, The first Hospital of China Medical University, Liaoning 110001, China
| | - Yao Diao
- Department of Nuclear Medicine, The first Hospital of China Medical University, Liaoning 110001, China
| | - Xuena Li
- Department of Nuclear Medicine, The first Hospital of China Medical University, Liaoning 110001, China
| | - Song Chen
- Department of Nuclear Medicine, The first Hospital of China Medical University, Liaoning 110001, China
| | - Yaming Li
- Department of Nuclear Medicine, The first Hospital of China Medical University, Liaoning 110001, China
| |
Collapse
|
11
|
Zhou X, Ji H, Ye D, Li H, Liu F, Li H, Xu J, Li Y, Xiang F. Knockdown of ATAD2 Inhibits Proliferation and Tumorigenicity Through the Rb-E2F1 Pathway and Serves as a Novel Prognostic Indicator in Gastric Cancer. Cancer Manag Res 2020; 12:337-351. [PMID: 32021447 PMCID: PMC6970255 DOI: 10.2147/cmar.s228629] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 12/24/2019] [Indexed: 12/11/2022] Open
Abstract
Introduction The aim of the present study was to examine the expression of ATAD2 in gastric cancer (GC) specimens and to evaluate its correlation with clinicopathologic features, including survival of GC patients. The potential roles of ATAD2 in the GC cell proliferation, apoptosis, and tumour growth were further explored. Materials and Methods Quantitative reverse transcription-polymerase chain reaction (qRT-PCR), Western blotting and immunohistochemistry (IHC) were applied to determine the mRNA and protein expression of ATAD2 in GC and corresponding adjacent non-tumourous specimens. The relationship between ATAD2 expression and clinicopathological features of GC patients was analysed. Kaplan-Meier analysis was performed to assess the prognostic value of ATAD2 expression levels. The proliferation, colony formation, apoptosis and tumorigenesis roles of ATAD2 were measured using in vitro and in vivo experiments. Results The expression of ATAD2 mRNA and protein was overexpressed in GC tissues compared with corresponding adjacent non-tumourous tissues. ATAD2 expression was significantly correlated with tumour size, tumour differentiation, and clinical tumour-node-metastasis (TNM) stage. Patients with high ATAD2 expression were likely to experience significantly shorter postoperative overall survival (OS) and disease-free survival (DFS). Multivariate Cox analysis suggested ATAD2 as an independent variable for OS and DFS. Knockdown of ATAD2 significantly suppressed cell proliferation, colony formation in vitro and tumorigenicity in vivo. Cell cycle and apoptotic assays showed that the anti-proliferative effect of pLV-ATAD2 shRNA was mediated by arresting cells in the G1 phase and inducing cell apoptosis. Silencing of ATAD2 reduced the expression of cyclinD1, ppRb, E2F1 and cyclinE and upregulated the expression of cleaved-PARP and cleaved-Caspase 3. Conclusion Our study indicated that ATAD2 plays an important role in the process of tumorigenesis and progression in GC, and it could serve as a novel prognostic biomarker and a therapeutic target for the treatment of GC patients.
Collapse
Affiliation(s)
- Xuan Zhou
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao 266000, People's Republic of China
| | - Huihui Ji
- Department of Pathology, School of Basic Medicine, Qingdao University, Qingdao 266071, People's Republic of China
| | - Dongxue Ye
- Department of Pathology, School of Basic Medicine, Qingdao University, Qingdao 266071, People's Republic of China
| | - Hong Li
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao 266000, People's Republic of China
| | - Fen Liu
- Department of Pathology, School of Basic Medicine, Qingdao University, Qingdao 266071, People's Republic of China
| | - Haiyan Li
- Department of Pathology, School of Basic Medicine, Qingdao University, Qingdao 266071, People's Republic of China
| | - Jin Xu
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao 266000, People's Republic of China
| | - Yujun Li
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao 266000, People's Republic of China
| | - Fenggang Xiang
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao 266000, People's Republic of China.,Department of Pathology, School of Basic Medicine, Qingdao University, Qingdao 266071, People's Republic of China
| |
Collapse
|
12
|
Li N, Yu Y, Wang B. Downregulation of AAA-domain-containing protein 2 restrains cancer stem cell properties in esophageal squamous cell carcinoma via blockade of the Hedgehog signaling pathway. Am J Physiol Cell Physiol 2019; 319:C93-C104. [PMID: 31747529 DOI: 10.1152/ajpcell.00133.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Esophageal squamous cell carcinoma (ESCC) ranks among the five most common cancers in China and has a five-year survival rate of less than 15%. The transcription factor ATPase-family AAA-domain-containing protein 2 (ATAD2) has potential as a therapeutic target in various tumors, and microarray-based gene expression profiling reveals dysregulation of ATAD2 specifically in ESCC. Here we investigated whether ATAD2 could mediate a regulation of cancer stem cell (CSC) biological functions in ESCC. Immunohistochemical staining, reverse transcription quantitative polymerase chain reaction, and Western blot assays all revealed upregulation of ATAD2 in ESCC tissues and cell lines, which furthermore correlated with progression of ESCC. In loss-of-function experiments, silencing of ATAD2 inhibited activation of the Hedgehog signaling pathway, as indicated by reduced expression of glioma-associated oncogene family zinc finger 1 (Gli1), smoothened frizzled class receptor (SMO), and patched 1 (PTCH1). Investigations with 5-ethynyl-2'-deoxyuridine (EdU), Transwell assay, scratch test, flow cytometry, and colony formation assay showed that silencing of ATAD2 or inhibiting the Hedgehog signaling decreased the proliferation, invasion, and migration abilities along with colony formation, but elevated the apoptosis rate of CSCs. Furthermore, in vivo experiments validated the suppressive effect of siRNA-mediated ATAD2 silencing on tumor growth in nude mice. Thus, downregulation of ATAD2 can seemingly restrain the malignant phenotypes of ESCC cells through inhibition of the Hedgehog signaling pathway.
Collapse
Affiliation(s)
- Nuo Li
- Department of Gastroenterology, The Fourth Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Yang Yu
- Department of Gastroenterology, The Fourth Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Baoming Wang
- Department of Intervention, The Fourth Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
13
|
Han HJ, Huang QY, Huang LJ, Chang F, Diao QZ. Prognostic value of ATPase family, AAA+ domain containing 2 expression in human cancers: A systematic review and meta-analysis. Medicine (Baltimore) 2019; 98:e17180. [PMID: 31574824 PMCID: PMC6775384 DOI: 10.1097/md.0000000000017180] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND ATPase family, AAA+ domain containing 2 (ATAD2) is also known as AAA+ nuclear coregulator cancer-associated protein or PRO2000. ATAD2 has been reported as a prognostic factor in different cancer types, but the association between ATAD2 high expression and survival is still unclear. Thereby, this meta-analysis was performed to evaluate the prognostic value of ATAD2 high expression in human cancers. METHODS All of the studies included were retrieved from PubMed, EMBASE, and Cochrane Library electronic databases. The clinical outcomes were evaluated by calculating hazard ratio (HR) with their 95% confidence interval (CI). RESULTS Thirteen studies including 2689 patients were eligible for this analysis. The pooled results showed that ATAD2 over-expression was significantly associated with shorter overall survival (OS) (HR = 2.32, 95% CI = 1.77-3.02), as well as shorter recurrence-free survival (RFS), disease-free survival (DFS), and disease-specific survival (DSS) (HR = 1.83, 95% CI = 1.51-2.23) among human cancers. Subgroup analyses for OS were implemented in terms of region, tumor type, and sample size and the results were coincident with overall pooled results. Begg funnel plot and Egger test showed the presence of publication bias for OS. Sensitivity analysis indicated that both results were not affected for removing any study. CONCLUSION ATAD2 would be likely to act as a prognostic biomarker for the patients of different cancer types and provide a guide on clinical treatment. Prospective clinical studies are needed to support these findings.
