1
|
Molavand M, Ebrahimnezhade N, Kiani A, Yousefi B, Nazari A, Majidinia M. Regulation of autophagy by non-coding RNAs in human glioblastoma. Med Oncol 2024; 41:260. [PMID: 39375229 DOI: 10.1007/s12032-024-02513-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/18/2024] [Indexed: 10/09/2024]
Abstract
Glioblastoma, a lethal form of brain cancer, poses substantial challenges in treatment due to its aggressive nature and resistance to standard therapies like radiation and chemotherapy. Autophagy has a crucial role in glioblastoma progression by supporting cellular homeostasis and promoting survival under stressful conditions. Non-coding RNAs (ncRNAs) play diverse biological roles including, gene regulation, chromatin remodeling, and the maintenance of cellular homeostasis. Emerging evidence reveals the intricate regulatory mechanisms of autophagy orchestrated by non-coding RNAs (ncRNAs) in glioblastoma. The diverse roles of these ncRNAs in regulating crucial autophagy-related pathways, including AMPK/mTOR signaling, the PI3K/AKT pathway, Beclin1, and other autophagy-triggering system regulation, sheds light on ncRNAs biological mechanisms in the proliferation, invasion, and therapy response of glioblastoma cells. Furthermore, the clinical implications of targeting ncRNA-regulated autophagy as a promising therapeutic strategy for glioblastoma treatment are in the spotlight of ongoing studies. In this review, we delve into our current understanding of how ncRNAs regulate autophagy in glioblastoma, with a specific focus on microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), and their intricate interplay with therapy response.
Collapse
Affiliation(s)
- Mehran Molavand
- Student Research Commitee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Niloufar Ebrahimnezhade
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Arash Kiani
- Student Research Commite, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Bahman Yousefi
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran.
- Molecular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Ahmad Nazari
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran.
- Tehran University of Medical Sciences, Tehran, Iran.
| | - Maryam Majidinia
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
2
|
Significance of miRNAs on the thyroid cancer progression and resistance to treatment with special attention to the role of cross-talk between signaling pathways. Pathol Res Pract 2023; 243:154371. [PMID: 36791561 DOI: 10.1016/j.prp.2023.154371] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023]
Abstract
Thyroid cancer (TC) is the most prevalent endocrine malignant tumor. It has many types, the Papillary thyroid cancer (PTC)(most common and follicular thyroid carcinoma (FTC). Several risk factors have been associated with TC radiation exposure, autoimmunity, and genetics. Microribonucleic acids (miRNAs) are the most important genetic determinants of TC. They are small chains of nucleic acids that are able to inhibit the expression of several target genes. They could target several genes involved in TC proliferation, angiogenesis, apoptosis, development, and even resistance to therapy. Besides, they could influence the stemness of TC. Moreover, they could regulate several signaling pathways such as WNT/β-catenin, PI3K/AKT/mTOR axis, JAK/STAT, TGF- β, EGFR, and P53. Besides signaling pathways, miRNAs are also involved in the resistance of TC to major treatments such as surgery, thyroid hormone-inhibiting therapy, radioactive iodine, and adjuvant radiation. The stability and sensitivity of several miRNAs might be exploited as an approach for the usage of miRNAs as diagnostic and/or prognostic tools in TC.
Collapse
|
3
|
Yuan J, Guo Y. Targeted Therapy for Anaplastic Thyroid Carcinoma: Advances and Management. Cancers (Basel) 2022; 15:cancers15010179. [PMID: 36612173 PMCID: PMC9818071 DOI: 10.3390/cancers15010179] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/17/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
Anaplastic thyroid carcinoma (ATC) is a rare and highly fatal cancer with the worst prognosis of all thyroid carcinoma (TC) histological subtypes and no standard treatment. In recent years, the explosion of investigations on ATC-targeted agents has provided a new treatment strategy for this malignant condition, and a review of these studies is warranted. We conducted a comprehensive literature search for ATC-targeted drug studies and compiled a summary of their efficacy and adverse effects (AEs) to provide new insights. Multiple clinical trials have demonstrated the efficacy and safety of dabrafenib in combination with trametinib for the treatment of ATC, but vemurafenib and NTRK inhibitors showed limited clinical responses. We found that the previously valued therapeutic effect of lenvatinib may be unsatisfactory; combining tyrosine kinase (TK) inhibitors (TKIs) with other agents results in a higher rate of clinical benefit. In addition, specific medications, including RET inhibitors, mTOR inhibitors, CDK4/6 inhibitors, and Combretastatin A4-phosphate (CA4P), offer tremendous therapeutic potential. The AEs reported for all agents are relatively numerous but largely manageable clinically. More clinical trials are expected to further confirm the effectiveness and safety of these targeted drugs for ATC.
Collapse
Affiliation(s)
- Jiaqian Yuan
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yong Guo
- Department of Medical Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310001, China
- Correspondence:
| |
Collapse
|
4
|
Gao Y, Pan Y, Wang T, Yao Y, Yuan W, Zhu X, Wang K. MicroRNA-99a-3p/GRP94 axis affects metastatic progression of human papillary thyroid carcinoma by regulating ITGA2 expression and localization. Acta Biochim Biophys Sin (Shanghai) 2021; 53:1650-1661. [PMID: 34687203 DOI: 10.1093/abbs/gmab147] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Indexed: 12/24/2022] Open
Abstract
Papillary thyroid cancer (PTC) usually has favorable prognosis; however, distant metastasis is a leading cause of death associated with PTC. MicroRNA-99a-3p (miR-99a-3p) is a member of the miR-99 family that is shown to be a tumor suppressor in various human cancers including the anaplastic thyroid cancer, another type of thyroid cancer. The Cancer Genome Atlas database and our previous study reported that miR-99a-3p is downregulated in human PTC tissues as well as human papillary thyroid carcinoma B-CPAP and TPC-1 cell lines. However, its pathological role in PTC remains unclear, especially its impact on PTC metastasis. In the present study, the role of miR-99a-3p in PTC metastasis was molecularly evaluated in in vitro and in vivo models. Our functional study revealed that overexpressing miR-99a-3p significantly suppresses epithelial-mesenchymal transition (EMT) and anoikis resistance as well as migration and invasion of B-CPAP and TPC-1 cells. The mechanical study indicated that glucose-regulated protein 94 (GRP94) is the direct target of miR-99a-3p. Moreover, GRP94 overexpression reverses the inhibitory effect of miR-99a-3p on PTC metastasis. In addition, the miR-99a-3p/GRP94 axis exerts its effect via inhibiting the expression and cytoplasmic relocation of integrin 2α (ITGA2). Furthermore, in vivo experiments confirmed that miR-99a-3p significantly inhibits tumor growth and lung metastasis in PTC xenograft mice. Overall, our findings suggested that the miR-99a-3p/GRP94/ITGA2 axis may be a novel therapeutic target for the prevention of PTC metastasis.
Collapse
Affiliation(s)
- Yun Gao
- Department of Internal Medicine, Jiangyuan Hospital Affiliated to Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Yi Pan
- Department of Internal Medicine, Jiangyuan Hospital Affiliated to Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Tingting Wang
- Department of Internal Medicine, Jiangyuan Hospital Affiliated to Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Ying Yao
- Department of Pharmacy, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi 214002, China
| | - Wenbo Yuan
- Department of Pharmacy, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi 214002, China
| | - Xue Zhu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Ke Wang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| |
Collapse
|
5
|
Poorly Differentiated and Anaplastic Thyroid Cancer: Insights into Genomics, Microenvironment and New Drugs. Cancers (Basel) 2021; 13:cancers13133200. [PMID: 34206867 PMCID: PMC8267688 DOI: 10.3390/cancers13133200] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary In the last decades, many researchers produced promising data concerning genetics and tumor microenvironment of poorly differentiated thyroid cancer (PDTC) and anaplastic thyroid cancer (ATC). They are trying to tear the veil covering these orphan cancers, suggesting new therapeutic weapons as single or combined therapies. Abstract PDTC and ATC present median overall survival of 6 years and 6 months, respectively. In spite of their rarity, patients with PDTC and ATC represent a significant clinical problem, because of their poor survival and the substantial inefficacy of classical therapies. We reviewed the newest findings about genetic features of PDTC and ATC, from mutations occurring in DNA to alterations in RNA. Therefore, we describe their tumor microenvironments (both immune and not-immune) and the interactions between tumor and neighboring cells. Finally, we recapitulate how this upcoming evidence are changing the treatment of PDTC and ATC.
