1
|
Liu Z, Zhou Y, Jin M, Liu S, Liu S, Yang K, Li H, Luo S, Jureti S, Wei M, Fu Z. Association of HMGCR rs17671591 and rs3761740 with lipidemia and statin response in Uyghurs and Han Chinese. PeerJ 2024; 12:e18144. [PMID: 39351366 PMCID: PMC11441381 DOI: 10.7717/peerj.18144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 08/30/2024] [Indexed: 10/04/2024] Open
Abstract
Background Dyslipidemia plays a very important role in the occurrence and development of cardiovascular disease (CVD). Genetic factors, including single nucleotide polymorphisms (SNPs), are one of the main risks of dyslipidemia. 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) is not only the rate-limiting enzyme step of endogenous cholesterol production, but also the therapeutic target of statins. Methods We investigated 405 Han Chinese and 373 Uyghur people who took statins for a period of time, recorded their blood lipid levels and baseline data before and after oral statin administration, and extracted DNA from each subject for SNP typing of HMGCR rs17671591 and rs3761740. The effects of HMGCR rs17671591 and rs3761740 on lipid levels and the effect of statins on lipid lowering in Han Chinese and Uyghur ethnic groups were studied. Results In this study, for rs17671591, the CC vs. TT+CT model was significantly correlated with the level of LDL-C before oral statin in the Uyghur population, but there were no correlations between rs17671591 and the level of blood lipid before oral statin in the Han population. The CC vs. TT+CT and CT vs. CC+TT models were significantly correlated with the level of LDL-C after oral statin in the Uyghur population. There was no significant correlation between rs3761740 with blood lipids before and after oral statin in the Han population. For rs3761740, before oral statin, the CC vs. AA+CA model was significantly correlated with the level of LDL-C, and the CA vs. CC+AA model was significantly correlated with the level of total cholesterol (TC), low density lipoprotein cholesterol (LDL-C), and non-high density lipoprotein cholesterol (HDL-C) in the Uyghur population. After oral statin, the CC vs. AA+CA and CA vs. CC+AA models were significantly correlated with the level of TC, LDL-C, and apolipoprotein (APOB), and the C vs. A model was significantly correlated with the level of TC, triglyceride (TG), LDL-C, and APOB in the Uyghur population. Particularly, the CT vs. CC+TT model of rs17671591 was significantly correlated with the changes of LDL-C after oral statin in the Uyghur population. In this study, we also explored the association of rs17671591 and rs3761740 with the rate of dyslipidemia as a reference. Conclusion We found that HMGCR rs3761740 was correlated with the levels of TC, LDL-C, and non-HDL-C before and after oral statin in Uyghurs, but not with blood lipid levels in the Han population. In the Uyghur population, HMGCR rs17671591 was associated with the level of LDL-C before and after oral statin, and also affected the changes of LDL-C after oral statin.
