1
|
Kipp JA, LeSavage LK, Evans JK, Denmeade TA, Blazek CD. Diabetic Osteomyelitis: Oral versus Intravenous Antibiotics at a Single Level 1 Academic Medical Trauma Center. J Foot Ankle Surg 2024; 63:490-494. [PMID: 38588891 DOI: 10.1053/j.jfas.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/14/2024] [Accepted: 03/29/2024] [Indexed: 04/10/2024]
Abstract
Residual osteomyelitis is a frequent problem following surgical intervention for diabetic foot infection. The Infectious Disease Society of America guidelines recommend a prolonged course of antibiotics for treatment of residual osteomyelitis. Recent literature suggests oral antibiotic therapy is not inferior to IV therapy. The primary aim of this study was to evaluate treatment success in 128 patients receiving oral versus IV antibiotics for residual osteomyelitis in the diabetic foot after amputation at a Level 1 academic medical trauma center. Treatment success was defined as completion of at least 4 weeks of antibiotic therapy, complete surgical wound healing, and no residual infection requiring further debridement or amputation within 1 year of the initial surgery. Patients with peripheral arterial disease were excluded. A retrospective chart review was performed, and we found no statistically significant difference in treatment success between these two groups (p = .2766). The median time to healing for oral antibiotic treatment was 3.17 months compared to 4.06 months for IV treatment (p = .1045). Furthermore, there was no significant difference in group demographics or comorbidities, aside from more patients in the IV group having coronary artery disease (p = .0416). The type of closure and whether the infection was single or polymicrobial were also not associated with a difference in outcomes between the two treatment arms. The results of the present study suggest oral antibiotics for treatment of residual osteomyelitis are not inferior to IV therapy and may be more efficacious for certain patients regarding cost and ease of administration.
Collapse
Affiliation(s)
- Jennifer A Kipp
- Atrium Health Wake Forest Baptist, Podiatric Medicine and Surgery Resident, Department of Orthopaedic Surgery, Wake Forest Baptist Medical Center, Winston-Salem, NC.
| | - Lindsay K LeSavage
- Atrium Health Wake Forest Baptist, Podiatric Medicine and Surgery Resident, Department of Orthopaedic Surgery, Wake Forest Baptist Medical Center, Winston-Salem, NC
| | - Joni K Evans
- Biostatistician, Atrium Health Wake Forest Baptist, Wake Forest Baptist Medical Center, Winston-Salem, NC
| | - Travis A Denmeade
- Department of Infectious Disease - Atrium Health Wake Forest Baptist, Wake Forest Baptist Medical Center, Winston-Salem, NC
| | - Cody D Blazek
- Department of Orthopaedic Surgery, Atrium Health Wake Forest Baptist, Wake Forest Baptist Medical Center, Winston-Salem, NC
| |
Collapse
|
2
|
Fejfarová V, Jarošíková R, Antalová S, Husáková J, Wosková V, Beca P, Mrázek J, Tůma P, Polák J, Dubský M, Sojáková D, Lánská V, Petrlík M. Does PAD and microcirculation status impact the tissue availability of intravenously administered antibiotics in patients with infected diabetic foot? Results of the DFIATIM substudy. Front Endocrinol (Lausanne) 2024; 15:1326179. [PMID: 38774229 PMCID: PMC11106387 DOI: 10.3389/fendo.2024.1326179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 04/16/2024] [Indexed: 05/24/2024] Open
Abstract
Aims/hypothesis The aim of this substudy (Eudra CT No:2019-001997-27)was to assess ATB availability in patients with infected diabetic foot ulcers(IDFUs)in the context of microcirculation and macrocirculation status. Methods For this substudy, we enrolled 23 patients with IDFU. Patients were treated with boluses of amoxicillin/clavulanic acid(AMC)(12patients) or ceftazidime(CTZ)(11patients). After induction of a steady ATB state, microdialysis was performed near the IDFU. Tissue fluid samples from the foot and blood samples from peripheral blood were taken within 6 hours. ATB potential efficacy was assessed by evaluating the maximum serum and tissue ATB concentrations(Cmax and Cmax-tissue)and the percentage of time the unbound drug tissue concentration exceeds the minimum inhibitory concentration (MIC)(≥100% tissue and ≥50%/60% tissue fT>MIC). Vascular status was assessed by triplex ultrasound, ankle-brachial and toe-brachial index tests, occlusive plethysmography comprising two arterial flow phases, and transcutaneous oxygen pressure(TcPO2). Results Following bolus administration, the Cmax of AMC was 91.8 ± 52.5 μgmL-1 and the Cmax-tissue of AMC was 7.25 ± 4.5 μgmL-1(P<0.001). The Cmax for CTZ was 186.8 ± 44.1 μgmL-1 and the Cmax-tissue of CTZ was 18.6 ± 7.4 μgmL-1(P<0.0001). Additionally, 67% of patients treated with AMC and 55% of those treated with CTZ achieved tissue fT>MIC levels exceeding 50% and 60%, respectively. We observed positive correlations between both Cmax-tissue and AUCtissue and arterial flow. Specifically, the correlation coefficient for the first phase was r=0.42; (P=0.045), and for the second phase, it was r=0.55(P=0.01)and r=0.5(P=0.021). Conclusions Bactericidal activity proved satisfactory in only half to two-thirds of patients with IDFUs, an outcome that appears to correlate primarily with arterial flow.