Collapse
|
6
|
Eniafe J, Jiang S. MicroRNA-99 family in cancer and immunity. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 12:e1635. [PMID: 33230974 DOI: 10.1002/wrna.1635] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 12/19/2022]
Abstract
The microRNA (miR)-99 family comprising miR-99a, miR-99b, and miR-100 is an evolutionarily conserved family with existence dating prior to the bilaterians. Members are typically oncogenic in leukemia while their functional roles in other cancers alternate between that of a tumor suppressor and a tumor promoter. Targets of the miR-99 family rank in the lists of oncogenes and tumor suppressors, thereby illustrating the dual role of this miR family as oncogenic miRs (oncomiRs) and tumor suppressing miRs (TSmiRs) in different cellular contexts. In addition to their functional roles in cancers, miR-99 family is implicated in the modulation of macrophage inflammatory responses and T-cell subsets biology, thereby exerting critical roles in the maintenance of tissue homeostasis, establishment of peripheral tolerance as well as resolution of an inflammatory reaction. Here, we review emerging knowledge of this miR family and discuss remaining concerns linked to their activities. A better dissection of the functional roles of miR-99 family members in cancer and immunity will help in the development of novel miR-99-based therapeutics for the treatment of human cancer and immune-related diseases. This article is categorized under: RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Joseph Eniafe
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA
| | - Shuai Jiang
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA
| |
Collapse
|
7
|
Garrido-Cano I, Constâncio V, Adam-Artigues A, Lameirinhas A, Simón S, Ortega B, Martínez MT, Hernando C, Bermejo B, Lluch A, Lopes P, Henrique R, Jerónimo C, Cejalvo JM, Eroles P. Circulating miR-99a-5p Expression in Plasma: A Potential Biomarker for Early Diagnosis of Breast Cancer. Int J Mol Sci 2020; 21:ijms21197427. [PMID: 33050096 PMCID: PMC7582935 DOI: 10.3390/ijms21197427] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/02/2020] [Accepted: 10/06/2020] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs have emerged as new diagnostic and therapeutic biomarkers for breast cancer. Herein, we analysed miR-99a-5p expression levels in primary tumours and plasma of breast cancer patients to evaluate its usefulness as a minimally invasive diagnostic biomarker. MiR-99a-5p expression levels were determined by quantitative real-time PCR in three independent cohorts of patients: (I) Discovery cohort: breast cancer tissues (n = 103) and healthy breast tissues (n = 26); (II) Testing cohort: plasma samples from 105 patients and 98 healthy donors; (III) Validation cohort: plasma samples from 89 patients and 85 healthy donors. Our results demonstrated that miR-99a-5p was significantly downregulated in breast cancer tissues compared to healthy breast tissues. Conversely, miR-99a-5p levels were significantly higher in breast cancer patients than in healthy controls in plasma samples from both testing and validation cohorts, and ROC curve analysis revealed that miR-99a-5p has good diagnostic potential even to detect early breast cancer. In conclusion, miR-99a-5p’s deregulated expression distinguished healthy patients from breast cancer patients in two different types of samples (tissues and plasma). Interestingly, expression levels in plasma were significantly lower in healthy controls than in early-stage breast cancer patients. Our findings suggest circulating miR-99a-5p as a novel promising non-invasive biomarker for breast cancer detection.
Collapse
Affiliation(s)
- Iris Garrido-Cano
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain; (I.G.-C.); (A.A.-A.); (A.L.); (S.S.); (B.O.); (M.T.M.); (C.H.); (B.B.)
- Cancer Biology and Epigenetics Group–Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), 4200-072 Porto, Portugal; (V.C.); (P.L.); (R.H.)
| | - Vera Constâncio
- Cancer Biology and Epigenetics Group–Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), 4200-072 Porto, Portugal; (V.C.); (P.L.); (R.H.)
| | - Anna Adam-Artigues
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain; (I.G.-C.); (A.A.-A.); (A.L.); (S.S.); (B.O.); (M.T.M.); (C.H.); (B.B.)
| | - Ana Lameirinhas
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain; (I.G.-C.); (A.A.-A.); (A.L.); (S.S.); (B.O.); (M.T.M.); (C.H.); (B.B.)
| | - Soraya Simón
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain; (I.G.-C.); (A.A.-A.); (A.L.); (S.S.); (B.O.); (M.T.M.); (C.H.); (B.B.)
- Clinical Oncology Department, Hospital Clínico Universitario de Valencia, 46010 Valencia, Spain;
| | - Belen Ortega
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain; (I.G.-C.); (A.A.-A.); (A.L.); (S.S.); (B.O.); (M.T.M.); (C.H.); (B.B.)
- Clinical Oncology Department, Hospital Clínico Universitario de Valencia, 46010 Valencia, Spain;
| | - María Teresa Martínez
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain; (I.G.-C.); (A.A.-A.); (A.L.); (S.S.); (B.O.); (M.T.M.); (C.H.); (B.B.)
- Clinical Oncology Department, Hospital Clínico Universitario de Valencia, 46010 Valencia, Spain;
| | - Cristina Hernando
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain; (I.G.-C.); (A.A.-A.); (A.L.); (S.S.); (B.O.); (M.T.M.); (C.H.); (B.B.)
- Clinical Oncology Department, Hospital Clínico Universitario de Valencia, 46010 Valencia, Spain;
| | - Begoña Bermejo
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain; (I.G.-C.); (A.A.-A.); (A.L.); (S.S.); (B.O.); (M.T.M.); (C.H.); (B.B.)
- Clinical Oncology Department, Hospital Clínico Universitario de Valencia, 46010 Valencia, Spain;
| | - Ana Lluch
- Clinical Oncology Department, Hospital Clínico Universitario de Valencia, 46010 Valencia, Spain;
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
- Department of Medicine, Universitat de València, 46010 Valencia, Spain
| | - Paula Lopes
- Cancer Biology and Epigenetics Group–Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), 4200-072 Porto, Portugal; (V.C.); (P.L.); (R.H.)
- Department of Pathology, Portuguese Oncology Institute of Porto, 4200-072 Porto, Portugal
| | - Rui Henrique
- Cancer Biology and Epigenetics Group–Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), 4200-072 Porto, Portugal; (V.C.); (P.L.); (R.H.)
- Department of Pathology, Portuguese Oncology Institute of Porto, 4200-072 Porto, Portugal
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar-University of Porto (ICBAS-UP), 4050-313 Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group–Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), 4200-072 Porto, Portugal; (V.C.); (P.L.); (R.H.)
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar-University of Porto (ICBAS-UP), 4050-313 Porto, Portugal
- Correspondence: (C.J.); (J.M.C.); (P.E.); Tel.: +351-962447005 (C.J.); +34-961973517 (J.M.C.); +34-961973517 (P.E.)
| | - Juan Miguel Cejalvo
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain; (I.G.-C.); (A.A.-A.); (A.L.); (S.S.); (B.O.); (M.T.M.); (C.H.); (B.B.)