Collapse
Affiliation(s)
- Ziyang Liu
- The First Affiliated Hospital, Xinjiang Medical University, Urumqi, Xinjiang, China
- Xinjiang Medical University, Urumqi, Xinjiang, China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Yang Zhou
- The First Affiliated Hospital, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Menglong Jin
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Shuai Liu
- The First Affiliated Hospital, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Sen Liu
- The First Affiliated Hospital, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Kai Yang
- The First Affiliated Hospital, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Huayin Li
- The First Affiliated Hospital, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Sifu Luo
- The First Affiliated Hospital, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Subinuer Jureti
- The First Affiliated Hospital, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Mengwei Wei
- The First Affiliated Hospital, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Zhenyan Fu
- The First Affiliated Hospital, Xinjiang Medical University, Urumqi, Xinjiang, China
| |
Collapse
|
2
|
Han X, Gao Y, He M, Luo Y, Wei Y, Duan Y, Zhang S, Yu H, Kan J, Hou T, Zhang Y, Li Y. Evolocumab prevents atrial fibrillation in rheumatoid arthritis rats through restraint of PCSK9 induced atrial remodeling. J Adv Res 2024; 61:211-221. [PMID: 37709197 PMCID: PMC11258665 DOI: 10.1016/j.jare.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023] Open
Abstract
INTRODUCTION Proprotein convertase subtilisin/kexin type 9 (PCSK9) is implicated in the pathogenesis and progression of autoimmune disease. Patients with rheumatoid arthritis (RA) are at high risk of developing atrial fibrillation (AF), while whether PCSK9 is involved in the onset of AF among RA patients remains unclear. OBJECTIVES To explore the role of PCSK9 in the occurrence of AF in RA patients and decipher the underlying mechanism. METHODS We established a rat model of collagen-induced arthritis (CIA) by immunization with type II collagen in Freund's incomplete adjuvant. Atrial electrophysiological test was used to evaluate AF susceptibility. We performed a clinical study to examine the correlation between PCSK9 level and AF, which recruited healthy control, RA patients and RA patients complicated with AF. Evolocumab (a monoclonal antibody of PCSK9) is administered via intraperitoneal injection in CIA rats to assess the role of PCSK9 in RA-related AF. LPS-RS (LPS inhibitor), clodronate liposomes (depletion of macrophages), and cell co-culture model were used to dissect the mechanism underlying PCSK9 promotes AF. RESULTS AF inducibility and duration were higher in CIA rats, accompanied by elevated plasma and atrial PCSK9. Interestingly, compared with healthy control subjects, patients with RA showed an increase in PCSK9, and the PCSK9 is much higher in RA patients complicated with AF. The level of PCSK9 was independently associated with AF risk in RA patients. In the in vivo experiment, evolocumab reduced AF susceptibility, and ameliorated atrial structural remodeling of CIA rats. Mechanistically, augmented LPS in CIA rats led to an increase in PCSK9, which exacerbated fibrosis of cardiac fibroblasts and apoptosis of cardiac myocytes by enhancement of M1 macrophages polarization and inflammation, thereby contributing to AF. CONCLUSION This study suggests that elevated PCSK9 causes atrial structural remodeling by enhancement of M1 macrophages polarization in atria, and evolocumab can effectively protects CIA rats from AF.
Collapse
Affiliation(s)
- Xuejie Han
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Yunlong Gao
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Meijiao He
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Yingchun Luo
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Ying Wei
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Yu Duan
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Song Zhang
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Hui Yu
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Jiuxu Kan
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Te Hou
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Yun Zhang
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin 150001, China.
| | - Yue Li
- Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin 150001, China; NHC Key Laboratory of Cell Translation, Harbin Medical University, Heilongjiang 150001, China; Key Laboratory of Hepatosplenic Surgery, Harbin Medical University, Ministry of Education, Harbin 150001, China; Key Laboratory of Cardiac Diseases and Heart Failure, Harbin Medical University, Harbin 150001, China; Heilongjiang Key Laboratory for Metabolic Disorder & Cancer Related Cardiovascular Diseases, Harbin 150081, China; Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Harbin, China.
| |
Collapse
|
3
|
Chen Y, Li Y, Li C, Zhang D, Liu Y, Zhang J, Guan S, Ding X, Xiao Q. The current perspective and opportunities of small nucleic acid-based therapeutics. Drug Dev Res 2024; 85:e22164. [PMID: 38411296 DOI: 10.1002/ddr.22164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 02/03/2024] [Accepted: 02/13/2024] [Indexed: 02/28/2024]
Abstract
Compared to traditional small molecule and antibody drugs, RNA-based drugs offer a simple design, short research and development cycles, high specificity, broad treatment fields, and long-term efficacy. As a result, RNA-based drugs are extensively used to treat genetic diseases, tumors, viral infections, and other illnesses, suggesting that they have the potential to become the third-largest drug class after small molecule and antibody drugs. Currently, more than 10 small nucleic acid drugs have gained regulatory approval. The commercialization successes of small nucleic acid drugs will stimulate the development of RNA-based drugs. Small nucleic acid drugs primarily target liver diseases, metabolic diseases, genetic diseases, and tumors, and there is also significant potential for expanding indications in the future. This review provides a brief overview of the advantages and development of small nucleic acid-based therapeutics and shows a focus on platform technologies such as chemical modifications and delivery systems that have enabled the clinical translation of small nucleic acid-based therapeutics. Additionally, we summarize the latest clinical progress in small nucleic acid-based therapeutics for the treatment of various diseases, including rare diseases, liver diseases, metabolic diseases, and tumors. Finally, we highlight the future prospects for this promising treatment approach.