Collapse
Affiliation(s)
- Vladimíra Fejfarová
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czechia
- Department of Internal Medicine, Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Radka Jarošíková
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czechia
- Department of Internal Medicine, Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Simona Antalová
- Department of Clinical Pharmacy and Drug Information Centre, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Jitka Husáková
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Veronika Wosková
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Pavol Beca
- Department of Clinical Pharmacy and Drug Information Centre, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Jakub Mrázek
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Prague, Czechia
| | - Petr Tůma
- Department of Hygiene, Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Jan Polák
- Department of Pathophysiology, Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Michal Dubský
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Dominika Sojáková
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Věra Lánská
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Martin Petrlík
- Vascular and Internal Medicine Outpatient Clinic, Prague, Czechia
| |
Collapse
|
3
|
Hermans E, Meersschaut J, Van Herteryck I, Devreese M, Walle JV, De Paepe P, De Cock PA. Have We Neglected to Study Target-Site Drug Exposure in Children? A Systematic Review of the Literature. Clin Pharmacokinet 2024; 63:439-468. [PMID: 38551787 DOI: 10.1007/s40262-024-01364-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2024] [Indexed: 05/04/2024]
Abstract
BACKGROUND AND OBJECTIVE Drug dosing should ideally be based on the drug concentrations at the target site, which, for most drugs, corresponds to the tissue. The exact influence of growth and development on drug tissue distribution is unclear. This systematic review compiles the current knowledge on the tissue distribution of systemically applied drugs in children, with the aim to identify priorities in tissue pharmacokinetic (PK) research in this population. METHODS A systematic literature search was performed in the MEDLINE and Embase databases. RESULTS Forty-two relevant articles were identified, of which 71% investigated antibiotics, while drug classes from the other studies were anticancer drugs, antifungals, anthelmintics, sedatives, thyreostatics, immunomodulators, antiarrhythmics, and exon skipping therapy. The majority of studies (83%) applied tissue biopsy as the sampling technique. Tonsil and/or adenoid tissue was most frequently examined (70% of all included patients). The majority of studies had a small sample size (median 9, range 1-93), did not include the youngest age categories (neonates and infants), and were of low reporting quality. Due to the heterogeneous data from different study compounds, dosing schedules, populations, and target tissues, the possibility for comparison of PK data between studies was limited. CONCLUSION The influence of growth and development on drug tissue distribution continues to be a knowledge gap, due to the paucity of tissue PK data in children, especially in the younger age categories. Future research in this field should be encouraged as techniques to safely investigate drug tissue disposition in children are available.
Collapse
Affiliation(s)
- Eline Hermans
- Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, C. Heymanslaan 10, 9000, Ghent, Belgium.
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium.
- Department of Pediatrics, Ghent University Hospital, C. Heymanslaan 10, 9000, Ghent, Belgium.
| | - Jozefien Meersschaut
- Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, C. Heymanslaan 10, 9000, Ghent, Belgium
| | - Isis Van Herteryck
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Mathias Devreese
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Johan Vande Walle
- Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, C. Heymanslaan 10, 9000, Ghent, Belgium
- Department of Pediatric Nephrology, SafePeDrug, Erknet Center, Ghent University Hospital, C. Heymanslaan 10, 9000, Ghent, Belgium
| | - Peter De Paepe
- Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, C. Heymanslaan 10, 9000, Ghent, Belgium
- Department of Emergency Medicine, Ghent University Hospital, C. Heymanslaan 10, 9000, Ghent, Belgium
| | - Pieter A De Cock
- Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, C. Heymanslaan 10, 9000, Ghent, Belgium.