- Clinical Oncology Department, Hospital Clínico Universitario de Valencia, 46010 Valencia, Spain;
- Correspondence: (C.J.); (J.M.C.); (P.E.); Tel.: +351-962447005 (C.J.); +34-961973517 (J.M.C.); +34-961973517 (P.E.)
| | - Pilar Eroles
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain; (I.G.-C.); (A.A.-A.); (A.L.); (S.S.); (B.O.); (M.T.M.); (C.H.); (B.B.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
- COST Action CA15204, 1210 Brussels, Belgium
- Department of Physiology, Universitat de València, 46010 Valencia, Spain
- Correspondence: (C.J.); (J.M.C.); (P.E.); Tel.: +351-962447005 (C.J.); +34-961973517 (J.M.C.); +34-961973517 (P.E.)
| |
Collapse
|
8
|
Gholami M, Larijani B, Zahedi Z, Mahmoudian F, Bahrami S, Omran SP, Saadatian Z, Hasani-Ranjbar S, Taslimi R, Bastami M, Amoli MM. Inflammation related miRNAs as an important player between obesity and cancers. J Diabetes Metab Disord 2019; 18:675-692. [PMID: 31890692 PMCID: PMC6915181 DOI: 10.1007/s40200-019-00459-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/23/2019] [Indexed: 12/13/2022]
Abstract
The growing trend in addition to their burden, prevalence, and death has made obesity and cancer two of the most concerning diseases worldwide. Obesity is an important risk factor for common types of cancers where the risk of some cancers is directly related to the obesity. Various inflammatory mechanisms and increased level of pro-inflammatory cytokines have been investigated in many previous studies, which play key roles in the pathophysiology and development of both of these conditions. On the other hand, in the recent years, many studies have individually focused on the biomarker's role and therapeutic targeting of microRNAs (miRNAs) in different types of cancers and obesity including newly discovered small noncoding RNAs (sncRNAs) which regulate gene expression and RNA silencing. This study is a comprehensive review of the main inflammation related miRNAs in obesity/obesity related traits. For the first time, the main roles of miRNAs in obesity related cancers have been discussed in response to the question raised in the following hypothesis; do the main inflammatory miRNAs link obesity with obesity-related cancers regarding their role as biomarkers? Graphical abstractConceptual design of inflammatory miRNAs which provide link between obesity and cancers.
Collapse
Affiliation(s)
- Morteza Gholami
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Zhila Zahedi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Mahmoudian
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Samira Bahrami
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sima Parvizi Omran
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, 5th floor, Shariati Hospital, North Kargar Ave, Tehran, Iran
| | - Zahra Saadatian
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shirin Hasani-Ranjbar
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Taslimi
- Department of Gastroenterology, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, IR Iran
| | - Milad Bastami
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahsa M. Amoli
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, 5th floor, Shariati Hospital, North Kargar Ave, Tehran, Iran
| |
Collapse
|
9
|
Tao C, Sun H, Sang W, Li S. miRNA-99a inhibits cell invasion and migration in liver cancer by directly targeting HOXA1. Oncol Lett 2019; 17:5108-5114. [PMID: 31186723 PMCID: PMC6507307 DOI: 10.3892/ol.2019.10199] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 03/14/2019] [Indexed: 12/18/2022] Open
Abstract
Liver cancer is a malignant tumor that threatens human health worldwide. It has poor prognosis rates and ineffective therapeutic options. Recently, various miRNAs have been proven to exert promoting or inhibiting functions in different malignancies. However, the definitive mechanisms of miR-99a in liver cancer remain unclear. In the current study, we explored the relationships between the expression of miR-99a and HOXA1 in liver cancer tissues and cells to explore their combined effects on the occurrence and metastasis of liver cancer. The expression of miR-99a and HOXA1 in liver cancer tissue samples and cells was measured by RT-qPCR. Following transfection, transwell assays were conducted to assess the invasion and migration capacities of liver cancer cells. Subsequently, western blots and luciferase reporter assays were performed in liver cancer cells to identify the target of miR-99a. The data indicated that miRNA-99a expression was significantly reduced in both liver cancer tissue samples and cells compared with normal tissues and normal liver cells respectively. By contrast, the HOXA1 expression levels in liver cancer tissues and cells were significantly increased in contrast to the control group. The findings also revealed that the miR-99a expression was negatively correlated with HOXA1 expression in liver cancer tissue samples and miR-99a could suppress cell invasion and migration by targeting HOXA1 in liver cancer.
Collapse
Affiliation(s)
- Changming Tao
- Department of Hepatology, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Huiling Sun
- Department of Gastroenterology, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Weiwei Sang
- Department of Gastroenterology, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Shanshan Li
- Department of Gastroenterology, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| |
Collapse
|
10
|
Chen L, Hu J, Pan L, Yin X, Wang Q, Chen H. Diagnostic and prognostic value of serum miR-99a expression in oral squamous cell carcinoma. Cancer Biomark 2019; 23:333-339. [PMID: 30223386 DOI: 10.3233/cbm-181265] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Despite progress in the treatment of oral squamous cell carcinoma (OSCC) over past years, the prognosis for OSCC patients remains dismal. MicroRNA-99a (miR-99a) has been found to involve in the development of many cancer types, but its clinical role in OSCC is unclear. OBJECTIVE The aim of this study was to explore the clinical implications of serum miR-99a in OSCC. METHODS This study detected serum miR-99a levels in 121 OSCC cases and 55 healthy controls by using quantitative reverse transcription polymerase chain reaction (qRT-PCR) analysis. RESULTS The data showed that serum miR-99a expression was significantly decreased in OSCC patients compared with normal controls. OSCC patients with low miR-99a expression experienced more frequent poor differentiation and advanced clinical stage. Furthermore, in screening OSCC cases from normal controls, miR-99a could yield a receiver-operating characteristic (ROC) area under the curve (AUC) of 0.911 with 83.6% specificity and 80.2% sensitivity. Notably, patients with high miR-99a expression had longer overall survival and recurrence free survival. Finally, serum miR-99a was identified to be an independent prognostic indicator for OSCC. CONCLUSIONS These results suggested that miR-99a might be a valuable marker for the prediction of early detection and prognosis in OSCC.
Collapse
Affiliation(s)
- Liang Chen
- Department of Endodontics, Jinan Stomatological Hospital, Jinan, Shandong, China.,Department of Endodontics, Jinan Stomatological Hospital, Jinan, Shandong, China
| | - Jing Hu
- Department of Stomatology, PLA Army General Hospital, Beijing, China.,Department of Endodontics, Jinan Stomatological Hospital, Jinan, Shandong, China
| | - Lina Pan
- Department of Endodontics, Jinan Stomatological Hospital, Jinan, Shandong, China
| | - Xiaochun Yin
- Department of Endodontics, Jinan Stomatological Hospital, Jinan, Shandong, China
| | - Qibao Wang
- Department of Endodontics, Jinan Stomatological Hospital, Jinan, Shandong, China
| | - Hui Chen
- Department of Endodontics, Jinan Stomatological Hospital, Jinan, Shandong, China
| |
Collapse
|
11
|
Lin JF, Tsai TF, Lin YC, Chen HE, Chou KY, Hwang TIS. Benzyl isothiocyanate suppresses IGF1R, FGFR3 and mTOR expression by upregulation of miR-99a-5p in human bladder cancer cells. Int J Oncol 2019; 54:2106-2116. [PMID: 30942430 DOI: 10.3892/ijo.2019.4763] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 11/26/2018] [Indexed: 11/06/2022] Open
Abstract
Benzyl isothiocyanate (BITC) is known for its pharmacological properties against malignant neoplasm, including bladder cancer (BC). The current study investigated microRNAs (miRNA or miR) expression profiles with an emphasis on the role of miR‑99a‑5p in BITC‑treated BC cells. A quantitative polymerase chain reaction (qPCR) microarray containing 79 aberrantly expressed miRNAs in BC was used to detect miRNA expression in BITC‑treated cells. Several dysregulated miRNAs were identified and further confirmed using miRNA stem‑loop reverse transcription (RT)‑qPCR in 5637 cells. Insulin‑like growth factor 1 receptor (IGF1R), fibroblast growth factor receptor 3 (FGFR3) and mammalian target of rapamycin (mTOR) expression were determined by RT‑qPCR and western blotting. Cell viability was evaluated using WST‑1 reagent and apoptosis was monitored by determining the levels of cleaved‑poly ADP‑ribose polymerase and cleaved‑caspase‑3. BITC treatment significantly upregulated miR‑99a‑5p levels in a dose‑dependent manner. miR‑99a‑5p overexpression decreased IGF1R, mTOR and FGFR3 expression, predicted targets of miR‑99a‑5p. In addition, antisense miR‑99a‑5p sequences inhibited BITC‑induced miR‑99a‑5p overexpression, resulting in the restoration of protein expression and decreased cell viability. The current study identified multiple miRNAs responsive to BITC treatment, including miR‑99a‑5p. In addition, the induction of miR‑99a‑5p decreased IGF1R, mTOR and FGFR3 expression in BITC‑treated BC cells. The current study provided novel insight into the antitumor mechanism by which BITC restores miR‑99a‑5p expression and decreases cancer cell survival.
