1
|
Shahraki N, Mehrabian A, Amiri-Darban S, Moosavian SA, Jaafari MR. Preparation and characterization of PEGylated liposomal Doxorubicin targeted with leptin-derived peptide and evaluation of their anti-tumor effects, in vitro and in vivo in mice bearing C26 colon carcinoma. Colloids Surf B Biointerfaces 2021; 200:111589. [PMID: 33545570 DOI: 10.1016/j.colsurfb.2021.111589] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 12/16/2022]
Abstract
Employing targeting ligands on the surface of liposomes has the great potential to improve therapeutic efficacy and decreases off-target effects of liposomal formulations. In the present study, a leptin-derived peptide (Lp31) was evaluated to optimize the therapeutic efficacy of PEGylated liposomal Doxorubicin (PLD, Caelyx®). Leptin is an appetite regulatory hormone that is secreted into the blood circulation by the adipose tissue and it functions via its over expressed receptors (Ob-R) in a wide variety of cancers. Lp31, as targeting ligand, was conjugated to Maleimide-PEG2000-DSPE and then post-inserted into Caelyx. The anti-tumor activity and therapeutic efficacy of leptin modified Caelyx were evaluated and compared with Caelyx. The in vitro experiments demonstrated enhanced cytotoxicity and cellular uptake of Lp31-targeted Caelyx in C26 cell line compared to Caelyx. In BALB/c mice bearing C-26 murine carcinoma, Lp31 modified Caelyx groups exhibited significantly higher doxorubicin concentration at tumor tissue. Furthermore, Lp31 modified Caelyx at the dose of 10 mg/kg resulted in significant tumor growth inhibition and enhanced survival time compared to Caelyx. According to these results, the novel Lp31-liposomal doxorubicin offers great promise for the treatment of colon cancer and merits further investigation.
Collapse
Affiliation(s)
- Naghmeh Shahraki
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amin Mehrabian
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shahrazad Amiri-Darban
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedeh Alia Moosavian
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Heydari Z, Rahaie M, Alizadeh AM, Agah S, Khalighfard S, Bahmani S. Effects of Lactobacillus acidophilus and Bifidobacterium bifidum Probiotics on the Expression of MicroRNAs 135b, 26b, 18a and 155, and Their Involving Genes in Mice Colon Cancer. Probiotics Antimicrob Proteins 2020; 11:1155-1162. [PMID: 30311185 DOI: 10.1007/s12602-018-9478-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A wide range of sources supports that the link between diet and colorectal cancer may be due to an imbalance of the intestinal microflora. In this case, it seems that the probiotics may have a possible molecular mechanism via microRNAs (miRNAs). The present study is aimed to evaluate the effects of Lactobacillus acidophilus and Bifidobacterium bifidum probiotics on the expression of miRNAs 135b, 26b, 18a, and 155 and their target genes, including APC, PTEN, KRAS, and PU.1 in mouse azoxymethane (AOM)-induced colon cancer. Thirty-eight male BALB/c mice were randomly divided into four groups: the control, AOM, Lactobacillus acidophilus, and Bifidobacterium bifidum to deliberate the effects of the probiotics on the miRNAs and their target genes. Except for the control group, the rest groups were weekly given AOM (15 mg/kg, s.c) in three consecutive weeks to induce mouse colon cancer. The animals were given 1.5 g powders of L. acidophilus (1 × 109 cfu/g) and B. bifidum (1 × 109 cfu/g) in 30 cc drinking water in the related groups for 5 months. At the end of the study, the animals were sacrificed and their blood and colon samples were removed for the molecular analyses. The results showed that the expression of the miR-135b, miR-155, and KRAS was increased in the AOM group compared to the control group in both the plasma and the colon tissue samples, and the consumption of the probiotics decreased their expression. Moreover, the miR-26b, miR-18a, APC, PU.1, and PTEN expressions were decreased in the AOM group compared to the control group and the consumption of the probiotics increased their expressions. It seems that Lactobacillus acidophilus and Bifidobacterium bifidum though increasing the expression of the tumor suppressor miRNAs and their target genes and decreasing the oncogenes can improve colon cancer treatment.
Collapse
Affiliation(s)
- Zahra Heydari
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Mahdi Rahaie
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Ali Mohammad Alizadeh
- Cancer Research Center, Tehran University of Medical Sciences, Tehran, 1419733141, Iran.