- Department of Pharmacy, Ghent University Hospital, C. Heymanslaan 10, 9000, Ghent, Belgium.
- Department of Pediatric Intensive Care, Ghent University Hospital, C. Heymanslaan 10, 9000, Ghent, Belgium.
| |
Collapse
|
4
|
Brasier N, Ates HC, Sempionatto JR, Cotta MO, Widmer AF, Eckstein J, Goldhahn J, Roberts JA, Gao W, Dincer C. A three-level model for therapeutic drug monitoring of antimicrobials at the site of infection. THE LANCET. INFECTIOUS DISEASES 2023; 23:e445-e453. [PMID: 37348517 DOI: 10.1016/s1473-3099(23)00215-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 06/24/2023]
Abstract
The silent pandemic of bacterial antimicrobial resistance is a leading cause of death worldwide, prolonging hospital stays and raising health-care costs. Poor incentives to develop novel pharmacological compounds and the misuse of antibiotics contribute to the bacterial antimicrobial resistance crisis. Therapeutic drug monitoring (TDM) based on blood analysis can help alleviate the emergence of bacterial antimicrobial resistance and effectively decreases the risk of toxic drug concentrations in patients' blood. Antibiotic tissue penetration can vary in patients who are critically or chronically ill and can potentially lead to treatment failure. Antibiotics such as β-lactams and glycopeptides are detectable in non-invasively collectable biofluids, such as sweat and exhaled breath. The emergence of wearable sensors enables easy access to these non-invasive biofluids, and thus a laboratory-independent analysis of various disease-associated biomarkers and drugs. In this Personal View, we introduce a three-level model for TDM of antibiotics to describe concentrations at the site of infection (SOI) by use of wearable sensors. Our model links blood-based drug measurement with the analysis of drug concentrations in non-invasively collectable biofluids stemming from the SOI to characterise drug concentrations at the SOI. Finally, we outline the necessary clinical and technical steps for the development of wearable sensing platforms for SOI applications.
Collapse
Affiliation(s)
- Noé Brasier
- Institute for Translational Medicine, ETH Zurich, Zurich, Switzerland; Department of Digitalization & ICT, University Hospital Basel, Basel, Switzerland.
| | - H Ceren Ates
- FIT Freiburg Centre for Interactive Materials and Bioinspired Technology, University of Freiburg, Freiburg, Germany; Department of Microsystems Engineering, IMTEK, University of Freiburg, Freiburg, Germany
| | - Juliane R Sempionatto
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Menino O Cotta
- Faculty of Medicine, University of Queensland Centre for Clinical Research, The University of Queensland, Brisbane, QLD, Australia
| | - Andreas F Widmer
- Department of Infectious Disease and Hospital Epidemiology, University Hospital Basel, Basel, Switzerland
| | - Jens Eckstein
- Department of Digitalization & ICT, University Hospital Basel, Basel, Switzerland; Division for Internal Medicine, University Hospital Basel, Basel, Switzerland
| | - Jörg Goldhahn
- Institute for Translational Medicine, ETH Zurich, Zurich, Switzerland
| | - Jason A Roberts
- Faculty of Medicine, University of Queensland Centre for Clinical Research, The University of Queensland, Brisbane, QLD, Australia; Herston Infectious Diseases Institute (HeIDI), Metro North Health, Brisbane, QLD, Australia; Department of Pharmacy and Department of Intensive Care Medicine, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia; Division of Anaesthesiology, Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, Nîmes, France
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Can Dincer
- FIT Freiburg Centre for Interactive Materials and Bioinspired Technology, University of Freiburg, Freiburg, Germany; Department of Microsystems Engineering, IMTEK, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
5
|
Urbaniec J, Xu Y, Hu Y, Hingley-Wilson S, McFadden J. Phenotypic heterogeneity in persisters: a novel 'hunker' theory of persistence. FEMS Microbiol Rev 2022; 46:fuab042. [PMID: 34355746 PMCID: PMC8767447 DOI: 10.1093/femsre/fuab042] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 08/04/2021] [Indexed: 12/11/2022] Open
Abstract
Persistence has been linked to treatment failure since its discovery over 70 years ago and understanding formation, nature and survival of this key antibiotic refractory subpopulation is crucial to enhancing treatment success and combatting the threat of antimicrobial resistance (AMR). The term 'persistence' is often used interchangeably with other terms such as tolerance or dormancy. In this review we focus on 'antibiotic persistence' which we broadly define as a feature of a subpopulation of bacterial cells that possesses the non-heritable character of surviving exposure to one or more antibiotics; and persisters as cells that possess this characteristic. We discuss novel molecular mechanisms involved in persister cell formation, as well as environmental factors which can contribute to increased antibiotic persistence in vivo, highlighting recent developments advanced by single-cell studies. We also aim to provide a comprehensive model of persistence, the 'hunker' theory which is grounded in intrinsic heterogeneity of bacterial populations and a myriad of 'hunkering down' mechanisms which can contribute to antibiotic survival of the persister subpopulation. Finally, we discuss antibiotic persistence as a 'stepping-stone' to AMR and stress the urgent need to develop effective anti-persister treatment regimes to treat this highly clinically relevant bacterial sub-population.