Collapse
Affiliation(s)
| | | | | | | | - Qi-Zhi Diao
- The Department of Clinical Laboratory Medicine, Yongchuan Hospital, Chongqing Medical University, Yongchuan, Chongqing, China
| |
Collapse
|
14
|
Liu K, Kang M, Zhou Z, Qin W, Wang R. Bioinformatics analysis identifies hub genes and pathways in nasopharyngeal carcinoma. Oncol Lett 2019; 18:3637-3645. [PMID: 31516577 PMCID: PMC6732963 DOI: 10.3892/ol.2019.10707] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 05/03/2019] [Indexed: 12/14/2022] Open
Abstract
The aim of the present study was to identify genes associated with and the underlying mechanisms in nasopharyngeal carcinoma (NPC) using microarray data. GSE12452 and GSE34573 gene expression profiles were obtained from the Gene Expression Omnibus (GEO) database. GEO2R was utilized to obtain differentially expressed genes (DEGs). In addition, the Database for Annotation, Visualization and Integrated Discovery was used to perform pathway enrichment analyses for DEGs using the Gene Ontology (GO) annotation along with the Kyoto Encyclopedia of Genes and Genomes (KEGG). Furthermore, Cytoscape was used to perform module analysis of the protein-protein interaction (PPI) network and pathways of the hub genes were studied. A total of 298 genes were ascertained as DEGs in the two datasets. To functionally categorize these DEGs, we obtained 82 supplemented GO terms along with 7 KEGG pathways. Subsequently, a PPI network consisting of 10 hub genes with high degrees of interaction was constructed. These hub genes included cyclin-dependent kinase (CDK) 1, structural maintenance of chromosomes (SMC) 4, kinetochore-associated (KNTC) 1, kinesin family member (KIF) 23, aurora kinase A (AURKA), ATAD (ATPase family AAA domain containing) 2, NDC80 kinetochore complex component, enhancer of zeste 2 polycomb repressive complex 2 subunit, BUB1 mitotic checkpoint serine/threonine kinase and protein regulator of cytokinesis 1. CDK1, SMC4, KNTC1, KIF23, AURKA and ATAD2 presented with high areas under the curve in receiver operator curves, suggesting that these genes may be diagnostic markers for nasopharyngeal carcinoma. In conclusion, it was proposed that CDK1, SMC4, KNTC1, KIF23, AURKA and ATAD2 may be involved in the tumorigenesis of NPC. Furthermore, they may be utilized as molecular biomarkers in early diagnosis of NPC.
Collapse
Affiliation(s)
- Kang Liu
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Guangxi, Nanning 530021, P.R. China
| | - Min Kang
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Guangxi, Nanning 530021, P.R. China
| | - Ziyan Zhou
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Guangxi, Nanning 530021, P.R. China
| | - Wen Qin
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Guangxi, Nanning 530021, P.R. China
| | - Rensheng Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Guangxi, Nanning 530021, P.R. China
| |
Collapse
|
15
|
Liu N, Funasaka K, Obayashi T, Miyahara R, Hirooka Y, Goto H, Senga T. ATAD2 is associated with malignant characteristics of pancreatic cancer cells. Oncol Lett 2019; 17:3489-3494. [PMID: 30867788 DOI: 10.3892/ol.2019.9960] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 02/17/2017] [Indexed: 01/09/2023] Open
Abstract
Pancreatic cancer is one of the most aggressive human cancers and is associated with a poor prognosis. To develop a novel strategy for pancreatic cancer treatment, it is essential to elucidate the molecular mechanisms underlying the invasion and proliferation of cancer cells. ATPase family AAA domain containing protein 2 (ATAD2) is a highly conserved protein with an AAA+ domain and a bromodomain. Accumulating studies have demonstrated that ATAD2 is associated with the progression of multiple cancers. The present study demonstrated that ATAD2 depletion suppressed cell invasion and migration. In addition, ATAD2 knockdown suppressed anchorage-independent growth of pancreatic cancer cells. Finally, ATAD2 depletion was demonstrated to sensitize pancreatic cancer cells to gemcitabine. The results of the present study indicate that ATAD2 is involved in the malignant characteristics of pancreatic cancer.
Collapse
Affiliation(s)
- Nairong Liu
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Kohei Funasaka
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Tomohiko Obayashi
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Ryoji Miyahara
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Yoshiki Hirooka
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Hidemi Goto
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Takeshi Senga
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| |
Collapse
|
16
|
Ji S, Su X, Zhang H, Han Z, Zhao Y, Liu Q. MicroRNA-372 functions as a tumor suppressor in cell invasion, migration and epithelial-mesenchymal transition by targeting ATAD2 in renal cell carcinoma. Oncol Lett 2018; 17:2400-2408. [PMID: 30719113 PMCID: PMC6350190 DOI: 10.3892/ol.2018.9871] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 12/05/2018] [Indexed: 12/30/2022] Open
Abstract
In recent years, renal cell carcinoma (RCC) has exhibited an increasing incidence and mortality rate worldwide. Accumulating evidence has identified that microRNAs (miRNAs) function as negative or positive regulators of many malignant tumors; however, the roles of miR-372 in RCC remain unclear. The focus of the present study was the functions of miR-372 in RCC metastasis and EMT. Data revealed that miR-372 expression levels were significantly downregulated in RCC tissue samples and cells. Moreover, the decreased expression levels were strongly associated with the poor survival rates and adverse clinical characteristics of RCC patients. Accordingly, miR-372 overexpression markedly inhibited RCC cell invasion, migration and EMT. In terms of the potential mechanisms, ATAD2, the expression of which was inversely correlated with miR-372 expression in RCC, was identified as a direct functional target of miR-372. Notably, ATAD2 silence exerted suppressive functions in RCC cells, being similar to the effects of miR-372 overexpression. In conclusion, findings of this study indicate that miR-372 repressed RCC EMT and metastasis via targeting ATAD2, suggesting that the miR-372/ATAD2 axis may be therapeutic biomarkers for RCC.
