1
|
Hu H, Hu X, Liang Z, Yang W, Li S, Li D, Cai J. Diagnostic performance of 18F‑FDG PET/CT vs. 18F‑NaF PET/CT in breast cancer with bone metastases: An indirect comparative meta‑analysis. Oncol Lett 2024; 28:546. [PMID: 39319212 PMCID: PMC11420642 DOI: 10.3892/ol.2024.14679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 08/20/2024] [Indexed: 09/26/2024] Open
Abstract
Breast cancer remains the leading cause of cancer-related death in women, with 5-year survival rates of as high as 90% for patients with early-stage breast cancer without metastasis, falling to 10% once bone metastases (BM) occur. Currently, there is no cure for breast cancer with BM. However, appropriate treatment can extend survival and improve patients' quality of life. Therefore, it is important to accurately evaluate the presence of BM in patients with breast cancer. The present meta-analysis evaluated the diagnostic performance of 18F-FDG and 18F-NaF as PET/CT tracers for breast cancer-associated BM. The present study aimed to compare the diagnostic performance of fluorine-18 fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomographs (PET/CT) and 18F-sodium fluoride (18F-NaF) PET/CT in patients with breast cancer and BM. The PubMed and Embase databases were searched for English literature on the diagnostic performance of 18F-FDG PET/CT and 18F-NaF PET/CT for breast cancer BM, and two authors independently extracted data. All included studies presented data that could be used to construct a 2×2 contingency table. The methodological quality of the selected studies was assessed using QUADAS-2, and forest plots were generated based on the sensitivity and specificity of 18F-FDG PET/CT and 18F-NaF PET/CT in the diagnosis of BM associated with breast cancer. A total of 14 articles were identified, including eight on the analysis of 18F-FDG PET/CT, five on 18F-NaF PET/CT and one on both. The studies on 18F-FDG PET/CT and 18F-NaF PET/CT included 530 and 270 patients, respectively. The pooled sensitivities were 0.88 [95% confidence interval (95% CI), 0.76-0.94] for 18F-FDG PET/CT and 0.98 (95% CI, 0.92-1.00) for 18F-NaF PET/CT, and the pooled specificities were 0.99 (95% CI, 0.97-1.00) and 0.91 (95% CI: 0.76-0.97), respectively. The area under the summary receiver operating characteristic curve for both 18F-FDG PET/CT and 18F-NaF PET/CT was 0.99 (95% CI, 0.98-1.00). Lesion-based analysis using 18F-FDG PET/CT was performed for 909 lesions, with a sensitivity of 0.84 (95% CI, 0.67-1.00) and specificity of 1.00 (95% CI, 0.98-1.00). Compared with 18F-FDG PET/CT, 18F-NaF PET/CT showed higher sensitivity (98 vs. 88%) but lower specificity (91 vs. 99%), although the difference between methods was not statistically significant. In conclusion, the results of the present study indicated that 18F-NaF PET/CT and 18F-FDG PET/CT are both accurate methods for the detection of BM in patients with breast cancer, and have comparable diagnostic accuracy.
Collapse
Affiliation(s)
- Hongyu Hu
- Department of Nuclear Medicine, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Xianwen Hu
- Department of Nuclear Medicine, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Zhigang Liang
- Department of Nuclear Medicine, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Wenbi Yang
- Department of Nuclear Medicine, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Song Li
- Department of Nuclear Medicine, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Dandan Li
- Department of Gynecology, Zunyi Hospital of Traditional Chinese Medicine, Zunyi, Guizhou 563000, P.R. China
| | - Jiong Cai
- Department of Nuclear Medicine, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| |
Collapse
|
2
|
Saleh GA, Batouty NM, Gamal A, Elnakib A, Hamdy O, Sharafeldeen A, Mahmoud A, Ghazal M, Yousaf J, Alhalabi M, AbouEleneen A, Tolba AE, Elmougy S, Contractor S, El-Baz A. Impact of Imaging Biomarkers and AI on Breast Cancer Management: A Brief Review. Cancers (Basel) 2023; 15:5216. [PMID: 37958390 PMCID: PMC10650187 DOI: 10.3390/cancers15215216] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/13/2023] [Accepted: 10/21/2023] [Indexed: 11/15/2023] Open
Abstract
Breast cancer stands out as the most frequently identified malignancy, ranking as the fifth leading cause of global cancer-related deaths. The American College of Radiology (ACR) introduced the Breast Imaging Reporting and Data System (BI-RADS) as a standard terminology facilitating communication between radiologists and clinicians; however, an update is now imperative to encompass the latest imaging modalities developed subsequent to the 5th edition of BI-RADS. Within this review article, we provide a concise history of BI-RADS, delve into advanced mammography techniques, ultrasonography (US), magnetic resonance imaging (MRI), PET/CT images, and microwave breast imaging, and subsequently furnish comprehensive, updated insights into Molecular Breast Imaging (MBI), diagnostic imaging biomarkers, and the assessment of treatment responses. This endeavor aims to enhance radiologists' proficiency in catering to the personalized needs of breast cancer patients. Lastly, we explore the augmented benefits of artificial intelligence (AI), machine learning (ML), and deep learning (DL) applications in segmenting, detecting, and diagnosing breast cancer, as well as the early prediction of the response of tumors to neoadjuvant chemotherapy (NAC). By assimilating state-of-the-art computer algorithms capable of deciphering intricate imaging data and aiding radiologists in rendering precise and effective diagnoses, AI has profoundly revolutionized the landscape of breast cancer radiology. Its vast potential holds the promise of bolstering radiologists' capabilities and ameliorating patient outcomes in the realm of breast cancer management.