Collapse
Affiliation(s)
- J Urbaniec
- Department of Microbial Sciences and University of Surrey, Guildford, Surrey, GU27XH, UK
| | - Ye Xu
- Department of Microbial Sciences and University of Surrey, Guildford, Surrey, GU27XH, UK
| | - Y Hu
- Farnborough Sensonic limited, Farnborough road, GU14 7NA, UK
| | - S Hingley-Wilson
- Department of Microbial Sciences and University of Surrey, Guildford, Surrey, GU27XH, UK
| | - J McFadden
- Department of Microbial Sciences and University of Surrey, Guildford, Surrey, GU27XH, UK
- Quantum biology doctoral training centre, University of Surrey, Guildford, Surrey, GU27XH, UK
| |
Collapse
|
6
|
Rayner CR, Smith PF, Andes D, Andrews K, Derendorf H, Friberg LE, Hanna D, Lepak A, Mills E, Polasek TM, Roberts JA, Schuck V, Shelton MJ, Wesche D, Rowland‐Yeo K. Model-Informed Drug Development for Anti-Infectives: State of the Art and Future. Clin Pharmacol Ther 2021; 109:867-891. [PMID: 33555032 PMCID: PMC8014105 DOI: 10.1002/cpt.2198] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/05/2021] [Indexed: 12/13/2022]
Abstract
Model-informed drug development (MIDD) has a long and rich history in infectious diseases. This review describes foundational principles of translational anti-infective pharmacology, including choice of appropriate measures of exposure and pharmacodynamic (PD) measures, patient subpopulations, and drug-drug interactions. Examples are presented for state-of-the-art, empiric, mechanistic, interdisciplinary, and real-world evidence MIDD applications in the development of antibacterials (review of minimum inhibitory concentration-based models, mechanism-based pharmacokinetic/PD (PK/PD) models, PK/PD models of resistance, and immune response), antifungals, antivirals, drugs for the treatment of global health infectious diseases, and medical countermeasures. The degree of adoption of MIDD practices across the infectious diseases field is also summarized. The future application of MIDD in infectious diseases will progress along two planes; "depth" and "breadth" of MIDD methods. "MIDD depth" refers to deeper incorporation of the specific pathogen biology and intrinsic and acquired-resistance mechanisms; host factors, such as immunologic response and infection site, to enable deeper interrogation of pharmacological impact on pathogen clearance; clinical outcome and emergence of resistance from a pathogen; and patient and population perspective. In particular, improved early assessment of the emergence of resistance potential will become a greater focus in MIDD, as this is poorly mitigated by current development approaches. "MIDD breadth" refers to greater adoption of model-centered approaches to anti-infective development. Specifically, this means how various MIDD approaches and translational tools can be integrated or connected in a systematic way that supports decision making by key stakeholders (sponsors, regulators, and payers) across the entire development pathway.