Collapse
Affiliation(s)
- Shiqi Ji
- Department of Urology, Beijing Ditan Hospital Capital Medical University, Capital Medical University, Beijing 100015, P.R. China
| | - Xiaolin Su
- Department of Emergency, Beijing First Hospital of Integrated Chinese and Western Medicine, Beijing 100021, P.R. China
| | - Haijian Zhang
- Department of Urology, Beijing Ditan Hospital Capital Medical University, Capital Medical University, Beijing 100015, P.R. China
| | - Zhixing Han
- Department of Urology, Beijing Ditan Hospital Capital Medical University, Capital Medical University, Beijing 100015, P.R. China
| | - Yuqian Zhao
- Department of Urology, Beijing Ditan Hospital Capital Medical University, Capital Medical University, Beijing 100015, P.R. China
| | - Qingjun Liu
- Department of Urology, Beijing Ditan Hospital Capital Medical University, Capital Medical University, Beijing 100015, P.R. China
| |
Collapse
|
17
|
Gay JC, Eckenroth BE, Evans CM, Langini C, Carlson S, Lloyd JT, Caflisch A, Glass KC. Disulfide bridge formation influences ligand recognition by the ATAD2 bromodomain. Proteins 2018; 87:157-167. [PMID: 30520161 DOI: 10.1002/prot.25636] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 10/09/2018] [Accepted: 11/29/2018] [Indexed: 12/28/2022]
Abstract
The ATPase family, AAA domain-containing protein 2 (ATAD2) has a C-terminal bromodomain, which functions as a chromatin reader domain recognizing acetylated lysine on the histone tails within the nucleosome. ATAD2 is overexpressed in many cancers and its expression is correlated with poor patient outcomes, making it an attractive therapeutic target and potential biomarker. We solved the crystal structure of the ATAD2 bromodomain and found that it contains a disulfide bridge near the base of the acetyllysine binding pocket (Cys1057-Cys1079). Site-directed mutagenesis revealed that removal of a free C-terminal cysteine (C1101) residue greatly improved the solubility of the ATAD2 bromodomain in vitro. Isothermal titration calorimetry experiments in combination with the Ellman's assay demonstrated that formation of an intramolecular disulfide bridge negatively impacts the ligand binding affinities and alters the thermodynamic parameters of the ATAD2 bromodomain interaction with a histone H4K5ac peptide as well as a small molecule bromodomain ligand. Molecular dynamics simulations indicate that the formation of the disulfide bridge in the ATAD2 bromodomain does not alter the structure of the folded state or flexibility of the acetyllysine binding pocket. However, consideration of this unique structural feature should be taken into account when examining ligand-binding affinity, or in the design of new bromodomain inhibitor compounds that interact with this acetyllysine reader module.
Collapse
Affiliation(s)
- Jamie C Gay
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, Vermont
| | - Brian E Eckenroth
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont
| | - Chiara M Evans
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, Vermont
| | - Cassiano Langini
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Samuel Carlson
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, Vermont
| | - Jonathan T Lloyd
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, Vermont
| | - Amedeo Caflisch
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Karen C Glass
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, Vermont
| |
Collapse
|
18
|
Hong S, Chen S, Wang X, Sun D, Yan Z, Tai J, Bi M. ATAD2 silencing decreases VEGFA secretion through targeting has-miR-520a to inhibit angiogenesis in colorectal cancer. Biochem Cell Biol 2018; 96:761-768. [PMID: 29958090 DOI: 10.1139/bcb-2018-0081] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
ATPase family AAA domain-containing protein 2 (ATAD2) is involved in various types of cancers, including colorectal cancer. This study aimed to determine the role of ATAD2 in angiogenesis in colorectal cancer. Here, we downregulated ATAD2 expression in HCT116 and SW480 cells, and collected the conditioned medium (CM) from control and ATAD2-silenced cells. The effect of CM on human umbilical vein endothelial cells (HUVEC) was evaluated by using CCK-8, wound healing, tube formation, Western blot, and dual-luciferase reporter assays. Our results showed that the proliferation, migration, and tube formation of HUVEC were reduced in presence of ATAD2-silenced CM, and the levels of phosphorylated vascular endothelial growth factor receptor 2 (P-VEGFR2), CD31, and CD34 were downregulated. Mechanism studies showed that ATAD2 silencing regulated the expression of vascular endothelial growth factor A (VEGFA) and miR-520a. Moreover, we found that miR-520a could bind to ATAD2, and its inhibitor partly reversed the alterations in HUVEC induced by CM from ATAD2-silenced cells. In addition, we demonstrated that miR-520a directly bound to 3'-UTR of VEGFA and inhibited its expression. Collectively, our results indicate that ATAD2 inhibition suppresses VEGFA secretion by increasing miR-520a levels. Our study suggests ATAD2 as a potential therapeutic target for angiogenesis in colorectal cancer.
Collapse
Affiliation(s)
- Sen Hong
- a Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun 130021, People's Republic of China
| | - Si Chen
- a Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun 130021, People's Republic of China
| | - Xu Wang
- a Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun 130021, People's Republic of China
| | - Di Sun
- a Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun 130021, People's Republic of China
| | - Zhenkun Yan
- b Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun 130033, People's Republic of China
| | - Jiandong Tai
- a Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun 130021, People's Republic of China
| | - Miaomiao Bi
- c Department of Ophthalmology, China-Japan Union Hospital of Jilin University, Changchun 130033, People's Republic of China
| |
Collapse
|
19
|
Miller DC, Martin MP, Adhikari S, Brennan A, Endicott JA, Golding BT, Hardcastle IR, Heptinstall A, Hobson S, Jennings C, Molyneux L, Ng Y, Wedge SR, Noble MEM, Cano C. Identification of a novel ligand for the ATAD2 bromodomain with selectivity over BRD4 through a fragment growing approach. Org Biomol Chem 2018; 16:1843-1850. [PMID: 29469144 PMCID: PMC6102691 DOI: 10.1039/c8ob00099a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 02/15/2018] [Indexed: 12/11/2022]
Abstract
ATAD2 is an ATPase that is overexpressed in a variety of cancers and associated with a poor patient prognosis. This protein has been suggested to function as a cofactor for a range of transcription factors, including the proto-oncogene MYC and the androgen receptor. ATAD2 comprises an ATPase domain, implicated in chromatin remodelling, and a bromodomain which allows it to interact with acetylated histone tails. Dissection of the functional roles of these two domains would benefit from the availability of selective, cell-permeable pharmacological probes. An in silico evaluation of the 3D structures of various bromodomains suggested that developing small molecule ligands for the bromodomain of ATAD2 is likely to be challenging, although recent reports have shown that ATAD2 bromodomain ligands can be identified. We report a structure-guided fragment-based approach to identify lead compounds for ATAD2 bromodomain inhibitor development. Our findings indicate that the ATAD2 bromodomain can accommodate fragment hits (Mr < 200) that yield productive structure-activity relationships, and structure-guided design enabled the introduction of selectivity over BRD4.
Collapse
Affiliation(s)
- Duncan C Miller
- Newcastle Drug Discovery, Northern Institute for Cancer Research, School of Chemistry, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.
| | - Mathew P Martin
- Newcastle Drug Discovery, Northern Institute for Cancer Research, Paul O'Gorman Building, Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
| | - Santosh Adhikari
- Newcastle Drug Discovery, Northern Institute for Cancer Research, School of Chemistry, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.
| | - Alfie Brennan
- Newcastle Drug Discovery, Northern Institute for Cancer Research, School of Chemistry, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.
| | - Jane A Endicott
- Newcastle Drug Discovery, Northern Institute for Cancer Research, Paul O'Gorman Building, Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
| | - Bernard T Golding
- Newcastle Drug Discovery, Northern Institute for Cancer Research, School of Chemistry, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.
| | - Ian R Hardcastle
- Newcastle Drug Discovery, Northern Institute for Cancer Research, School of Chemistry, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.
| | - Amy Heptinstall
- Newcastle Drug Discovery, Northern Institute for Cancer Research, School of Chemistry, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.
| | - Stephen Hobson
- Newcastle Drug Discovery, Northern Institute for Cancer Research, School of Chemistry, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.
| | - Claire Jennings
- Newcastle Drug Discovery, Northern Institute for Cancer Research, Paul O'Gorman Building, Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
| | - Lauren Molyneux
- Newcastle Drug Discovery, Northern Institute for Cancer Research, School of Chemistry, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.
| | - Yvonne Ng
- Newcastle Drug Discovery, Northern Institute for Cancer Research, Paul O'Gorman Building, Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
| | - Stephen R Wedge
- Newcastle Drug Discovery, Northern Institute for Cancer Research, Paul O'Gorman Building, Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
| | - Martin E M Noble
- Newcastle Drug Discovery, Northern Institute for Cancer Research, Paul O'Gorman Building, Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
| | - Celine Cano
- Newcastle Drug Discovery, Northern Institute for Cancer Research, School of Chemistry, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.