Collapse
Affiliation(s)
- Ji-Fan Lin
- Central Laboratory, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei 111, Taiwan, R.O.C
| | - Te-Fu Tsai
- Division of Urology, School of Medicine, Fu-Jen Catholic University, New Taipei City 242, Taiwan, R.O.C
| | - Yi-Chia Lin
- Division of Urology, School of Medicine, Fu-Jen Catholic University, New Taipei City 242, Taiwan, R.O.C
| | - Hung-En Chen
- Division of Urology, School of Medicine, Fu-Jen Catholic University, New Taipei City 242, Taiwan, R.O.C
| | - Kuang-Yu Chou
- Division of Urology, School of Medicine, Fu-Jen Catholic University, New Taipei City 242, Taiwan, R.O.C
| | - Thomas I-Sheng Hwang
- Division of Urology, School of Medicine, Fu-Jen Catholic University, New Taipei City 242, Taiwan, R.O.C
| |
Collapse
|
12
|
Bilbao-Arribas M, Abendaño N, Varela-Martínez E, Reina R, de Andrés D, Jugo BM. Expression analysis of lung miRNAs responding to ovine VM virus infection by RNA-seq. BMC Genomics 2019; 20:62. [PMID: 30658565 PMCID: PMC6339376 DOI: 10.1186/s12864-018-5416-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 12/26/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are short endogenous, single-stranded, noncoding small RNA molecules of approximately 22 nucleotides in length. They regulate gene expression posttranscriptionally by silencing mRNA expression, thus orchestrating many physiological processes. The Small Ruminant Lentiviruses (SRLV) group includes the Visna Maedi Virus (VMV) and Caprine Arthritis Encephalitis (CAEV) viruses, which cause a disease in sheep and goats characterized by pneumonia, mastitis, arthritis and encephalitis. Their main target cells are from the monocyte/macrophage lineage. To date, there are no studies on the role of miRNAs in this viral disease. RESULTS Using RNA-seq technology and bioinformatics analysis, the expression levels of miRNAs during different clinical stages of infection were studied. A total of 212 miRNAs were identified, of which 46 were conserved sequences in other species but found for the first time in sheep, and 12 were completely novel. Differential expression analysis comparing the uninfected and seropositive groups showed changes in several miRNAs; however, no significant differences were detected between seropositive asymptomatic and diseased sheep. The robust increase in the expression level of oar-miR-21 is consistent with its increased expression in other viral diseases. Furthermore, the target prediction of the dysregulated miRNAs revealed that they control genes involved in proliferation-related signalling pathways, such as the PI3K-Akt, AMPK and ErbB pathways. CONCLUSIONS To the best of our knowledge, this is the first study reporting miRNA profiling in sheep in response to SRLV infection. The known functions of oar-miR-21 as a regulator of inflammation and proliferation appear to be a possible cause of the lesions caused in the sheep's lungs. This miRNA could be an indicator for the severity of the lung lesions, or a putative target for therapeutic intervention.
Collapse
Affiliation(s)
- Martin Bilbao-Arribas
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country UPV/EHU, 48080, Bilbao, Spain
| | - Naiara Abendaño
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country UPV/EHU, 48080, Bilbao, Spain
| | - Endika Varela-Martínez
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country UPV/EHU, 48080, Bilbao, Spain
| | - Ramsés Reina
- Institute of Agrobiotechnology (CSIC-UPNA-Government of Navarra), Avenida de Pamplona 123, 31192 Mutilva, Navarra, Spain
| | - Damián de Andrés
- Institute of Agrobiotechnology (CSIC-UPNA-Government of Navarra), Avenida de Pamplona 123, 31192 Mutilva, Navarra, Spain
| | - Begoña M Jugo
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country UPV/EHU, 48080, Bilbao, Spain.
| |
Collapse
|
13
|
Ramírez-Moya J, Santisteban P. miRNA-Directed Regulation of the Main Signaling Pathways in Thyroid Cancer. Front Endocrinol (Lausanne) 2019; 10:430. [PMID: 31312183 PMCID: PMC6614345 DOI: 10.3389/fendo.2019.00430] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 06/14/2019] [Indexed: 12/13/2022] Open
Abstract
In the last two decades, great strides have been made in the study of microRNAs in development and in diseases such as cancer, as reflected in the exponential increase in the number of reviews on this topic including those on undifferentiated and well-differentiated thyroid cancer. Nevertheless, few reviews have focused on understanding the functional significance of the most up- or down-regulated miRNAs in thyroid cancer for the main signaling pathways hyperactivated in this tumor type. The aim of this review is to discuss the major miRNAs targeting proteins of the MAPK, PI3K, and TGFβ pathways, to define their mechanisms of action through the 3'UTR regions of their target genes, and to describe how they affect thyroid tumorigenesis through their actions on cell proliferation, migration, and invasion. Given the importance of miRNAs in cancer as diagnostic, prognostic and therapeutic candidates, a better understanding of this cross-talk might shed new light on the biomedical treatment of thyroid cancer.
Collapse
Affiliation(s)
- Julia Ramírez-Moya
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior Investigaciones Científicas and Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Pilar Santisteban
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior Investigaciones Científicas and Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- *Correspondence: Pilar Santisteban
| |
Collapse
|
14
|
Shang J, Chen ZZ, Wang ZH, Wei TN, Wu WB, Chen WM. [Association of miRNA-196b-5p and miRNA-99a-5p with autophagy and apoptosis in multiple myeloma cells]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2018; 39:766-772. [PMID: 30369190 PMCID: PMC7342263 DOI: 10.3760/cma.j.issn.0253-2727.2018.09.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Indexed: 12/15/2022]
Abstract
Objective: To investigate the relationship between miRNA-196b-5p and miRNA-99a-5p expression and autophagy and apoptosis in multiple myeloma cells. Methods: Human myeloma cell line U266 and normal CD138+ plasma cells were selected as the research objects. The subjects were divided into 45 cases of multiple myeloma patients and 40 healthy controls. The expression of miRNA-196b-5p and miRNA-99a-5p was measured by real-time quantitative PCR, and Western blot was used to determine the expression of autophagy related protein LC3-Ⅱ, LC3-Ⅰ, P62, Beclin-1 expression, apoptosis related protein CL caspase3, CL caspase7, Bcl-2, Bax, and TGF-β/Smad pathway associated proteins TGF-β1, Smad2/3, p-Smad3 and Smad7. The cell apoptosis rate was determined by flow cytometry. The correlation between miRNA expression level and clinical characteristics of multiple myeloma patients was analyzed. Results: Compared with normal plasma cells, the expression of miRNA-196b-5p in myeloma cells increased significantly (0.43±0.15 vs 2.44±0.63 or 2.02±0.85, all P<0.001), the expression of miRNA-99a-5p was significantly decreased (1.87±0.61 vs 0.62±0.15 or 0.80±0.33, P<0.001), LC3-Ⅱ/LC3-Ⅰ increased significantly (P<0.05), Beclin-1 expression increased significantly (P<0.05), P62 expression decreased significantly (P<0.05). The expression of Bax, CL caspase3 and CL caspase7 decreased significantly (P<0.05), and the expression of Bcl-2 increased significantly (P<0.05) and apoptosis rate significantly decreased (P<0.05). After transfected with miRNA-196b-5p mimic or miRNA-99a-5p inhibitor, the LC3-Ⅱ/LC3-Ⅰ of CD138+ plasma cells increased significantly (P<0.05), the expression of Beclin-1 increased significantly (P<0.05), P62 expression decreased significantly (P<0.05), and the apoptosis rate significantly decreased (P<0.05). However, after autophagy inhibitor of 3-MA was administered, the apoptotic rate of the above reaction system did not change significantly (P>0.05). The expression of miRNA-196b-5p and miRNA-99a-5p was significantly correlated with DS and ISS stage in multiple myeloma patients (P<0.05). Conclusion: miRNA-196b-5p and miRNA-99a-5p are closely related to the clinical characteristics of patients with multiple myeloma. The overexpression of miRNA-196b-5p and down regulation of miRNA-99a-5p could inhibit the apoptosis of myeloma cells by up regulation of autophagy, and the mechanism is related to the activation of the TGF-β/Smad signaling pathway.