Collapse
Affiliation(s)
- Craig R. Rayner
- CertaraPrincetonNew JerseyUSA
- Monash Institute of Pharmaceutical SciencesMonash UniversityMelbourneVictoriaAustralia
| | | | - David Andes
- University of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Kayla Andrews
- Bill & Melinda Gates Medical Research InstituteCambridgeMassachusettsUSA
| | | | | | - Debra Hanna
- Bill & Melinda Gates FoundationSeattleWashingtonUSA
| | - Alex Lepak
- University of Wisconsin‐MadisonMadisonWisconsinUSA
| | | | - Thomas M. Polasek
- CertaraPrincetonNew JerseyUSA
- Centre for Medicines Use and SafetyMonash UniversityMelbourneVictoriaAustralia
- Department of Clinical PharmacologyRoyal Adelaide HospitalAdelaideSouth AustraliaAustralia
| | - Jason A. Roberts
- Faculty of MedicineUniversity of Queensland Centre for Clinical ResearchThe University of QueenslandBrisbaneQueenslandAustralia
- Departments of Pharmacy and Intensive Care MedicineRoyal Brisbane and Women’s HospitalBrisbaneQueenslandAustralia
- Division of Anaesthesiology Critical Care Emergency and Pain MedicineNîmes University HospitalUniversity of MontpellierMontpellierFrance
| | | | | | | | | |
Collapse
|
7
|
Brasier N, Widmer A, Osthoff M, Mutke M, De Ieso F, Brasier-Lutz P, Brown K, Yao L, Broeckling CD, Prenni J, Eckstein J. The Detection of Vancomycin in Sweat: A Next-Generation Digital Surrogate Marker for Antibiotic Tissue Penetration: A Pilot Study. Digit Biomark 2021; 5:24-28. [PMID: 33615119 PMCID: PMC7879282 DOI: 10.1159/000512947] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/09/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Assuring adequate antibiotic tissue concentrations at the point of infection, especially in skin and soft tissue infections, is pivotal for an effective treatment and cure. Despite the global issue, a reliable AB monitoring test is missing. Inadequate antibiotic treatment leads to the development of antimicrobial resistances and toxic side effects. β-lactam antibiotics were already detected in sweat of patients treated with the respective antibiotics intravenously before. With the emergence of smartphone-based biosensors to analyse sweat on the spot of need, next-generation molecular digital biomarkers will be increasingly available for a non-invasive pharmacotherapy monitoring. OBJECTIVE Here, we investigated if the glycopeptide antibiotic vancomycin is detectable in sweat samples of in-patients treated with intravenous vancomycin. METHODS Eccrine sweat samples were collected using the Macroduct Sweat Collector®. Along every sweat sample, a blood sample was taken. Bio-fluid analysis was performed by Ultra-high Pressure Liquid Chromatograph-Tandem Quadrupole Mass Spectrometry coupled with tandem mass spectrometry. RESULTS A total of 5 patients were included. Results demonstrate that vancomycin was detected in 5 out of 5 sweat samples. Specifically, vancomycin concentrations ranged from 0.011 to 0.118 mg/L in sweat and from 4.7 to 8.5 mg/L in blood. CONCLUSION Our results serve as proof-of-concept that vancomycin is detectable in eccrine sweat and may serve as a surrogate marker for antibiotic tissue penetration. A targeted vancomycin treatment is crucial in patients with repetitive need for antibiotics and a variable antibiotic distribution such as in peripheral artery disease to optimize treatment effectiveness. If combined with on-skin smartphone-based biosensors and smartphone applications, the detection of antibiotic concentrations in sweat might enable a first digital, on-spot, lab-independent and non-invasive therapeutic drug monitoring in skin and soft tissue infections.