| |
Collapse
|
20
|
Koo SJ, Fernández-Montalván AE, Badock V, Ott CJ, Holton SJ, von Ahsen O, Toedling J, Vittori S, Bradner JE, Gorjánácz M. ATAD2 is an epigenetic reader of newly synthesized histone marks during DNA replication. Oncotarget 2018; 7:70323-70335. [PMID: 27612420 PMCID: PMC5342555 DOI: 10.18632/oncotarget.11855] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 08/21/2016] [Indexed: 02/02/2023] Open
Abstract
ATAD2 (ATPase family AAA domain-containing protein 2) is a chromatin regulator harboring an AAA+ ATPase domain and a bromodomain, previously proposed to function as an oncogenic transcription co-factor. Here we suggest that ATAD2 is also required for DNA replication. ATAD2 is co-expressed with genes involved in DNA replication in various cancer types and predominantly expressed in S phase cells where it localized on nascent chromatin (replication sites). Our extensive biochemical and cellular analyses revealed that ATAD2 is recruited to replication sites through a direct interaction with di-acetylated histone H4 at K5 and K12, indicative of newly synthesized histones during replication-coupled chromatin reassembly. Similar to ATAD2-depletion, ectopic expression of ATAD2 mutants that are deficient in binding to these di-acetylation marks resulted in reduced DNA replication and impaired loading of PCNA onto chromatin, suggesting relevance of ATAD2 in DNA replication. Taken together, our data show a novel function of ATAD2 in cancer and for the first time identify a reader of newly synthesized histone di-acetylation-marks during replication.
Collapse
Affiliation(s)
| | | | | | - Christopher J Ott
- Center for the Science of Therapeutics, Broad Institute, Cambridge, MA, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | | | | | | | - Sarah Vittori
- Center for the Science of Therapeutics, Broad Institute, Cambridge, MA, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - James E Bradner
- Center for the Science of Therapeutics, Broad Institute, Cambridge, MA, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA.,Present address: Novartis Institute for BioMedical Research, Cambridge, MA, USA
| | | |
Collapse
|
21
|
Hussain M, Zhou Y, Song Y, Hameed HMA, Jiang H, Tu Y, Zhang J. ATAD2 in cancer: a pharmacologically challenging but tractable target. Expert Opin Ther Targets 2017; 22:85-96. [PMID: 29148850 DOI: 10.1080/14728222.2018.1406921] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION ATAD2 protein is an emerging oncogene that has strongly been linked to the etiology of multiple advanced human cancers. Therapeutically, despite the fact that genetic suppression/knockdown studies have validated it as a compelling drug target for future therapeutic development, recent druggability assessment data suggest that direct targeting of ATAD2's bromodomain (BRD) may be a very challenging task. ATAD2's BRD has been predicted as a 'difficult to drug' or 'least druggable' target due to the concern that its binding pocket, and the areas around it, seem to be unfeasible for ligand binding. Areas covered: In this review, after shedding light on the multifaceted roles of ATAD2 in normal physiology as well as in cancer-etiology, we discuss technical challenges rendered by ATAD2's BRD active site and the recent drug discovery efforts to find small molecule inhibitors against it. Expert opinion: The identification of a novel low-nanomolar semi-permeable chemical probe against ATAD2's BRD by recent drug discovery campaign has demonstrated it to be a pharmacologically tractable target. Nevertheless, the development of high quality bioavailable inhibitors against ATAD2 is still a pending task. Moreover, ATAD2 may also potentially be utilized as a promising target for future development of RNAi-based therapy to treat cancers.
Collapse
Affiliation(s)
- Muzammal Hussain
- a State Key Laboratory of Respiratory Disease , Guangzhou Institutes of Biomedicine and Heath, Chinese Academy of Sciences , Guangzhou , PR China.,b Guangdong Provincial Key Laboratory of Biocomputing, Institute of Chemical Biology , Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , Guangzhou China.,c University of Chinese Academy of Sciences , Beijing , PR China
| | - Yang Zhou
- d Division of Theoretical Chemistry and Biology, School of Biotechnology , Royal Institute of Technology (KTH), AlbaNova University Center , Stockholm , Sweden
| | - Yu Song
- e Basic Medical College of Beihua University , Jilin , China
| | - H M Adnan Hameed
- a State Key Laboratory of Respiratory Disease , Guangzhou Institutes of Biomedicine and Heath, Chinese Academy of Sciences , Guangzhou , PR China.,c University of Chinese Academy of Sciences , Beijing , PR China
| | - Hao Jiang
- a State Key Laboratory of Respiratory Disease , Guangzhou Institutes of Biomedicine and Heath, Chinese Academy of Sciences , Guangzhou , PR China.,b Guangdong Provincial Key Laboratory of Biocomputing, Institute of Chemical Biology , Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , Guangzhou China
| | - Yaoquan Tu
- d Division of Theoretical Chemistry and Biology, School of Biotechnology , Royal Institute of Technology (KTH), AlbaNova University Center , Stockholm , Sweden
| | - Jiancun Zhang
- a State Key Laboratory of Respiratory Disease , Guangzhou Institutes of Biomedicine and Heath, Chinese Academy of Sciences , Guangzhou , PR China.,b Guangdong Provincial Key Laboratory of Biocomputing, Institute of Chemical Biology , Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , Guangzhou China
| |
Collapse
|
22
|
The role of miR-372 in ovarian carcinoma cell proliferation. Gene 2017; 624:14-20. [DOI: 10.1016/j.gene.2017.04.043] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 04/25/2017] [Indexed: 01/22/2023]
|
23
|
Lloyd JT, Glass KC. Biological function and histone recognition of family IV bromodomain-containing proteins. J Cell Physiol 2017; 233:1877-1886. [PMID: 28500727 DOI: 10.1002/jcp.26010] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 05/12/2017] [Indexed: 12/31/2022]
Abstract
Bromodomain proteins function as epigenetic readers that recognize acetylated histone tails to facilitate the transcription of target genes. There are approximately 60 known human bromodomains, which are divided into eight sub-families based on structural conservation. The bromodomain-containing proteins in family IV include seven members (BRPF1, BRPF2, BRPF3, BRD7, BRD9, ATAD2, and ATAD2b). The bromodomains of each of these proteins recognize and bind acetyllysine residues on histone tails protruding from the nucleosome. However, the histone marks recognized by each bromodomain protein can be very different. The BRPF1 subunit of the MOZ histone acetyltransferase (HAT) recognizes acetylated histones H2AK5ac, H4K12ac, H3K14ac, H4K8ac, and H4K5ac. While the bromodomain of BRD7, a member of the SWI/SNF complex, was shown to preferentially recognize acetylated histones H3K9ac, H3K14ac, H4K8ac, H4K12ac, and H4K16ac. The bromodomains of BRPF2 and BRPF3 have similar sequences, and function as part of the HBO1 HAT complex, but there is limited data on which histone ligands they bind. Similarly, there is little known about the histone targets of the BRD9 and ATAD2b bromodomain proteins. Interestingly, the ATAD2 bromodomain was recently shown to preferentially bind to the di-acetylated H4K5acK12ac mark found in newly synthesized histones following DNA replication. However, despite the physiological importance of the family IV bromodomains, little is known about how they function at the molecular or atomic level. In this review, we summarize our understanding of how family IV bromodomains recognize and select for acetyllysine marks and discuss the importance of acetylated histone recognition for their biological functions.