- Cancer Biology Research Center, Tehran University of Medical Science, Tehran, Iran.
| | - Shahram Agah
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Solmaz Khalighfard
- Cancer Research Center, Tehran University of Medical Sciences, Tehran, 1419733141, Iran
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Sahar Bahmani
- Research and Development Department, Zist Takhmir Company, Tehran, Iran
| |
Collapse
|
3
|
Wang D, Zhu X, Tang X, Li H, Yizhen X, Chen D. Auxiliary antitumor effects of fungal proteins from Hericium erinaceus by target on the gut microbiota. J Food Sci 2020; 85:1872-1890. [PMID: 32460371 DOI: 10.1111/1750-3841.15134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 03/11/2020] [Accepted: 03/16/2020] [Indexed: 12/18/2022]
Abstract
Cancer represents a major disease burden worldwide. Despite continuous advances obtained in medical therapies recently, resistance to standard drugs and adverse effects still represent important causes of therapeutic failure. There is growing evidence that the gut microbiota can affect the response to chemo- and immunotherapeutic drugs by modulating efficacy and/or toxicity, and diet is the most important factor affecting the gut microbiota. In this study, we assessed the auxiliary antitumor effects of immunomodulatory fungal proteins from Hericium erinaceus (HEP) administered with the chemotherapy drug 5-Fluorouracil (5-Fu), and we attempted to identify new potential prebiotic bacteria for auxiliary antitumor treatment. There were 1,455 proteins identified from H. erinaceus. In a xenografted mouse model of cancer, HEP with 5-Fu significantly suppressed tumor growth, inhibited inflammatory markers such as interferon (IFN)-γ, interleukin (IL)-1β, IL-2, IL-6, tumor necrosis factor (TNF)-α, and lipopolysaccharide (LPS), and regulated the expression of Akt, CCDN1, CKD4, FOXM1, MMP7, MYC, PPAR-α, and PPAR-γ. 16S rRNA sequencing showed that HEP ameliorated the dysbacteriosis induced by 5-Fu, as it inhibited certain aerobic and microaerobic bacteria including Parabacteroides, Flavobacteriaceae, Christensenellaceae, Anoxybacillus, Aggregatibacter, Comamonadaceae, Planococcaceae, Desulfovibrionaceae, Sporosarcina, Staphylococcus, Aerococcaceae, and Bilophila in the xenografted mice, and increase some probiotic bacteria such as Bifidobacterium, Gemellales, Blautia, Sutterella, Anaerostipes, Roseburia, Lachnobacterium, Lactobacillus, and Desulfovibrio. This demonstrates that HEP could promote the antitumor efficacy of 5-Fu by improving the microbiota composition, the immune inflammatory response, and homeostasis.
Collapse
Affiliation(s)
- Dongdong Wang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Xiangxiang Zhu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China.,Academy of Life Sciences, Jinan Univ., Guangzhou, Guangdong Province, 510000, China
| | - Xiaocui Tang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Hongye Li
- Academy of Life Sciences, Jinan Univ., Guangzhou, Guangdong Province, 510000, China
| | - Xie Yizhen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Diling Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| |
Collapse
|
4
|
Ognik K, Cholewińska E, Krauze M, Abramowicz K, Matusevicius P. The effect of a probiotic preparation containing Enterococcus faecium DSM 7134 for chickens on growth performance, immune status, and the histology and microbiological profile of the jejunum. ANIMAL PRODUCTION SCIENCE 2019. [DOI: 10.1071/an17173] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The aim of the study was to determine whether and in what dosage and duration of administration a probiotic containing live cultures of Enterococcus faecium, enriched with vitamin D3 and ascorbic acid, affects the histological and microbiological profile of the intestine, as well as the immunity and growth performance of chickens. The jejunum together with its contents was also collected for microbiological and histological testing. The results obtained indicate that the birds receiving the probiotic preparation in the amount of 0.25 g/L of water during the entire fattening period attained significantly higher bodyweight than the Control, with significantly lower feed conversion. Furthermore, this dosage and duration was most efficient in reducing the total count of fungi, aerobic bacteria and coliform bacteria in the intestinal contents, in addition to increasing the height of the jejunal villi and depth of the crypts. The probiotic administered in the amount of 0.25 g/L of water during the entire fattening period also significantly increased lysozyme activity and the content of IgA in the blood serum as compared with the Control, while decreasing the content of IL-6, and thus most efficiently stimulated non-specific immunity in the chickens.