Collapse
Affiliation(s)
- Noé Brasier
- CMIO Research Group, Department of Digitalization and ICT, University Hospital Basel, Basel, Switzerland
| | - Andreas Widmer
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, Basel, Switzerland
| | - Michael Osthoff
- Division of Internal Medicine, University Hospital Basel, Basel, Switzerland
- Department of Clinical Research, University Basel, Basel, Switzerland
| | - Markus Mutke
- CMIO Research Group, Department of Digitalization and ICT, University Hospital Basel, Basel, Switzerland
- Division of Internal Medicine, University Hospital Basel, Basel, Switzerland
| | - Fiorangelo De Ieso
- CMIO Research Group, Department of Digitalization and ICT, University Hospital Basel, Basel, Switzerland
- Division of Internal Medicine, University Hospital Basel, Basel, Switzerland
| | - Pascale Brasier-Lutz
- Department of Gynaecology, Kantonsspital Luzern, Standort Wolhusen, Wolhusen, Switzerland
| | - Kitty Brown
- Analytical Resources Core, Bioanalysis and Omics Center, Colorado State University, Fort Collins, Colorado, USA
| | - Linxing Yao
- Analytical Resources Core, Bioanalysis and Omics Center, Colorado State University, Fort Collins, Colorado, USA
| | - Corey D. Broeckling
- Analytical Resources Core, Bioanalysis and Omics Center, Colorado State University, Fort Collins, Colorado, USA
| | - Jessica Prenni
- Department of Horticulture and Landscape, Colorado State University, Fort Collins, Colorado, USA
| | - Jens Eckstein
- CMIO Research Group, Department of Digitalization and ICT, University Hospital Basel, Basel, Switzerland
- Division of Internal Medicine, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
8
|
Macdonald KE, Stacey HJ, Harkin G, Hall LML, Young MJ, Jones JD. Patient perceptions of phage therapy for diabetic foot infection. PLoS One 2020; 15:e0243947. [PMID: 33315926 PMCID: PMC7735629 DOI: 10.1371/journal.pone.0243947] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/30/2020] [Indexed: 01/04/2023] Open
Abstract
Infections of diabetic foot ulcers are common, generally recalcitrant and often complicated by antibiotic resistance. Alternative antimicrobial strategies are needed. Phage therapy is a promising alternative that is being rediscovered. Despite phage therapy's 100-year history, there have been no investigations into patient thoughts and concerns. This study aimed to explore patient awareness of and concern about antibiotic resistance and gain insight into the perceptions of phage therapy among a patient group that could potentially benefit from phage therapy. Patients with an active or resolved (healed or amputated) diabetic foot ulcer were eligible to participate. A survey was distributed digitally to eligible patients across Scotland via the NHS Research Scotland Diabetes Network and hard copies were available in diabetic foot clinics at the Royal Infirmary of Edinburgh and Queen Elizabeth University Hospital, Glasgow. A focus group of five survey respondents was held in Glasgow. Fifty-five survey responses were obtained. There was a high level of awareness (76.4%; N = 55) and concern (83.3%; N = 54) about antibiotic resistance. While largely aware of viruses, most patients had not heard of phage or phage therapy. Patients were no more concerned about phage than antibiotic therapy, with most suggesting more information could alleviate any concerns. Patient acceptability of phage therapy was high, a finding confirmed by the focus group. Patients are concerned about antibiotic resistance and supportive of 'new' antimicrobials. We have demonstrated that patients are supportive, enthusiastic and accepting of phage therapy. Although 'Western' phage therapy remains in its infancy, an understanding of patient ideas, concerns and expectations will be important in eventually shaping and successfully reintroducing phage therapy.
Collapse
Affiliation(s)
- Katherine E. Macdonald
- Infection Medicine, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Helen J. Stacey
- Edinburgh Medical School, University of Edinburgh, Edinburgh, United Kingdom
| | - Gillian Harkin
- Diabetes and Endocrinology, Queen Elizabeth University Hospital, Glasgow, United Kingdom
| | - Lesley M. L. Hall
- Diabetes and Endocrinology, Queen Elizabeth University Hospital, Glasgow, United Kingdom
| | - Matthew J. Young
- Diabetic Foot Clinic, Outpatient Department 2, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom
| | - Joshua D. Jones
- Infection Medicine, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
9
|
Mohd Sazlly Lim S, Sinnollareddy M, Sime FB. Challenges in Antifungal Therapy in Diabetes Mellitus. J Clin Med 2020; 9:E2878. [PMID: 32899911 PMCID: PMC7565282 DOI: 10.3390/jcm9092878] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 09/03/2020] [Indexed: 01/12/2023] Open
Abstract
Diabetic patients have an increased propensity to Candida sp. infections due to disease-related immunosuppression and various other physiological alterations. The incidence of candidiasis has increased in number over the years and is linked to significant morbidity and mortality in critically ill and immunosuppressed patients. Treatment of infection in diabetic patients may be complicated due to the various disease-related changes to the pharmacokinetics and pharmacodynamics (PK/PD) of a drug, including antifungal agents. Application of PK/PD principles may be a sensible option to optimise antifungal dosing regimens in this group of patients. Further studies on PK/PD of antifungals in patients with diabetes mellitus are needed as current data is limited or unavailable.