Collapse
Affiliation(s)
- Jonathan T Lloyd
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, Vermont
| | - Karen C Glass
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, Vermont
| |
Collapse
|
24
|
Wang M, Zhao X, Zhu D, Liu T, Liang X, Liu F, Zhang Y, Dong X, Sun B. HIF-1α promoted vasculogenic mimicry formation in hepatocellular carcinoma through LOXL2 up-regulation in hypoxic tumor microenvironment. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:60. [PMID: 28449718 PMCID: PMC5408450 DOI: 10.1186/s13046-017-0533-1] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 04/21/2017] [Indexed: 02/07/2023]
Abstract
Background The incidence and mortality rates of hepatocellular carcinoma (HCC) have steadily increased in recent years. A hypoxic microenvironment is one of the most important characteristics of solid tumors which has been shown to promote tumor metastasis, epithelial-mesenchymal transition and angiogenesis. Epithelial-mesenchymal transition and vasculogenic mimicry have been regarded as crucial contributing factors to cancer progression. HIF-1α functions as a master transcriptional regulator in the adaptive response to hypoxia. Lysyl oxidases like 2 (LOXL2) is a member of the lysyl oxidase family, which main function is to catalyze the covalent cross-linkages of collagen and elastin in the extracellular matrix. Recent work has demonstrated that HIF-1α promotes the expression of LOXL2, which is believed to amplify tumor aggressiveness. LOXL2 has shown to promote metastasis and is correlated with poor prognosis in hepatocellular carcinoma. The purpose of our study is to explore the role of HIF-1α in progression and metastasis of hepatocellular carcinoma by promoting the expression of LOXL2 as well as the potential regulatory mechanism. Methods HIF-1α, LOXL2 expression and CD31/periodic acid-Schiff double staining in HCC patient samples were examined by immunohistochemical staining. shRNA plasmids against HIF-1α was used to determine whether LOXL2 been increased by HIF-1α. We monitored a series of rescue assays to demonstrate our hypothesis that LOXL2 is required and sufficient for HIF-1α induced EMT and VM formation, which mediates cellular transformation and takes effect in cellular invasion. Then we performed GeneChip® Human Transcriptome Array (HTA) 2.0 in HepG2 cells, HepG2 cells overexpressed LOXL2 and HepG2 cells treated with CoCl2. Results In clinical HCC tissues, it confirmed a positive relationship between HIF-1α and LOXL2 protein. Importantly, HIF-1α and LOXL2 high expression and the presence of vasculogenic mimicry were correlated to poor prognosis. HIF-1α was found to induce EMT, HCC cell migration, invasion and VM formation by regulating LOXL2. The results of microarray assays were analyzed. Conclusion HIF-1α plays an important role in the development of HCC by promoting HCC metastasis, EMT and VM through up-regulating LOXL2. This study highlights the potential therapeutic value of targeting LOXL2 for suppression of HCC metastasis and progression. Electronic supplementary material The online version of this article (doi:10.1186/s13046-017-0533-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Meili Wang
- Department of Pathology, Tianjin Medical University, Tianjin, 300070, China
| | - Xiulan Zhao
- Department of Pathology, Tianjin Medical University, Tianjin, 300070, China. .,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, 300052, China.
| | - Dongwang Zhu
- Department of Surgery, Stomatological Hospital of Tianjin Medical University, Tianjin, 300070, China
| | - Tieju Liu
- Department of Pathology, Tianjin Medical University, Tianjin, 300070, China.,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, 300052, China
| | - Xiaohui Liang
- Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, 300052, China
| | - Fang Liu
- Department of Pathology, Tianjin Medical University, Tianjin, 300070, China.,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, 300052, China
| | - Yanhui Zhang
- Department of Pathology, Cancer Hospital of Tianjin Medical University, Tianjin, 300060, China
| | - Xueyi Dong
- Department of Pathology, Tianjin Medical University, Tianjin, 300070, China.,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, 300052, China
| | - Baocun Sun
- Department of Pathology, Tianjin Medical University, Tianjin, 300070, China. .,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, 300052, China.
| |
Collapse
|
25
|
Arikan SK, Kasap B, Yetimalar H, Yildiz A, Sakarya DK, Tatar S. Impact of prognostic factors on survival rates in patients with ovarian carcinoma. Asian Pac J Cancer Prev 2017; 15:6087-94. [PMID: 25124578 DOI: 10.7314/apjcp.2014.15.15.6087] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
PURPOSE The aim of the present study was to invesitigate the impact of significant clinico-pathological prognostic factors on survival rates and to identify factors predictive of poor outcome in patients with ovarian carcinoma. MATERIALS AND METHODS A retrospective chart review of 74 women with pathologically proven ovarian carcinoma who were treated between January 2006 and April 2011 was performed. Patients were investigated with respect to survival to find the possible effects of age, gravida, parity, menstruel condition, pre-operative Ca-125, treatment period, cytologic washings, presence of ascites, tumor histology, stage and grade, maximal tumor diameter, adjuvan chemotherapy and cytoreductive success. Also 55 ovarian carcinoma patients were investigated with respect to prognostic factors for early 2-year survival. RESULTS The two-year survival rate was 69% and the 5-year survival rate was 25.5% for the whole study population. Significant factors for 2-year survival were preoperative CA-125 level, malignant cytology and FIGO clinical stage. Significant factors for 5-year survival were age, preoperative CA-125 level, residual tumor, lymph node metastases, histologic type of tumor, malignant cytology and FIGO clinical stage. Logistic regression revealed that independent prognostic factors of 5-year survival were patient age, lymph node metastasis and malignant cytology. CONCLUSIONS We consider quality registries with prospectively collected data to be one important tool in monitoring treatment effects in population-based cancer research.
Collapse
Affiliation(s)
- Sevim Kalsen Arikan
- Obstetrics and Gynecology, Ataturk Training and Research Hospital, Izmir, Turkey E-mail :
| | | | | | | | | | | |
Collapse
|
26
|
Abstract
Aberrations in the epigenetic landscape are a hallmark of cancer. Alterations in enzymes that are “writers,” “erasers,” or “readers” of histone modification marks are common. Bromodomains are “readers” that bind acetylated lysines in histone tails. Their most important function is the regulation of gene transcription by the recruitment of different molecular partners. Moreover, proteins containing bromodomains are also epigenetic regulators, although little is known about the specific function of these domains. In recent years, there has been increasing interest in developing small molecules that can target specific bromodomains. First, this has helped clarify biological functions of bromodomain-containing proteins. Secondly, it opens a new front for combatting cancer. In this review we will describe the structures and mechanisms associated with Bromodomain and Extra-Terminal motif (BET) inhibitors and non-BET inhibitors, their current status of development, and their promising role as anti-cancer agents.