Collapse
Affiliation(s)
- Yang Chen
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing, China
| | - Yang Li
- Department of Pharmacy, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Chao Li
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing, China
| | - Dandan Zhang
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing, China
| | - Yuheng Liu
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing, China
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Jingjing Zhang
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing, China
| | - Shan Guan
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing, China
| | - Xiaoyan Ding
- Department of Pediatrics, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Qin Xiao
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing, China
| |
Collapse
|
4
|
APLP2 gene polymorphisms are associated with high TC and LDL-C levels in Chinese population in Xinjiang, China. Biosci Rep 2021; 40:225897. [PMID: 32716039 PMCID: PMC7403944 DOI: 10.1042/bsr20200357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 07/22/2020] [Accepted: 07/27/2020] [Indexed: 01/16/2023] Open
Abstract
Hyperlipidemia is one of the main risk factors for coronary artery disease (CAD). In the present study, we aimed to explore whether the single-nucleotide polymorphisms (SNPs) in amyloid precursor-like protein (APLP) 2 (APLP2) gene were associated with high lipid levels in Chinese population in Xinjiang, China. We recruited 1738 subjects (1187 men, 551 women) from the First Affiliated Hospital of Xinjiang Medical University, and genotyped three SNPs (rs2054247, rs3740881 and rs747180) of APLP2 gene in all subjects by using the improved multiplex ligation detection reaction (iMLDR) method. Our study revealed that the rs2054247 SNP was associated with serum total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C) levels, and high-density lipoprotein cholesterol (HDL-C) in additive model (all P<0.05). The rs747180 SNP was associated with serum TC and LDL-C levels in additive model (all P<0.05). Our study revealed that both rs2054247 and rs747180 SNPs of the APLP2 gene were associated with high TC and LDL-C levels in Chinese subjects in Xinjiang.
Collapse
|
5
|
Wang Y, Yu Z, Jiang J, Li Y, Yu S. Mulberry leaf attenuates atherosclerotic lesions in patients with coronary heart disease possibly via 1-Deoxynojirimycin: A placebo-controlled, double-blind clinical trial. J Food Biochem 2020; 45:e13573. [PMID: 33277698 DOI: 10.1111/jfbc.13573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 10/28/2020] [Accepted: 11/09/2020] [Indexed: 12/25/2022]
Abstract
Mulberry leaf tea reduces atherosclerotic lesions and its main component is Deoxynojirimycin (DNJ). We aimed to explore the effects of Mulberry leaf DNJ (MLD) on atherosclerotic lesions in the patients with coronary heart disease (CHD). MLD and serum DNJ was detected by high-performance liquid chromatography (HPLC). The CHD patients with low-density lipoprotein cholesterol >140 mg/dl were assigned into the EG (MLD treatment) and the CG (placebo treatment) groups. Serum biochemical indices, the cerebrovascular and cardiovascular events and carotid intima-media thickness (IMT) were measured before and after a 1-year intervention. Pearson Correlation Coefficient test was used to explore the relationship between serum levels of DNJ and IMT values. Serum DNJ was 70 ± 50 ng/ml in the EG group but no serum DNJ was detected in the CG group. The incidence of cerebrovascular and cardiovascular events in the EG was lower than that in the CG group (p < .05). MLD therapy improved antioxidant and anti-inflammatory properties and serum lipid profile (p < .05). The IMT values in the EG group were lower than those in the CG group (p < .05). Serum levels of DNJ had a strong negative relationship with IMT values. MLD treatment attenuates atherosclerotic lesions possibly via DNJ. PRACTICAL APPLICATIONS: Mulberry leaves Deoxynojirimycin (MLD) treatment improved antioxidant and anti-inflammatory properties and serum lipid profile in heart disease patients. MLD reduce carotid intima-media thickness (IMT) and serum levels of DNJ (the main ingredient of mulberry leaf) had a strong relationship with IMT values. MLD is an amazing treat used for reducing the incidence of cerebrovascular and cardiovascular events in heart disease patients.