Collapse
Affiliation(s)
- Gehad A. Saleh
- Diagnostic and Interventional Radiology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt; (G.A.S.)
| | - Nihal M. Batouty
- Diagnostic and Interventional Radiology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt; (G.A.S.)
| | - Abdelrahman Gamal
- Computer Science Department, Faculty of Computers and Information, Mansoura University, Mansoura 35516, Egypt (A.E.T.)
| | - Ahmed Elnakib
- Electrical and Computer Engineering Department, School of Engineering, Penn State Erie, The Behrend College, Erie, PA 16563, USA;
| | - Omar Hamdy
- Surgical Oncology Department, Oncology Centre, Mansoura University, Mansoura 35516, Egypt;
| | - Ahmed Sharafeldeen
- Bioengineering Department, University of Louisville, Louisville, KY 40292, USA
| | - Ali Mahmoud
- Bioengineering Department, University of Louisville, Louisville, KY 40292, USA
| | - Mohammed Ghazal
- Electrical, Computer, and Biomedical Engineering Department, Abu Dhabi University, Abu Dhabi 59911, United Arab Emirates; (M.G.)
| | - Jawad Yousaf
- Electrical, Computer, and Biomedical Engineering Department, Abu Dhabi University, Abu Dhabi 59911, United Arab Emirates; (M.G.)
| | - Marah Alhalabi
- Electrical, Computer, and Biomedical Engineering Department, Abu Dhabi University, Abu Dhabi 59911, United Arab Emirates; (M.G.)
| | - Amal AbouEleneen
- Computer Science Department, Faculty of Computers and Information, Mansoura University, Mansoura 35516, Egypt (A.E.T.)
| | - Ahmed Elsaid Tolba
- Computer Science Department, Faculty of Computers and Information, Mansoura University, Mansoura 35516, Egypt (A.E.T.)
- The Higher Institute of Engineering and Automotive Technology and Energy, New Heliopolis, Cairo 11829, Egypt
| | - Samir Elmougy
- Computer Science Department, Faculty of Computers and Information, Mansoura University, Mansoura 35516, Egypt (A.E.T.)