Collapse
Affiliation(s)
- Montserrat Pérez-Salvia
- a Cancer Epigenetics and Biology Program (PEBC) , Bellvitge Biomedical Research Institute (IDIBELL) , Barcelona , Catalonia , Spain
| | - Manel Esteller
- a Cancer Epigenetics and Biology Program (PEBC) , Bellvitge Biomedical Research Institute (IDIBELL) , Barcelona , Catalonia , Spain.,b Department of Physiological Sciences II, School of Medicine , University of Barcelona , Barcelona , Catalonia , Spain.,c Institució Catalana de Recerca i Estudis Avançats (ICREA) , Barcelona , Catalonia , Spain
| |
Collapse
|
27
|
Mahdian-Shakib A, Dorostkar R, Tat M, Hashemzadeh MS, Saidi N. Differential role of microRNAs in prognosis, diagnosis, and therapy of ovarian cancer. Biomed Pharmacother 2016; 84:592-600. [PMID: 27694003 DOI: 10.1016/j.biopha.2016.09.087] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 09/20/2016] [Accepted: 09/22/2016] [Indexed: 12/19/2022] Open
Abstract
Ovarian cancer (OC) is the most lethal of malignant gynecological cancers, and has a very poor prognosis, frequently, attributable to late diagnosis and responsiveness to chemotherapy. In spite of the technological and medical approaches over the past four decades, involving the progression of several biological markers (mRNA and proteins biomarkers), the mortality rate of OC remains a challenge due to its late diagnosis, which is expressly ascribed to low specificities and sensitivities. Consequently, there is a crucial need for novel diagnostic and prognostic markers that can advance and initiate more individualized treatment, finally increasing survival of the patients. MiRNAs are non-coding RNAs that control target genes post transcriptionally. They are included in tumorigenesis, apoptosis, proliferation, invasion, metastasis, and chemoresistance. Several studies have within the last decade demonstrated that miRNAs are dysregulated in OC and have possibilities as diagnostic and prognostic biomarkers for OC. Additionally; recent studies have also focused on miRNAs as predictors of chemotherapy sensitivities and their potential as therapeutic targets. In this review, we discuss the current data involving the accumulating evidence of the altered expression of miRNAs in OC, their role in diagnosis, prognosis, and forecast of response to therapy. Given the heterogeneity of this disease, it is likely that advances in long-term survival might be also attained by translating the recent insights of miRNAs participation in OC into new targeted therapies that will have a crucial effect on the management of ovarian cancer.
Collapse
Affiliation(s)
- Ahmad Mahdian-Shakib
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ruhollah Dorostkar
- Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mahdi Tat
- Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Navid Saidi
- Department of Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| |
Collapse
|
28
|
Wang D, Pan Y, Hao T, Chen Y, Qiu S, Chen L, Zhao J. Clinical and Prognostic Significance of ANCCA in Squamous Cell Lung Carcinoma Patients. Arch Med Res 2016; 47:89-95. [PMID: 27131099 DOI: 10.1016/j.arcmed.2016.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 04/06/2016] [Indexed: 02/01/2023]
Abstract
BACKGROUND AND AIMS AAA+ nuclear coregulatory cancer associated (ANCCA) has been demonstrated as playing important roles in diverse biological processes including tumorigenesis. However, the clinical and prognostic significance of ANCCA in squamous cell lung carcinoma (SCLC) patients is still unknown. The aim of this study is to identify the role of ANCCA in SCLC patients. METHODS ANCCA mRNA and protein expressions were detected in SCLC tissues and cell lines by real-time PCR and Western blot. We examined the ANCCA protein expression in 152 SCLC samples by immunohistochemistry and analyzed the association between the expression of ANCCA protein and clinicopathological characteristics of SCLC patients. RESULTS ANCCA mRNA and protein expression are increased in SCLC tissues and cell lines. Moreover, ANCCA protein overexpression was associated with differentiated degree, clinical stage, lymph node metastasis, and distant metastasis. In uni- and multivariate analyses, ANCCA protein overexpression was an independent poor prognostic factor for SCLC patients. CONCLUSIONS ANCCA act as a potential biomarker for therapeutic strategy and prognostic prediction for SCLC.
Collapse
Affiliation(s)
- Dingmiao Wang
- Department of Emergency Medicine, Xianning Central Hospital, Xianning City, Hubei Province, China; Department of Cardiothoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Yang Pan
- Department of Emergency Medicine, Xianning Central Hospital, Xianning City, Hubei Province, China
| | - Ting Hao
- Department of Emergency Medicine, Xianning Central Hospital, Xianning City, Hubei Province, China
| | - Yong Chen
- Department of Emergency Medicine, Xianning Central Hospital, Xianning City, Hubei Province, China
| | - Shiming Qiu
- Department of Emergency Medicine, Xianning Central Hospital, Xianning City, Hubei Province, China
| | - Ling Chen
- Department of Emergency Medicine, Xianning Central Hospital, Xianning City, Hubei Province, China
| | - Jinping Zhao
- Department of Cardiothoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province, China.
| |
Collapse
|
29
|
Hou M, Huang R, Song Y, Feng D, Jiang Y, Liu M. ATAD2 overexpression is associated with progression and prognosis in colorectal cancer. Jpn J Clin Oncol 2016; 46:222-7. [PMID: 26819280 DOI: 10.1093/jjco/hyv195] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 11/29/2015] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVES ATPase family AAA domain-containing 2 plays an important role in tumor progression including cell cycle, proliferation, apoptosis and chemoresistance. However, the expression of ATPase family AAA domain-containing 2 in colorectal cancer and its significance are still unclear. The aim of this study was to examine the expression of ATPase family AAA domain-containing 2 in colorectal cancer. METHODS Immunohistochemistry was used to determine the expression of ATPase family AAA domain-containing 2 in 155 colorectal cancer and 30 matched adjacent noncancerous tissues. The correlation of ATPase family AAA domain-containing 2 expression with clinicopathological variables was assessed using chi-square test. Patient survival was analyzed using the Kaplan-Meier and log-rank tests. Cox regression was performed for the multivariate analysis of prognostic factors. RESULTS High expression of ATPase family AAA domain-containing 2 was detected in 58.1% of the colorectal cancers and was significantly associated with advanced tumor-node-metastasis stage (P = 0.044), poor differentiation (P = 0.028), deep infiltration (P < 0.001), lymphovascular invasion (P = 0.006), lymph node metastasis (P = 0.024) and recurrence (P = 0.022). Patients with high ATPase family AAA domain-containing 2 expression had significantly poorer overall survival and disease-free survival (both P < 0.001) when compared with patients with low expression of ATPase family AAA domain-containing 2. The multivariate analysis showed that ATPase family AAA domain-containing 2 was an independent factor for both overall survival (P = 0.003; hazard ratio (HR): 2.356; 95% confidence interval (CI): 1.335-4.158) and disease-free survival (P = 0.001; HR: 2.643; 95% CI: 1.489-4.693). CONCLUSIONS These results showed that ATPase family AAA domain-containing 2 overexpression was associated with progression and prognosis of colorectal cancer.
Collapse
Affiliation(s)
- Mingming Hou
- Department of Orthopedics, The Fourth Affiliated Hospital of Harbin Medical University, Harbin
| | - Rui Huang
- Department of Colorectal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin
| | - Yanni Song
- Department of Breast Surgery, The Third Affiliated Hospital of Harbin Medical University, Harbin
| | - Di Feng
- Department of Pathology, The Third Affiliated Hospital of Harbin Medical University, Harbin
| | - Yang Jiang
- Department of Pathology, The Third Affiliated Hospital of Harbin Medical University, Harbin
| | - Ming Liu
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
30
|
Luo Y, Ye GY, Qin SL, Yu MH, Mu YF, Zhong M. ATAD2 Overexpression Identifies Colorectal Cancer Patients with Poor Prognosis and Drives Proliferation of Cancer Cells. Gastroenterol Res Pract 2015; 2015:936564. [PMID: 26697062 PMCID: PMC4677176 DOI: 10.1155/2015/936564] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 09/20/2015] [Indexed: 12/14/2022] Open
Abstract
ATPase family AAA domain-containing 2 (ATAD2) has been identified as a critical modulator involved in cell proliferation and invasion. The purpose of this study was to explore the expression of ATAD2 in CRC tissues as well as its relationship with degree of malignancy. Data containing three independent investigations from Oncomine database demonstrated that ATAD2 is overexpressed in CRC compared with normal tissue, and similar result was also found in 32 pairs of CRC tissues by qPCR. The protein expression of ATAD2 was examined in six CRC cell lines and 300 CRC specimens. The results showed that high expression of ATAD2 was significantly correlated with tumor size (P < 0.001), serum CEA (P = 0.012), lymph node metastasis (P = 0.018), liver metastasis (P = 0.025), and clinical stage (P = 0.004). Kaplan-Meier method suggested that higher ATAD2 protein expression significantly associated with the overall survival (OS) of CRC patients (P < 0.001) and was an independent predictor of poor OS. Functional studies showed that suppression of ATAD2 expression with siRNA could significantly inhibit the growth in SW480 and HCT116 cells. These results indicated that ATAD2 could serve as a prognostic marker and a therapeutic target for CRC.