Collapse
Affiliation(s)
- J Shang
- Fujian Medical University Shengli Clinical Medical College, Department of Hematology, Fujian Provincial Hospital, Fuzhou 350001, China
| | | | | | | | | | | |
Collapse
|
15
|
Tsai TF, Lin JF, Chou KY, Lin YC, Chen HE, Hwang TIS. miR-99a-5p acts as tumor suppressor via targeting to mTOR and enhances RAD001-induced apoptosis in human urinary bladder urothelial carcinoma cells. Onco Targets Ther 2018; 11:239-252. [PMID: 29379304 PMCID: PMC5757495 DOI: 10.2147/ott.s114276] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Introduction miR-99a-5p, known to play an important role in mammalian target of rapamycin (mTOR) regulation, is downregulated in human bladder cancer. The study aimed to investigate the anticancer activity of miR-99a-5p and the possible mechanism associated with mTOR in bladder cancer cells. Materials and methods Vectors expressing miR-99a-5p were transfected into human urinary bladder urothelial carcinoma (5637 and T24) cells. The level of miR-99a-5p was monitored by microRNA (miRNA) quantitative polymerase chain reaction (QPCR). Luciferase reporter assays were performed to verify the direct binding of miR-99a-5p to mTOR transcripts. The mTOR transcripts and protein levels were measured by QPCR and Western blot, respectively. Cell viability of miR-99a-5p-transfected cells was detected by tetrazolium salt (WST-1). Inhibition of mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2) signaling was detected by the phosphorylation of mTOR and AKT using Western blot. The ability of miR-99a-5p to enhance RAD001-induced apoptosis was determined as the expression of cleaved caspase 3 and levels of DNA fragmentation. Results Transfection of miR-99a-5p-expressing vector elevated the expression level of miR-99a-5p up to sixfold compared to vector-only controls. The results from luciferase assay verified that miR-99a-5p directly binds to the predicted sequence in the 3′ untranslated region (3′-UTR) of mTOR. The levels of mTOR RNA and protein were decreased in miR-99a-5p-transfected cells. Dual inhibition of mTORC1 and mTORC2 by miR-99a-5p was confirmed by the decreased phosphorylation of mTOR (at Ser2448 and Ser2481), phospho-rpS6 and phospho-4EBP1. The phosphorylation of AKT was significantly inhibited in miR-99a-5p-transfected cells upon RAD001 treatment. Enforced expression of miR-99a-5p potentiated RAD001-induced apoptosis in these cells. Conclusion This is the first study showing that miR-99a-5p markedly inhibits the growth of bladder cancer cells via dual inhibition of mTORC1 and mTORC2. Our data demonstrated that forced expression of miR-99a-5p inhibits the feedback of AKT survival pathway and enhances the induction of apoptosis in RAD001-treated bladder cancer cells.
Collapse
Affiliation(s)
| | | | | | | | | | - Thomas I-Sheng Hwang
- Department of Urology.,Division of Urology, Department of Surgery, Shin-Kong Wu Ho-Su Memorial Hospital.,Department of Urology, Taipei Medical University.,Division of Urology, School of Medicine, Fu-Jen Catholic University, Taipei, Taiwan, Republic of China
| |
Collapse
|
16
|
Mei LL, Qiu YT, Huang MB, Wang WJ, Bai J, Shi ZZ. MiR-99a suppresses proliferation, migration and invasion of esophageal squamous cell carcinoma cells through inhibiting the IGF1R signaling pathway. Cancer Biomark 2017; 20:527-537. [DOI: 10.3233/cbm-170345] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
17
|
Adhami M, Haghdoost AA, Sadeghi B, Malekpour Afshar R. Candidate miRNAs in human breast cancer biomarkers: a systematic review. Breast Cancer 2017; 25:198-205. [PMID: 29101635 DOI: 10.1007/s12282-017-0814-8] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 10/31/2017] [Indexed: 10/18/2022]
Abstract
BACKGROUND Breast cancer (BC) is the most prevalent cancer and the main cause of cancer deaths among females around the world. For early diagnosis of BC, there would be an immediate and essential requirement to search for sensitive biomarkers. METHODS To identify candidate miRNA biomarkers for BC, we performed a general systematic review regarding the published miRNA profiling researches comparing miRNA expression level between BC and normal tissues. A miRNA ranking system was selected, which considered frequency of comparisons in direction and agreement of differential expression. RESULTS We determined that two miRNAs (mir-21 and miR-210) were upregulated consistently and six miRNAs (miR-145, miR-139-5p, miR-195, miR-99a, miR-497 and miR-205) were downregulated consistently in at least three studies. MiR-21 as the most consistently reported miRNA was upregulated in six profiling studies. CONCLUSIONS Although these miRNAs require being validated and further investigated, they could be potential candidates for BC miRNA biomarkers and used for early prognosis or diagnosis.
Collapse
Affiliation(s)
- Masoumeh Adhami
- Modeling in Health Research Center, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Akbar Haghdoost
- Modeling in Health Research Center, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Balal Sadeghi
- Food Hygiene and Public Health Department, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran.
| | - Reza Malekpour Afshar
- Pathology and Stem Cell Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
18
|
Kan Q, Su Y, Yang H. MicroRNA-335 is downregulated in papillary thyroid cancer and suppresses cancer cell growth, migration and invasion by directly targeting ZEB2. Oncol Lett 2017; 14:7622-7628. [PMID: 29344210 DOI: 10.3892/ol.2017.7126] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 08/08/2017] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs (miRs) are a group of short, endogenous, non-protein-coding and single-stranded RNAs that regulate gene expression by binding to the 3'-untranslated region (3'UTR) of mRNAs, which results in their degradation or translational repression. The aim of the present study was to investigate the expression and function of miR-335 in human papillary thyroid cancer (PTC). Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was performed to quantify the relative miR-335 expression levels in PTC tissues and cell lines. The effect of miR-335 on the proliferation, migration and invasion of PTC cells was assessed by an MTT assay, and transwell migration and invasion assays, respectively. Dual-luciferase reporter assays were employed to explore whether miR-335 directly targeted the 3'UTR of the potential target gene zinc finger E-box binding homeobox 2 (ZEB2). RT-qPCR and western blotting were adopted to assess the effect of miR-335 on the mRNA and protein expression of ZEB2. RT-qPCR revealed that miR-335 was downregulated in PTC tissues and cell lines. The MTT assay and transwell migration and invasion assays demonstrated that the overexpression of miR-335 significantly inhibited the proliferation, migration and invasion of PTC cells. ZEB2 was identified as a direct target of miR-335 with computational analysis, which was confirmed with a dual-luciferase reporter assay, RT-qPCR and western blotting. The knockdown of ZEB2 significantly inhibited the proliferation, migration and invasion of PTC cells, indicating that ZEB2 may be a functional target of miR-335. Taken together, these findings suggested that miR-335 functioned as a tumor suppressor and suppressed the growth and metastatic behavior of PTC cells by targeting ZEB2.