Collapse
Affiliation(s)
- Sazlyna Mohd Sazlly Lim
- Centre for Translational Anti-Infective Pharmacodynamics, School of Pharmacy, University of Queensland, Brisbane 4102, Australia;
- Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Seri Kembangan 43400, Malaysia
| | - Mahipal Sinnollareddy
- Therapeutic Goods Administration, Canberra 2609, Australia;
- UQ Centre for Clinical Research, Faculty of Medicine, University of Queensland, Brisbane 4029, Australia
| | - Fekade Bruck Sime
- Centre for Translational Anti-Infective Pharmacodynamics, School of Pharmacy, University of Queensland, Brisbane 4102, Australia;
- UQ Centre for Clinical Research, Faculty of Medicine, University of Queensland, Brisbane 4029, Australia
| |
Collapse
|
10
|
Macdonald KE, Jordan CY, Crichton E, Barnes JE, Harkin GE, Hall LML, Jones JD. A retrospective analysis of the microbiology of diabetic foot infections at a Scottish tertiary hospital. BMC Infect Dis 2020; 20:218. [PMID: 32164543 PMCID: PMC7068857 DOI: 10.1186/s12879-020-4923-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/27/2020] [Indexed: 01/13/2023] Open
Abstract
Background This study represents the first Scottish retrospective analysis of the microbiology of diabetic foot infections (DFIs). The aims were to compare the microbiological profile of DFIs treated at a Scottish tertiary hospital to that in the literature, gather data regarding antimicrobial resistance and investigate potential trends between the microbiological results and nature or site of the clinical sample taken and age or gender of the patients. Methods A retrospective analysis of wound microbiology results was performed, data were obtained from one multidisciplinary outpatient foot clinic during the 12 months of the year 2017. Seventy-three patients and 200 microbiological investigations were included. In cases of soft tissue infection, the deepest part of a cleansed and debrided wound was sampled. In cases of osteomyelitis a bone biopsy was obtained. Factors influencing the pattern of microbial growth or prevalence of Staphylococcus aureus were investigated. Results Of the 200 microbiological investigations, 62% were culture positive, of which 37.9% were polymicrobial and 62.1% monomicrobial. Among the monomicrobial results (n = 77), most were Gram positive isolates (96.1%) and the most frequently isolated bacteria was S. aureus (84.4%). No methicillin-resistant S. aureus was reported. The prevalence of S. aureus in DFIs was associated with increasing age (p = 0.021), but no evidence of association with gender, anatomical sample site or sample material was found. Conclusion The microbiological profile of DFIs in Scotland resembles that reported elsewhere in the UK. In this context, Gram positive organisms, primarily S. aureus, are most frequently isolated from DFIs. The S. aureus isolates identified were largely susceptible to antibiotic therapy. An association between increasing patient age and the prevalence of S. aureus in DFIs was observed.
Collapse
Affiliation(s)
- Katherine E Macdonald
- Edinburgh Medical School: Biomedical Sciences, Infection Medicine, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| | - Crispin Y Jordan
- Biomedical Teaching Organisation, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Doorway 3, Teviot Place, Edinburgh, EH8 9AG, UK
| | - Emma Crichton
- Diabetes and Endocrinology, Queen Elizabeth University Hospital, 1345 Govan Road, Govan, Glasgow, G51 4TF, UK
| | - Judith E Barnes
- Diabetes and Endocrinology, Queen Elizabeth University Hospital, 1345 Govan Road, Govan, Glasgow, G51 4TF, UK
| | - Gillian E Harkin
- Diabetes and Endocrinology, Queen Elizabeth University Hospital, 1345 Govan Road, Govan, Glasgow, G51 4TF, UK
| | - Lesley M L Hall
- Diabetes and Endocrinology, Queen Elizabeth University Hospital, 1345 Govan Road, Govan, Glasgow, G51 4TF, UK
| | - Joshua D Jones
- Edinburgh Medical School: Biomedical Sciences, Infection Medicine, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK. .,ZJU-UoE Institute, Zhejiang University School of Medicine, International Campus, Zhejiang University, 718 East Haizhou Road, Haining, Zhejiang, 314400, People's Republic of China.