Collapse
Affiliation(s)
- Yang Luo
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Guang-Yao Ye
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Shao-Lan Qin
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Min-Hao Yu
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yi-Fei Mu
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Ming Zhong
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
31
|
ATAD2 is overexpressed in gastric cancer and serves as an independent poor prognostic biomarker. Clin Transl Oncol 2015; 18:776-81. [PMID: 26527032 DOI: 10.1007/s12094-015-1430-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 10/10/2015] [Indexed: 01/06/2023]
Abstract
OBJECTIVE ATPase family, AAA domain containing 2 (ATAD2) has been found overexpressed in various cancer types and correlated with malignant status and poor prognosis. However, little is known about the clinical significance of ATAD2 in gastric cancer patients. The aim of this study was to explore the clinical and prognostic significance of ATAD2 in gastric cancer. METHODS The mRNA and protein levels expression of ATAD2 were detected in clinical tissue samples by qRT-PCR and immunohistochemistry, respectively. We examined the ATAD2 protein expression by immunohistochemistry. Furthermore, we analyzed the association between ATAD2 expression and clinicopathological features including prognosis in 166 gastric cancer samples. RESULTS In our results, ATAD2 mRNA and protein were highly expressed in gastric cancer samples. ATAD2 overexpression was correlated with advanced clinical stage, tumor depth, lymph node metastasis, and distant metastasis. According to the survival analysis, ATAD2 protein overexpression was a poor independent prognostic factor for gastric cancer patients. CONCLUSIONS In summary, ATAD2 could serve as a prognostic biomarker for gastric cancer patients.
Collapse
|
32
|
Morozumi Y, Boussouar F, Tan M, Chaikuad A, Jamshidikia M, Colak G, He H, Nie L, Petosa C, de Dieuleveult M, Curtet S, Vitte AL, Rabatel C, Debernardi A, Cosset FL, Verhoeyen E, Emadali A, Schweifer N, Gianni D, Gut M, Guardiola P, Rousseaux S, Gérard M, Knapp S, Zhao Y, Khochbin S. Atad2 is a generalist facilitator of chromatin dynamics in embryonic stem cells. J Mol Cell Biol 2015; 8:349-62. [PMID: 26459632 PMCID: PMC4991664 DOI: 10.1093/jmcb/mjv060] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 08/12/2015] [Indexed: 12/31/2022] Open
Abstract
Although the conserved AAA ATPase and bromodomain factor, ATAD2, has been described as a transcriptional co-activator upregulated in many cancers, its function remains poorly understood. Here, using a combination of ChIP-seq, ChIP-proteomics, and RNA-seq experiments in embryonic stem cells where Atad2 is normally highly expressed, we found that Atad2 is an abundant nucleosome-bound protein present on active genes, associated with chromatin remodelling, DNA replication, and DNA repair factors. A structural analysis of its bromodomain and subsequent investigations demonstrate that histone acetylation guides ATAD2 to chromatin, resulting in an overall increase of chromatin accessibility and histone dynamics, which is required for the proper activity of the highly expressed gene fraction of the genome. While in exponentially growing cells Atad2 appears dispensable for cell growth, in differentiating ES cells Atad2 becomes critical in sustaining specific gene expression programmes, controlling proliferation and differentiation. Altogether, this work defines Atad2 as a facilitator of general chromatin-templated activities such as transcription.
Collapse
Affiliation(s)
- Yuichi Morozumi
- INSERM, U823; Université Grenoble Alpes; Institut Albert Bonniot Grenoble, F-38700 Grenoble, France
| | - Fayçal Boussouar
- INSERM, U823; Université Grenoble Alpes; Institut Albert Bonniot Grenoble, F-38700 Grenoble, France
| | - Minjia Tan
- The Chemical Proteomics Center and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Apirat Chaikuad
- Nuffield Department of Clinical Medicine, University of Oxford, Structural Genomics Consortium, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK Nuffield Department of Clinical Medicine, University of Oxford, Target Discovery Institute (TDI), NDM Research Building, Roosevelt Drive, Oxford OX3 7FZ, UK
| | - Mahya Jamshidikia
- INSERM, U823; Université Grenoble Alpes; Institut Albert Bonniot Grenoble, F-38700 Grenoble, France
| | - Gozde Colak
- Ben May Department of Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - Huang He
- Ben May Department of Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - Litong Nie
- The Chemical Proteomics Center and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Carlo Petosa
- Université Grenoble Alpes/CNRS/CEA, Institut de Biologie Structurale, 38027 Grenoble, France
| | - Maud de Dieuleveult
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, CEN Saclay, 91191 Gif-sur-Yvette, France
| | - Sandrine Curtet
- INSERM, U823; Université Grenoble Alpes; Institut Albert Bonniot Grenoble, F-38700 Grenoble, France
| | - Anne-Laure Vitte
- INSERM, U823; Université Grenoble Alpes; Institut Albert Bonniot Grenoble, F-38700 Grenoble, France
| | - Clothilde Rabatel
- INSERM, U823; Université Grenoble Alpes; Institut Albert Bonniot Grenoble, F-38700 Grenoble, France
| | - Alexandra Debernardi
- INSERM, U823; Université Grenoble Alpes; Institut Albert Bonniot Grenoble, F-38700 Grenoble, France
| | - François-Loïc Cosset
- CIRI, International Center for Infectiology Research, EVIR team, INSERM U1111, CNRS, UMR5308, Université de Lyon-1, ENS de Lyon, Lyon, France
| | - Els Verhoeyen
- CIRI, International Center for Infectiology Research, EVIR team, INSERM U1111, CNRS, UMR5308, Université de Lyon-1, ENS de Lyon, Lyon, France INSERM, U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), équipe 'contrôle métabolique des morts cellulaires', Nice 06204, France
| | - Anouk Emadali
- INSERM, U823; Université Grenoble Alpes; Institut Albert Bonniot Grenoble, F-38700 Grenoble, France
| | - Norbert Schweifer
- Boehringer-Ingelheim RCV GmbH & Co KG, Dr. Boehringer Gasse 5-11, A-1121 Vienna, Austria
| | - Davide Gianni
- Boehringer-Ingelheim RCV GmbH & Co KG, Dr. Boehringer Gasse 5-11, A-1121 Vienna, Austria
| | - Marta Gut
- CNAG-Centre for Genomic Regulation (CRG), Baldiri Reixac 4, 08028 Barcelona; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Philippe Guardiola
- INSERM, U892; Centre de Recherche sur le Cancer Nantes Angers and UMR_S 892; Université d'Angers; Plateforme SNP, Transcriptome & Epigénomique; Centre Hospitalier Universitaire d'Angers, Angers 49000, France
| | - Sophie Rousseaux
- INSERM, U823; Université Grenoble Alpes; Institut Albert Bonniot Grenoble, F-38700 Grenoble, France
| | - Matthieu Gérard
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, CEN Saclay, 91191 Gif-sur-Yvette, France
| | - Stefan Knapp
- Nuffield Department of Clinical Medicine, University of Oxford, Structural Genomics Consortium, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK Nuffield Department of Clinical Medicine, University of Oxford, Target Discovery Institute (TDI), NDM Research Building, Roosevelt Drive, Oxford OX3 7FZ, UK
| | - Yingming Zhao