| | - Sohail Contractor
- Department of Radiology, University of Louisville, Louisville, KY 40202, USA
| | - Ayman El-Baz
- Bioengineering Department, University of Louisville, Louisville, KY 40292, USA
| |
Collapse
|
3
|
Xia L, Lai J, Huang D, Qiu S, Hu H, Luo Y, Cao J. Comparing the diagnostic efficacy of [ 18F]FDG PET/CT and [ 18F]FDG PET/MRI for detecting bone metastases in breast cancer: a meta-analysis. Radiol Oncol 2023; 57:299-309. [PMID: 37494596 PMCID: PMC10561067 DOI: 10.2478/raon-2023-0037] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/15/2023] [Indexed: 07/28/2023] Open
Abstract
BACKGROUND This meta-analysis aimed to evaluate the comparative diagnostic efficacy of [18F]FDG PET/CT and [18F] FDG PET/MRI in detecting bone metastases in breast cancer patients. METHODS An extensive search was conducted in the PubMed, Embase, Web of Science, and Cochrane Library databases to identify available publications up to February 2023. Studies were included if they evaluated the diagnostic efficacy of [18F]FDG PET/CT and [18F]FDG PET/MRI in patients with breast cancer bone metastases. Sensitivity and specificity were assessed using the DerSimonian and Laird method, followed by transformation via the Freeman-Tukey double inverse sine transformation. RESULTS 16 articles (including 4 head-to-head comparison articles) involving 1,261 patients were included in the meta-analysis. The overall sensitivity of [18F]FDG PET/CT in patient-based analysis, lesion-based analysis, and head-to-head comparison were 0.73, 0.89, and 0.87, respectively, while the overall sensitivity of [18F]FDG PET/MRI were 0.99, 0.99, and 0.99. The results indicated that [18F]FDG PET/MRI appears to a higher sensitivity in comparison to [18F]FDG PET/CT(all P < 0.05). In contrast, the overall specificity of [18F]FDG PET/CT in patient-based analysis, lesion-based analysis, and head-to-head comparison were 1.00, 0.99, and 1.00, respectively, while the overall specificity of [18F]FDG PET/MRI were 1.00, 0.99, and 0.98. These results suggested that [18F]FDG PET/CT has a similar level of specificity compared to [18F]FDG PET/MRI. CONCLUSIONS Our meta-analysis indicates that [18F]FDG PET/MRI demonstrates superior sensitivity and similar specificity to [18F]FDG PET/CT in detecting bone metastases in breast cancer patients. Further prospective research is required to confirm these findings and assess the clinical application of these techniques.
Collapse
Affiliation(s)
- Longjie Xia
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
- Department of General Surgery, Guangzhou First People's Hospital, Guangzhou, Guangzhou, China
| | - Jianqin Lai
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
- Department of General Surgery, Guangzhou First People's Hospital, Guangzhou, Guangzhou, China
| | - Di Huang
- Department of General Surgery, Guangzhou First People's Hospital, Guangzhou, Guangzhou, China
| | - Shenghui Qiu
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
- Department of General Surgery, Guangzhou First People's Hospital, Guangzhou, Guangzhou, China
| | - Huiqiong Hu
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
- Department of General Surgery, Guangzhou First People's Hospital, Guangzhou, Guangzhou, China
- Department of Plastic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yunxiang Luo
- Department of Plastic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jie Cao
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
- Department of General Surgery, Guangzhou First People's Hospital, Guangzhou, Guangzhou, China
| |
Collapse
|
4
|
Abd-Elkader MAM, Hassan AAEK, Omar NNM, Sherif MFH, Abdel-Tawab M. The added value of hybrid 18F-FDG PET/CT over CT in the detection of breast cancer metastatic deposits. THE EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE 2020. [DOI: 10.1186/s43055-020-00232-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
5
|
van Es SC, Velleman T, Elias SG, Bensch F, Brouwers AH, Glaudemans AWJM, Kwee TC, Iersel MWV, Maduro JH, Oosting SF, de Vries EGE, Schröder CP. Assessment of Bone Lesions with 18F-FDG PET Compared with 99mTc Bone Scintigraphy Leads to Clinically Relevant Differences in Metastatic Breast Cancer Management. J Nucl Med 2020; 62:177-183. [PMID: 32817140 DOI: 10.2967/jnumed.120.244640] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/07/2020] [Indexed: 11/16/2022] Open
Abstract
It is unknown whether assessment of potential bone lesions in metastatic breast cancer (MBC) by 18F-FDG PET instead of 99mTc bone scintigraphy (BS) supports clinically relevant changes in MBC management. Therefore, we retrospectively compared management recommendations based on bone lesion assessment by 18F-FDG PET plus contrast-enhanced CT (ceCT) or BS plus ceCT, for patients with newly diagnosed MBC. Methods: Baseline ceCT, BS, and 18F-FDG PET for all patients included in the IMPACT-MBC study (NCT01957332) at the University Medical Center Groningen were reviewed for bone lesions. If bone lesions were found by any imaging modality, virtual MBC management recommendations were made by a multidisciplinary expert panel, based on either 18F-FDG PET plus ceCT or BS plus ceCT. The panel had access to standard clinicopathologic information and baseline imaging findings outside the skeleton. Clinically relevant management differences between the 2 recommendations were defined either as different treatment intent (curative, noncurative, or unable to determine) or as different systemic or local treatment. If no bone lesions were found by any imaging modality, the patients were included in the analyses without expert review. Results: In total, 3,473 unequivocal bone lesions were identified in 102 evaluated patients (39% by ceCT, 26% by BS, and 87% by 18F-FDG PET). Additional bone lesions on 18F-FDG PET plus ceCT compared with BS plus ceCT led to change in MBC management recommendations in 16% of patients (95% CI, 10%-24%). BS also changed management compared with 18F-FDG PET in 1 patient (1%; 95% CI, 0%-5%). In 26% (95% CI, 19%-36%) of patients, an additional 18F-FDG PET exam was requested, because BS provided insufficient information. Conclusion: In this exploratory analysis of newly diagnosed MBC patients, 18F-FDG PET versus BS to assess bone lesions resulted in clinically relevant management differences in 16% of patients. BS delivered insufficient information in over one fourth of patients, resulting in an additional request for 18F-FDG PET. On the basis of these data, 18F-FDG PET should be considered a primary imaging modality for assessment of bone lesions in newly diagnosed MBC.