Collapse
Affiliation(s)
- Quan'e Kan
- Department of Endocrinology, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Yong Su
- Department of Endocrinology, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Huihui Yang
- Department of Endocrinology, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P.R. China
| |
Collapse
|
19
|
Mizrahi A, Barzilai A, Gur-Wahnon D, Ben-Dov IZ, Glassberg S, Meningher T, Elharar E, Masalha M, Jacob-Hirsch J, Tabibian-Keissar H, Barshack I, Roszik J, Leibowitz-Amit R, Sidi Y, Avni D. Alterations of microRNAs throughout the malignant evolution of cutaneous squamous cell carcinoma: the role of miR-497 in epithelial to mesenchymal transition of keratinocytes. Oncogene 2017; 37:218-230. [PMID: 28925390 DOI: 10.1038/onc.2017.315] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 07/05/2017] [Accepted: 07/31/2017] [Indexed: 12/18/2022]
Abstract
Skin carcinogenesis is known to be a multi-step process with several stages along its malignant evolution. We hypothesized that transformation of normal epidermis to cutaneous squamous cell carcinoma (cSCC) is causally linked to alterations in microRNAs (miRNA) expression. For this end we decided to evaluate their alterations in the pathologic states ending in cSCC. Total RNA was extracted from formalin fixed paraffin embedded biopsies of five stages along the malignant evolution of keratinocytes towards cSCC: Normal epidermis, solar elastosis, actinic keratosis KIN1-2, advanced actinic keratosis KIN3 and well-differentiated cSCC. Next-generation small RNA sequencing was performed. We found that 18 miRNAs are overexpressed and 28 miRNAs are underexpressed in cSCC compared to normal epidermis. miR-424, miR-320, miR-222 and miR-15a showed the highest fold change among the overexpressed miRNAs. And miR-100, miR-101 and miR-497 showed the highest fold change among the underexpressed miRNAs. Heat map of hierarchical clustering analysis of significantly changed miRNAs and principle component analysis disclosed that the most prominent change in miRNAs expression occurred in the switch from 'early' stages; normal epidermis, solar elastosis and early actinic keratosis to the 'late' stages of epidermal carcinogenesis; late actinic keratosis and cSCC. We found several miRNAs with 'stage specific' alterations while others display a clear 'gradual', either progressive increase or decrease in expression along the malignant evolution of keratinocytes. The observed alterations focused in miRNAs involved in the regulation of AKT/mTOR or in those involved in epithelial to mesenchymal transition. We chose to concentrate on the evaluation of the molecular role of miR-497. We found that it induces reversion of epithelial to mesenchymal transition. We proved that SERPINE-1 is its biochemical target. The present study allows us to further study the pathways that are regulated by miRNAs along the malignant evolution of keratinocytes towards cSCC.
Collapse
Affiliation(s)
- A Mizrahi
- Laboratory of Molecular Cell Biology, Center for Cancer Research and Department of Medicine C, Sheba Medical Center, Tel Hashomer, Israel
| | - A Barzilai
- Department of Dermatology and Institute of Pathology, Sheba Medical Center, Tel Hashomer, Israel
| | - D Gur-Wahnon
- Laboratory of Medical Transcriptomics, Nephrology and Hypertension Services, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - I Z Ben-Dov
- Laboratory of Medical Transcriptomics, Nephrology and Hypertension Services, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - S Glassberg
- Laboratory of Molecular Cell Biology, Center for Cancer Research and Department of Medicine C, Sheba Medical Center, Tel Hashomer, Israel
| | - T Meningher
- Laboratory of Molecular Cell Biology, Center for Cancer Research and Department of Medicine C, Sheba Medical Center, Tel Hashomer, Israel
| | - E Elharar
- Laboratory of Molecular Cell Biology, Center for Cancer Research and Department of Medicine C, Sheba Medical Center, Tel Hashomer, Israel
| | - M Masalha
- Laboratory of Molecular Cell Biology, Center for Cancer Research and Department of Medicine C, Sheba Medical Center, Tel Hashomer, Israel.,Faculty of Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - J Jacob-Hirsch
- Center for Cancer Research, Sheba Medical Center, Tel Hashomer, Israel
| | - H Tabibian-Keissar
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel.,Department of Pathology, Sheba Medical Center, Tel Hashomer, Israel
| | - I Barshack
- Faculty of Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Pathology, Sheba Medical Center, Tel Hashomer, Israel
| | - J Roszik
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - R Leibowitz-Amit
- Faculty of Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Institute of Oncology, Sheba Medical Center, Tel Hashomer, Israel
| | - Y Sidi
- Laboratory of Molecular Cell Biology, Center for Cancer Research and Department of Medicine C, Sheba Medical Center, Tel Hashomer, Israel.,Faculty of Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - D Avni
- Laboratory of Molecular Cell Biology, Center for Cancer Research and Department of Medicine C, Sheba Medical Center, Tel Hashomer, Israel
| |
Collapse
|
20
|
Alexandrov PN, Percy ME, Lukiw WJ. Chromosome 21-Encoded microRNAs (mRNAs): Impact on Down's Syndrome and Trisomy-21 Linked Disease. Cell Mol Neurobiol 2017; 38:769-774. [PMID: 28687876 DOI: 10.1007/s10571-017-0514-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 06/20/2017] [Indexed: 12/31/2022]
Abstract
Down's syndrome (DS; also known as trisomy 21; T21) is caused by a triplication of all or part of human chromosome 21 (chr21). DS is the most common genetic cause of intellectual disability attributable to a naturally-occurring imbalance in gene dosage. DS incurs huge medical, healthcare, and socioeconomic costs, and there are as yet no effective treatments for this incapacitating human neurogenetic disorder. There is a remarkably wide variability in the 'phenotypic spectrum' associated with DS; the progression of symptoms and the age of DS onset fluctuate, and there is further variability in the biophysical nature of the chr21 duplication. Besides the cognitive disruptions and dementia in DS patients other serious health problems such as atherosclerosis, altered lipogenesis, Alzheimer's disease, amyotrophic lateral sclerosis (Lou Gehrig's disease), autoimmune disease, various cancers including lymphoma, leukemia, glioma and glioblastoma, status epilepticus, congenital heart disease, hypotonia, manic depression, prostate cancer, Usher syndrome, motor disorders, Hirschsprung disease, and various physical anomalies such as early aging occur at elevated frequencies, and all are part of the DS 'phenotypic spectrum.' This communication will review the genetic link between these fore-mentioned diseases and a small group of just five stress-associated microRNAs (miRNAs)-that include let-7c, miRNA-99a, miRNA-125b, miRNA-155, and miRNA-802-encoded and clustered on the long arm of human chr21 and spanning the chr21q21.1-chr21q21.3 region.
Collapse
Affiliation(s)
- P N Alexandrov
- Russian Academy of Medical Sciences, Moscow, 113152, Russian Federation
| | - M E Percy
- Department of Physiology, University of Toronto, Toronto, Canada
- Department of Obstetrics and Gynecology, Toronto, Canada
- Surrey Place Centre, Toronto, Canada
| | - Walter J Lukiw
- LSU Neuroscience Center, Louisiana State University Health Science Center, 2020 Gravier Street, Suite 904, New Orleans, LA, 70112-2272, USA.
- Department of Ophthalmology, Louisiana State University Health Science Center, New Orleans, LA, 70112, USA.