Collapse
Affiliation(s)
- Yuting Wang
- Department of Cardiovascular, The First Hospital of Jilin University, Changchun, China
| | - Zhongwei Yu
- The Third Operating Room, The First Hospital of Jilin University, Changchun, China
| | - Jun Jiang
- Department of Cardiovascular, The First Hospital of Jilin University, Changchun, China
| | - Yaxin Li
- Department of Cardiovascular, The First Hospital of Jilin University, Changchun, China
| | - Shui Yu
- Department of Cardiovascular, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
6
|
Adi D, Abuzhalihan J, Wang YH, Baituola G, Wu Y, Xie X, Fu ZY, Yang YN, Ma X, Li XM, Chen BD, Liu F, Ma YT. IDOL gene variant is associated with hyperlipidemia in Han population in Xinjiang, China. Sci Rep 2020; 10:14280. [PMID: 32868861 PMCID: PMC7459279 DOI: 10.1038/s41598-020-71241-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 08/12/2020] [Indexed: 12/11/2022] Open
Abstract
Hyperlipidemia is one of the main risk factors that contributed to atherosclerosis and coronary artery disease (CAD). In the present study, our objective was to explore whether some genetic variants of human IDOL gene were associated with hyperlipidemia among Han population in Xinjiang, China. We designed a case–control study. A total of 1,172 subjects (588 diagnosed hyperlipidemia cases and 584 healthy controls) of Chinese Han were recruited. We genotyped three SNPs (rs9370867, rs909562, and rs2072783) of IDOL gene in all subjects by using the improved multiplex ligation detection reaction (iMLDR) method. Our study demonstrated that the distribution of the genotypes, the dominant model (AA vs GG + GA), and the overdominant model (AA + GG vs GA) of the rs9370867 SNP had significant differences between the case group and controls (all P < 0.001). For rs909562 and rs2072783, the distribution of the genotypes, the recessive model (AA + GA vs GG) showed significant differences between the case subjects and controls (P = 0.002, P = 0.007 and P = 0.045, P = 0.02, respectively). After multivariate adjustment for several confounders, the rs9370867 SNP is still an independent risk factor for hyperlipidemia [odds ratio (OR) = 1.380, 95% confidence interval (CI) = 1.201–1.586, P < 0.001]. The rs9370867 of human IDOL gene was associated with hyperlipidemia in Han population.
Collapse
Affiliation(s)
- Dilare Adi
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, People's Republic of China.,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, 830054, People's Republic of China
| | - Jialin Abuzhalihan
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, People's Republic of China.,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, 830054, People's Republic of China
| | - Ying-Hong Wang
- Health Checkup Department of the First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, People's Republic of China
| | - Gulinaer Baituola
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, People's Republic of China.,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, 830054, People's Republic of China
| | - Yun Wu
- Department of General Practice, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, People's Republic of China
| | - Xiang Xie
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, People's Republic of China.,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, 830054, People's Republic of China
| | - Zhen-Yan Fu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, People's Republic of China.,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, 830054, People's Republic of China
| | - Yi-Ning Yang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, People's Republic of China.,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, 830054, People's Republic of China
| | - Xiang Ma
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, People's Republic of China.,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, 830054, People's Republic of China
| | - Xiao-Mei Li
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, People's Republic of China.,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, 830054, People's Republic of China
| | - Bang-Dang Chen
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, People's Republic of China.,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, 830054, People's Republic of China
| | - Fen Liu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, People's Republic of China
| | - Yi-Tong Ma
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, People's Republic of China. .,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, 830054, People's Republic of China.
| |
Collapse
|