Collapse
Affiliation(s)
- Suzanne C van Es
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ton Velleman
- Department of Radiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Sjoerd G Elias
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Frederike Bensch
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Adrienne H Brouwers
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; and
| | - Andor W J M Glaudemans
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; and
| | - Thomas C Kwee
- Department of Radiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Marleen Woltman-van Iersel
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - John H Maduro
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Sjoukje F Oosting
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Elisabeth G E de Vries
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Carolina P Schröder
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
6
|
Paydary K, Seraj SM, Zadeh MZ, Emamzadehfard S, Shamchi SP, Gholami S, Werner TJ, Alavi A. The Evolving Role of FDG-PET/CT in the Diagnosis, Staging, and Treatment of Breast Cancer. Mol Imaging Biol 2019. [PMID: 29516387 DOI: 10.1007/s11307-018-1181-3] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The applications of 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography/X-ray computed tomography (PET/CT) in the management of patients with breast cancer have been extensively studied. According to these studies, PET/CT is not routinely performed for the diagnosis of primary breast cancer, although PET/CT in specific subtypes of breast cancer correlates with histopathologic features of the primary tumor. PET/CT can detect metastases to mediastinal, axial, and internal mammary nodes, but it cannot replace the sentinel node biopsy. In detection of distant metastases, this imaging tool may have a better accuracy in detecting lytic bone metastases compared to bone scintigraphy. Thus, PET/CT is recommended when advanced-stage disease is suspected, and conventional modalities are inconclusive. Also, PET/CT has a high sensitivity and specificity to detect loco-regional recurrence and is recommended in asymptomatic patients with rising tumor markers. Numerous studies support the future role of PET/CT in prediction of response to neoadjuvant chemotherapy (NAC). PET/CT has a higher diagnostic value for prognostic risk stratification in comparison with conventional modalities. With the continuing research on the treatment planning and evaluation of patients with breast cancer, the role of PET/CT can be further extended.
Collapse
Affiliation(s)
- Koosha Paydary
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | | | - Saeid Gholami
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Thomas J Werner
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Abass Alavi
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA. .,Division of Nuclear Medicine, Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA.
| |
Collapse
|
7
|
Azad GK, Cook GJ. Multi-technique imaging of bone metastases: spotlight on PET-CT. Clin Radiol 2016; 71:620-31. [PMID: 26997430 DOI: 10.1016/j.crad.2016.01.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 12/30/2015] [Accepted: 01/13/2016] [Indexed: 12/12/2022]
Abstract
There is growing evidence that molecular imaging of bone metastases with positron-emission tomography (PET) can improve diagnosis and treatment response assessment over current conventional standard imaging methods, although cost-effectiveness has not been assessed. In most cancer types, 2-[(18)F]-fluoro-2-deoxy-d-glucose ((18)F-FDG)-PET is an accurate method for detecting bone metastases. For example, in breast cancer, combined (18)F-FDG-PET and computed tomography (CT) is more sensitive at detecting bone metastases than (99m)technetium (Tc)-labelled diphosphonate planar bone scintigraphy (BS) and there is increasing evidence to support the use of serial (18)F-FDG-PET for the assessment of osseous response to treatment. Preliminary data suggest improved diagnostic accuracy of (18)F-FDG-PET-CT in a number of other malignancies including lung, thyroid, head and neck, gastro-oesophageal cancers, and osteosarcoma. As a bone-specific tracer, there is accumulating evidence to support the use of sodium (18)F-fluoride ((18)F-NaF) PET-CT in the diagnosis of skeletal metastases in breast and prostate cancer, although relatively little data are available to support its use for assessment of treatment response. In prostate cancer, (11)C-choline and (18)F-choline PET-CT have better specificities than (18)F-NaF-PET-CT, but equivalent sensitivities in the detection of bone metastases. We review the current literature for staging and response assessment of bone metastases in different cancers.