Collapse
|
5
|
Agah S, Alizadeh AM, Mosavi M, Ranji P, Khavari-Daneshvar H, Ghasemian F, Bahmani S, Tavassoli A. More Protection of Lactobacillus acidophilus Than Bifidobacterium bifidum Probiotics on Azoxymethane-Induced Mouse Colon Cancer. Probiotics Antimicrob Proteins 2018; 11:857-864. [DOI: 10.1007/s12602-018-9425-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
6
|
Elshaghabee FMF, Rokana N, Gulhane RD, Sharma C, Panwar H. Bacillus As Potential Probiotics: Status, Concerns, and Future Perspectives. Front Microbiol 2017; 8:1490. [PMID: 28848511 PMCID: PMC5554123 DOI: 10.3389/fmicb.2017.01490] [Citation(s) in RCA: 447] [Impact Index Per Article: 55.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 07/24/2017] [Indexed: 01/09/2023] Open
Abstract
Spore-forming bacilli are being explored for the production and preservation of food for many centuries. The inherent ability of production of large number of secretory proteins, enzymes, antimicrobial compounds, vitamins, and carotenoids specifies the importance of bacilli in food chain. Additionally, Bacillus spp. are gaining interest in human health related functional food research coupled with their enhanced tolerance and survivability under hostile environment of gastrointestinal tract. Besides, bacilli are more stable during processing and storage of food and pharmaceutical preparations, making them more suitable candidate for health promoting formulations. Further, Bacillus strains also possess biotherapeutic potential which is connected with their ability to interact with the internal milieu of the host by producing variety of antimicrobial peptides and small extracellular effector molecules. Nonetheless, with proposed scientific evidences, commercial probiotic supplements, and functional foods comprising of Bacillus spp. had not gained much credential in general population, since the debate over probiotic vs pathogen tag of Bacillus in the research and production terrains is confusing consumers. Hence, it’s important to clearly understand the phenotypic and genotypic characteristics of selective beneficial Bacillus spp. and their substantiation with those having GRAS status, to reach a consensus over the same. This review highlights the probiotic candidature of spore forming Bacillus spp. and presents an overview of the proposed health benefits, including application in food and pharmaceutical industry. Moreover, the growing need to evaluate the safety of individual Bacillus strains as well as species on a case by case basis and necessity of more profound analysis for the selection and identification of Bacillus probiotic candidates are also taken into consideration.
Collapse
Affiliation(s)
| | - Namita Rokana
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences UniversityLudhiana, India
| | - Rohini D Gulhane
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences UniversityLudhiana, India
| | - Chetan Sharma
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences UniversityLudhiana, India
| | - Harsh Panwar
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences UniversityLudhiana, India
| |
Collapse
|
7
|
Shang M, Sun J. Vitamin D/VDR, Probiotics, and Gastrointestinal Diseases. Curr Med Chem 2017; 24:876-887. [PMID: 27915988 DOI: 10.2174/0929867323666161202150008] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/17/2016] [Accepted: 10/18/2016] [Indexed: 12/14/2022]
Abstract
Vitamin D is an important factor in regulating inflammation, immune responses, and carcinoma inhibition via action of its receptor, vitamin D receptor (VDR). Recent studies have demonstrated the role of vitamin D/VDR in regulating host-bacterial interactions. Probiotics are beneficial bacteria with the power of supporting or favoring life on the host. In the current review, we will discuss the recent progress on the roles of vitamin D/VDR in gut microbiome and inflammation. We will summarize evidence of probiotics in modulating vitamin D/VDR and balancing gut microbiota in health and gastrointestinal diseases. Moreover, we will review the clinical application of probiotics in prevention and therapy of IBD or colon cancer. Despite of the gains, there remain several barriers to advocate broad use of probiotics in clinical therapy. We will also discuss the limits and future direction in scientific understanding of probiotics, vitamin D/VDR, and host responses.