- Department of Neurology, Louisiana State University Health Science Center, New Orleans, LA, 70112, USA.
| |
Collapse
|
21
|
Liu Y, Zhang B, Shi T, Qin H. miR-182 promotes tumor growth and increases chemoresistance of human anaplastic thyroid cancer by targeting tripartite motif 8. Onco Targets Ther 2017; 10:1115-1122. [PMID: 28280352 PMCID: PMC5338957 DOI: 10.2147/ott.s110468] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Chemotherapy is one of the most effective forms of cancer treatment and has been used in the treatment of various malignant tumors. We have gained significant insight into the mechanisms of chemoresistance but the details of the molecular mechanisms remain unclear. In the present study, we found that tripartite motif 8 (TRIM8) expression was downregulated in anaplastic thyroid cancer (ATC) tissues and cell lines. This downregulation of TRIM8 was significantly correlated with the upregulation of miR-182 in human ATC tissues. Bioinformatic analysis and luciferase reporter assays identified TRIM8 as a direct target of miR-182 in ATC. A functional assay using an MTT assay and colony formation showed that miR-182 induced cellular growth by repressing TRIM8 expression. Additionally, overexpressed miR-182 contributed to the chemoresistance of ATC cells by the repression of TRIM8 expression. In conclusion, these results demonstrate that miR-182/TRIM8 may be a therapeutic target for the treatment of chemoresistant human thyroid papillary cancer.
Collapse
Affiliation(s)
- Yao Liu
- The Fourth Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People’s Republic of China
| | - Bing Zhang
- The Fourth Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People’s Republic of China
| | - Tiefeng Shi
- The Fourth Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People’s Republic of China
| | - Huadong Qin
- The Fourth Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People’s Republic of China
| |
Collapse
|
22
|
Rodríguez-Rodero S, Delgado-Álvarez E, Díaz-Naya L, Martín Nieto A, Menéndez Torre E. Epigenetic modulators of thyroid cancer. ACTA ACUST UNITED AC 2017; 64:44-56. [PMID: 28440770 DOI: 10.1016/j.endinu.2016.09.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 09/14/2016] [Accepted: 09/20/2016] [Indexed: 12/14/2022]
Abstract
There are some well known factors involved in the etiology of thyroid cancer, including iodine deficiency, radiation exposure at early ages, or some genetic changes. However, epigenetic modulators that may contribute to development of these tumors and be helpful to for both their diagnosis and treatment have recently been discovered. The currently known changes in DNA methylation, histone modifications, and non-coding RNAs in each type of thyroid carcinoma are reviewed here.
Collapse
Affiliation(s)
- Sandra Rodríguez-Rodero
- Department of Endocrinology and Nutrition, Hospital Universitario Central de Asturias (HUCA), Oviedo, Asturias, Spain; Cancer Epigenetics Laboratory, Institute of Oncology of Asturias (IUOPA), HUCA, Universidad de Oviedo, Oviedo, Spain
| | - Elías Delgado-Álvarez
- Department of Endocrinology and Nutrition, Hospital Universitario Central de Asturias (HUCA), Oviedo, Asturias, Spain
| | - Lucía Díaz-Naya
- Department of Endocrinology and Nutrition, Hospital Universitario Central de Asturias (HUCA), Oviedo, Asturias, Spain
| | - Alicia Martín Nieto
- Department of Endocrinology and Nutrition, Hospital Universitario Central de Asturias (HUCA), Oviedo, Asturias, Spain
| | - Edelmiro Menéndez Torre
- Department of Endocrinology and Nutrition, Hospital Universitario Central de Asturias (HUCA), Oviedo, Asturias, Spain.
| |
Collapse
|
23
|
Zhang M, Guo Y, Wu J, Chen F, Dai Z, Fan S, Li P, Song T. Roles of microRNA-99 family in human glioma. Onco Targets Ther 2016; 9:3613-9. [PMID: 27382299 PMCID: PMC4920231 DOI: 10.2147/ott.s99363] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Objective Deregulation of microRNA (miR)-99 family members (miR-99a, miR-99b, and miR-100) has been reported to play a crucial role in many cancer types. However, their roles in human gliomas have not been fully elucidated. This study aimed to investigate the expression patterns of miR-99a, miR-99b, and miR-100 in glioma tissues and to evaluate their expression profiles with respect to tumor progression. Methods Quantitative real-time polymerase chain reaction was performed to detect the expression levels of miR-99a, miR-99b, and miR-100 in glioma and matched non-neoplastic brain tissues. Then, the associations of their expression with various clinicopathological features of glioma patients were statistically analyzed. Moreover, the roles of miR-99a, miR-99b, and miR-100 in regulating glioma cell migration and invasion were determined via transwell assay in vitro. Results Compared with non-neoplastic brain tissues, miR-99a, miR-99b, and miR-100 expression levels were all significantly decreased in glioma tissues (all P<0.001). miR-99a-low, miR-99b-low, and miR-100-low expression more frequently occurred in glioma patients with low Karnofsky performance score (<90) and high World Health Organization grade (III–IV). Further functional experiments revealed that the enforced expression of miR-99a, miR-99b, and miR-100 resulted in the inhibition of cellular migration and invasion in glioma cells. Conclusion Our results strongly suggest that the aberrant expression of miR-99a, miR-99b, and miR-100 may be a common feature in human gliomas with aggressive clinicopathological features and may participate in malignant phenotypes of the tumors. These findings highlight the potential of the three miR-99 family members as novel therapeutic targets for human gliomas.
Collapse
Affiliation(s)
- Mingyu Zhang
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha
| | - Yong Guo
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha
| | - Jun Wu
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha
| | - Fenghua Chen
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha
| | - Zhijie Dai
- Institute of Endocrinology and Metabolism, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Shuangshi Fan
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha
| | - Pengcheng Li
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha
| | - Tao Song
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha
| |
Collapse
|
24
|
NF-κB-Regulated miR-99a Modulates Endothelial Cell Inflammation. Mediators Inflamm 2016; 2016:5308170. [PMID: 27403035 PMCID: PMC4923609 DOI: 10.1155/2016/5308170] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 05/15/2016] [Indexed: 11/18/2022] Open
Abstract
Objective. The present study was performed to investigate the effects and mechanisms of miR-99a on LPS-induced endothelial cell inflammation, as well as the regulation of NF-κB on miR-99a production. Methods and Results. ELISA showed that LPS treatment significantly promoted the secretion of inflammatory factors (TNF-α, IL-6, IL-1β, and MCP-1). LPS treatment also inhibited miR-99a production and promoted mTOR expression and NF-κB nuclear translocation. Overexpression of miR-99a suppressed the LPS-induced TNF-α, IL-6, IL-1β, and MCP-1 overproduction, mTOR upregulation, and NF-κB nuclear translocation. The PROMO software analysis indicated NF-κB binding site in the −1643 to −1652 region of miR-99a promoter. Dual luciferase reporter analysis, electrophoretic mobility shift assays (EMSA), and chromosome immunoprecipitation (ChIP) assays demonstrated that NF-κB promoted the transcription of miR-99a by binding to the −1643 to −1652 region of miR-99a promoter. Further studies on HUVECs verified the regulatory effects of NF-κB on miR-99a production. Conclusion. MiR-99a inhibited the LPS-induced HUVECs inflammation via inhibition of the mTOR/NF-κB signal. NF-κB promoted miR-99a production by binding to the −1643 to −1652 region of miR-99a promoter. Considering the importance of endothelial inflammation on cardiovascular diseases, such as atherosclerosis, our results may provide a new insight into the pathogenesis and therapy of atherosclerosis.