| |
Collapse
|
11
|
Nicolau DP, Silberg BN. Cefazolin potency against methicillin-resistant Staphylococcus aureus: a microbiologic assessment in support of a novel drug delivery system for skin and skin structure infections. Infect Drug Resist 2017; 10:227-230. [PMID: 28794647 PMCID: PMC5536227 DOI: 10.2147/idr.s134497] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Introduction Despite aggressive medical and surgical management, the resolution of skin and skin structure infections is often difficult due to insufficient host response, reduced drug penetration, and a high prevalence of resistance organisms such as methicillin-resistant Staphylococcus aureus (MRSA). As a result of these factors, conventional management often consists of prolonged broad-spectrum systemic antimicrobials. An alternative therapy in development, ultrasonic drug dispersion (UDD), uses a subcutaneous injection followed by external trans-cutaneous ultrasound to deliver high tissue concentrations of cefazolin with limited systemic exposure. While it is postulated that these high concentrations may be suitable to treat more resistant organisms such as MRSA, the cefazolin minimum inhibitory concentration (MIC) distribution for this organism is currently unknown. Materials and methods We assessed the potency of cefazolin against a collection of 1,239 MRSA from 42 US hospitals using Clinical Laboratory Standard Institute-defined broth micro-dilution methodology. Results The cefazolin MIC inhibiting 50% of the isolates was 64 mg/L; 81% had MICs ≤128 and nearly all (99.9%) had MICs ≤512 mg/L. Conclusion The overwhelming majority of MRSA had cefazolin MICs that were considerably lower than achievable tissue concentrations (≥1,000 mg/L) using this novel drug delivery system. While the currently defined cefazolin MRSA phenotypic profile precludes the use of parenteral administration, techniques that deliver local exposures in excess of these inhibitory concentrations may provide a novel treatment strategy for skin and skin structure infections.
Collapse
Affiliation(s)
- David P Nicolau
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, CT, USA
| | - Barry N Silberg
- Department of Surgery, Sonoma West Medical Center, Sebastopol, CT, USA
| |
Collapse
|
12
|
Deitchman AN, Heinrichs MT, Khaowroongrueng V, Jadhav SB, Derendorf H. Utility of Microdialysis in Infectious Disease Drug Development and Dose Optimization. AAPS JOURNAL 2016; 19:334-342. [PMID: 27943149 DOI: 10.1208/s12248-016-0020-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 11/25/2016] [Indexed: 01/13/2023]
Abstract
Adequate drug penetration to a site of infection is absolutely imperative to ensure sufficient antimicrobial treatment. Microdialysis is a minimally invasive, versatile technique, which can be used to study the penetration of an antiinfective agent in virtually any tissue of interest. It has been used to investigate drug distribution and pharmacokinetics in variable patient populations, as a tool in dose optimization, a potential utility in therapeutic drug management, and in the study of biomarkers of disease progression. While all of these applications have not been fully explored in the field of antiinfectives, this review provides an overview of how microdialysis has been applied in various phases of drug development, a focus on the specific applications in the subspecialties of infectious disease (treatment of bacterial, fungal, viral, parasitic, and mycobacterial infections), and developing applications (biomarkers and therapeutic drug management).
Collapse
Affiliation(s)
- Amelia N Deitchman
- Department of Pharmaceutics, University of Florida, 1345 Center Drive, PO Box 100494, Gainesville, Florida, 32610, USA
| | - M Tobias Heinrichs
- Department of Pharmaceutics, University of Florida, 1345 Center Drive, PO Box 100494, Gainesville, Florida, 32610, USA
| | - Vipada Khaowroongrueng
- Department of Pharmaceutics, University of Florida, 1345 Center Drive, PO Box 100494, Gainesville, Florida, 32610, USA
| | - Satyawan B Jadhav
- Department of Pharmaceutics, University of Florida, 1345 Center Drive, PO Box 100494, Gainesville, Florida, 32610, USA
| | - Hartmut Derendorf
- Department of Pharmaceutics, University of Florida, 1345 Center Drive, PO Box 100494, Gainesville, Florida, 32610, USA.
| |
Collapse
|
13
|
Practical concept of pharmacokinetics/pharmacodynamics in the management of skin and soft tissue infections. Curr Opin Infect Dis 2016; 29:153-9. [DOI: 10.1097/qco.0000000000000256] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|