Collapse
Affiliation(s)
- Mei Shang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou. China
| | - Jun Sun
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, 840 S Wood Street, Room 704 CSB, Chicago, IL, 60612. United States
| |
Collapse
|
8
|
Lee YC, Wu WJ, Lin HH, Li WM, Huang CN, Hsu WC, Chang LL, Li CC, Yeh HC, Li CF, Ke HL. Prognostic Value of Leptin Receptor Overexpression in Upper Tract Urothelial Carcinomas in Taiwan. Clin Genitourin Cancer 2017; 15:e653-e659. [PMID: 28188048 DOI: 10.1016/j.clgc.2017.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 12/27/2016] [Accepted: 01/03/2017] [Indexed: 01/11/2023]
Abstract
OBJECTIVES Leptin and its receptor (LEPR) are key players in the regulation of energy balance and body weight control and act as a growth factor for specific organs in both normal and disease states. However, LEPR accumulation may be involved in carcinogenesis, progression, and metastasis in many cancers. This study evaluated the clinical significance of LEPR expression in upper tract urothelial carcinoma (UTUC). MATERIALS AND METHODS LEPR expression was examined in 110 tissue samples from patients with UTUC, using immunohistochemistry, and an analysis was performed to identify evidence of association between LEPR expression and different clinicopathologic variables. RESULTS LEPR expression was significantly correlated with patients with increased body mass index (P < .001) and high serum creatinine levels (P = .005). We found, using the log-rank test, that high LEPR expression was associated with poor recurrence-free (P = .009) and cancer-specific survival (P = .001). This finding was supported by our results using Cox regression analysis, which showed that LEPR expression was an independent predictor of poor recurrence-free survival (hazard ratio = 2.55; P = .011) and cancer-specific survival (hazard ratio = 2.26; P = .006). CONCLUSIONS Our findings indicate that LEPR expression is a potential biomarker for predicting patient survival in UTUC. Further study is necessary to investigate the role of LEPR in carcinogenesis of UTUC.
Collapse
Affiliation(s)
- Yi-Chen Lee
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wen-Jeng Wu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Urology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan
| | - Hui-Hui Lin
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wei-Ming Li
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Urology, Ministry of Health and Welfare Pingtung Hospital, Pingtung, Taiwan
| | - Chun-Nung Huang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wei-Chi Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Lin-Li Chang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Microbiology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ching-Chia Li
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Urology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan
| | - Hsin-Chih Yeh
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Urology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan
| | - Chien-Feng Li
- Department of Pathology, Chi-Mei Medical Center, Tainan, Taiwan; National Cancer Research Institute, National Health Research Institutes, Tainan, Taiwan
| | - Hung-Lung Ke
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
9
|
Guo M, Dou J. Advances and perspectives of colorectal cancer stem cell vaccine. Biomed Pharmacother 2015; 76:107-20. [PMID: 26653557 DOI: 10.1016/j.biopha.2015.10.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 10/20/2015] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer is essentially an environmental and genetic disease featured by uncontrolled cell growth and the capability to invade other parts of the body by forming metastases, which inconvertibly cause great damage to tissues and organs. It has become one of the leading causes of cancer-related mortality in the developed countries such as United States, and approximately 1.2 million new cases are yearly diagnosed worldwide, with the death rate of more than 600,000 annually and incidence rates are increasing in most developing countries. Apart from the generally accepted theory that pathogenesis of colorectal cancer consists of genetic mutation of a certain target cell and diversifications in tumor microenvironment, the colorectal cancer stem cells (CCSCs) theory makes a different explanation, stating that among millions of colon cancer cells there is a specific and scanty cellular population which possess the capability of self-renewal, differentiation and strong oncogenicity, and is tightly responsible for drug resistance and tumor metastasis. Based on these characteristics, CCSCs are becoming a novel target cells both in the clinical and the basic studies, especially the study of CCSCs vaccines due to induced efficient immune response against CCSCs. This review provides an overview of CCSCs and preparation technics and targeting factors related to CCSCs vaccines in detail.
Collapse
Affiliation(s)
- Mei Guo
- Department of Pathogenic Biology and Immunology of Medical School, Southeast University, Nanjing 210009, China
| | - Jun Dou
- Department of Pathogenic Biology and Immunology of Medical School, Southeast University, Nanjing 210009, China.
| |
Collapse
|