Collapse
|
25
|
Xu B, Zhang YW, Zheng SX, Tong XH, Liu YS. Expression Profile of microRNAs and Their Targeted Pathways in Human Ovaries Detected by Next-Generation Small RNA Sequencing. DNA Cell Biol 2016; 35:226-34. [PMID: 26828676 DOI: 10.1089/dna.2015.3176] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Bo Xu
- Center for Reproductive Medicine, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Yuan-Wei Zhang
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Sheng-Xia Zheng
- Center for Reproductive Medicine, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Xian-Hong Tong
- Center for Reproductive Medicine, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Yu-Sheng Liu
- Center for Reproductive Medicine, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, China
| |
Collapse
|
26
|
Zhao J, Chen F, Zhou Q, Pan W, Wang X, Xu J, Ni L, Yang H. Aberrant expression of microRNA-99a and its target gene mTOR associated with malignant progression and poor prognosis in patients with osteosarcoma. Onco Targets Ther 2016; 9:1589-97. [PMID: 27073323 PMCID: PMC4806763 DOI: 10.2147/ott.s102421] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Background The mammalian target of rapamycin (mTOR) has been reported to act as a target gene of microRNA (miR)-99a in various cancer cells and identified as an independent prognostic marker of human osteosarcoma. The aim of this study was to investigate the clinical significance of miR-99a/mTOR axis in human osteosarcoma. Methods A total of 130 pairs of osteosarcoma and matched noncancerous bone tissues were used to detect the expression levels of miR-99a and mTOR mRNA by quantitative real-time polymerase chain reaction. Then, associations of miR-99a and/or mTOR expression with clinico-pathological features and prognosis of patients with osteosarcoma were statistically analyzed. Results The expression levels of miR-99a (tumor vs normal: 2.11±1.03 vs 4.69±1.21, P<0.001) and mTOR mRNA (tumor vs normal: 4.40±1.13 vs 1.74±0.85, P<0.001) in osteosarcoma tissues were, respectively, lower and higher than those in noncancerous bone tissues. The expression levels of miR-99a in osteosarcoma tissues were negatively correlated with those of mTOR mRNA. Additionally, miR-99a-low and/or mTOR-high expression were all significantly associated with advanced surgical stage, positive metastasis and recurrence, and poor response to chemotherapy (all P<0.05). Moreover, patients with osteosarcoma with miR-99a-low and/or mTOR-high expression had shorter overall and disease-free survivals than those in miR-99a-high and/or mTOR-low expression groups. Multivariate Cox analyses showed that miR-99a and/or mTOR expression were all independent prognostic factors of osteosarcoma. Conclusion Our data showed the crucial role of miR-99a/mTOR axis in the malignant progression of human osteosarcoma, implying that conjoined expression of miR-99a and mTOR may offer an attractive novel prognostic marker for this disease.
Collapse
Affiliation(s)
- Jiali Zhao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China; Department of Orthopedics, The Affiliated Huai'an Hospital of Xuzhou Medical College and The Second People's Hospital of Huai'an, Huai'an, People's Republic of China
| | - Fengli Chen
- Central Laboratory, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, People's Republic of China
| | - Quan Zhou
- Department of Orthopedics, The Affiliated Huai'an Hospital of Xuzhou Medical College and The Second People's Hospital of Huai'an, Huai'an, People's Republic of China
| | - Wei Pan
- Department of Orthopedics, The Affiliated Huai'an Hospital of Xuzhou Medical College and The Second People's Hospital of Huai'an, Huai'an, People's Republic of China
| | - Xinhong Wang
- Department of Orthopedics, The Affiliated Huai'an Hospital of Xuzhou Medical College and The Second People's Hospital of Huai'an, Huai'an, People's Republic of China
| | - Jin Xu
- Department of Orthopedics, The Affiliated Huai'an Hospital of Xuzhou Medical College and The Second People's Hospital of Huai'an, Huai'an, People's Republic of China
| | - Li Ni
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| |
Collapse
|
27
|
El-Gewely MR, Andreassen M, Walquist M, Ursvik A, Knutsen E, Nystad M, Coucheron DH, Myrmel KS, Hennig R, Johansen SD. Differentially Expressed MicroRNAs in Meningiomas Grades I and II Suggest Shared Biomarkers with Malignant Tumors. Cancers (Basel) 2016; 8:E31. [PMID: 26950155 PMCID: PMC4810115 DOI: 10.3390/cancers8030031] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 02/19/2016] [Accepted: 02/24/2016] [Indexed: 12/18/2022] Open
Abstract
Meningiomas represent the most common primary tumors of the central nervous system, but few microRNA (miRNA) profiling studies have been reported so far. Deep sequencing of small RNA libraries generated from two human meningioma biopsies WHO grades I (benign) and II (atypical) were compared to excess dura controls. Nineteen differentially expressed miRNAs were validated by RT-qPCR using tumor RNA from 15 patients and 5 meninges controls. Tumor suppressor miR-218 and miR-34a were upregulated relative to normal controls, however, miR-143, miR-193b, miR-451 and oncogenic miR-21 were all downregulated. From 10 selected putative mRNA targets tested by RT-qPCR only four were differentially expressed relative to normal controls. PTEN and E-cadherin (CDH1) were upregulated, but RUNX1T1 was downregulated. Proliferation biomarker p63 was upregulated with nuclear localization, but not detected in most normal arachnoid tissues. Immunoreactivity of E-cadherin was detected in the outermost layer of normal arachnoids, but was expressed throughout the tumors. Nuclear Cyclin D1 expression was positive in all studied meningiomas, while its expression in arachnoid was limited to a few trabecular cells. Meningiomas of grades I and II appear to share biomarkers with malignant tumors, but with some additional tumor suppressor biomarkers expression. Validation in more patients is of importance.
Collapse
Affiliation(s)
- Mohamed Raafat El-Gewely
- Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, NO-9037 Tromsø, Norway.
| | - Morten Andreassen
- Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, NO-9037 Tromsø, Norway.
| | - Mari Walquist
- Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, NO-9037 Tromsø, Norway.
| | - Anita Ursvik
- Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, NO-9037 Tromsø, Norway.
| | - Erik Knutsen
- Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, NO-9037 Tromsø, Norway.
| | - Mona Nystad
- Department of Clinical Medicine, Women's Health and Perinatology Research Group, Faculty of Health Sciences, UiT-The Arctic University of Norway, NO-9037 Tromsø, Norway.
- Department of Obstetrics and Gynecology, University Hospital of North Norway, NO-9038 Tromsø, Norway.
- Department of Medical Genetics, Division of Child and Adolescent Health, University Hospital of North Norway, NO-9038 Tromsø, Norway.
| | - Dag H Coucheron
- Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, NO-9037 Tromsø, Norway.
| | | | - Rune Hennig
- Department of Neurosurgery, University Hospital of North Norway, NO-9038 Tromsø, Norway.
- Department of Clinical Medicine, Division of Neurosurgery, Faculty of Health Sciences, UiT-The Arctic University of Norway, NO-9037 Tromsø, Norway.
| | - Steinar D Johansen
- Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, NO-9037 Tromsø, Norway.
- Marine Genomics Group, Faculty of Biosciences and Aquaculture, Nord University NO-8049 Bodø, Norway.
| |
Collapse
|
28
|
Abstract
Non-coding (nc)RNAs are divided into small ncRNAs and long ncRNAs (lncRNAs). MicroRNAs (miRNAs) are small ncRNAS which are around 22 nucleotides in length that mediate post-transcriptional gene silencing. LncRNAs are greater than 200 bp in length. Each ncRNA can have multiple targets and can be regulated by multiple genetic factors. Because ncRNAs are not translated into proteins, they can only be detected at the nucleic acid level by in situ hybridization, by RT-PCR, or by sequencing which makes their detection more challenging in the routine pathology laboratory. A great deal of new information has accumulated about miRNAs in thyroid tissues during the past decade. Some of these studies have shown that deregulation of miRNAs may be useful in diagnostic pathology. Information about the role of lncRNA in the development of thyroid tumors is in the early stages of development, but new information is accumulating rapidly. In this review, we will discuss the recent progress in our understanding of the relationship between ncRNAs and the development of thyroid cancers and the potential uses of ncRNAs in the diagnosis and prognosis of thyroid tumors.
Collapse
Affiliation(s)
- Ranran Zhang
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, 53792, USA
| | - Heather Hardin
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, 53792, USA
| | - Jidong Chen
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, 53792, USA
| | - Zhenying Guo
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, 53792, USA
| | - Ricardo V Lloyd
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, 53792, USA.
| |
Collapse
|