- The Chemical Proteomics Center and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China Ben May Department of Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - Saadi Khochbin
- INSERM, U823; Université Grenoble Alpes; Institut Albert Bonniot Grenoble, F-38700 Grenoble, France
| |
Collapse
|
33
|
Binesh F, Akhavan A, Behniafard N, Zabihi S, Hosseinizadeh E. Prognostic value of peritoneal washing cytology in gynecologic malignancies: a controversial issue. Asian Pac J Cancer Prev 2015; 15:9405-10. [PMID: 25422232 DOI: 10.7314/apjcp.2014.15.21.9405] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
PURPOSE To evaluate the prognostic impact of peritoneal washing cytology in patients with endometrial and ovarian cancers. MATERIALS AND METHODS We retrospectively identified 86 individuals with ovarian carcinomas, ovarian borderline tumors and endometrial adenocarcinomas. The patients had been treated at Shahid Sadoughi Hospital and Ramazanzadeh Radiotherapy Center, Yazd, Iran between 2004 and 2012. Survival differences were determined by Kaplan-Meier analysis. Multivariate analysis was performed using the Cox regression method. A p<0.05 value was considered statistically significant. RESULTS There were 36 patients with ovarian carcinomas, 4 with borderline ovarian tumors and 46 with endometrial carcinomas. The mean age of the patients was 53.8±15.2 years. In patients with ovarian carcinoma the overall survival in the negative cytology group was better than the patients with positive cytology although this difference failed to reach statistical significance (p=0.30). At 0 to 50 months the overall survival was better in patients with endometrial adenocarcinoma and negative cytology than the patients with positive cytology but then it decreased (p=0.85). At 15 to 60 months patients with FIGO 2009 stage IA-II endometrial andocarcinoma and negative peritoneal cytology had a superior survival rate compared to 1988 IIIA and positive cytology only, although this difference failed to reach statistical significance(p=0.94). Multivariate analysis using Cox proportional hazards model showed that stage and peritoneal cytology were predictors of death. CONCLUSIONS Our results show good correlation of peritoneal cytology with prognosis in patients with ovarian carcinoma. In endometrial carcinoma it had prognostic importance. Additional research is warranted.
Collapse
Affiliation(s)
- Fariba Binesh
- Department Of Pathology, Shahid Sadoughi University of Medical Sciences, Iran E-mail :
| | | | | | | | | |
Collapse
|
34
|
Overexpression of ANCCA/ATAD2 in endometrial carcinoma and its correlation with tumor progression and poor prognosis. Tumour Biol 2015; 36:4479-85. [PMID: 25934333 DOI: 10.1007/s13277-015-3089-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 01/08/2015] [Indexed: 01/22/2023] Open
Abstract
This study aimed to explore the clinical significance of AAA+ (ATPases associated with various cellular activities) nuclear coregulator cancer-associated (ANCCA) protein expression in endometrial carcinoma (EC). Correlations of ANCCA expression with clinicopathological factors and prognosis of EC patients were analyzed. Expression of ANCCA was detected in EC from 207 patients along with corresponding normal endometrium specimens by immunohistochemistry. ANCCA immunoreactivity was overexpressed in EC cases compared with that in normal endometrium (P < 0.001). High ANCCA expression was positively correlated with the International Federation of Gynecology and Obstetrics (FIGO) stage, histological grade, depth of myometrial invasion, lymph node metastasis, lymph vascular space involvement, and recurrence but not with age and histological type. Patients with high ANCCA expression exhibited significantly poorer overall survival (OS) and disease-free survival (DFS) than patients with low ANCCA expression (P = 0.001 and 0.002, respectively). Cox multivariate analysis showed that high ANCCA expression was an independent prognostic factor for both OS (hazard ratio (HR) = 4.954, 95 % confidence interval (CI) = 1.537-15.966; P = 0.007) and DFS of patients with EC (HR = 4.237, 95 % CI = 1.295-13.859; P = 0.017). We identified ANCCA protein expression as a novel independent poor prognostic indicator in EC.
Collapse
|
35
|
Zheng L, Li T, Zhang Y, Guo Y, Yao J, Dou L, Guo K. Oncogene ATAD2 promotes cell proliferation, invasion and migration in cervical cancer. Oncol Rep 2015; 33:2337-44. [PMID: 25813398 DOI: 10.3892/or.2015.3867] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 03/08/2015] [Indexed: 11/05/2022] Open
Abstract
The ATPase family AAA domain-containing protein 2 (ATAD2) is associated with many cellular processes, such as cell proliferation, invasion and migration. However, the molecular biological function of the ATAD2 gene in cervical cancer is unclear. The purpose of this study was to explore ATAD2 expression in cervical cancer, evaluate the relationship between the development of cervical cancer, metastasis and clinicopathological characteristics, and discuss the implications for its use in clinical treatment. Protein and mRNA expression of ATAD2 was examined in tissues and cell lines. Tumor tissues from 135 cases of cervical cancer were collected for evaluation of ATAD2 expression by immunohistochemistry and western blotting. Prognostic significance was evaluated by the Cox hazards model and Kaplan-Meier survival method. HeLa and SiHa cells were transfected with two siRNAs targeting ATAD2. ATAD2 knockdown was used to analyze cell proliferation, invasion and migration. Cell viability was evaluated with the Cell Counting Κit-8 (CCK-8) assay, cell invasion by a Transwell assay and cell migration by a wound healing/scratch migration assay. ATAD2 was shown to be highly expressed in cervical cancer tissues, both at the transcriptional and protein levels, and was correlated with poor patient survival (P<0.05). Knockdown of ATAD2 in the HeLa and SiHa cells was found to reduce the capacity for invasion and migration (P<0.05), and inhibited the growth and clonogenic potential of the HeLa and SiHa cell lines. Our results suggest that cervical cancer tissues may have highly expressed ATAD2, which is associated with tumor stage and lymph node status (P<0.05). Oncogene ATAD2 may play an important role in cervical cancer proliferation, invasion and migration. It could serve as a prognostic marker and a therapeutic target for cervical cancer.
Collapse
Affiliation(s)
- Le Zheng
- Department of Gynecology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Tianren Li
- Department of Gynecology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yi Zhang
- Department of Gynecology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yi Guo
- Department of Gynecology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Jihang Yao
- Department of Gynecology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Lei Dou
- Department of Gynecology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Kejun Guo
- Department of Gynecology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
36
|
Yesilyurt H, Tokmak A, Guzel AI, Simsek HS, Terzioglu SG, Erkaya S, Gungor T. Parameters for Predicting Granulosa Cell Tumor of the Ovary: A Single Center Retrospective Comparative Study. Asian Pac J Cancer Prev 2014; 15:8447-50. [DOI: 10.7314/apjcp.2014.15.19.8447] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|