Collapse
Affiliation(s)
- Gurdip K Azad
- Cancer Imaging Department, Division of Imaging Sciences and Biomedical Engineering, King's College London, St Thomas' Hospital, London, UK
| | - Gary J Cook
- Cancer Imaging Department, Division of Imaging Sciences and Biomedical Engineering, King's College London, St Thomas' Hospital, London, UK; Clinical PET Centre, St Thomas' Hospital, London, UK.
| |
Collapse
|
8
|
Hogan MP, Goldman DA, Dashevsky B, Riedl CC, Gönen M, Osborne JR, Jochelson M, Hudis C, Morrow M, Ulaner GA. Comparison of 18F-FDG PET/CT for Systemic Staging of Newly Diagnosed Invasive Lobular Carcinoma Versus Invasive Ductal Carcinoma. J Nucl Med 2015; 56:1674-80. [PMID: 26294295 DOI: 10.2967/jnumed.115.161455] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 08/04/2015] [Indexed: 12/19/2022] Open
Abstract
UNLABELLED Although guidelines such as those of the National Comprehensive Cancer Network consider (18)F-FDG PET/CT for systemic staging of newly diagnosed stage III breast cancer patients, factors in addition to stage may influence the utility of PET/CT. Because invasive lobular carcinoma (ILC) is less conspicuous than invasive ductal carcinoma (IDC) on (18)F-FDG PET, we hypothesized that tumor histology may be one such factor. We evaluated PET/CT systemic staging of patients newly diagnosed with ILC compared with IDC. METHODS In this Institutional Review Board-approved retrospective study, our Hospital Information System was screened for ILC patients who underwent PET/CT in 2006-2013 before systemic or radiation therapy. Initial stage was determined from examination, mammography, ultrasound, MR, or surgery. PET/CT was performed to identify unsuspected distant metastases. A sequential cohort of stage III IDC patients was evaluated for comparison. Upstaging rates were compared using the Pearson χ(2) test. RESULTS The study criteria were fulfilled by 146 ILC patients. PET/CT revealed unsuspected distant metastases in 12 (8%): 0 of 8 with initial stage I, 2 of 50 (4%) stage II, and 10 of 88 (11%) stage III. Upstaging to IV by PET/CT was confirmed by biopsy in all cases. Three of 12 upstaged patients were upstaged only by the CT component of the PET/CT, as the metastases were not (18)F-FDG-avid. In the comparison stage III IDC cohort, 22% (20/89) of patients were upstaged to IV by PET/CT. All 20 demonstrated (18)F-FDG-avid metastases. The relative risk of PET/CT revealing unsuspected distant metastases in stage III IDC patients was 1.98 times (95% confidence interval, 0.98-3.98) that of stage III ILC patients (P = 0.049). For (18)F-FDG-avid metastases, the relative risk of PET/CT revealing unsuspected (18)F-FDG-avid distant metastases in stage III IDC patients was 2.82 times (95% confidence interval, 1.26-6.34) that of stage III ILC patients (P = 0.007). CONCLUSION (18)F-FDG PET/CT was more likely to reveal unsuspected distant metastases in stage III IDC patients than in stage III ILC patients. In addition, some ILC patients were upstaged by non-(18)F-FDG-avid lesions visible only on the CT images. Overall, the impact of PET/CT on systemic staging may be lower for ILC patients than for IDC patients.
Collapse
Affiliation(s)
- Molly P Hogan
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York Department of Radiology, Weill Cornell Medical College, New York, New York
| | - Debra A Goldman
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Brittany Dashevsky
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York Department of Radiology, Weill Cornell Medical College, New York, New York
| | - Christopher C Riedl
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Mithat Gönen
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Joseph R Osborne
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York Department of Radiology, Weill Cornell Medical College, New York, New York
| | - Maxine Jochelson
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York Department of Radiology, Weill Cornell Medical College, New York, New York
| | - Clifford Hudis
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; and
| | - Monica Morrow
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Gary A Ulaner
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York Department of Radiology, Weill Cornell Medical College, New York, New York
| |
Collapse
|